some reorganization of number theory
authorhaftmann
Tue, 01 Sep 2009 15:39:33 +0200
changeset 32479 521cc9bf2958
parent 32478 87201c60ae7d
child 32480 6c19da8e661a
some reorganization of number theory
NEWS
src/HOL/Extraction/Euclid.thy
src/HOL/Extraction/ROOT.ML
src/HOL/GCD.thy
src/HOL/Import/HOL4Compat.thy
src/HOL/IsaMakefile
src/HOL/Isar_examples/ROOT.ML
src/HOL/Library/Legacy_GCD.thy
src/HOL/Library/Library.thy
src/HOL/Library/Pocklington.thy
src/HOL/Library/Primes.thy
src/HOL/NSA/Examples/NSPrimes.thy
src/HOL/NewNumberTheory/Binomial.thy
src/HOL/NewNumberTheory/Cong.thy
src/HOL/NewNumberTheory/Fib.thy
src/HOL/NewNumberTheory/MiscAlgebra.thy
src/HOL/NewNumberTheory/ROOT.ML
src/HOL/NewNumberTheory/Residues.thy
src/HOL/NewNumberTheory/UniqueFactorization.thy
src/HOL/NumberTheory/BijectionRel.thy
src/HOL/NumberTheory/Chinese.thy
src/HOL/NumberTheory/Euler.thy
src/HOL/NumberTheory/EulerFermat.thy
src/HOL/NumberTheory/EvenOdd.thy
src/HOL/NumberTheory/Factorization.thy
src/HOL/NumberTheory/Fib.thy
src/HOL/NumberTheory/Finite2.thy
src/HOL/NumberTheory/Gauss.thy
src/HOL/NumberTheory/Int2.thy
src/HOL/NumberTheory/IntFact.thy
src/HOL/NumberTheory/IntPrimes.thy
src/HOL/NumberTheory/Quadratic_Reciprocity.thy
src/HOL/NumberTheory/ROOT.ML
src/HOL/NumberTheory/Residues.thy
src/HOL/NumberTheory/WilsonBij.thy
src/HOL/NumberTheory/WilsonRuss.thy
src/HOL/NumberTheory/document/root.tex
src/HOL/Number_Theory/Binomial.thy
src/HOL/Number_Theory/Cong.thy
src/HOL/Number_Theory/Fib.thy
src/HOL/Number_Theory/MiscAlgebra.thy
src/HOL/Number_Theory/Number_Theory.thy
src/HOL/Number_Theory/Primes.thy
src/HOL/Number_Theory/ROOT.ML
src/HOL/Number_Theory/Residues.thy
src/HOL/Number_Theory/UniqueFactorization.thy
src/HOL/Old_Number_Theory/BijectionRel.thy
src/HOL/Old_Number_Theory/Chinese.thy
src/HOL/Old_Number_Theory/Euler.thy
src/HOL/Old_Number_Theory/EulerFermat.thy
src/HOL/Old_Number_Theory/EvenOdd.thy
src/HOL/Old_Number_Theory/Factorization.thy
src/HOL/Old_Number_Theory/Fib.thy
src/HOL/Old_Number_Theory/Finite2.thy
src/HOL/Old_Number_Theory/Gauss.thy
src/HOL/Old_Number_Theory/Int2.thy
src/HOL/Old_Number_Theory/IntFact.thy
src/HOL/Old_Number_Theory/IntPrimes.thy
src/HOL/Old_Number_Theory/Legacy_GCD.thy
src/HOL/Old_Number_Theory/Pocklington.thy
src/HOL/Old_Number_Theory/Primes.thy
src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy
src/HOL/Old_Number_Theory/ROOT.ML
src/HOL/Old_Number_Theory/Residues.thy
src/HOL/Old_Number_Theory/WilsonBij.thy
src/HOL/Old_Number_Theory/WilsonRuss.thy
src/HOL/Old_Number_Theory/document/root.tex
src/HOL/ex/Codegenerator_Candidates.thy
src/HOL/ex/ROOT.ML
src/HOL/ex/Sqrt.thy
src/HOL/ex/Sqrt_Script.thy
--- a/NEWS	Tue Sep 01 14:13:34 2009 +0200
+++ b/NEWS	Tue Sep 01 15:39:33 2009 +0200
@@ -18,6 +18,15 @@
 
 *** HOL ***
 
+* Reorganization of number theory:
+  * former session NumberTheory now names Old_Number_Theory; former session NewNumberTheory
+    named NumberTheory;
+  * split off prime number ingredients from theory GCD to theory Number_Theory/Primes;
+  * moved legacy theories Legacy_GCD and Primes from Library/ to Old_Number_Theory/;
+  * moved theory Pocklington from Library/ to Old_Number_Theory/;
+  * removed various references to Old_Number_Theory from HOL distribution.
+INCOMPATIBILITY.
+
 * New testing tool "Mirabelle" for automated (proof) tools. Applies
 several tools and tactics like sledgehammer, metis, or quickcheck, to
 every proof step in a theory. To be used in batch mode via the
--- a/src/HOL/Extraction/Euclid.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/Extraction/Euclid.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Extraction/Euclid.thy
-    ID:         $Id$
     Author:     Markus Wenzel, TU Muenchen
                 Freek Wiedijk, Radboud University Nijmegen
                 Stefan Berghofer, TU Muenchen
@@ -8,7 +7,7 @@
 header {* Euclid's theorem *}
 
 theory Euclid
-imports "~~/src/HOL/NumberTheory/Factorization" Util Efficient_Nat
+imports "~~/src/HOL/Old_Number_Theory/Factorization" Util Efficient_Nat
 begin
 
 text {*
--- a/src/HOL/Extraction/ROOT.ML	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/Extraction/ROOT.ML	Tue Sep 01 15:39:33 2009 +0200
@@ -1,5 +1,4 @@
 (*  Title:      HOL/Extraction/ROOT.ML
-    ID:         $Id$
 
 Examples for program extraction in Higher-Order Logic.
 *)
@@ -8,5 +7,5 @@
   warning "HOL proof terms required for running extraction examples"
 else
   (Proofterm.proofs := 2;
-   no_document use_thys ["Efficient_Nat", "~~/src/HOL/NumberTheory/Factorization"];
+   no_document use_thys ["Efficient_Nat", "~~/src/HOL/Old_Number_Theory/Factorization"];
    use_thys ["Greatest_Common_Divisor", "Warshall", "Higman", "Pigeonhole", "Euclid"]);
--- a/src/HOL/GCD.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/GCD.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -1,11 +1,9 @@
-(*  Title:      GCD.thy
-    Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
+(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
                 Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
 
 
-This file deals with the functions gcd and lcm, and properties of
-primes. Definitions and lemmas are proved uniformly for the natural
-numbers and integers.
+This file deals with the functions gcd and lcm.  Definitions and
+lemmas are proved uniformly for the natural numbers and integers.
 
 This file combines and revises a number of prior developments.
 
@@ -52,11 +50,6 @@
 
 end
 
-class prime = one +
-
-fixes
-  prime :: "'a \<Rightarrow> bool"
-
 
 (* definitions for the natural numbers *)
 
@@ -80,20 +73,6 @@
 end
 
 
-instantiation nat :: prime
-
-begin
-
-definition
-  prime_nat :: "nat \<Rightarrow> bool"
-where
-  [code del]: "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
-
-instance proof qed
-
-end
-
-
 (* definitions for the integers *)
 
 instantiation int :: gcd
@@ -115,28 +94,13 @@
 end
 
 
-instantiation int :: prime
-
-begin
-
-definition
-  prime_int :: "int \<Rightarrow> bool"
-where
-  [code del]: "prime_int p = prime (nat p)"
-
-instance proof qed
-
-end
-
-
 subsection {* Set up Transfer *}
 
 
 lemma transfer_nat_int_gcd:
   "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)"
   "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)"
-  "(x::int) >= 0 \<Longrightarrow> prime (nat x) = prime x"
-  unfolding gcd_int_def lcm_int_def prime_int_def
+  unfolding gcd_int_def lcm_int_def
   by auto
 
 lemma transfer_nat_int_gcd_closures:
@@ -150,8 +114,7 @@
 lemma transfer_int_nat_gcd:
   "gcd (int x) (int y) = int (gcd x y)"
   "lcm (int x) (int y) = int (lcm x y)"
-  "prime (int x) = prime x"
-  by (unfold gcd_int_def lcm_int_def prime_int_def, auto)
+  by (unfold gcd_int_def lcm_int_def, auto)
 
 lemma transfer_int_nat_gcd_closures:
   "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0"
@@ -1003,20 +966,6 @@
   apply (auto simp add: gcd_mult_cancel_int)
 done
 
-lemma prime_odd_nat: "prime (p::nat) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
-  unfolding prime_nat_def
-  apply (subst even_mult_two_ex)
-  apply clarify
-  apply (drule_tac x = 2 in spec)
-  apply auto
-done
-
-lemma prime_odd_int: "prime (p::int) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
-  unfolding prime_int_def
-  apply (frule prime_odd_nat)
-  apply (auto simp add: even_nat_def)
-done
-
 lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow>
     x dvd b \<Longrightarrow> x = 1"
   apply (subgoal_tac "x dvd gcd a b")
@@ -1753,327 +1702,4 @@
   show ?thesis by(simp add: Gcd_def fold_set gcd_commute_int)
 qed
 
-
-subsection {* Primes *}
-
-(* FIXME Is there a better way to handle these, rather than making them elim rules? *)
-
-lemma prime_ge_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 0"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_gt_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 0"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_ge_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 1"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_gt_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 1"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_ge_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= Suc 0"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_gt_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > Suc 0"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_ge_2_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 2"
-  by (unfold prime_nat_def, auto)
-
-lemma prime_ge_0_int [elim]: "prime (p::int) \<Longrightarrow> p >= 0"
-  by (unfold prime_int_def prime_nat_def) auto
-
-lemma prime_gt_0_int [elim]: "prime (p::int) \<Longrightarrow> p > 0"
-  by (unfold prime_int_def prime_nat_def, auto)
-
-lemma prime_ge_1_int [elim]: "prime (p::int) \<Longrightarrow> p >= 1"
-  by (unfold prime_int_def prime_nat_def, auto)
-
-lemma prime_gt_1_int [elim]: "prime (p::int) \<Longrightarrow> p > 1"
-  by (unfold prime_int_def prime_nat_def, auto)
-
-lemma prime_ge_2_int [elim]: "prime (p::int) \<Longrightarrow> p >= 2"
-  by (unfold prime_int_def prime_nat_def, auto)
-
-
-lemma prime_int_altdef: "prime (p::int) = (1 < p \<and> (\<forall>m \<ge> 0. m dvd p \<longrightarrow>
-    m = 1 \<or> m = p))"
-  using prime_nat_def [transferred]
-    apply (case_tac "p >= 0")
-    by (blast, auto simp add: prime_ge_0_int)
-
-lemma prime_imp_coprime_nat: "prime (p::nat) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
-  apply (unfold prime_nat_def)
-  apply (metis gcd_dvd1_nat gcd_dvd2_nat)
-  done
-
-lemma prime_imp_coprime_int: "prime (p::int) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
-  apply (unfold prime_int_altdef)
-  apply (metis gcd_dvd1_int gcd_dvd2_int gcd_ge_0_int)
-  done
-
-lemma prime_dvd_mult_nat: "prime (p::nat) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
-  by (blast intro: coprime_dvd_mult_nat prime_imp_coprime_nat)
-
-lemma prime_dvd_mult_int: "prime (p::int) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
-  by (blast intro: coprime_dvd_mult_int prime_imp_coprime_int)
-
-lemma prime_dvd_mult_eq_nat [simp]: "prime (p::nat) \<Longrightarrow>
-    p dvd m * n = (p dvd m \<or> p dvd n)"
-  by (rule iffI, rule prime_dvd_mult_nat, auto)
-
-lemma prime_dvd_mult_eq_int [simp]: "prime (p::int) \<Longrightarrow>
-    p dvd m * n = (p dvd m \<or> p dvd n)"
-  by (rule iffI, rule prime_dvd_mult_int, auto)
-
-lemma not_prime_eq_prod_nat: "(n::nat) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
-    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
-  unfolding prime_nat_def dvd_def apply auto
-  by(metis mult_commute linorder_neq_iff linorder_not_le mult_1 n_less_n_mult_m one_le_mult_iff less_imp_le_nat)
-
-lemma not_prime_eq_prod_int: "(n::int) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
-    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
-  unfolding prime_int_altdef dvd_def
-  apply auto
-  by(metis div_mult_self1_is_id div_mult_self2_is_id int_div_less_self int_one_le_iff_zero_less zero_less_mult_pos zless_le)
-
-lemma prime_dvd_power_nat [rule_format]: "prime (p::nat) -->
-    n > 0 --> (p dvd x^n --> p dvd x)"
-  by (induct n rule: nat_induct, auto)
-
-lemma prime_dvd_power_int [rule_format]: "prime (p::int) -->
-    n > 0 --> (p dvd x^n --> p dvd x)"
-  apply (induct n rule: nat_induct, auto)
-  apply (frule prime_ge_0_int)
-  apply auto
-done
-
-subsubsection{* Make prime naively executable *}
-
-lemma zero_not_prime_nat [simp]: "~prime (0::nat)"
-  by (simp add: prime_nat_def)
-
-lemma zero_not_prime_int [simp]: "~prime (0::int)"
-  by (simp add: prime_int_def)
-
-lemma one_not_prime_nat [simp]: "~prime (1::nat)"
-  by (simp add: prime_nat_def)
-
-lemma Suc_0_not_prime_nat [simp]: "~prime (Suc 0)"
-  by (simp add: prime_nat_def One_nat_def)
-
-lemma one_not_prime_int [simp]: "~prime (1::int)"
-  by (simp add: prime_int_def)
-
-lemma prime_nat_code[code]:
- "prime(p::nat) = (p > 1 & (ALL n : {1<..<p}. ~(n dvd p)))"
-apply(simp add: Ball_def)
-apply (metis less_not_refl prime_nat_def dvd_triv_right not_prime_eq_prod_nat)
-done
-
-lemma prime_nat_simp:
- "prime(p::nat) = (p > 1 & (list_all (%n. ~ n dvd p) [2..<p]))"
-apply(simp only:prime_nat_code list_ball_code greaterThanLessThan_upt)
-apply(simp add:nat_number One_nat_def)
-done
-
-lemmas prime_nat_simp_number_of[simp] = prime_nat_simp[of "number_of m", standard]
-
-lemma prime_int_code[code]:
-  "prime(p::int) = (p > 1 & (ALL n : {1<..<p}. ~(n dvd p)))" (is "?L = ?R")
-proof
-  assume "?L" thus "?R"
-    by (clarsimp simp: prime_gt_1_int) (metis int_one_le_iff_zero_less prime_int_altdef zless_le)
-next
-    assume "?R" thus "?L" by (clarsimp simp:Ball_def) (metis dvdI not_prime_eq_prod_int)
-qed
-
-lemma prime_int_simp:
-  "prime(p::int) = (p > 1 & (list_all (%n. ~ n dvd p) [2..p - 1]))"
-apply(simp only:prime_int_code list_ball_code greaterThanLessThan_upto)
-apply simp
-done
-
-lemmas prime_int_simp_number_of[simp] = prime_int_simp[of "number_of m", standard]
-
-lemma two_is_prime_nat [simp]: "prime (2::nat)"
-by simp
-
-lemma two_is_prime_int [simp]: "prime (2::int)"
-by simp
-
-text{* A bit of regression testing: *}
-
-lemma "prime(97::nat)"
-by simp
-
-lemma "prime(97::int)"
-by simp
-
-lemma "prime(997::nat)"
-by eval
-
-lemma "prime(997::int)"
-by eval
-
-
-lemma prime_imp_power_coprime_nat: "prime (p::nat) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
-  apply (rule coprime_exp_nat)
-  apply (subst gcd_commute_nat)
-  apply (erule (1) prime_imp_coprime_nat)
-done
-
-lemma prime_imp_power_coprime_int: "prime (p::int) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
-  apply (rule coprime_exp_int)
-  apply (subst gcd_commute_int)
-  apply (erule (1) prime_imp_coprime_int)
-done
-
-lemma primes_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
-  apply (rule prime_imp_coprime_nat, assumption)
-  apply (unfold prime_nat_def, auto)
-done
-
-lemma primes_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
-  apply (rule prime_imp_coprime_int, assumption)
-  apply (unfold prime_int_altdef, clarify)
-  apply (drule_tac x = q in spec)
-  apply (drule_tac x = p in spec)
-  apply auto
-done
-
-lemma primes_imp_powers_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
-  by (rule coprime_exp2_nat, rule primes_coprime_nat)
-
-lemma primes_imp_powers_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
-  by (rule coprime_exp2_int, rule primes_coprime_int)
-
-lemma prime_factor_nat: "n \<noteq> (1::nat) \<Longrightarrow> \<exists> p. prime p \<and> p dvd n"
-  apply (induct n rule: nat_less_induct)
-  apply (case_tac "n = 0")
-  using two_is_prime_nat apply blast
-  apply (case_tac "prime n")
-  apply blast
-  apply (subgoal_tac "n > 1")
-  apply (frule (1) not_prime_eq_prod_nat)
-  apply (auto intro: dvd_mult dvd_mult2)
-done
-
-(* An Isar version:
-
-lemma prime_factor_b_nat:
-  fixes n :: nat
-  assumes "n \<noteq> 1"
-  shows "\<exists>p. prime p \<and> p dvd n"
-
-using `n ~= 1`
-proof (induct n rule: less_induct_nat)
-  fix n :: nat
-  assume "n ~= 1" and
-    ih: "\<forall>m<n. m \<noteq> 1 \<longrightarrow> (\<exists>p. prime p \<and> p dvd m)"
-  thus "\<exists>p. prime p \<and> p dvd n"
-  proof -
-  {
-    assume "n = 0"
-    moreover note two_is_prime_nat
-    ultimately have ?thesis
-      by (auto simp del: two_is_prime_nat)
-  }
-  moreover
-  {
-    assume "prime n"
-    hence ?thesis by auto
-  }
-  moreover
-  {
-    assume "n ~= 0" and "~ prime n"
-    with `n ~= 1` have "n > 1" by auto
-    with `~ prime n` and not_prime_eq_prod_nat obtain m k where
-      "n = m * k" and "1 < m" and "m < n" by blast
-    with ih obtain p where "prime p" and "p dvd m" by blast
-    with `n = m * k` have ?thesis by auto
-  }
-  ultimately show ?thesis by blast
-  qed
-qed
-
-*)
-
-text {* One property of coprimality is easier to prove via prime factors. *}
-
-lemma prime_divprod_pow_nat:
-  assumes p: "prime (p::nat)" and ab: "coprime a b" and pab: "p^n dvd a * b"
-  shows "p^n dvd a \<or> p^n dvd b"
-proof-
-  {assume "n = 0 \<or> a = 1 \<or> b = 1" with pab have ?thesis
-      apply (cases "n=0", simp_all)
-      apply (cases "a=1", simp_all) done}
-  moreover
-  {assume n: "n \<noteq> 0" and a: "a\<noteq>1" and b: "b\<noteq>1"
-    then obtain m where m: "n = Suc m" by (cases n, auto)
-    from n have "p dvd p^n" by (intro dvd_power, auto)
-    also note pab
-    finally have pab': "p dvd a * b".
-    from prime_dvd_mult_nat[OF p pab']
-    have "p dvd a \<or> p dvd b" .
-    moreover
-    {assume pa: "p dvd a"
-      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
-      from coprime_common_divisor_nat [OF ab, OF pa] p have "\<not> p dvd b" by auto
-      with p have "coprime b p"
-        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
-      hence pnb: "coprime (p^n) b"
-        by (subst gcd_commute_nat, rule coprime_exp_nat)
-      from coprime_divprod_nat[OF pnba pnb] have ?thesis by blast }
-    moreover
-    {assume pb: "p dvd b"
-      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
-      from coprime_common_divisor_nat [OF ab, of p] pb p have "\<not> p dvd a"
-        by auto
-      with p have "coprime a p"
-        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
-      hence pna: "coprime (p^n) a"
-        by (subst gcd_commute_nat, rule coprime_exp_nat)
-      from coprime_divprod_nat[OF pab pna] have ?thesis by blast }
-    ultimately have ?thesis by blast}
-  ultimately show ?thesis by blast
-qed
-
-subsection {* Infinitely many primes *}
-
-lemma next_prime_bound: "\<exists>(p::nat). prime p \<and> n < p \<and> p <= fact n + 1"
-proof-
-  have f1: "fact n + 1 \<noteq> 1" using fact_ge_one_nat [of n] by arith 
-  from prime_factor_nat [OF f1]
-      obtain p where "prime p" and "p dvd fact n + 1" by auto
-  hence "p \<le> fact n + 1" 
-    by (intro dvd_imp_le, auto)
-  {assume "p \<le> n"
-    from `prime p` have "p \<ge> 1" 
-      by (cases p, simp_all)
-    with `p <= n` have "p dvd fact n" 
-      by (intro dvd_fact_nat)
-    with `p dvd fact n + 1` have "p dvd fact n + 1 - fact n"
-      by (rule dvd_diff_nat)
-    hence "p dvd 1" by simp
-    hence "p <= 1" by auto
-    moreover from `prime p` have "p > 1" by auto
-    ultimately have False by auto}
-  hence "n < p" by arith
-  with `prime p` and `p <= fact n + 1` show ?thesis by auto
-qed
-
-lemma bigger_prime: "\<exists>p. prime p \<and> p > (n::nat)" 
-using next_prime_bound by auto
-
-lemma primes_infinite: "\<not> (finite {(p::nat). prime p})"
-proof
-  assume "finite {(p::nat). prime p}"
-  with Max_ge have "(EX b. (ALL x : {(p::nat). prime p}. x <= b))"
-    by auto
-  then obtain b where "ALL (x::nat). prime x \<longrightarrow> x <= b"
-    by auto
-  with bigger_prime [of b] show False by auto
-qed
-
-
 end
--- a/src/HOL/Import/HOL4Compat.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/Import/HOL4Compat.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -3,7 +3,7 @@
 *)
 
 theory HOL4Compat
-imports HOL4Setup Complex_Main Primes ContNotDenum
+imports HOL4Setup Complex_Main "~~/src/HOL/Old_Number_Theory/Primes" ContNotDenum
 begin
 
 no_notation differentiable (infixl "differentiable" 60)
--- a/src/HOL/IsaMakefile	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/IsaMakefile	Tue Sep 01 15:39:33 2009 +0200
@@ -34,8 +34,8 @@
   HOL-Modelcheck \
   HOL-NanoJava \
   HOL-Nominal-Examples \
-  HOL-NewNumberTheory \
-  HOL-NumberTheory \
+  HOL-Number_Theory \
+  HOL-Old_Number_Theory \
   HOL-Prolog \
   HOL-SET-Protocol \
   HOL-SizeChange \
@@ -282,11 +282,13 @@
   Complex.thy \
   Deriv.thy \
   Fact.thy \
+  GCD.thy \
   Integration.thy \
   Lim.thy \
   Limits.thy \
   Ln.thy \
   Log.thy \
+  Lubs.thy \
   MacLaurin.thy \
   NatTransfer.thy \
   NthRoot.thy \
@@ -294,9 +296,7 @@
   Series.thy \
   Taylor.thy \
   Transcendental.thy \
-  GCD.thy \
   Parity.thy \
-  Lubs.thy \
   PReal.thy \
   Rational.thy \
   RComplete.thy \
@@ -330,10 +330,10 @@
   Library/Finite_Cartesian_Product.thy Library/FrechetDeriv.thy		\
   Library/Fraction_Field.thy Library/Fundamental_Theorem_Algebra.thy	\
   Library/Inner_Product.thy Library/Kleene_Algebra.thy			\
-  Library/Lattice_Syntax.thy Library/Legacy_GCD.thy			\
+  Library/Lattice_Syntax.thy			\
   Library/Library.thy Library/List_Prefix.thy Library/List_Set.thy	\
   Library/State_Monad.thy Library/Nat_Int_Bij.thy Library/Multiset.thy	\
-  Library/Permutation.thy Library/Primes.thy Library/Pocklington.thy	\
+  Library/Permutation.thy	\
   Library/Quotient.thy Library/Quicksort.thy Library/Nat_Infinity.thy	\
   Library/Word.thy Library/README.html Library/Continuity.thy		\
   Library/Order_Relation.thy Library/Nested_Environment.thy		\
@@ -487,38 +487,39 @@
 	@cd Import/HOLLight; $(ISABELLE_TOOL) usedir -b $(OUT)/HOL HOLLight
 
 
-## HOL-NewNumberTheory
+## HOL-Number_Theory
 
-HOL-NewNumberTheory: HOL $(LOG)/HOL-NewNumberTheory.gz
+HOL-Number_Theory: HOL $(LOG)/HOL-Number_Theory.gz
 
-$(LOG)/HOL-NewNumberTheory.gz: $(OUT)/HOL $(ALGEBRA_DEPENDENCIES) \
+$(LOG)/HOL-Number_Theory.gz: $(OUT)/HOL $(ALGEBRA_DEPENDENCIES) \
   Library/Multiset.thy \
-  NewNumberTheory/Binomial.thy \
-  NewNumberTheory/Cong.thy \
-  NewNumberTheory/Fib.thy \
-  NewNumberTheory/MiscAlgebra.thy \
-  NewNumberTheory/Residues.thy \
-  NewNumberTheory/UniqueFactorization.thy  \
-  NewNumberTheory/ROOT.ML
-	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL NewNumberTheory
+  Number_Theory/Binomial.thy \
+  Number_Theory/Cong.thy \
+  Number_Theory/Fib.thy \
+  Number_Theory/MiscAlgebra.thy \
+  Number_Theory/Number_Theory.thy \
+  Number_Theory/Residues.thy \
+  Number_Theory/UniqueFactorization.thy  \
+  Number_Theory/ROOT.ML
+	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL Number_Theory
 
 
-## HOL-NumberTheory
+## HOL-Old_Number_Theory
 
-HOL-NumberTheory: HOL $(LOG)/HOL-NumberTheory.gz
+HOL-Old_Number_Theory: HOL $(LOG)/HOL-Old_Number_Theory.gz
 
-$(LOG)/HOL-NumberTheory.gz: $(OUT)/HOL Library/Permutation.thy		\
-  Library/Primes.thy NumberTheory/Fib.thy				\
-  NumberTheory/Factorization.thy NumberTheory/BijectionRel.thy		\
-  NumberTheory/Chinese.thy NumberTheory/EulerFermat.thy			\
-  NumberTheory/IntFact.thy NumberTheory/IntPrimes.thy			\
-  NumberTheory/WilsonBij.thy NumberTheory/WilsonRuss.thy		\
-  NumberTheory/Finite2.thy NumberTheory/Int2.thy			\
-  NumberTheory/EvenOdd.thy NumberTheory/Residues.thy			\
-  NumberTheory/Euler.thy NumberTheory/Gauss.thy				\
-  NumberTheory/Quadratic_Reciprocity.thy Library/Infinite_Set.thy	\
-  NumberTheory/ROOT.ML
-	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL NumberTheory
+$(LOG)/HOL-Old_Number_Theory.gz: $(OUT)/HOL Library/Permutation.thy		\
+  Old_Number_Theory/Primes.thy Old_Number_Theory/Fib.thy				\
+  Old_Number_Theory/Factorization.thy Old_Number_Theory/BijectionRel.thy		\
+  Old_Number_Theory/Chinese.thy Old_Number_Theory/EulerFermat.thy			\
+  Old_Number_Theory/IntFact.thy Old_Number_Theory/IntPrimes.thy			\
+  Old_Number_Theory/WilsonBij.thy Old_Number_Theory/WilsonRuss.thy		\
+  Old_Number_Theory/Finite2.thy Old_Number_Theory/Int2.thy			\
+  Old_Number_Theory/EvenOdd.thy Old_Number_Theory/Residues.thy			\
+  Old_Number_Theory/Euler.thy Old_Number_Theory/Gauss.thy				\
+  Old_Number_Theory/Quadratic_Reciprocity.thy Library/Infinite_Set.thy	\
+  Old_Number_Theory/Legacy_GCD.thy Old_Number_Theory/Pocklington.thy Old_Number_Theory/ROOT.ML
+	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL Old_Number_Theory
 
 
 ## HOL-Hoare
@@ -573,7 +574,7 @@
   Library/FuncSet.thy \
   Library/Multiset.thy \
   Library/Permutation.thy \
-  Library/Primes.thy \
+  Number_Theory/Primes.thy \
   Algebra/AbelCoset.thy \
   Algebra/Bij.thy \
   Algebra/Congruence.thy \
@@ -876,7 +877,7 @@
 HOL-ex: HOL $(LOG)/HOL-ex.gz
 
 $(LOG)/HOL-ex.gz: $(OUT)/HOL Library/Commutative_Ring.thy		\
-  Library/Primes.thy ex/Abstract_NAT.thy ex/Antiquote.thy		\
+  Number_Theory/Primes.thy ex/Abstract_NAT.thy ex/Antiquote.thy		\
   ex/Arith_Examples.thy				\
   ex/Arithmetic_Series_Complex.thy ex/BT.thy ex/BinEx.thy		\
   ex/Binary.thy ex/CTL.thy ex/Chinese.thy ex/Classical.thy		\
--- a/src/HOL/Isar_examples/ROOT.ML	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/Isar_examples/ROOT.ML	Tue Sep 01 15:39:33 2009 +0200
@@ -4,7 +4,7 @@
 Miscellaneous Isabelle/Isar examples for Higher-Order Logic.
 *)
 
-no_document use_thys ["../NumberTheory/Primes", "../NumberTheory/Fibonacci"];
+no_document use_thys ["../Old_Number_Theory/Primes", "../Old_Number_Theory/Fibonacci"];
 
 use_thys [
   "Basic_Logic",
--- a/src/HOL/Library/Legacy_GCD.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,787 +0,0 @@
-(*  Title:      HOL/GCD.thy
-    Author:     Christophe Tabacznyj and Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-*)
-
-header {* The Greatest Common Divisor *}
-
-theory Legacy_GCD
-imports Main
-begin
-
-text {*
-  See \cite{davenport92}. \bigskip
-*}
-
-subsection {* Specification of GCD on nats *}
-
-definition
-  is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- {* @{term gcd} as a relation *}
-  [code del]: "is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
-    (\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)"
-
-text {* Uniqueness *}
-
-lemma is_gcd_unique: "is_gcd a b m \<Longrightarrow> is_gcd a b n \<Longrightarrow> m = n"
-  by (simp add: is_gcd_def) (blast intro: dvd_anti_sym)
-
-text {* Connection to divides relation *}
-
-lemma is_gcd_dvd: "is_gcd a b m \<Longrightarrow> k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd m"
-  by (auto simp add: is_gcd_def)
-
-text {* Commutativity *}
-
-lemma is_gcd_commute: "is_gcd m n k = is_gcd n m k"
-  by (auto simp add: is_gcd_def)
-
-
-subsection {* GCD on nat by Euclid's algorithm *}
-
-fun
-  gcd  :: "nat => nat => nat"
-where
-  "gcd m n = (if n = 0 then m else gcd n (m mod n))"
-lemma gcd_induct [case_names "0" rec]:
-  fixes m n :: nat
-  assumes "\<And>m. P m 0"
-    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
-  shows "P m n"
-proof (induct m n rule: gcd.induct)
-  case (1 m n) with assms show ?case by (cases "n = 0") simp_all
-qed
-
-lemma gcd_0 [simp, algebra]: "gcd m 0 = m"
-  by simp
-
-lemma gcd_0_left [simp,algebra]: "gcd 0 m = m"
-  by simp
-
-lemma gcd_non_0: "n > 0 \<Longrightarrow> gcd m n = gcd n (m mod n)"
-  by simp
-
-lemma gcd_1 [simp, algebra]: "gcd m (Suc 0) = Suc 0"
-  by simp
-
-lemma nat_gcd_1_right [simp, algebra]: "gcd m 1 = 1"
-  unfolding One_nat_def by (rule gcd_1)
-
-declare gcd.simps [simp del]
-
-text {*
-  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
-  conjunctions don't seem provable separately.
-*}
-
-lemma gcd_dvd1 [iff, algebra]: "gcd m n dvd m"
-  and gcd_dvd2 [iff, algebra]: "gcd m n dvd n"
-  apply (induct m n rule: gcd_induct)
-     apply (simp_all add: gcd_non_0)
-  apply (blast dest: dvd_mod_imp_dvd)
-  done
-
-text {*
-  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
-  naturals, if @{term k} divides @{term m} and @{term k} divides
-  @{term n} then @{term k} divides @{term "gcd m n"}.
-*}
-
-lemma gcd_greatest: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
-  by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod)
-
-text {*
-  \medskip Function gcd yields the Greatest Common Divisor.
-*}
-
-lemma is_gcd: "is_gcd m n (gcd m n) "
-  by (simp add: is_gcd_def gcd_greatest)
-
-
-subsection {* Derived laws for GCD *}
-
-lemma gcd_greatest_iff [iff, algebra]: "k dvd gcd m n \<longleftrightarrow> k dvd m \<and> k dvd n"
-  by (blast intro!: gcd_greatest intro: dvd_trans)
-
-lemma gcd_zero[algebra]: "gcd m n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
-  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff)
-
-lemma gcd_commute: "gcd m n = gcd n m"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (subst is_gcd_commute)
-  apply (simp add: is_gcd)
-  done
-
-lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
-  apply (rule is_gcd_unique)
-   apply (rule is_gcd)
-  apply (simp add: is_gcd_def)
-  apply (blast intro: dvd_trans)
-  done
-
-lemma gcd_1_left [simp, algebra]: "gcd (Suc 0) m = Suc 0"
-  by (simp add: gcd_commute)
-
-lemma nat_gcd_1_left [simp, algebra]: "gcd 1 m = 1"
-  unfolding One_nat_def by (rule gcd_1_left)
-
-text {*
-  \medskip Multiplication laws
-*}
-
-lemma gcd_mult_distrib2: "k * gcd m n = gcd (k * m) (k * n)"
-    -- {* \cite[page 27]{davenport92} *}
-  apply (induct m n rule: gcd_induct)
-   apply simp
-  apply (case_tac "k = 0")
-   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
-  done
-
-lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k"
-  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
-  done
-
-lemma gcd_self [simp, algebra]: "gcd k k = k"
-  apply (rule gcd_mult [of k 1, simplified])
-  done
-
-lemma relprime_dvd_mult: "gcd k n = 1 ==> k dvd m * n ==> k dvd m"
-  apply (insert gcd_mult_distrib2 [of m k n])
-  apply simp
-  apply (erule_tac t = m in ssubst)
-  apply simp
-  done
-
-lemma relprime_dvd_mult_iff: "gcd k n = 1 ==> (k dvd m * n) = (k dvd m)"
-  by (auto intro: relprime_dvd_mult dvd_mult2)
-
-lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n"
-  apply (rule dvd_anti_sym)
-   apply (rule gcd_greatest)
-    apply (rule_tac n = k in relprime_dvd_mult)
-     apply (simp add: gcd_assoc)
-     apply (simp add: gcd_commute)
-    apply (simp_all add: mult_commute)
-  done
-
-
-text {* \medskip Addition laws *}
-
-lemma gcd_add1 [simp, algebra]: "gcd (m + n) n = gcd m n"
-  by (cases "n = 0") (auto simp add: gcd_non_0)
-
-lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n"
-proof -
-  have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute)
-  also have "... = gcd (n + m) m" by (simp add: add_commute)
-  also have "... = gcd n m" by simp
-  also have  "... = gcd m n" by (rule gcd_commute)
-  finally show ?thesis .
-qed
-
-lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n"
-  apply (subst add_commute)
-  apply (rule gcd_add2)
-  done
-
-lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n"
-  by (induct k) (simp_all add: add_assoc)
-
-lemma gcd_dvd_prod: "gcd m n dvd m * n" 
-  using mult_dvd_mono [of 1] by auto
-
-text {*
-  \medskip Division by gcd yields rrelatively primes.
-*}
-
-lemma div_gcd_relprime:
-  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
-  shows "gcd (a div gcd a b) (b div gcd a b) = 1"
-proof -
-  let ?g = "gcd a b"
-  let ?a' = "a div ?g"
-  let ?b' = "b div ?g"
-  let ?g' = "gcd ?a' ?b'"
-  have dvdg: "?g dvd a" "?g dvd b" by simp_all
-  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
-  from dvdg dvdg' obtain ka kb ka' kb' where
-      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
-    unfolding dvd_def by blast
-  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all
-  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
-    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
-      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
-  have "?g \<noteq> 0" using nz by (simp add: gcd_zero)
-  then have gp: "?g > 0" by simp
-  from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
-  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
-qed
-
-
-lemma gcd_unique: "d dvd a\<and>d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
-proof(auto)
-  assume H: "d dvd a" "d dvd b" "\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d"
-  from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] 
-  have th: "gcd a b dvd d" by blast
-  from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]]  show "d = gcd a b" by blast 
-qed
-
-lemma gcd_eq: assumes H: "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd u \<and> d dvd v"
-  shows "gcd x y = gcd u v"
-proof-
-  from H have "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd gcd u v" by simp
-  with gcd_unique[of "gcd u v" x y]  show ?thesis by auto
-qed
-
-lemma ind_euclid: 
-  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" 
-  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" 
-  shows "P a b"
-proof(induct n\<equiv>"a+b" arbitrary: a b rule: nat_less_induct)
-  fix n a b
-  assume H: "\<forall>m < n. \<forall>a b. m = a + b \<longrightarrow> P a b" "n = a + b"
-  have "a = b \<or> a < b \<or> b < a" by arith
-  moreover {assume eq: "a= b"
-    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq by simp}
-  moreover
-  {assume lt: "a < b"
-    hence "a + b - a < n \<or> a = 0"  using H(2) by arith
-    moreover
-    {assume "a =0" with z c have "P a b" by blast }
-    moreover
-    {assume ab: "a + b - a < n"
-      have th0: "a + b - a = a + (b - a)" using lt by arith
-      from add[rule_format, OF H(1)[rule_format, OF ab th0]]
-      have "P a b" by (simp add: th0[symmetric])}
-    ultimately have "P a b" by blast}
-  moreover
-  {assume lt: "a > b"
-    hence "b + a - b < n \<or> b = 0"  using H(2) by arith
-    moreover
-    {assume "b =0" with z c have "P a b" by blast }
-    moreover
-    {assume ab: "b + a - b < n"
-      have th0: "b + a - b = b + (a - b)" using lt by arith
-      from add[rule_format, OF H(1)[rule_format, OF ab th0]]
-      have "P b a" by (simp add: th0[symmetric])
-      hence "P a b" using c by blast }
-    ultimately have "P a b" by blast}
-ultimately  show "P a b" by blast
-qed
-
-lemma bezout_lemma: 
-  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
-  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
-using ex
-apply clarsimp
-apply (rule_tac x="d" in exI, simp add: dvd_add)
-apply (case_tac "a * x = b * y + d" , simp_all)
-apply (rule_tac x="x + y" in exI)
-apply (rule_tac x="y" in exI)
-apply algebra
-apply (rule_tac x="x" in exI)
-apply (rule_tac x="x + y" in exI)
-apply algebra
-done
-
-lemma bezout_add: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
-apply(induct a b rule: ind_euclid)
-apply blast
-apply clarify
-apply (rule_tac x="a" in exI, simp add: dvd_add)
-apply clarsimp
-apply (rule_tac x="d" in exI)
-apply (case_tac "a * x = b * y + d", simp_all add: dvd_add)
-apply (rule_tac x="x+y" in exI)
-apply (rule_tac x="y" in exI)
-apply algebra
-apply (rule_tac x="x" in exI)
-apply (rule_tac x="x+y" in exI)
-apply algebra
-done
-
-lemma bezout: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)"
-using bezout_add[of a b]
-apply clarsimp
-apply (rule_tac x="d" in exI, simp)
-apply (rule_tac x="x" in exI)
-apply (rule_tac x="y" in exI)
-apply auto
-done
-
-
-text {* We can get a stronger version with a nonzeroness assumption. *}
-lemma divides_le: "m dvd n ==> m <= n \<or> n = (0::nat)" by (auto simp add: dvd_def)
-
-lemma bezout_add_strong: assumes nz: "a \<noteq> (0::nat)"
-  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
-proof-
-  from nz have ap: "a > 0" by simp
- from bezout_add[of a b] 
- have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
- moreover
- {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
-   from H have ?thesis by blast }
- moreover
- {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
-   {assume b0: "b = 0" with H  have ?thesis by simp}
-   moreover 
-   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
-     from divides_le[OF H(2)] b have "d < b \<or> d = b" using le_less by blast
-     moreover
-     {assume db: "d=b"
-       from prems have ?thesis apply simp
-	 apply (rule exI[where x = b], simp)
-	 apply (rule exI[where x = b])
-	by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
-    moreover
-    {assume db: "d < b" 
-	{assume "x=0" hence ?thesis  using prems by simp }
-	moreover
-	{assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
-	  
-	  from db have "d \<le> b - 1" by simp
-	  hence "d*b \<le> b*(b - 1)" by simp
-	  with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
-	  have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
-	  from H (3) have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra
-	  hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
-	  hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" 
-	    by (simp only: diff_add_assoc[OF dble, of d, symmetric])
-	  hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
-	    by (simp only: diff_mult_distrib2 add_commute mult_ac)
-	  hence ?thesis using H(1,2)
-	    apply -
-	    apply (rule exI[where x=d], simp)
-	    apply (rule exI[where x="(b - 1) * y"])
-	    by (rule exI[where x="x*(b - 1) - d"], simp)}
-	ultimately have ?thesis by blast}
-    ultimately have ?thesis by blast}
-  ultimately have ?thesis by blast}
- ultimately show ?thesis by blast
-qed
-
-
-lemma bezout_gcd: "\<exists>x y. a * x - b * y = gcd a b \<or> b * x - a * y = gcd a b"
-proof-
-  let ?g = "gcd a b"
-  from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \<or> b * x - a * y = d" by blast
-  from d(1,2) have "d dvd ?g" by simp
-  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
-  from d(3) have "(a * x - b * y)*k = d*k \<or> (b * x - a * y)*k = d*k" by blast 
-  hence "a * x * k - b * y*k = d*k \<or> b * x * k - a * y*k = d*k" 
-    by (algebra add: diff_mult_distrib)
-  hence "a * (x * k) - b * (y*k) = ?g \<or> b * (x * k) - a * (y*k) = ?g" 
-    by (simp add: k mult_assoc)
-  thus ?thesis by blast
-qed
-
-lemma bezout_gcd_strong: assumes a: "a \<noteq> 0" 
-  shows "\<exists>x y. a * x = b * y + gcd a b"
-proof-
-  let ?g = "gcd a b"
-  from bezout_add_strong[OF a, of b]
-  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
-  from d(1,2) have "d dvd ?g" by simp
-  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
-  from d(3) have "a * x * k = (b * y + d) *k " by algebra
-  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
-  thus ?thesis by blast
-qed
-
-lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b"
-by(simp add: gcd_mult_distrib2 mult_commute)
-
-lemma gcd_bezout: "(\<exists>x y. a * x - b * y = d \<or> b * x - a * y = d) \<longleftrightarrow> gcd a b dvd d"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
-  let ?g = "gcd a b"
-  {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast
-    from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \<or> b * x - a * y = ?g"
-      by blast
-    hence "(a * x - b * y)*k = ?g*k \<or> (b * x - a * y)*k = ?g*k" by auto
-    hence "a * x*k - b * y*k = ?g*k \<or> b * x * k - a * y*k = ?g*k" 
-      by (simp only: diff_mult_distrib)
-    hence "a * (x*k) - b * (y*k) = d \<or> b * (x * k) - a * (y*k) = d"
-      by (simp add: k[symmetric] mult_assoc)
-    hence ?lhs by blast}
-  moreover
-  {fix x y assume H: "a * x - b * y = d \<or> b * x - a * y = d"
-    have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y"
-      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
-    from dvd_diff_nat[OF dv(1,2)] dvd_diff_nat[OF dv(3,4)] H
-    have ?rhs by auto}
-  ultimately show ?thesis by blast
-qed
-
-lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd a b dvd d"
-proof-
-  let ?g = "gcd a b"
-    have dv: "?g dvd a*x" "?g dvd b * y" 
-      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
-    from dvd_add[OF dv] H
-    show ?thesis by auto
-qed
-
-lemma gcd_mult': "gcd b (a * b) = b"
-by (simp add: gcd_mult mult_commute[of a b]) 
-
-lemma gcd_add: "gcd(a + b) b = gcd a b" 
-  "gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b"
-apply (simp_all add: gcd_add1)
-by (simp add: gcd_commute gcd_add1)
-
-lemma gcd_sub: "b <= a ==> gcd(a - b) b = gcd a b" "a <= b ==> gcd a (b - a) = gcd a b"
-proof-
-  {fix a b assume H: "b \<le> (a::nat)"
-    hence th: "a - b + b = a" by arith
-    from gcd_add(1)[of "a - b" b] th  have "gcd(a - b) b = gcd a b" by simp}
-  note th = this
-{
-  assume ab: "b \<le> a"
-  from th[OF ab] show "gcd (a - b)  b = gcd a b" by blast
-next
-  assume ab: "a \<le> b"
-  from th[OF ab] show "gcd a (b - a) = gcd a b" 
-    by (simp add: gcd_commute)}
-qed
-
-
-subsection {* LCM defined by GCD *}
-
-
-definition
-  lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-where
-  lcm_def: "lcm m n = m * n div gcd m n"
-
-lemma prod_gcd_lcm:
-  "m * n = gcd m n * lcm m n"
-  unfolding lcm_def by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])
-
-lemma lcm_0 [simp]: "lcm m 0 = 0"
-  unfolding lcm_def by simp
-
-lemma lcm_1 [simp]: "lcm m 1 = m"
-  unfolding lcm_def by simp
-
-lemma lcm_0_left [simp]: "lcm 0 n = 0"
-  unfolding lcm_def by simp
-
-lemma lcm_1_left [simp]: "lcm 1 m = m"
-  unfolding lcm_def by simp
-
-lemma dvd_pos:
-  fixes n m :: nat
-  assumes "n > 0" and "m dvd n"
-  shows "m > 0"
-using assms by (cases m) auto
-
-lemma lcm_least:
-  assumes "m dvd k" and "n dvd k"
-  shows "lcm m n dvd k"
-proof (cases k)
-  case 0 then show ?thesis by auto
-next
-  case (Suc _) then have pos_k: "k > 0" by auto
-  from assms dvd_pos [OF this] have pos_mn: "m > 0" "n > 0" by auto
-  with gcd_zero [of m n] have pos_gcd: "gcd m n > 0" by simp
-  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
-  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
-  from pos_k k_m have pos_p: "p > 0" by auto
-  from pos_k k_n have pos_q: "q > 0" by auto
-  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
-    by (simp add: mult_ac gcd_mult_distrib2)
-  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
-    by (simp add: k_m [symmetric] k_n [symmetric])
-  also have "\<dots> = k * p * q * gcd m n"
-    by (simp add: mult_ac gcd_mult_distrib2)
-  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
-    by (simp only: k_m [symmetric] k_n [symmetric])
-  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
-    by (simp add: mult_ac)
-  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
-    by simp
-  with prod_gcd_lcm [of m n]
-  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
-    by (simp add: mult_ac)
-  with pos_gcd have "lcm m n * gcd q p = k" by simp
-  then show ?thesis using dvd_def by auto
-qed
-
-lemma lcm_dvd1 [iff]:
-  "m dvd lcm m n"
-proof (cases m)
-  case 0 then show ?thesis by simp
-next
-  case (Suc _)
-  then have mpos: "m > 0" by simp
-  show ?thesis
-  proof (cases n)
-    case 0 then show ?thesis by simp
-  next
-    case (Suc _)
-    then have npos: "n > 0" by simp
-    have "gcd m n dvd n" by simp
-    then obtain k where "n = gcd m n * k" using dvd_def by auto
-    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" by (simp add: mult_ac)
-    also have "\<dots> = m * k" using mpos npos gcd_zero by simp
-    finally show ?thesis by (simp add: lcm_def)
-  qed
-qed
-
-lemma lcm_dvd2 [iff]: 
-  "n dvd lcm m n"
-proof (cases n)
-  case 0 then show ?thesis by simp
-next
-  case (Suc _)
-  then have npos: "n > 0" by simp
-  show ?thesis
-  proof (cases m)
-    case 0 then show ?thesis by simp
-  next
-    case (Suc _)
-    then have mpos: "m > 0" by simp
-    have "gcd m n dvd m" by simp
-    then obtain k where "m = gcd m n * k" using dvd_def by auto
-    then have "m * n div gcd m n = (gcd m n * k) * n div gcd m n" by (simp add: mult_ac)
-    also have "\<dots> = n * k" using mpos npos gcd_zero by simp
-    finally show ?thesis by (simp add: lcm_def)
-  qed
-qed
-
-lemma gcd_add1_eq: "gcd (m + k) k = gcd (m + k) m"
-  by (simp add: gcd_commute)
-
-lemma gcd_diff2: "m \<le> n ==> gcd n (n - m) = gcd n m"
-  apply (subgoal_tac "n = m + (n - m)")
-  apply (erule ssubst, rule gcd_add1_eq, simp)  
-  done
-
-
-subsection {* GCD and LCM on integers *}
-
-definition
-  zgcd :: "int \<Rightarrow> int \<Rightarrow> int" where
-  "zgcd i j = int (gcd (nat (abs i)) (nat (abs j)))"
-
-lemma zgcd_zdvd1 [iff,simp, algebra]: "zgcd i j dvd i"
-by (simp add: zgcd_def int_dvd_iff)
-
-lemma zgcd_zdvd2 [iff,simp, algebra]: "zgcd i j dvd j"
-by (simp add: zgcd_def int_dvd_iff)
-
-lemma zgcd_pos: "zgcd i j \<ge> 0"
-by (simp add: zgcd_def)
-
-lemma zgcd0 [simp,algebra]: "(zgcd i j = 0) = (i = 0 \<and> j = 0)"
-by (simp add: zgcd_def gcd_zero)
-
-lemma zgcd_commute: "zgcd i j = zgcd j i"
-unfolding zgcd_def by (simp add: gcd_commute)
-
-lemma zgcd_zminus [simp, algebra]: "zgcd (- i) j = zgcd i j"
-unfolding zgcd_def by simp
-
-lemma zgcd_zminus2 [simp, algebra]: "zgcd i (- j) = zgcd i j"
-unfolding zgcd_def by simp
-
-  (* should be solved by algebra*)
-lemma zrelprime_dvd_mult: "zgcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k"
-  unfolding zgcd_def
-proof -
-  assume "int (gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>)) = 1" "i dvd k * j"
-  then have g: "gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>) = 1" by simp
-  from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast
-  have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>"
-    unfolding dvd_def
-    by (rule_tac x= "nat \<bar>h\<bar>" in exI, simp add: h nat_abs_mult_distrib [symmetric])
-  from relprime_dvd_mult [OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'"
-    unfolding dvd_def by blast
-  from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp
-  then have "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult)
-  then show ?thesis
-    apply (subst abs_dvd_iff [symmetric])
-    apply (subst dvd_abs_iff [symmetric])
-    apply (unfold dvd_def)
-    apply (rule_tac x = "int h'" in exI, simp)
-    done
-qed
-
-lemma int_nat_abs: "int (nat (abs x)) = abs x" by arith
-
-lemma zgcd_greatest:
-  assumes "k dvd m" and "k dvd n"
-  shows "k dvd zgcd m n"
-proof -
-  let ?k' = "nat \<bar>k\<bar>"
-  let ?m' = "nat \<bar>m\<bar>"
-  let ?n' = "nat \<bar>n\<bar>"
-  from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'"
-    unfolding zdvd_int by (simp_all only: int_nat_abs abs_dvd_iff dvd_abs_iff)
-  from gcd_greatest [OF dvd'] have "int (nat \<bar>k\<bar>) dvd zgcd m n"
-    unfolding zgcd_def by (simp only: zdvd_int)
-  then have "\<bar>k\<bar> dvd zgcd m n" by (simp only: int_nat_abs)
-  then show "k dvd zgcd m n" by simp
-qed
-
-lemma div_zgcd_relprime:
-  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
-  shows "zgcd (a div (zgcd a b)) (b div (zgcd a b)) = 1"
-proof -
-  from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by arith 
-  let ?g = "zgcd a b"
-  let ?a' = "a div ?g"
-  let ?b' = "b div ?g"
-  let ?g' = "zgcd ?a' ?b'"
-  have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2)
-  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2)
-  from dvdg dvdg' obtain ka kb ka' kb' where
-   kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'"
-    unfolding dvd_def by blast
-  then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
-  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
-    by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)]
-      zdvd_mult_div_cancel [OF dvdg(2)] dvd_def)
-  have "?g \<noteq> 0" using nz by simp
-  then have gp: "?g \<noteq> 0" using zgcd_pos[where i="a" and j="b"] by arith
-  from zgcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
-  with zdvd_mult_cancel1 [OF gp] have "\<bar>?g'\<bar> = 1" by simp
-  with zgcd_pos show "?g' = 1" by simp
-qed
-
-lemma zgcd_0 [simp, algebra]: "zgcd m 0 = abs m"
-  by (simp add: zgcd_def abs_if)
-
-lemma zgcd_0_left [simp, algebra]: "zgcd 0 m = abs m"
-  by (simp add: zgcd_def abs_if)
-
-lemma zgcd_non_0: "0 < n ==> zgcd m n = zgcd n (m mod n)"
-  apply (frule_tac b = n and a = m in pos_mod_sign)
-  apply (simp del: pos_mod_sign add: zgcd_def abs_if nat_mod_distrib)
-  apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
-  apply (frule_tac a = m in pos_mod_bound)
-  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2 nat_le_eq_zle)
-  done
-
-lemma zgcd_eq: "zgcd m n = zgcd n (m mod n)"
-  apply (case_tac "n = 0", simp add: DIVISION_BY_ZERO)
-  apply (auto simp add: linorder_neq_iff zgcd_non_0)
-  apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto)
-  done
-
-lemma zgcd_1 [simp, algebra]: "zgcd m 1 = 1"
-  by (simp add: zgcd_def abs_if)
-
-lemma zgcd_0_1_iff [simp, algebra]: "zgcd 0 m = 1 \<longleftrightarrow> \<bar>m\<bar> = 1"
-  by (simp add: zgcd_def abs_if)
-
-lemma zgcd_greatest_iff[algebra]: "k dvd zgcd m n = (k dvd m \<and> k dvd n)"
-  by (simp add: zgcd_def abs_if int_dvd_iff dvd_int_iff nat_dvd_iff)
-
-lemma zgcd_1_left [simp, algebra]: "zgcd 1 m = 1"
-  by (simp add: zgcd_def gcd_1_left)
-
-lemma zgcd_assoc: "zgcd (zgcd k m) n = zgcd k (zgcd m n)"
-  by (simp add: zgcd_def gcd_assoc)
-
-lemma zgcd_left_commute: "zgcd k (zgcd m n) = zgcd m (zgcd k n)"
-  apply (rule zgcd_commute [THEN trans])
-  apply (rule zgcd_assoc [THEN trans])
-  apply (rule zgcd_commute [THEN arg_cong])
-  done
-
-lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute
-  -- {* addition is an AC-operator *}
-
-lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd m n = zgcd (k * m) (k * n)"
-  by (simp del: minus_mult_right [symmetric]
-      add: minus_mult_right nat_mult_distrib zgcd_def abs_if
-          mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric])
-
-lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n"
-  by (simp add: abs_if zgcd_zmult_distrib2)
-
-lemma zgcd_self [simp]: "0 \<le> m ==> zgcd m m = m"
-  by (cut_tac k = m and m = 1 and n = 1 in zgcd_zmult_distrib2, simp_all)
-
-lemma zgcd_zmult_eq_self [simp]: "0 \<le> k ==> zgcd k (k * n) = k"
-  by (cut_tac k = k and m = 1 and n = n in zgcd_zmult_distrib2, simp_all)
-
-lemma zgcd_zmult_eq_self2 [simp]: "0 \<le> k ==> zgcd (k * n) k = k"
-  by (cut_tac k = k and m = n and n = 1 in zgcd_zmult_distrib2, simp_all)
-
-
-definition "zlcm i j = int (lcm(nat(abs i)) (nat(abs j)))"
-
-lemma dvd_zlcm_self1[simp, algebra]: "i dvd zlcm i j"
-by(simp add:zlcm_def dvd_int_iff)
-
-lemma dvd_zlcm_self2[simp, algebra]: "j dvd zlcm i j"
-by(simp add:zlcm_def dvd_int_iff)
-
-
-lemma dvd_imp_dvd_zlcm1:
-  assumes "k dvd i" shows "k dvd (zlcm i j)"
-proof -
-  have "nat(abs k) dvd nat(abs i)" using `k dvd i`
-    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
-  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
-qed
-
-lemma dvd_imp_dvd_zlcm2:
-  assumes "k dvd j" shows "k dvd (zlcm i j)"
-proof -
-  have "nat(abs k) dvd nat(abs j)" using `k dvd j`
-    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
-  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
-qed
-
-
-lemma zdvd_self_abs1: "(d::int) dvd (abs d)"
-by (case_tac "d <0", simp_all)
-
-lemma zdvd_self_abs2: "(abs (d::int)) dvd d"
-by (case_tac "d<0", simp_all)
-
-(* lcm a b is positive for positive a and b *)
-
-lemma lcm_pos: 
-  assumes mpos: "m > 0"
-  and npos: "n>0"
-  shows "lcm m n > 0"
-proof(rule ccontr, simp add: lcm_def gcd_zero)
-assume h:"m*n div gcd m n = 0"
-from mpos npos have "gcd m n \<noteq> 0" using gcd_zero by simp
-hence gcdp: "gcd m n > 0" by simp
-with h
-have "m*n < gcd m n"
-  by (cases "m * n < gcd m n") (auto simp add: div_if[OF gcdp, where m="m*n"])
-moreover 
-have "gcd m n dvd m" by simp
- with mpos dvd_imp_le have t1:"gcd m n \<le> m" by simp
- with npos have t1:"gcd m n *n \<le> m*n" by simp
- have "gcd m n \<le> gcd m n*n" using npos by simp
- with t1 have "gcd m n \<le> m*n" by arith
-ultimately show "False" by simp
-qed
-
-lemma zlcm_pos: 
-  assumes anz: "a \<noteq> 0"
-  and bnz: "b \<noteq> 0" 
-  shows "0 < zlcm a b"
-proof-
-  let ?na = "nat (abs a)"
-  let ?nb = "nat (abs b)"
-  have nap: "?na >0" using anz by simp
-  have nbp: "?nb >0" using bnz by simp
-  have "0 < lcm ?na ?nb" by (rule lcm_pos[OF nap nbp])
-  thus ?thesis by (simp add: zlcm_def)
-qed
-
-lemma zgcd_code [code]:
-  "zgcd k l = \<bar>if l = 0 then k else zgcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
-  by (simp add: zgcd_def gcd.simps [of "nat \<bar>k\<bar>"] nat_mod_distrib)
-
-end
--- a/src/HOL/Library/Library.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/Library/Library.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -43,11 +43,9 @@
   OptionalSugar
   Option_ord
   Permutation
-  Pocklington
   Poly_Deriv
   Polynomial
   Preorder
-  Primes
   Product_Vector
   Quicksort
   Quotient
--- a/src/HOL/Library/Pocklington.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1263 +0,0 @@
-(*  Title:      HOL/Library/Pocklington.thy
-    Author:     Amine Chaieb
-*)
-
-header {* Pocklington's Theorem for Primes *}
-
-theory Pocklington
-imports Main Primes
-begin
-
-definition modeq:: "nat => nat => nat => bool"    ("(1[_ = _] '(mod _'))")
-  where "[a = b] (mod p) == ((a mod p) = (b mod p))"
-
-definition modneq:: "nat => nat => nat => bool"    ("(1[_ \<noteq> _] '(mod _'))")
-  where "[a \<noteq> b] (mod p) == ((a mod p) \<noteq> (b mod p))"
-
-lemma modeq_trans:
-  "\<lbrakk> [a = b] (mod p); [b = c] (mod p) \<rbrakk> \<Longrightarrow> [a = c] (mod p)"
-  by (simp add:modeq_def)
-
-
-lemma nat_mod_lemma: assumes xyn: "[x = y] (mod n)" and xy:"y \<le> x"
-  shows "\<exists>q. x = y + n * q"
-using xyn xy unfolding modeq_def using nat_mod_eq_lemma by blast
-
-lemma nat_mod[algebra]: "[x = y] (mod n) \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
-unfolding modeq_def nat_mod_eq_iff ..
-
-(* Lemmas about previously defined terms.                                    *)
-
-lemma prime: "prime p \<longleftrightarrow> p \<noteq> 0 \<and> p\<noteq>1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
-  {assume "p=0 \<or> p=1" hence ?thesis using prime_0 prime_1 by (cases "p=0", simp_all)}
-  moreover
-  {assume p0: "p\<noteq>0" "p\<noteq>1"
-    {assume H: "?lhs"
-      {fix m assume m: "m > 0" "m < p"
-	{assume "m=1" hence "coprime p m" by simp}
-	moreover
-	{assume "p dvd m" hence "p \<le> m" using dvd_imp_le m by blast with m(2)
-	  have "coprime p m" by simp}
-	ultimately have "coprime p m" using prime_coprime[OF H, of m] by blast}
-      hence ?rhs using p0 by auto}
-    moreover
-    { assume H: "\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m"
-      from prime_factor[OF p0(2)] obtain q where q: "prime q" "q dvd p" by blast
-      from prime_ge_2[OF q(1)] have q0: "q > 0" by arith
-      from dvd_imp_le[OF q(2)] p0 have qp: "q \<le> p" by arith
-      {assume "q = p" hence ?lhs using q(1) by blast}
-      moreover
-      {assume "q\<noteq>p" with qp have qplt: "q < p" by arith
-	from H[rule_format, of q] qplt q0 have "coprime p q" by arith
-	with coprime_prime[of p q q] q have False by simp hence ?lhs by blast}
-      ultimately have ?lhs by blast}
-    ultimately have ?thesis by blast}
-  ultimately show ?thesis  by (cases"p=0 \<or> p=1", auto)
-qed
-
-lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
-proof-
-  have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
-  thus ?thesis by simp
-qed
-
-lemma coprime_mod: assumes n: "n \<noteq> 0" shows "coprime (a mod n) n \<longleftrightarrow> coprime a n"
-  using n dvd_mod_iff[of _ n a] by (auto simp add: coprime)
-
-(* Congruences.                                                              *)
-
-lemma cong_mod_01[simp,presburger]:
-  "[x = y] (mod 0) \<longleftrightarrow> x = y" "[x = y] (mod 1)" "[x = 0] (mod n) \<longleftrightarrow> n dvd x"
-  by (simp_all add: modeq_def, presburger)
-
-lemma cong_sub_cases:
-  "[x = y] (mod n) \<longleftrightarrow> (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
-apply (auto simp add: nat_mod)
-apply (rule_tac x="q2" in exI)
-apply (rule_tac x="q1" in exI, simp)
-apply (rule_tac x="q2" in exI)
-apply (rule_tac x="q1" in exI, simp)
-apply (rule_tac x="q1" in exI)
-apply (rule_tac x="q2" in exI, simp)
-apply (rule_tac x="q1" in exI)
-apply (rule_tac x="q2" in exI, simp)
-done
-
-lemma cong_mult_lcancel: assumes an: "coprime a n" and axy:"[a * x = a * y] (mod n)"
-  shows "[x = y] (mod n)"
-proof-
-  {assume "a = 0" with an axy coprime_0'[of n] have ?thesis by (simp add: modeq_def) }
-  moreover
-  {assume az: "a\<noteq>0"
-    {assume xy: "x \<le> y" hence axy': "a*x \<le> a*y" by simp
-      with axy cong_sub_cases[of "a*x" "a*y" n]  have "[a*(y - x) = 0] (mod n)"
-	by (simp only: if_True diff_mult_distrib2)
-      hence th: "n dvd a*(y -x)" by simp
-      from coprime_divprod[OF th] an have "n dvd y - x"
-	by (simp add: coprime_commute)
-      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
-    moreover
-    {assume H: "\<not>x \<le> y" hence xy: "y \<le> x"  by arith
-      from H az have axy': "\<not> a*x \<le> a*y" by auto
-      with axy H cong_sub_cases[of "a*x" "a*y" n]  have "[a*(x - y) = 0] (mod n)"
-	by (simp only: if_False diff_mult_distrib2)
-      hence th: "n dvd a*(x - y)" by simp
-      from coprime_divprod[OF th] an have "n dvd x - y"
-	by (simp add: coprime_commute)
-      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
-    ultimately have ?thesis by blast}
-  ultimately show ?thesis by blast
-qed
-
-lemma cong_mult_rcancel: assumes an: "coprime a n" and axy:"[x*a = y*a] (mod n)"
-  shows "[x = y] (mod n)"
-  using cong_mult_lcancel[OF an axy[unfolded mult_commute[of _a]]] .
-
-lemma cong_refl: "[x = x] (mod n)" by (simp add: modeq_def)
-
-lemma eq_imp_cong: "a = b \<Longrightarrow> [a = b] (mod n)" by (simp add: cong_refl)
-
-lemma cong_commute: "[x = y] (mod n) \<longleftrightarrow> [y = x] (mod n)"
-  by (auto simp add: modeq_def)
-
-lemma cong_trans[trans]: "[x = y] (mod n) \<Longrightarrow> [y = z] (mod n) \<Longrightarrow> [x = z] (mod n)"
-  by (simp add: modeq_def)
-
-lemma cong_add: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
-  shows "[x + y = x' + y'] (mod n)"
-proof-
-  have "(x + y) mod n = (x mod n + y mod n) mod n"
-    by (simp add: mod_add_left_eq[of x y n] mod_add_right_eq[of "x mod n" y n])
-  also have "\<dots> = (x' mod n + y' mod n) mod n" using xx' yy' modeq_def by simp
-  also have "\<dots> = (x' + y') mod n"
-    by (simp add: mod_add_left_eq[of x' y' n] mod_add_right_eq[of "x' mod n" y' n])
-  finally show ?thesis unfolding modeq_def .
-qed
-
-lemma cong_mult: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
-  shows "[x * y = x' * y'] (mod n)"
-proof-
-  have "(x * y) mod n = (x mod n) * (y mod n) mod n"
-    by (simp add: mod_mult_left_eq[of x y n] mod_mult_right_eq[of "x mod n" y n])
-  also have "\<dots> = (x' mod n) * (y' mod n) mod n" using xx'[unfolded modeq_def] yy'[unfolded modeq_def] by simp
-  also have "\<dots> = (x' * y') mod n"
-    by (simp add: mod_mult_left_eq[of x' y' n] mod_mult_right_eq[of "x' mod n" y' n])
-  finally show ?thesis unfolding modeq_def .
-qed
-
-lemma cong_exp: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  by (induct k, auto simp add: cong_refl cong_mult)
-lemma cong_sub: assumes xx': "[x = x'] (mod n)" and yy': "[y = y'] (mod n)"
-  and yx: "y <= x" and yx': "y' <= x'"
-  shows "[x - y = x' - y'] (mod n)"
-proof-
-  { fix x a x' a' y b y' b'
-    have "(x::nat) + a = x' + a' \<Longrightarrow> y + b = y' + b' \<Longrightarrow> y <= x \<Longrightarrow> y' <= x'
-      \<Longrightarrow> (x - y) + (a + b') = (x' - y') + (a' + b)" by arith}
-  note th = this
-  from xx' yy' obtain q1 q2 q1' q2' where q12: "x + n*q1 = x'+n*q2"
-    and q12': "y + n*q1' = y'+n*q2'" unfolding nat_mod by blast+
-  from th[OF q12 q12' yx yx']
-  have "(x - y) + n*(q1 + q2') = (x' - y') + n*(q2 + q1')"
-    by (simp add: right_distrib)
-  thus ?thesis unfolding nat_mod by blast
-qed
-
-lemma cong_mult_lcancel_eq: assumes an: "coprime a n"
-  shows "[a * x = a * y] (mod n) \<longleftrightarrow> [x = y] (mod n)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume H: "?rhs" from cong_mult[OF cong_refl[of a n] H] show ?lhs .
-next
-  assume H: "?lhs" hence H': "[x*a = y*a] (mod n)" by (simp add: mult_commute)
-  from cong_mult_rcancel[OF an H'] show ?rhs  .
-qed
-
-lemma cong_mult_rcancel_eq: assumes an: "coprime a n"
-  shows "[x * a = y * a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-using cong_mult_lcancel_eq[OF an, of x y] by (simp add: mult_commute)
-
-lemma cong_add_lcancel_eq: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_add_rcancel_eq: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_add_rcancel: "[x + a = y + a] (mod n) \<Longrightarrow> [x = y] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_add_lcancel: "[a + x = a + y] (mod n) \<Longrightarrow> [x = y] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_add_lcancel_eq_0: "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_add_rcancel_eq_0: "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
-  by (simp add: nat_mod)
-
-lemma cong_imp_eq: assumes xn: "x < n" and yn: "y < n" and xy: "[x = y] (mod n)"
-  shows "x = y"
-  using xy[unfolded modeq_def mod_less[OF xn] mod_less[OF yn]] .
-
-lemma cong_divides_modulus: "[x = y] (mod m) \<Longrightarrow> n dvd m ==> [x = y] (mod n)"
-  apply (auto simp add: nat_mod dvd_def)
-  apply (rule_tac x="k*q1" in exI)
-  apply (rule_tac x="k*q2" in exI)
-  by simp
-
-lemma cong_0_divides: "[x = 0] (mod n) \<longleftrightarrow> n dvd x" by simp
-
-lemma cong_1_divides:"[x = 1] (mod n) ==> n dvd x - 1"
-  apply (cases "x\<le>1", simp_all)
-  using cong_sub_cases[of x 1 n] by auto
-
-lemma cong_divides: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-apply (auto simp add: nat_mod dvd_def)
-apply (rule_tac x="k + q1 - q2" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
-apply (rule_tac x="k + q2 - q1" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
-done
-
-lemma cong_coprime: assumes xy: "[x = y] (mod n)"
-  shows "coprime n x \<longleftrightarrow> coprime n y"
-proof-
-  {assume "n=0" hence ?thesis using xy by simp}
-  moreover
-  {assume nz: "n \<noteq> 0"
-  have "coprime n x \<longleftrightarrow> coprime (x mod n) n"
-    by (simp add: coprime_mod[OF nz, of x] coprime_commute[of n x])
-  also have "\<dots> \<longleftrightarrow> coprime (y mod n) n" using xy[unfolded modeq_def] by simp
-  also have "\<dots> \<longleftrightarrow> coprime y n" by (simp add: coprime_mod[OF nz, of y])
-  finally have ?thesis by (simp add: coprime_commute) }
-ultimately show ?thesis by blast
-qed
-
-lemma cong_mod: "~(n = 0) \<Longrightarrow> [a mod n = a] (mod n)" by (simp add: modeq_def)
-
-lemma mod_mult_cong: "~(a = 0) \<Longrightarrow> ~(b = 0)
-  \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  by (simp add: modeq_def mod_mult2_eq mod_add_left_eq)
-
-lemma cong_mod_mult: "[x = y] (mod n) \<Longrightarrow> m dvd n \<Longrightarrow> [x = y] (mod m)"
-  apply (auto simp add: nat_mod dvd_def)
-  apply (rule_tac x="k*q1" in exI)
-  apply (rule_tac x="k*q2" in exI, simp)
-  done
-
-(* Some things when we know more about the order.                            *)
-
-lemma cong_le: "y <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
-  using nat_mod_lemma[of x y n]
-  apply auto
-  apply (simp add: nat_mod)
-  apply (rule_tac x="q" in exI)
-  apply (rule_tac x="q + q" in exI)
-  by (auto simp: algebra_simps)
-
-lemma cong_to_1: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
-proof-
-  {assume "n = 0 \<or> n = 1\<or> a = 0 \<or> a = 1" hence ?thesis
-      apply (cases "n=0", simp_all add: cong_commute)
-      apply (cases "n=1", simp_all add: cong_commute modeq_def)
-      apply arith
-      by (cases "a=1", simp_all add: modeq_def cong_commute)}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1" and a:"a\<noteq>0" "a \<noteq> 1" hence a': "a \<ge> 1" by simp
-    hence ?thesis using cong_le[OF a', of n] by auto }
-  ultimately show ?thesis by auto
-qed
-
-(* Some basic theorems about solving congruences.                            *)
-
-
-lemma cong_solve: assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)"
-proof-
-  {assume "a=0" hence ?thesis using an by (simp add: modeq_def)}
-  moreover
-  {assume az: "a\<noteq>0"
-  from bezout_add_strong[OF az, of n]
-  obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast
-  from an[unfolded coprime, rule_format, of d] dxy(1,2) have d1: "d = 1" by blast
-  hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp
-  hence "a*(x*b) = n*(y*b) + b" by algebra
-  hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp
-  hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq)
-  hence "[a*(x*b) = b] (mod n)" unfolding modeq_def .
-  hence ?thesis by blast}
-ultimately  show ?thesis by blast
-qed
-
-lemma cong_solve_unique: assumes an: "coprime a n" and nz: "n \<noteq> 0"
-  shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)"
-proof-
-  let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)"
-  from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast
-  let ?x = "x mod n"
-  from x have th: "[a * ?x = b] (mod n)"
-    by (simp add: modeq_def mod_mult_right_eq[of a x n])
-  from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp
-  {fix y assume Py: "y < n" "[a * y = b] (mod n)"
-    from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: modeq_def)
-    hence "[y = ?x] (mod n)" by (simp add: cong_mult_lcancel_eq[OF an])
-    with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz
-    have "y = ?x" by (simp add: modeq_def)}
-  with Px show ?thesis by blast
-qed
-
-lemma cong_solve_unique_nontrivial:
-  assumes p: "prime p" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p"
-  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)"
-proof-
-  from p have p1: "p > 1" using prime_ge_2[OF p] by arith
-  hence p01: "p \<noteq> 0" "p \<noteq> 1" by arith+
-  from pa have ap: "coprime a p" by (simp add: coprime_commute)
-  from prime_coprime[OF p, of x] dvd_imp_le[of p x] x0 xp have px:"coprime x p"
-    by (auto simp add: coprime_commute)
-  from cong_solve_unique[OF px p01(1)]
-  obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y" by blast
-  {assume y0: "y = 0"
-    with y(2) have th: "p dvd a" by (simp add: cong_commute[of 0 a p])
-    with p coprime_prime[OF pa, of p] have False by simp}
-  with y show ?thesis unfolding Ex1_def using neq0_conv by blast
-qed
-lemma cong_unique_inverse_prime:
-  assumes p: "prime p" and x0: "0 < x" and xp: "x < p"
-  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)"
-  using cong_solve_unique_nontrivial[OF p coprime_1[of p] x0 xp] .
-
-(* Forms of the Chinese remainder theorem.                                   *)
-
-lemma cong_chinese:
-  assumes ab: "coprime a b" and  xya: "[x = y] (mod a)"
-  and xyb: "[x = y] (mod b)"
-  shows "[x = y] (mod a*b)"
-  using ab xya xyb
-  by (simp add: cong_sub_cases[of x y a] cong_sub_cases[of x y b]
-    cong_sub_cases[of x y "a*b"])
-(cases "x \<le> y", simp_all add: divides_mul[of a _ b])
-
-lemma chinese_remainder_unique:
-  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b\<noteq>0"
-  shows "\<exists>!x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
-proof-
-  from az bz have abpos: "a*b > 0" by simp
-  from chinese_remainder[OF ab az bz] obtain x q1 q2 where
-    xq12: "x = m + q1 * a" "x = n + q2 * b" by blast
-  let ?w = "x mod (a*b)"
-  have wab: "?w < a*b" by (simp add: mod_less_divisor[OF abpos])
-  from xq12(1) have "?w mod a = ((m + q1 * a) mod (a*b)) mod a" by simp
-  also have "\<dots> = m mod a" apply (simp add: mod_mult2_eq)
-    apply (subst mod_add_left_eq)
-    by simp
-  finally have th1: "[?w = m] (mod a)" by (simp add: modeq_def)
-  from xq12(2) have "?w mod b = ((n + q2 * b) mod (a*b)) mod b" by simp
-  also have "\<dots> = ((n + q2 * b) mod (b*a)) mod b" by (simp add: mult_commute)
-  also have "\<dots> = n mod b" apply (simp add: mod_mult2_eq)
-    apply (subst mod_add_left_eq)
-    by simp
-  finally have th2: "[?w = n] (mod b)" by (simp add: modeq_def)
-  {fix y assume H: "y < a*b" "[y = m] (mod a)" "[y = n] (mod b)"
-    with th1 th2 have H': "[y = ?w] (mod a)" "[y = ?w] (mod b)"
-      by (simp_all add: modeq_def)
-    from cong_chinese[OF ab H'] mod_less[OF H(1)] mod_less[OF wab]
-    have "y = ?w" by (simp add: modeq_def)}
-  with th1 th2 wab show ?thesis by blast
-qed
-
-lemma chinese_remainder_coprime_unique:
-  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0"
-  and ma: "coprime m a" and nb: "coprime n b"
-  shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
-proof-
-  let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
-  from chinese_remainder_unique[OF ab az bz]
-  obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)"
-    "\<forall>y. ?P y \<longrightarrow> y = x" by blast
-  from ma nb cong_coprime[OF x(2)] cong_coprime[OF x(3)]
-  have "coprime x a" "coprime x b" by (simp_all add: coprime_commute)
-  with coprime_mul[of x a b] have "coprime x (a*b)" by simp
-  with x show ?thesis by blast
-qed
-
-(* Euler totient function.                                                   *)
-
-definition phi_def: "\<phi> n = card { m. 0 < m \<and> m <= n \<and> coprime m n }"
-
-lemma phi_0[simp]: "\<phi> 0 = 0"
-  unfolding phi_def by auto
-
-lemma phi_finite[simp]: "finite ({ m. 0 < m \<and> m <= n \<and> coprime m n })"
-proof-
-  have "{ m. 0 < m \<and> m <= n \<and> coprime m n } \<subseteq> {0..n}" by auto
-  thus ?thesis by (auto intro: finite_subset)
-qed
-
-declare coprime_1[presburger]
-lemma phi_1[simp]: "\<phi> 1 = 1"
-proof-
-  {fix m
-    have "0 < m \<and> m <= 1 \<and> coprime m 1 \<longleftrightarrow> m = 1" by presburger }
-  thus ?thesis by (simp add: phi_def)
-qed
-
-lemma [simp]: "\<phi> (Suc 0) = Suc 0" using phi_1 by simp
-
-lemma phi_alt: "\<phi>(n) = card { m. coprime m n \<and> m < n}"
-proof-
-  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=0", simp_all)}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    {fix m
-      from n have "0 < m \<and> m <= n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
-	apply (cases "m = 0", simp_all)
-	apply (cases "m = 1", simp_all)
-	apply (cases "m = n", auto)
-	done }
-    hence ?thesis unfolding phi_def by simp}
-  ultimately show ?thesis by auto
-qed
-
-lemma phi_finite_lemma[simp]: "finite {m. coprime m n \<and>  m < n}" (is "finite ?S")
-  by (rule finite_subset[of "?S" "{0..n}"], auto)
-
-lemma phi_another: assumes n: "n\<noteq>1"
-  shows "\<phi> n = card {m. 0 < m \<and> m < n \<and> coprime m n }"
-proof-
-  {fix m
-    from n have "0 < m \<and> m < n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
-      by (cases "m=0", auto)}
-  thus ?thesis unfolding phi_alt by auto
-qed
-
-lemma phi_limit: "\<phi> n \<le> n"
-proof-
-  have "{ m. coprime m n \<and> m < n} \<subseteq> {0 ..<n}" by auto
-  with card_mono[of "{0 ..<n}" "{ m. coprime m n \<and> m < n}"]
-  show ?thesis unfolding phi_alt by auto
-qed
-
-lemma stupid[simp]: "{m. (0::nat) < m \<and> m < n} = {1..<n}"
-  by auto
-
-lemma phi_limit_strong: assumes n: "n\<noteq>1"
-  shows "\<phi>(n) \<le> n - 1"
-proof-
-  show ?thesis
-    unfolding phi_another[OF n] finite_number_segment[of n, symmetric]
-    by (rule card_mono[of "{m. 0 < m \<and> m < n}" "{m. 0 < m \<and> m < n \<and> coprime m n}"], auto)
-qed
-
-lemma phi_lowerbound_1_strong: assumes n: "n \<ge> 1"
-  shows "\<phi>(n) \<ge> 1"
-proof-
-  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
-  from card_0_eq[of ?S] n have "\<phi> n \<noteq> 0" unfolding phi_alt
-    apply auto
-    apply (cases "n=1", simp_all)
-    apply (rule exI[where x=1], simp)
-    done
-  thus ?thesis by arith
-qed
-
-lemma phi_lowerbound_1: "2 <= n ==> 1 <= \<phi>(n)"
-  using phi_lowerbound_1_strong[of n] by auto
-
-lemma phi_lowerbound_2: assumes n: "3 <= n" shows "2 <= \<phi> (n)"
-proof-
-  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
-  have inS: "{1, n - 1} \<subseteq> ?S" using n coprime_plus1[of "n - 1"]
-    by (auto simp add: coprime_commute)
-  from n have c2: "card {1, n - 1} = 2" by (auto simp add: card_insert_if)
-  from card_mono[of ?S "{1, n - 1}", simplified inS c2] show ?thesis
-    unfolding phi_def by auto
-qed
-
-lemma phi_prime: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1 \<longleftrightarrow> prime n"
-proof-
-  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=1", simp_all)}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    let ?S = "{m. 0 < m \<and> m < n}"
-    have fS: "finite ?S" by simp
-    let ?S' = "{m. 0 < m \<and> m < n \<and> coprime m n}"
-    have fS':"finite ?S'" apply (rule finite_subset[of ?S' ?S]) by auto
-    {assume H: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1"
-      hence ceq: "card ?S' = card ?S"
-      using n finite_number_segment[of n] phi_another[OF n(2)] by simp
-      {fix m assume m: "0 < m" "m < n" "\<not> coprime m n"
-	hence mS': "m \<notin> ?S'" by auto
-	have "insert m ?S' \<le> ?S" using m by auto
-	from m have "card (insert m ?S') \<le> card ?S"
-	  by - (rule card_mono[of ?S "insert m ?S'"], auto)
-	hence False
-	  unfolding card_insert_disjoint[of "?S'" m, OF fS' mS'] ceq
-	  by simp }
-      hence "\<forall>m. 0 <m \<and> m < n \<longrightarrow> coprime m n" by blast
-      hence "prime n" unfolding prime using n by (simp add: coprime_commute)}
-    moreover
-    {assume H: "prime n"
-      hence "?S = ?S'" unfolding prime using n
-	by (auto simp add: coprime_commute)
-      hence "card ?S = card ?S'" by simp
-      hence "\<phi> n = n - 1" unfolding phi_another[OF n(2)] by simp}
-    ultimately have ?thesis using n by blast}
-  ultimately show ?thesis by (cases "n=0") blast+
-qed
-
-(* Multiplicativity property.                                                *)
-
-lemma phi_multiplicative: assumes ab: "coprime a b"
-  shows "\<phi> (a * b) = \<phi> a * \<phi> b"
-proof-
-  {assume "a = 0 \<or> b = 0 \<or> a = 1 \<or> b = 1"
-    hence ?thesis
-      by (cases "a=0", simp, cases "b=0", simp, cases"a=1", simp_all) }
-  moreover
-  {assume a: "a\<noteq>0" "a\<noteq>1" and b: "b\<noteq>0" "b\<noteq>1"
-    hence ab0: "a*b \<noteq> 0" by simp
-    let ?S = "\<lambda>k. {m. coprime m k \<and> m < k}"
-    let ?f = "\<lambda>x. (x mod a, x mod b)"
-    have eq: "?f ` (?S (a*b)) = (?S a \<times> ?S b)"
-    proof-
-      {fix x assume x:"x \<in> ?S (a*b)"
-	hence x': "coprime x (a*b)" "x < a*b" by simp_all
-	hence xab: "coprime x a" "coprime x b" by (simp_all add: coprime_mul_eq)
-	from mod_less_divisor a b have xab':"x mod a < a" "x mod b < b" by auto
-	from xab xab' have "?f x \<in> (?S a \<times> ?S b)"
-	  by (simp add: coprime_mod[OF a(1)] coprime_mod[OF b(1)])}
-      moreover
-      {fix x y assume x: "x \<in> ?S a" and y: "y \<in> ?S b"
-	hence x': "coprime x a" "x < a" and y': "coprime y b" "y < b" by simp_all
-	from chinese_remainder_coprime_unique[OF ab a(1) b(1) x'(1) y'(1)]
-	obtain z where z: "coprime z (a * b)" "z < a * b" "[z = x] (mod a)"
-	  "[z = y] (mod b)" by blast
-	hence "(x,y) \<in> ?f ` (?S (a*b))"
-	  using y'(2) mod_less_divisor[of b y] x'(2) mod_less_divisor[of a x]
-	  by (auto simp add: image_iff modeq_def)}
-      ultimately show ?thesis by auto
-    qed
-    have finj: "inj_on ?f (?S (a*b))"
-      unfolding inj_on_def
-    proof(clarify)
-      fix x y assume H: "coprime x (a * b)" "x < a * b" "coprime y (a * b)"
-	"y < a * b" "x mod a = y mod a" "x mod b = y mod b"
-      hence cp: "coprime x a" "coprime x b" "coprime y a" "coprime y b"
-	by (simp_all add: coprime_mul_eq)
-      from chinese_remainder_coprime_unique[OF ab a(1) b(1) cp(3,4)] H
-      show "x = y" unfolding modeq_def by blast
-    qed
-    from card_image[OF finj, unfolded eq] have ?thesis
-      unfolding phi_alt by simp }
-  ultimately show ?thesis by auto
-qed
-
-(* Fermat's Little theorem / Fermat-Euler theorem.                           *)
-
-
-lemma nproduct_mod:
-  assumes fS: "finite S" and n0: "n \<noteq> 0"
-  shows "[setprod (\<lambda>m. a(m) mod n) S = setprod a S] (mod n)"
-proof-
-  have th1:"[1 = 1] (mod n)" by (simp add: modeq_def)
-  from cong_mult
-  have th3:"\<forall>x1 y1 x2 y2.
-    [x1 = x2] (mod n) \<and> [y1 = y2] (mod n) \<longrightarrow> [x1 * y1 = x2 * y2] (mod n)"
-    by blast
-  have th4:"\<forall>x\<in>S. [a x mod n = a x] (mod n)" by (simp add: modeq_def)
-  from fold_image_related[where h="(\<lambda>m. a(m) mod n)" and g=a, OF th1 th3 fS, OF th4] show ?thesis unfolding setprod_def by (simp add: fS)
-qed
-
-lemma nproduct_cmul:
-  assumes fS:"finite S"
-  shows "setprod (\<lambda>m. (c::'a::{comm_monoid_mult})* a(m)) S = c ^ (card S) * setprod a S"
-unfolding setprod_timesf setprod_constant[OF fS, of c] ..
-
-lemma coprime_nproduct:
-  assumes fS: "finite S" and Sn: "\<forall>x\<in>S. coprime n (a x)"
-  shows "coprime n (setprod a S)"
-  using fS unfolding setprod_def by (rule finite_subset_induct)
-    (insert Sn, auto simp add: coprime_mul)
-
-lemma fermat_little: assumes an: "coprime a n"
-  shows "[a ^ (\<phi> n) = 1] (mod n)"
-proof-
-  {assume "n=0" hence ?thesis by simp}
-  moreover
-  {assume "n=1" hence ?thesis by (simp add: modeq_def)}
-  moreover
-  {assume nz: "n \<noteq> 0" and n1: "n \<noteq> 1"
-    let ?S = "{m. coprime m n \<and> m < n}"
-    let ?P = "\<Prod> ?S"
-    have fS: "finite ?S" by simp
-    have cardfS: "\<phi> n = card ?S" unfolding phi_alt ..
-    {fix m assume m: "m \<in> ?S"
-      hence "coprime m n" by simp
-      with coprime_mul[of n a m] an have "coprime (a*m) n"
-	by (simp add: coprime_commute)}
-    hence Sn: "\<forall>m\<in> ?S. coprime (a*m) n " by blast
-    from coprime_nproduct[OF fS, of n "\<lambda>m. m"] have nP:"coprime ?P n"
-      by (simp add: coprime_commute)
-    have Paphi: "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
-    proof-
-      let ?h = "\<lambda>m. m mod n"
-      {fix m assume mS: "m\<in> ?S"
-	hence "?h m \<in> ?S" by simp}
-      hence hS: "?h ` ?S = ?S"by (auto simp add: image_iff)
-      have "a\<noteq>0" using an n1 nz apply- apply (rule ccontr) by simp
-      hence inj: "inj_on (op * a) ?S" unfolding inj_on_def by simp
-
-      have eq0: "fold_image op * (?h \<circ> op * a) 1 {m. coprime m n \<and> m < n} =
-     fold_image op * (\<lambda>m. m) 1 {m. coprime m n \<and> m < n}"
-      proof (rule fold_image_eq_general[where h="?h o (op * a)"])
-	show "finite ?S" using fS .
-      next
-	{fix y assume yS: "y \<in> ?S" hence y: "coprime y n" "y < n" by simp_all
-	  from cong_solve_unique[OF an nz, of y]
-	  obtain x where x:"x < n" "[a * x = y] (mod n)" "\<forall>z. z < n \<and> [a * z = y] (mod n) \<longrightarrow> z=x" by blast
-	  from cong_coprime[OF x(2)] y(1)
-	  have xm: "coprime x n" by (simp add: coprime_mul_eq coprime_commute)
-	  {fix z assume "z \<in> ?S" "(?h \<circ> op * a) z = y"
-	    hence z: "coprime z n" "z < n" "(?h \<circ> op * a) z = y" by simp_all
-	    from x(3)[rule_format, of z] z(2,3) have "z=x"
-	      unfolding modeq_def mod_less[OF y(2)] by simp}
-	  with xm x(1,2) have "\<exists>!x. x \<in> ?S \<and> (?h \<circ> op * a) x = y"
-	    unfolding modeq_def mod_less[OF y(2)] by auto }
-	thus "\<forall>y\<in>{m. coprime m n \<and> m < n}.
-       \<exists>!x. x \<in> {m. coprime m n \<and> m < n} \<and> ((\<lambda>m. m mod n) \<circ> op * a) x = y" by blast
-      next
-	{fix x assume xS: "x\<in> ?S"
-	  hence x: "coprime x n" "x < n" by simp_all
-	  with an have "coprime (a*x) n"
-	    by (simp add: coprime_mul_eq[of n a x] coprime_commute)
-	  hence "?h (a*x) \<in> ?S" using nz
-	    by (simp add: coprime_mod[OF nz] mod_less_divisor)}
-	thus " \<forall>x\<in>{m. coprime m n \<and> m < n}.
-       ((\<lambda>m. m mod n) \<circ> op * a) x \<in> {m. coprime m n \<and> m < n} \<and>
-       ((\<lambda>m. m mod n) \<circ> op * a) x = ((\<lambda>m. m mod n) \<circ> op * a) x" by simp
-      qed
-      from nproduct_mod[OF fS nz, of "op * a"]
-      have "[(setprod (op *a) ?S) = (setprod (?h o (op * a)) ?S)] (mod n)"
-	unfolding o_def
-	by (simp add: cong_commute)
-      also have "[setprod (?h o (op * a)) ?S = ?P ] (mod n)"
-	using eq0 fS an by (simp add: setprod_def modeq_def o_def)
-      finally show "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
-	unfolding cardfS mult_commute[of ?P "a^ (card ?S)"]
-	  nproduct_cmul[OF fS, symmetric] mult_1_right by simp
-    qed
-    from cong_mult_lcancel[OF nP Paphi] have ?thesis . }
-  ultimately show ?thesis by blast
-qed
-
-lemma fermat_little_prime: assumes p: "prime p" and ap: "coprime a p"
-  shows "[a^ (p - 1) = 1] (mod p)"
-  using fermat_little[OF ap] p[unfolded phi_prime[symmetric]]
-by simp
-
-
-(* Lucas's theorem.                                                          *)
-
-lemma lucas_coprime_lemma:
-  assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)"
-  shows "coprime a n"
-proof-
-  {assume "n=1" hence ?thesis by simp}
-  moreover
-  {assume "n = 0" hence ?thesis using am m exp_eq_1[of a m] by simp}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    from m obtain m' where m': "m = Suc m'" by (cases m, blast+)
-    {fix d
-      assume d: "d dvd a" "d dvd n"
-      from n have n1: "1 < n" by arith
-      from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding modeq_def by simp
-      from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m')
-      from dvd_mod_iff[OF d(2), of "a^m"] dam am1
-      have "d = 1" by simp }
-    hence ?thesis unfolding coprime by auto
-  }
-  ultimately show ?thesis by blast
-qed
-
-lemma lucas_weak:
-  assumes n: "n \<ge> 2" and an:"[a^(n - 1) = 1] (mod n)"
-  and nm: "\<forall>m. 0 <m \<and> m < n - 1 \<longrightarrow> \<not> [a^m = 1] (mod n)"
-  shows "prime n"
-proof-
-  from n have n1: "n \<noteq> 1" "n\<noteq>0" "n - 1 \<noteq> 0" "n - 1 > 0" "n - 1 < n" by arith+
-  from lucas_coprime_lemma[OF n1(3) an] have can: "coprime a n" .
-  from fermat_little[OF can] have afn: "[a ^ \<phi> n = 1] (mod n)" .
-  {assume "\<phi> n \<noteq> n - 1"
-    with phi_limit_strong[OF n1(1)] phi_lowerbound_1[OF n]
-    have c:"\<phi> n > 0 \<and> \<phi> n < n - 1" by arith
-    from nm[rule_format, OF c] afn have False ..}
-  hence "\<phi> n = n - 1" by blast
-  with phi_prime[of n] n1(1,2) show ?thesis by simp
-qed
-
-lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume ?rhs thus ?lhs by blast
-next
-  assume H: ?lhs then obtain n where n: "P n" by blast
-  let ?x = "Least P"
-  {fix m assume m: "m < ?x"
-    from not_less_Least[OF m] have "\<not> P m" .}
-  with LeastI_ex[OF H] show ?rhs by blast
-qed
-
-lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof-
-  {assume ?rhs hence ?lhs by blast}
-  moreover
-  { assume H: ?lhs then obtain n where n: "P n" by blast
-    let ?x = "Least P"
-    {fix m assume m: "m < ?x"
-      from not_less_Least[OF m] have "\<not> P m" .}
-    with LeastI_ex[OF H] have ?rhs by blast}
-  ultimately show ?thesis by blast
-qed
-
-lemma power_mod: "((x::nat) mod m)^n mod m = x^n mod m"
-proof(induct n)
-  case 0 thus ?case by simp
-next
-  case (Suc n)
-  have "(x mod m)^(Suc n) mod m = ((x mod m) * (((x mod m) ^ n) mod m)) mod m"
-    by (simp add: mod_mult_right_eq[symmetric])
-  also have "\<dots> = ((x mod m) * (x^n mod m)) mod m" using Suc.hyps by simp
-  also have "\<dots> = x^(Suc n) mod m"
-    by (simp add: mod_mult_left_eq[symmetric] mod_mult_right_eq[symmetric])
-  finally show ?case .
-qed
-
-lemma lucas:
-  assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)"
-  and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> \<not> [a^((n - 1) div p) = 1] (mod n)"
-  shows "prime n"
-proof-
-  from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+
-  from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp
-  from lucas_coprime_lemma[OF n01(3) an1] cong_coprime[OF an1]
-  have an: "coprime a n" "coprime (a^(n - 1)) n" by (simp_all add: coprime_commute)
-  {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
-    from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where
-      m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast
-    {assume nm1: "(n - 1) mod m > 0"
-      from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast
-      let ?y = "a^ ((n - 1) div m * m)"
-      note mdeq = mod_div_equality[of "(n - 1)" m]
-      from coprime_exp[OF an(1)[unfolded coprime_commute[of a n]],
-	of "(n - 1) div m * m"]
-      have yn: "coprime ?y n" by (simp add: coprime_commute)
-      have "?y mod n = (a^m)^((n - 1) div m) mod n"
-	by (simp add: algebra_simps power_mult)
-      also have "\<dots> = (a^m mod n)^((n - 1) div m) mod n"
-	using power_mod[of "a^m" n "(n - 1) div m"] by simp
-      also have "\<dots> = 1" using m(3)[unfolded modeq_def onen] onen
-	by (simp add: power_Suc0)
-      finally have th3: "?y mod n = 1"  .
-      have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)"
-	using an1[unfolded modeq_def onen] onen
-	  mod_div_equality[of "(n - 1)" m, symmetric]
-	by (simp add:power_add[symmetric] modeq_def th3 del: One_nat_def)
-      from cong_mult_lcancel[of ?y n "a^((n - 1) mod m)" 1, OF yn th2]
-      have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)"  .
-      from m(4)[rule_format, OF th0] nm1
-	less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1
-      have False by blast }
-    hence "(n - 1) mod m = 0" by auto
-    then have mn: "m dvd n - 1" by presburger
-    then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast
-    from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+
-    from prime_factor[OF r01(2)] obtain p where p: "prime p" "p dvd r" by blast
-    hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult)
-    have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r
-      by (simp add: power_mult)
-    also have "\<dots> = (a^(m*(r div p))) mod n" using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp
-    also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult)
-    also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod[of "a^m" "n" "r div p" ] ..
-    also have "\<dots> = 1" using m(3) onen by (simp add: modeq_def power_Suc0)
-    finally have "[(a ^ ((n - 1) div p))= 1] (mod n)"
-      using onen by (simp add: modeq_def)
-    with pn[rule_format, OF th] have False by blast}
-  hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast
-  from lucas_weak[OF n2 an1 th] show ?thesis .
-qed
-
-(* Definition of the order of a number mod n (0 in non-coprime case).        *)
-
-definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)"
-
-(* This has the expected properties.                                         *)
-
-lemma coprime_ord:
-  assumes na: "coprime n a"
-  shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))"
-proof-
-  let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)"
-  from euclid[of a] obtain p where p: "prime p" "a < p" by blast
-  from na have o: "ord n a = Least ?P" by (simp add: ord_def)
-  {assume "n=0 \<or> n=1" with na have "\<exists>m>0. ?P m" apply auto apply (rule exI[where x=1]) by (simp  add: modeq_def)}
-  moreover
-  {assume "n\<noteq>0 \<and> n\<noteq>1" hence n2:"n \<ge> 2" by arith
-    from na have na': "coprime a n" by (simp add: coprime_commute)
-    from phi_lowerbound_1[OF n2] fermat_little[OF na']
-    have ex: "\<exists>m>0. ?P m" by - (rule exI[where x="\<phi> n"], auto) }
-  ultimately have ex: "\<exists>m>0. ?P m" by blast
-  from nat_exists_least_iff'[of ?P] ex na show ?thesis
-    unfolding o[symmetric] by auto
-qed
-(* With the special value 0 for non-coprime case, it's more convenient.      *)
-lemma ord_works:
- "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))"
-apply (cases "coprime n a")
-using coprime_ord[of n a]
-by (blast, simp add: ord_def modeq_def)
-
-lemma ord: "[a^(ord n a) = 1] (mod n)" using ord_works by blast
-lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)"
-  using ord_works by blast
-lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> ~coprime n a"
-by (cases "coprime n a", simp add: neq0_conv coprime_ord, simp add: neq0_conv ord_def)
-
-lemma ord_divides:
- "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume rh: ?rhs
-  then obtain k where "d = ord n a * k" unfolding dvd_def by blast
-  hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)"
-    by (simp add : modeq_def power_mult power_mod)
-  also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)"
-    using ord[of a n, unfolded modeq_def]
-    by (simp add: modeq_def power_mod power_Suc0)
-  finally  show ?lhs .
-next
-  assume lh: ?lhs
-  { assume H: "\<not> coprime n a"
-    hence o: "ord n a = 0" by (simp add: ord_def)
-    {assume d: "d=0" with o H have ?rhs by (simp add: modeq_def)}
-    moreover
-    {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
-      from H[unfolded coprime]
-      obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto
-      from lh[unfolded nat_mod]
-      obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2" by blast
-      hence "a ^ d + n * q1 - n * q2 = 1" by simp
-      with dvd_diff_nat [OF dvd_add [OF divides_rexp[OF p(2), of d'] dvd_mult2[OF p(1), of q1]] dvd_mult2[OF p(1), of q2]] d' have "p dvd 1" by simp
-      with p(3) have False by simp
-      hence ?rhs ..}
-    ultimately have ?rhs by blast}
-  moreover
-  {assume H: "coprime n a"
-    let ?o = "ord n a"
-    let ?q = "d div ord n a"
-    let ?r = "d mod ord n a"
-    from cong_exp[OF ord[of a n], of ?q]
-    have eqo: "[(a^?o)^?q = 1] (mod n)"  by (simp add: modeq_def power_Suc0)
-    from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0)
-    hence op: "?o > 0" by simp
-    from mod_div_equality[of d "ord n a"] lh
-    have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: modeq_def mult_commute)
-    hence "[(a^?o)^?q * (a^?r) = 1] (mod n)"
-      by (simp add: modeq_def power_mult[symmetric] power_add[symmetric])
-    hence th: "[a^?r = 1] (mod n)"
-      using eqo mod_mult_left_eq[of "(a^?o)^?q" "a^?r" n]
-      apply (simp add: modeq_def del: One_nat_def)
-      by (simp add: mod_mult_left_eq[symmetric])
-    {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
-    moreover
-    {assume r: "?r \<noteq> 0"
-      with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp
-      from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th
-      have ?rhs by blast}
-    ultimately have ?rhs by blast}
-  ultimately  show ?rhs by blast
-qed
-
-lemma order_divides_phi: "coprime n a \<Longrightarrow> ord n a dvd \<phi> n"
-using ord_divides fermat_little coprime_commute by simp
-lemma order_divides_expdiff:
-  assumes na: "coprime n a"
-  shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
-proof-
-  {fix n a d e
-    assume na: "coprime n a" and ed: "(e::nat) \<le> d"
-    hence "\<exists>c. d = e + c" by arith
-    then obtain c where c: "d = e + c" by arith
-    from na have an: "coprime a n" by (simp add: coprime_commute)
-    from coprime_exp[OF na, of e]
-    have aen: "coprime (a^e) n" by (simp add: coprime_commute)
-    from coprime_exp[OF na, of c]
-    have acn: "coprime (a^c) n" by (simp add: coprime_commute)
-    have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)"
-      using c by simp
-    also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add)
-    also have  "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)"
-      using cong_mult_lcancel_eq[OF aen, of "a^c" "a^0"] by simp
-    also  have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides)
-    also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)"
-      using cong_add_lcancel_eq[of e c 0 "ord n a", simplified cong_0_divides]
-      by simp
-    finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
-      using c by simp }
-  note th = this
-  have "e \<le> d \<or> d \<le> e" by arith
-  moreover
-  {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
-  moreover
-  {assume de: "d \<le> e"
-    from th[OF na de] have ?thesis by (simp add: cong_commute) }
-  ultimately show ?thesis by blast
-qed
-
-(* Another trivial primality characterization.                               *)
-
-lemma prime_prime_factor:
-  "prime n \<longleftrightarrow> n \<noteq> 1\<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)"
-proof-
-  {assume n: "n=0 \<or> n=1" hence ?thesis using prime_0 two_is_prime by auto}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    {assume pn: "prime n"
-
-      from pn[unfolded prime_def] have "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
-	using n
-	apply (cases "n = 0 \<or> n=1",simp)
-	by (clarsimp, erule_tac x="p" in allE, auto)}
-    moreover
-    {assume H: "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
-      from n have n1: "n > 1" by arith
-      {fix m assume m: "m dvd n" "m\<noteq>1"
-	from prime_factor[OF m(2)] obtain p where
-	  p: "prime p" "p dvd m" by blast
-	from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast
-	with p(2) have "n dvd m"  by simp
-	hence "m=n"  using dvd_anti_sym[OF m(1)] by simp }
-      with n1 have "prime n"  unfolding prime_def by auto }
-    ultimately have ?thesis using n by blast}
-  ultimately       show ?thesis by auto
-qed
-
-lemma prime_divisor_sqrt:
-  "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d^2 \<le> n \<longrightarrow> d = 1)"
-proof-
-  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1
-    by (auto simp add: nat_power_eq_0_iff)}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    hence np: "n > 1" by arith
-    {fix d assume d: "d dvd n" "d^2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
-      from H d have d1n: "d = 1 \<or> d=n" by blast
-      {assume dn: "d=n"
-	have "n^2 > n*1" using n
-	  by (simp add: power2_eq_square mult_less_cancel1)
-	with dn d(2) have "d=1" by simp}
-      with d1n have "d = 1" by blast  }
-    moreover
-    {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'^2 \<le> n \<longrightarrow> d' = 1"
-      from d n have "d \<noteq> 0" apply - apply (rule ccontr) by simp
-      hence dp: "d > 0" by simp
-      from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast
-      from n dp e have ep:"e > 0" by simp
-      have "d^2 \<le> n \<or> e^2 \<le> n" using dp ep
-	by (auto simp add: e power2_eq_square mult_le_cancel_left)
-      moreover
-      {assume h: "d^2 \<le> n"
-	from H[rule_format, of d] h d have "d = 1" by blast}
-      moreover
-      {assume h: "e^2 \<le> n"
-	from e have "e dvd n" unfolding dvd_def by (simp add: mult_commute)
-	with H[rule_format, of e] h have "e=1" by simp
-	with e have "d = n" by simp}
-      ultimately have "d=1 \<or> d=n"  by blast}
-    ultimately have ?thesis unfolding prime_def using np n(2) by blast}
-  ultimately show ?thesis by auto
-qed
-lemma prime_prime_factor_sqrt:
-  "prime n \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p^2 \<le> n)"
-  (is "?lhs \<longleftrightarrow>?rhs")
-proof-
-  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 by auto}
-  moreover
-  {assume n: "n\<noteq>0" "n\<noteq>1"
-    {assume H: ?lhs
-      from H[unfolded prime_divisor_sqrt] n
-      have ?rhs  apply clarsimp by (erule_tac x="p" in allE, simp add: prime_1)
-    }
-    moreover
-    {assume H: ?rhs
-      {fix d assume d: "d dvd n" "d^2 \<le> n" "d\<noteq>1"
-	from prime_factor[OF d(3)]
-	obtain p where p: "prime p" "p dvd d" by blast
-	from n have np: "n > 0" by arith
-	from d(1) n have "d \<noteq> 0" by - (rule ccontr, auto)
-	hence dp: "d > 0" by arith
-	from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2)
-	have "p^2 \<le> n" unfolding power2_eq_square by arith
-	with H n p(1) dvd_trans[OF p(2) d(1)] have False  by blast}
-      with n prime_divisor_sqrt  have ?lhs by auto}
-    ultimately have ?thesis by blast }
-  ultimately show ?thesis by (cases "n=0 \<or> n=1", auto)
-qed
-(* Pocklington theorem. *)
-
-lemma pocklington_lemma:
-  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)"
-  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
-  and pp: "prime p" and pn: "p dvd n"
-  shows "[p = 1] (mod q)"
-proof-
-  from pp prime_0 prime_1 have p01: "p \<noteq> 0" "p \<noteq> 1" by - (rule ccontr, simp)+
-  from cong_1_divides[OF an, unfolded nqr, unfolded dvd_def]
-  obtain k where k: "a ^ (q * r) - 1 = n*k" by blast
-  from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast
-  {assume a0: "a = 0"
-    hence "a^ (n - 1) = 0" using n by (simp add: power_0_left)
-    with n an mod_less[of 1 n]  have False by (simp add: power_0_left modeq_def)}
-  hence a0: "a\<noteq>0" ..
-  from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by (simp add: neq0_conv)
-  hence "(a ^ (q * r) - 1) + 1  = a ^ (q * r)" by simp
-  with k l have "a ^ (q * r) = p*l*k + 1" by simp
-  hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: mult_ac)
-  hence odq: "ord p (a^r) dvd q"
-    unfolding ord_divides[symmetric] power_mult[symmetric] nat_mod  by blast
-  from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast
-  {assume d1: "d \<noteq> 1"
-    from prime_factor[OF d1] obtain P where P: "prime P" "P dvd d" by blast
-    from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp
-    from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast
-    from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast
-    have P0: "P \<noteq> 0" using P(1) prime_0 by - (rule ccontr, simp)
-    from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast
-    from d s t P0  have s': "ord p (a^r) * t = s" by algebra
-    have "ord p (a^r) * t*r = r * ord p (a^r) * t" by algebra
-    hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t"
-      by (simp only: power_mult)
-    have "[((a ^ r) ^ ord p (a^r)) ^ t= 1^t] (mod p)"
-      by (rule cong_exp, rule ord)
-    then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)"
-      by (simp add: power_Suc0)
-    from cong_1_divides[OF th] exps have pd0: "p dvd a^(ord p (a^r) * t*r) - 1" by simp
-    from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp
-    with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp
-    with p01 pn pd0 have False unfolding coprime by auto}
-  hence d1: "d = 1" by blast
-  hence o: "ord p (a^r) = q" using d by simp
-  from pp phi_prime[of p] have phip: " \<phi> p = p - 1" by simp
-  {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
-    from pp[unfolded prime_def] d have dp: "d = p" by blast
-    from n have n12:"Suc (n - 2) = n - 1" by arith
-    with divides_rexp[OF d(2)[unfolded dp], of "n - 2"]
-    have th0: "p dvd a ^ (n - 1)" by simp
-    from n have n0: "n \<noteq> 0" by simp
-    from d(2) an n12[symmetric] have a0: "a \<noteq> 0"
-      by - (rule ccontr, simp add: modeq_def)
-    have th1: "a^ (n - 1) \<noteq> 0" using n d(2) dp a0 by (auto simp add: neq0_conv)
-    from coprime_minus1[OF th1, unfolded coprime]
-      dvd_trans[OF pn cong_1_divides[OF an]] th0 d(3) dp
-    have False by auto}
-  hence cpa: "coprime p a" using coprime by auto
-  from coprime_exp[OF cpa, of r] coprime_commute
-  have arp: "coprime (a^r) p" by blast
-  from fermat_little[OF arp, simplified ord_divides] o phip
-  have "q dvd (p - 1)" by simp
-  then obtain d where d:"p - 1 = q * d" unfolding dvd_def by blast
-  from prime_0 pp have p0:"p \<noteq> 0" by -  (rule ccontr, auto)
-  from p0 d have "p + q * 0 = 1 + q * d" by simp
-  with nat_mod[of p 1 q, symmetric]
-  show ?thesis by blast
-qed
-
-lemma pocklington:
-  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
-  and an: "[a^ (n - 1) = 1] (mod n)"
-  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
-  shows "prime n"
-unfolding prime_prime_factor_sqrt[of n]
-proof-
-  let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<twosuperior> \<le> n)"
-  from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+
-  {fix p assume p: "prime p" "p dvd n" "p^2 \<le> n"
-    from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square)
-    hence pq: "p \<le> q" unfolding exp_mono_le .
-    from pocklington_lemma[OF n nqr an aq p(1,2)]  cong_1_divides
-    have th: "q dvd p - 1" by blast
-    have "p - 1 \<noteq> 0"using prime_ge_2[OF p(1)] by arith
-    with divides_ge[OF th] pq have False by arith }
-  with n01 show ?ths by blast
-qed
-
-(* Variant for application, to separate the exponentiation.                  *)
-lemma pocklington_alt:
-  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
-  and an: "[a^ (n - 1) = 1] (mod n)"
-  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)"
-  shows "prime n"
-proof-
-  {fix p assume p: "prime p" "p dvd q"
-    from aq[rule_format] p obtain b where
-      b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast
-    {assume a0: "a=0"
-      from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto
-      hence False using n by (simp add: modeq_def dvd_eq_mod_eq_0[symmetric])}
-    hence a0: "a\<noteq> 0" ..
-    hence a1: "a \<ge> 1" by arith
-    from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" .
-    {assume b0: "b = 0"
-      from p(2) nqr have "(n - 1) mod p = 0"
-	apply (simp only: dvd_eq_mod_eq_0[symmetric]) by (rule dvd_mult2, simp)
-      with mod_div_equality[of "n - 1" p]
-      have "(n - 1) div p * p= n - 1" by auto
-      hence eq: "(a^((n - 1) div p))^p = a^(n - 1)"
-	by (simp only: power_mult[symmetric])
-      from prime_ge_2[OF p(1)] have pS: "Suc (p - 1) = p" by arith
-      from b(1) have d: "n dvd a^((n - 1) div p)" unfolding b0 cong_0_divides .
-      from divides_rexp[OF d, of "p - 1"] pS eq cong_divides[OF an] n
-      have False by simp}
-    then have b0: "b \<noteq> 0" ..
-    hence b1: "b \<ge> 1" by arith
-    from cong_coprime[OF cong_sub[OF b(1) cong_refl[of 1] ath b1]] b(2) nqr
-    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute)}
-  hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n "
-    by blast
-  from pocklington[OF n nqr sqr an th] show ?thesis .
-qed
-
-(* Prime factorizations.                                                     *)
-
-definition "primefact ps n = (foldr op * ps  1 = n \<and> (\<forall>p\<in> set ps. prime p))"
-
-lemma primefact: assumes n: "n \<noteq> 0"
-  shows "\<exists>ps. primefact ps n"
-using n
-proof(induct n rule: nat_less_induct)
-  fix n assume H: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>ps. primefact ps m)" and n: "n\<noteq>0"
-  let ?ths = "\<exists>ps. primefact ps n"
-  {assume "n = 1"
-    hence "primefact [] n" by (simp add: primefact_def)
-    hence ?ths by blast }
-  moreover
-  {assume n1: "n \<noteq> 1"
-    with n have n2: "n \<ge> 2" by arith
-    from prime_factor[OF n1] obtain p where p: "prime p" "p dvd n" by blast
-    from p(2) obtain m where m: "n = p*m" unfolding dvd_def by blast
-    from n m have m0: "m > 0" "m\<noteq>0" by auto
-    from prime_ge_2[OF p(1)] have "1 < p" by arith
-    with m0 m have mn: "m < n" by auto
-    from H[rule_format, OF mn m0(2)] obtain ps where ps: "primefact ps m" ..
-    from ps m p(1) have "primefact (p#ps) n" by (simp add: primefact_def)
-    hence ?ths by blast}
-  ultimately show ?ths by blast
-qed
-
-lemma primefact_contains:
-  assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n"
-  shows "p \<in> set ps"
-  using pf p pn
-proof(induct ps arbitrary: p n)
-  case Nil thus ?case by (auto simp add: primefact_def)
-next
-  case (Cons q qs p n)
-  from Cons.prems[unfolded primefact_def]
-  have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p"  and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all
-  {assume "p dvd q"
-    with p(1) q(1) have "p = q" unfolding prime_def by auto
-    hence ?case by simp}
-  moreover
-  { assume h: "p dvd foldr op * qs 1"
-    from q(3) have pqs: "primefact qs (foldr op * qs 1)"
-      by (simp add: primefact_def)
-    from Cons.hyps[OF pqs p(1) h] have ?case by simp}
-  ultimately show ?case using prime_divprod[OF p] by blast
-qed
-
-lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps" by (auto simp add: primefact_def list_all_iff)
-
-(* Variant of Lucas theorem.                                                 *)
-
-lemma lucas_primefact:
-  assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)"
-  and psn: "foldr op * ps 1 = n - 1"
-  and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps"
-  shows "prime n"
-proof-
-  {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
-    from psn psp have psn1: "primefact ps (n - 1)"
-      by (auto simp add: list_all_iff primefact_variant)
-    from p(3) primefact_contains[OF psn1 p(1,2)] psp
-    have False by (induct ps, auto)}
-  with lucas[OF n an] show ?thesis by blast
-qed
-
-(* Variant of Pocklington theorem.                                           *)
-
-lemma mod_le: assumes n: "n \<noteq> (0::nat)" shows "m mod n \<le> m"
-proof-
-    from mod_div_equality[of m n]
-    have "\<exists>x. x + m mod n = m" by blast
-    then show ?thesis by auto
-qed
-
-
-lemma pocklington_primefact:
-  assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q^2"
-  and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q"
-  and bqn: "(b^q) mod n = 1"
-  and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps"
-  shows "prime n"
-proof-
-  from bqn psp qrn
-  have bqn: "a ^ (n - 1) mod n = 1"
-    and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps"  unfolding arnb[symmetric] power_mod
-    by (simp_all add: power_mult[symmetric] algebra_simps)
-  from n  have n0: "n > 0" by arith
-  from mod_div_equality[of "a^(n - 1)" n]
-    mod_less_divisor[OF n0, of "a^(n - 1)"]
-  have an1: "[a ^ (n - 1) = 1] (mod n)"
-    unfolding nat_mod bqn
-    apply -
-    apply (rule exI[where x="0"])
-    apply (rule exI[where x="a^(n - 1) div n"])
-    by (simp add: algebra_simps)
-  {fix p assume p: "prime p" "p dvd q"
-    from psp psq have pfpsq: "primefact ps q"
-      by (auto simp add: primefact_variant list_all_iff)
-    from psp primefact_contains[OF pfpsq p]
-    have p': "coprime (a ^ (r * (q div p)) mod n - 1) n"
-      by (simp add: list_all_iff)
-    from prime_ge_2[OF p(1)] have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)" by arith+
-    from div_mult1_eq[of r q p] p(2)
-    have eq1: "r* (q div p) = (n - 1) div p"
-      unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult_commute)
-    have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith
-    from n0 have n00: "n \<noteq> 0" by arith
-    from mod_le[OF n00]
-    have th10: "a ^ ((n - 1) div p) mod n \<le> a ^ ((n - 1) div p)" .
-    {assume "a ^ ((n - 1) div p) mod n = 0"
-      then obtain s where s: "a ^ ((n - 1) div p) = n*s"
-	unfolding mod_eq_0_iff by blast
-      hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp
-      from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto
-      from dvd_trans[OF p(2) qn1] div_mod_equality'[of "n - 1" p]
-      have npp: "(n - 1) div p * p = n - 1" by (simp add: dvd_eq_mod_eq_0)
-      with eq0 have "a^ (n - 1) = (n*s)^p"
-	by (simp add: power_mult[symmetric])
-      hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp
-      also have "\<dots> = 0" by (simp add: mult_assoc)
-      finally have False by simp }
-      then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto
-    have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"
-      unfolding modeq_def by simp
-    from cong_sub[OF th1 cong_refl[of 1]]  ath[OF th10 th11]
-    have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
-      by blast
-    from cong_coprime[OF th] p'[unfolded eq1]
-    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute) }
-  with pocklington[OF n qrn[symmetric] nq2 an1]
-  show ?thesis by blast
-qed
-
-end
--- a/src/HOL/Library/Primes.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,828 +0,0 @@
-(*  Title:      HOL/Library/Primes.thy
-    Author:     Amine Chaieb, Christophe Tabacznyj and Lawrence C Paulson
-    Copyright   1996  University of Cambridge
-*)
-
-header {* Primality on nat *}
-
-theory Primes
-imports Complex_Main Legacy_GCD
-begin
-
-hide (open) const GCD.gcd GCD.coprime GCD.prime
-
-definition
-  coprime :: "nat => nat => bool" where
-  "coprime m n \<longleftrightarrow> gcd m n = 1"
-
-definition
-  prime :: "nat \<Rightarrow> bool" where
-  [code del]: "prime p \<longleftrightarrow> (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
-
-
-lemma two_is_prime: "prime 2"
-  apply (auto simp add: prime_def)
-  apply (case_tac m)
-   apply (auto dest!: dvd_imp_le)
-  done
-
-lemma prime_imp_relprime: "prime p ==> \<not> p dvd n ==> gcd p n = 1"
-  apply (auto simp add: prime_def)
-  apply (metis One_nat_def gcd_dvd1 gcd_dvd2)
-  done
-
-text {*
-  This theorem leads immediately to a proof of the uniqueness of
-  factorization.  If @{term p} divides a product of primes then it is
-  one of those primes.
-*}
-
-lemma prime_dvd_mult: "prime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
-  by (blast intro: relprime_dvd_mult prime_imp_relprime)
-
-lemma prime_dvd_square: "prime p ==> p dvd m^Suc (Suc 0) ==> p dvd m"
-  by (auto dest: prime_dvd_mult)
-
-lemma prime_dvd_power_two: "prime p ==> p dvd m\<twosuperior> ==> p dvd m"
-  by (rule prime_dvd_square) (simp_all add: power2_eq_square)
-
-
-lemma exp_eq_1:"(x::nat)^n = 1 \<longleftrightarrow> x = 1 \<or> n = 0"
-by (induct n, auto)
-
-lemma exp_mono_lt: "(x::nat) ^ (Suc n) < y ^ (Suc n) \<longleftrightarrow> x < y"
-by(metis linorder_not_less not_less0 power_le_imp_le_base power_less_imp_less_base)
-
-lemma exp_mono_le: "(x::nat) ^ (Suc n) \<le> y ^ (Suc n) \<longleftrightarrow> x \<le> y"
-by (simp only: linorder_not_less[symmetric] exp_mono_lt)
-
-lemma exp_mono_eq: "(x::nat) ^ Suc n = y ^ Suc n \<longleftrightarrow> x = y"
-using power_inject_base[of x n y] by auto
-
-
-lemma even_square: assumes e: "even (n::nat)" shows "\<exists>x. n ^ 2 = 4*x"
-proof-
-  from e have "2 dvd n" by presburger
-  then obtain k where k: "n = 2*k" using dvd_def by auto
-  hence "n^2 = 4* (k^2)" by (simp add: power2_eq_square)
-  thus ?thesis by blast
-qed
-
-lemma odd_square: assumes e: "odd (n::nat)" shows "\<exists>x. n ^ 2 = 4*x + 1"
-proof-
-  from e have np: "n > 0" by presburger
-  from e have "2 dvd (n - 1)" by presburger
-  then obtain k where "n - 1 = 2*k" using dvd_def by auto
-  hence k: "n = 2*k + 1"  using e by presburger 
-  hence "n^2 = 4* (k^2 + k) + 1" by algebra   
-  thus ?thesis by blast
-qed
-
-lemma diff_square: "(x::nat)^2 - y^2 = (x+y)*(x - y)" 
-proof-
-  have "x \<le> y \<or> y \<le> x" by (rule nat_le_linear)
-  moreover
-  {assume le: "x \<le> y"
-    hence "x ^2 \<le> y^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def)
-    with le have ?thesis by simp }
-  moreover
-  {assume le: "y \<le> x"
-    hence le2: "y ^2 \<le> x^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def)
-    from le have "\<exists>z. y + z = x" by presburger
-    then obtain z where z: "x = y + z" by blast 
-    from le2 have "\<exists>z. x^2 = y^2 + z" by presburger
-    then obtain z2 where z2: "x^2 = y^2 + z2"  by blast
-    from z z2 have ?thesis apply simp by algebra }
-  ultimately show ?thesis by blast  
-qed
-
-text {* Elementary theory of divisibility *}
-lemma divides_ge: "(a::nat) dvd b \<Longrightarrow> b = 0 \<or> a \<le> b" unfolding dvd_def by auto
-lemma divides_antisym: "(x::nat) dvd y \<and> y dvd x \<longleftrightarrow> x = y"
-  using dvd_anti_sym[of x y] by auto
-
-lemma divides_add_revr: assumes da: "(d::nat) dvd a" and dab:"d dvd (a + b)"
-  shows "d dvd b"
-proof-
-  from da obtain k where k:"a = d*k" by (auto simp add: dvd_def)
-  from dab obtain k' where k': "a + b = d*k'" by (auto simp add: dvd_def)
-  from k k' have "b = d *(k' - k)" by (simp add : diff_mult_distrib2)
-  thus ?thesis unfolding dvd_def by blast
-qed
-
-declare nat_mult_dvd_cancel_disj[presburger]
-lemma nat_mult_dvd_cancel_disj'[presburger]: 
-  "(m\<Colon>nat)*k dvd n*k \<longleftrightarrow> k = 0 \<or> m dvd n" unfolding mult_commute[of m k] mult_commute[of n k] by presburger 
-
-lemma divides_mul_l: "(a::nat) dvd b ==> (c * a) dvd (c * b)"
-  by presburger
-
-lemma divides_mul_r: "(a::nat) dvd b ==> (a * c) dvd (b * c)" by presburger
-lemma divides_cases: "(n::nat) dvd m ==> m = 0 \<or> m = n \<or> 2 * n <= m" 
-  by (auto simp add: dvd_def)
-
-lemma divides_div_not: "(x::nat) = (q * n) + r \<Longrightarrow> 0 < r \<Longrightarrow> r < n ==> ~(n dvd x)"
-proof(auto simp add: dvd_def)
-  fix k assume H: "0 < r" "r < n" "q * n + r = n * k"
-  from H(3) have r: "r = n* (k -q)" by(simp add: diff_mult_distrib2 mult_commute)
-  {assume "k - q = 0" with r H(1) have False by simp}
-  moreover
-  {assume "k - q \<noteq> 0" with r have "r \<ge> n" by auto
-    with H(2) have False by simp}
-  ultimately show False by blast
-qed
-lemma divides_exp: "(x::nat) dvd y ==> x ^ n dvd y ^ n"
-  by (auto simp add: power_mult_distrib dvd_def)
-
-lemma divides_exp2: "n \<noteq> 0 \<Longrightarrow> (x::nat) ^ n dvd y \<Longrightarrow> x dvd y" 
-  by (induct n ,auto simp add: dvd_def)
-
-fun fact :: "nat \<Rightarrow> nat" where
-  "fact 0 = 1"
-| "fact (Suc n) = Suc n * fact n"	
-
-lemma fact_lt: "0 < fact n" by(induct n, simp_all)
-lemma fact_le: "fact n \<ge> 1" using fact_lt[of n] by simp 
-lemma fact_mono: assumes le: "m \<le> n" shows "fact m \<le> fact n"
-proof-
-  from le have "\<exists>i. n = m+i" by presburger
-  then obtain i where i: "n = m+i" by blast 
-  have "fact m \<le> fact (m + i)"
-  proof(induct m)
-    case 0 thus ?case using fact_le[of i] by simp
-  next
-    case (Suc m)
-    have "fact (Suc m) = Suc m * fact m" by simp
-    have th1: "Suc m \<le> Suc (m + i)" by simp
-    from mult_le_mono[of "Suc m" "Suc (m+i)" "fact m" "fact (m+i)", OF th1 Suc.hyps]
-    show ?case by simp
-  qed
-  thus ?thesis using i by simp
-qed
-
-lemma divides_fact: "1 <= p \<Longrightarrow> p <= n ==> p dvd fact n"
-proof(induct n arbitrary: p)
-  case 0 thus ?case by simp
-next
-  case (Suc n p)
-  from Suc.prems have "p = Suc n \<or> p \<le> n" by presburger 
-  moreover
-  {assume "p = Suc n" hence ?case  by (simp only: fact.simps dvd_triv_left)}
-  moreover
-  {assume "p \<le> n"
-    with Suc.prems(1) Suc.hyps have th: "p dvd fact n" by simp
-    from dvd_mult[OF th] have ?case by (simp only: fact.simps) }
-  ultimately show ?case by blast
-qed
-
-declare dvd_triv_left[presburger]
-declare dvd_triv_right[presburger]
-lemma divides_rexp: 
-  "x dvd y \<Longrightarrow> (x::nat) dvd (y^(Suc n))" by (simp add: dvd_mult2[of x y])
-
-text {* Coprimality *}
-
-lemma coprime: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
-using gcd_unique[of 1 a b, simplified] by (auto simp add: coprime_def)
-lemma coprime_commute: "coprime a b \<longleftrightarrow> coprime b a" by (simp add: coprime_def gcd_commute)
-
-lemma coprime_bezout: "coprime a b \<longleftrightarrow> (\<exists>x y. a * x - b * y = 1 \<or> b * x - a * y = 1)"
-using coprime_def gcd_bezout by auto
-
-lemma coprime_divprod: "d dvd a * b  \<Longrightarrow> coprime d a \<Longrightarrow> d dvd b"
-  using relprime_dvd_mult_iff[of d a b] by (auto simp add: coprime_def mult_commute)
-
-lemma coprime_1[simp]: "coprime a 1" by (simp add: coprime_def)
-lemma coprime_1'[simp]: "coprime 1 a" by (simp add: coprime_def)
-lemma coprime_Suc0[simp]: "coprime a (Suc 0)" by (simp add: coprime_def)
-lemma coprime_Suc0'[simp]: "coprime (Suc 0) a" by (simp add: coprime_def)
-
-lemma gcd_coprime: 
-  assumes z: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b" 
-  shows    "coprime a' b'"
-proof-
-  let ?g = "gcd a b"
-  {assume bz: "a = 0" from b bz z a have ?thesis by (simp add: gcd_zero coprime_def)}
-  moreover 
-  {assume az: "a\<noteq> 0" 
-    from z have z': "?g > 0" by simp
-    from bezout_gcd_strong[OF az, of b] 
-    obtain x y where xy: "a*x = b*y + ?g" by blast
-    from xy a b have "?g * a'*x = ?g * (b'*y + 1)" by (simp add: algebra_simps)
-    hence "?g * (a'*x) = ?g * (b'*y + 1)" by (simp add: mult_assoc)
-    hence "a'*x = (b'*y + 1)"
-      by (simp only: nat_mult_eq_cancel1[OF z']) 
-    hence "a'*x - b'*y = 1" by simp
-    with coprime_bezout[of a' b'] have ?thesis by auto}
-  ultimately show ?thesis by blast
-qed
-lemma coprime_0: "coprime d 0 \<longleftrightarrow> d = 1" by (simp add: coprime_def)
-lemma coprime_mul: assumes da: "coprime d a" and db: "coprime d b"
-  shows "coprime d (a * b)"
-proof-
-  from da have th: "gcd a d = 1" by (simp add: coprime_def gcd_commute)
-  from gcd_mult_cancel[of a d b, OF th] db[unfolded coprime_def] have "gcd d (a*b) = 1"
-    by (simp add: gcd_commute)
-  thus ?thesis unfolding coprime_def .
-qed
-lemma coprime_lmul2: assumes dab: "coprime d (a * b)" shows "coprime d b"
-using prems unfolding coprime_bezout
-apply clarsimp
-apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all)
-apply (rule_tac x="x" in exI)
-apply (rule_tac x="a*y" in exI)
-apply (simp add: mult_ac)
-apply (rule_tac x="a*x" in exI)
-apply (rule_tac x="y" in exI)
-apply (simp add: mult_ac)
-done
-
-lemma coprime_rmul2: "coprime d (a * b) \<Longrightarrow> coprime d a"
-unfolding coprime_bezout
-apply clarsimp
-apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all)
-apply (rule_tac x="x" in exI)
-apply (rule_tac x="b*y" in exI)
-apply (simp add: mult_ac)
-apply (rule_tac x="b*x" in exI)
-apply (rule_tac x="y" in exI)
-apply (simp add: mult_ac)
-done
-lemma coprime_mul_eq: "coprime d (a * b) \<longleftrightarrow> coprime d a \<and>  coprime d b"
-  using coprime_rmul2[of d a b] coprime_lmul2[of d a b] coprime_mul[of d a b] 
-  by blast
-
-lemma gcd_coprime_exists:
-  assumes nz: "gcd a b \<noteq> 0" 
-  shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
-proof-
-  let ?g = "gcd a b"
-  from gcd_dvd1[of a b] gcd_dvd2[of a b] 
-  obtain a' b' where "a = ?g*a'"  "b = ?g*b'" unfolding dvd_def by blast
-  hence ab': "a = a'*?g" "b = b'*?g" by algebra+
-  from ab' gcd_coprime[OF nz ab'] show ?thesis by blast
-qed
-
-lemma coprime_exp: "coprime d a ==> coprime d (a^n)" 
-  by(induct n, simp_all add: coprime_mul)
-
-lemma coprime_exp_imp: "coprime a b ==> coprime (a ^n) (b ^n)"
-  by (induct n, simp_all add: coprime_mul_eq coprime_commute coprime_exp)
-lemma coprime_refl[simp]: "coprime n n \<longleftrightarrow> n = 1" by (simp add: coprime_def)
-lemma coprime_plus1[simp]: "coprime (n + 1) n"
-  apply (simp add: coprime_bezout)
-  apply (rule exI[where x=1])
-  apply (rule exI[where x=1])
-  apply simp
-  done
-lemma coprime_minus1: "n \<noteq> 0 ==> coprime (n - 1) n"
-  using coprime_plus1[of "n - 1"] coprime_commute[of "n - 1" n] by auto
-
-lemma bezout_gcd_pow: "\<exists>x y. a ^n * x - b ^ n * y = gcd a b ^ n \<or> b ^ n * x - a ^ n * y = gcd a b ^ n"
-proof-
-  let ?g = "gcd a b"
-  {assume z: "?g = 0" hence ?thesis 
-      apply (cases n, simp)
-      apply arith
-      apply (simp only: z power_0_Suc)
-      apply (rule exI[where x=0])
-      apply (rule exI[where x=0])
-      by simp}
-  moreover
-  {assume z: "?g \<noteq> 0"
-    from gcd_dvd1[of a b] gcd_dvd2[of a b] obtain a' b' where
-      ab': "a = a'*?g" "b = b'*?g" unfolding dvd_def by (auto simp add: mult_ac)
-    hence ab'': "?g*a' = a" "?g * b' = b" by algebra+
-    from coprime_exp_imp[OF gcd_coprime[OF z ab'], unfolded coprime_bezout, of n]
-    obtain x y where "a'^n * x - b'^n * y = 1 \<or> b'^n * x - a'^n * y = 1"  by blast
-    hence "?g^n * (a'^n * x - b'^n * y) = ?g^n \<or> ?g^n*(b'^n * x - a'^n * y) = ?g^n"
-      using z by auto 
-    then have "a^n * x - b^n * y = ?g^n \<or> b^n * x - a^n * y = ?g^n"
-      using z ab'' by (simp only: power_mult_distrib[symmetric] 
-	diff_mult_distrib2 mult_assoc[symmetric])
-    hence  ?thesis by blast }
-  ultimately show ?thesis by blast
-qed
-
-lemma gcd_exp: "gcd (a^n) (b^n) = gcd a b^n"
-proof-
-  let ?g = "gcd (a^n) (b^n)"
-  let ?gn = "gcd a b^n"
-  {fix e assume H: "e dvd a^n" "e dvd b^n"
-    from bezout_gcd_pow[of a n b] obtain x y 
-      where xy: "a ^ n * x - b ^ n * y = ?gn \<or> b ^ n * x - a ^ n * y = ?gn" by blast
-    from dvd_diff_nat [OF dvd_mult2[OF H(1), of x] dvd_mult2[OF H(2), of y]]
-      dvd_diff_nat [OF dvd_mult2[OF H(2), of x] dvd_mult2[OF H(1), of y]] xy
-    have "e dvd ?gn" by (cases "a ^ n * x - b ^ n * y = gcd a b ^ n", simp_all)}
-  hence th:  "\<forall>e. e dvd a^n \<and> e dvd b^n \<longrightarrow> e dvd ?gn" by blast
-  from divides_exp[OF gcd_dvd1[of a b], of n] divides_exp[OF gcd_dvd2[of a b], of n] th
-    gcd_unique have "?gn = ?g" by blast thus ?thesis by simp 
-qed
-
-lemma coprime_exp2:  "coprime (a ^ Suc n) (b^ Suc n) \<longleftrightarrow> coprime a b"
-by (simp only: coprime_def gcd_exp exp_eq_1) simp
-
-lemma division_decomp: assumes dc: "(a::nat) dvd b * c"
-  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
-proof-
-  let ?g = "gcd a b"
-  {assume "?g = 0" with dc have ?thesis apply (simp add: gcd_zero)
-      apply (rule exI[where x="0"])
-      by (rule exI[where x="c"], simp)}
-  moreover
-  {assume z: "?g \<noteq> 0"
-    from gcd_coprime_exists[OF z]
-    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast
-    from gcd_dvd2[of a b] have thb: "?g dvd b" .
-    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast  
-    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
-    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
-    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
-    with z have th_1: "a' dvd b'*c" by simp
-    from coprime_divprod[OF th_1 ab'(3)] have thc: "a' dvd c" . 
-    from ab' have "a = ?g*a'" by algebra
-    with thb thc have ?thesis by blast }
-  ultimately show ?thesis by blast
-qed
-
-lemma nat_power_eq_0_iff: "(m::nat) ^ n = 0 \<longleftrightarrow> n \<noteq> 0 \<and> m = 0" by (induct n, auto)
-
-lemma divides_rev: assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" shows "a dvd b"
-proof-
-  let ?g = "gcd a b"
-  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
-  {assume "?g = 0" with ab n have ?thesis by (simp add: gcd_zero)}
-  moreover
-  {assume z: "?g \<noteq> 0"
-    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
-    from gcd_coprime_exists[OF z] 
-    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast
-    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" by (simp add: ab'(1,2)[symmetric])
-    hence "?g^n*a'^n dvd ?g^n *b'^n" by (simp only: power_mult_distrib mult_commute)
-    with zn z n have th0:"a'^n dvd b'^n" by (auto simp add: nat_power_eq_0_iff)
-    have "a' dvd a'^n" by (simp add: m)
-    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
-    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
-    from coprime_divprod[OF th1 coprime_exp[OF ab'(3), of m]]
-    have "a' dvd b'" .
-    hence "a'*?g dvd b'*?g" by simp
-    with ab'(1,2)  have ?thesis by simp }
-  ultimately show ?thesis by blast
-qed
-
-lemma divides_mul: assumes mr: "m dvd r" and nr: "n dvd r" and mn:"coprime m n" 
-  shows "m * n dvd r"
-proof-
-  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
-    unfolding dvd_def by blast
-  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
-  hence "m dvd n'" using relprime_dvd_mult_iff[OF mn[unfolded coprime_def]] by simp
-  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
-  from n' k show ?thesis unfolding dvd_def by auto
-qed
-
-
-text {* A binary form of the Chinese Remainder Theorem. *}
-
-lemma chinese_remainder: assumes ab: "coprime a b" and a:"a \<noteq> 0" and b:"b \<noteq> 0"
-  shows "\<exists>x q1 q2. x = u + q1 * a \<and> x = v + q2 * b"
-proof-
-  from bezout_add_strong[OF a, of b] bezout_add_strong[OF b, of a]
-  obtain d1 x1 y1 d2 x2 y2 where dxy1: "d1 dvd a" "d1 dvd b" "a * x1 = b * y1 + d1" 
-    and dxy2: "d2 dvd b" "d2 dvd a" "b * x2 = a * y2 + d2" by blast
-  from gcd_unique[of 1 a b, simplified ab[unfolded coprime_def], simplified] 
-    dxy1(1,2) dxy2(1,2) have d12: "d1 = 1" "d2 =1" by auto
-  let ?x = "v * a * x1 + u * b * x2"
-  let ?q1 = "v * x1 + u * y2"
-  let ?q2 = "v * y1 + u * x2"
-  from dxy2(3)[simplified d12] dxy1(3)[simplified d12] 
-  have "?x = u + ?q1 * a" "?x = v + ?q2 * b" by algebra+ 
-  thus ?thesis by blast
-qed
-
-text {* Primality *}
-
-text {* A few useful theorems about primes *}
-
-lemma prime_0[simp]: "~prime 0" by (simp add: prime_def)
-lemma prime_1[simp]: "~ prime 1"  by (simp add: prime_def)
-lemma prime_Suc0[simp]: "~ prime (Suc 0)"  by (simp add: prime_def)
-
-lemma prime_ge_2: "prime p ==> p \<ge> 2" by (simp add: prime_def)
-lemma prime_factor: assumes n: "n \<noteq> 1" shows "\<exists> p. prime p \<and> p dvd n"
-using n
-proof(induct n rule: nat_less_induct)
-  fix n
-  assume H: "\<forall>m<n. m \<noteq> 1 \<longrightarrow> (\<exists>p. prime p \<and> p dvd m)" "n \<noteq> 1"
-  let ?ths = "\<exists>p. prime p \<and> p dvd n"
-  {assume "n=0" hence ?ths using two_is_prime by auto}
-  moreover
-  {assume nz: "n\<noteq>0" 
-    {assume "prime n" hence ?ths by - (rule exI[where x="n"], simp)}
-    moreover
-    {assume n: "\<not> prime n"
-      with nz H(2) 
-      obtain k where k:"k dvd n" "k \<noteq> 1" "k \<noteq> n" by (auto simp add: prime_def) 
-      from dvd_imp_le[OF k(1)] nz k(3) have kn: "k < n" by simp
-      from H(1)[rule_format, OF kn k(2)] obtain p where p: "prime p" "p dvd k" by blast
-      from dvd_trans[OF p(2) k(1)] p(1) have ?ths by blast}
-    ultimately have ?ths by blast}
-  ultimately show ?ths by blast
-qed
-
-lemma prime_factor_lt: assumes p: "prime p" and n: "n \<noteq> 0" and npm:"n = p * m"
-  shows "m < n"
-proof-
-  {assume "m=0" with n have ?thesis by simp}
-  moreover
-  {assume m: "m \<noteq> 0"
-    from npm have mn: "m dvd n" unfolding dvd_def by auto
-    from npm m have "n \<noteq> m" using p by auto
-    with dvd_imp_le[OF mn] n have ?thesis by simp}
-  ultimately show ?thesis by blast
-qed
-
-lemma euclid_bound: "\<exists>p. prime p \<and> n < p \<and>  p <= Suc (fact n)"
-proof-
-  have f1: "fact n + 1 \<noteq> 1" using fact_le[of n] by arith 
-  from prime_factor[OF f1] obtain p where p: "prime p" "p dvd fact n + 1" by blast
-  from dvd_imp_le[OF p(2)] have pfn: "p \<le> fact n + 1" by simp
-  {assume np: "p \<le> n"
-    from p(1) have p1: "p \<ge> 1" by (cases p, simp_all)
-    from divides_fact[OF p1 np] have pfn': "p dvd fact n" .
-    from divides_add_revr[OF pfn' p(2)] p(1) have False by simp}
-  hence "n < p" by arith
-  with p(1) pfn show ?thesis by auto
-qed
-
-lemma euclid: "\<exists>p. prime p \<and> p > n" using euclid_bound by auto
-
-lemma primes_infinite: "\<not> (finite {p. prime p})"
-apply(simp add: finite_nat_set_iff_bounded_le)
-apply (metis euclid linorder_not_le)
-done
-
-lemma coprime_prime: assumes ab: "coprime a b"
-  shows "~(prime p \<and> p dvd a \<and> p dvd b)"
-proof
-  assume "prime p \<and> p dvd a \<and> p dvd b"
-  thus False using ab gcd_greatest[of p a b] by (simp add: coprime_def)
-qed
-lemma coprime_prime_eq: "coprime a b \<longleftrightarrow> (\<forall>p. ~(prime p \<and> p dvd a \<and> p dvd b))" 
-  (is "?lhs = ?rhs")
-proof-
-  {assume "?lhs" with coprime_prime  have ?rhs by blast}
-  moreover
-  {assume r: "?rhs" and c: "\<not> ?lhs"
-    then obtain g where g: "g\<noteq>1" "g dvd a" "g dvd b" unfolding coprime_def by blast
-    from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast
-    from dvd_trans [OF p(2) g(2)] dvd_trans [OF p(2) g(3)] 
-    have "p dvd a" "p dvd b" . with p(1) r have False by blast}
-  ultimately show ?thesis by blast
-qed
-
-lemma prime_coprime: assumes p: "prime p" 
-  shows "n = 1 \<or> p dvd n \<or> coprime p n"
-using p prime_imp_relprime[of p n] by (auto simp add: coprime_def)
-
-lemma prime_coprime_strong: "prime p \<Longrightarrow> p dvd n \<or> coprime p n"
-  using prime_coprime[of p n] by auto
-
-declare  coprime_0[simp]
-
-lemma coprime_0'[simp]: "coprime 0 d \<longleftrightarrow> d = 1" by (simp add: coprime_commute[of 0 d])
-lemma coprime_bezout_strong: assumes ab: "coprime a b" and b: "b \<noteq> 1"
-  shows "\<exists>x y. a * x = b * y + 1"
-proof-
-  from ab b have az: "a \<noteq> 0" by - (rule ccontr, auto)
-  from bezout_gcd_strong[OF az, of b] ab[unfolded coprime_def]
-  show ?thesis by auto
-qed
-
-lemma bezout_prime: assumes p: "prime p"  and pa: "\<not> p dvd a"
-  shows "\<exists>x y. a*x = p*y + 1"
-proof-
-  from p have p1: "p \<noteq> 1" using prime_1 by blast 
-  from prime_coprime[OF p, of a] p1 pa have ap: "coprime a p" 
-    by (auto simp add: coprime_commute)
-  from coprime_bezout_strong[OF ap p1] show ?thesis . 
-qed
-lemma prime_divprod: assumes p: "prime p" and pab: "p dvd a*b"
-  shows "p dvd a \<or> p dvd b"
-proof-
-  {assume "a=1" hence ?thesis using pab by simp }
-  moreover
-  {assume "p dvd a" hence ?thesis by blast}
-  moreover
-  {assume pa: "coprime p a" from coprime_divprod[OF pab pa]  have ?thesis .. }
-  ultimately show ?thesis using prime_coprime[OF p, of a] by blast
-qed
-
-lemma prime_divprod_eq: assumes p: "prime p"
-  shows "p dvd a*b \<longleftrightarrow> p dvd a \<or> p dvd b"
-using p prime_divprod dvd_mult dvd_mult2 by auto
-
-lemma prime_divexp: assumes p:"prime p" and px: "p dvd x^n"
-  shows "p dvd x"
-using px
-proof(induct n)
-  case 0 thus ?case by simp
-next
-  case (Suc n) 
-  hence th: "p dvd x*x^n" by simp
-  {assume H: "p dvd x^n"
-    from Suc.hyps[OF H] have ?case .}
-  with prime_divprod[OF p th] show ?case by blast
-qed
-
-lemma prime_divexp_n: "prime p \<Longrightarrow> p dvd x^n \<Longrightarrow> p^n dvd x^n"
-  using prime_divexp[of p x n] divides_exp[of p x n] by blast
-
-lemma coprime_prime_dvd_ex: assumes xy: "\<not>coprime x y"
-  shows "\<exists>p. prime p \<and> p dvd x \<and> p dvd y"
-proof-
-  from xy[unfolded coprime_def] obtain g where g: "g \<noteq> 1" "g dvd x" "g dvd y" 
-    by blast
-  from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast
-  from g(2,3) dvd_trans[OF p(2)] p(1) show ?thesis by auto
-qed
-lemma coprime_sos: assumes xy: "coprime x y" 
-  shows "coprime (x * y) (x^2 + y^2)"
-proof-
-  {assume c: "\<not> coprime (x * y) (x^2 + y^2)"
-    from coprime_prime_dvd_ex[OF c] obtain p 
-      where p: "prime p" "p dvd x*y" "p dvd x^2 + y^2" by blast
-    {assume px: "p dvd x"
-      from dvd_mult[OF px, of x] p(3) 
-        obtain r s where "x * x = p * r" and "x^2 + y^2 = p * s"
-          by (auto elim!: dvdE)
-        then have "y^2 = p * (s - r)" 
-          by (auto simp add: power2_eq_square diff_mult_distrib2)
-        then have "p dvd y^2" ..
-      with prime_divexp[OF p(1), of y 2] have py: "p dvd y" .
-      from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1  
-      have False by simp }
-    moreover
-    {assume py: "p dvd y"
-      from dvd_mult[OF py, of y] p(3)
-        obtain r s where "y * y = p * r" and "x^2 + y^2 = p * s"
-          by (auto elim!: dvdE)
-        then have "x^2 = p * (s - r)" 
-          by (auto simp add: power2_eq_square diff_mult_distrib2)
-        then have "p dvd x^2" ..
-      with prime_divexp[OF p(1), of x 2] have px: "p dvd x" .
-      from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1  
-      have False by simp }
-    ultimately have False using prime_divprod[OF p(1,2)] by blast}
-  thus ?thesis by blast
-qed
-
-lemma distinct_prime_coprime: "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
-  unfolding prime_def coprime_prime_eq by blast
-
-lemma prime_coprime_lt: assumes p: "prime p" and x: "0 < x" and xp: "x < p"
-  shows "coprime x p"
-proof-
-  {assume c: "\<not> coprime x p"
-    then obtain g where g: "g \<noteq> 1" "g dvd x" "g dvd p" unfolding coprime_def by blast
-  from dvd_imp_le[OF g(2)] x xp have gp: "g < p" by arith
-  from g(2) x have "g \<noteq> 0" by - (rule ccontr, simp)
-  with g gp p[unfolded prime_def] have False by blast}
-thus ?thesis by blast
-qed
-
-lemma even_dvd[simp]: "even (n::nat) \<longleftrightarrow> 2 dvd n" by presburger
-lemma prime_odd: "prime p \<Longrightarrow> p = 2 \<or> odd p" unfolding prime_def by auto
-
-
-text {* One property of coprimality is easier to prove via prime factors. *}
-
-lemma prime_divprod_pow: 
-  assumes p: "prime p" and ab: "coprime a b" and pab: "p^n dvd a * b"
-  shows "p^n dvd a \<or> p^n dvd b"
-proof-
-  {assume "n = 0 \<or> a = 1 \<or> b = 1" with pab have ?thesis 
-      apply (cases "n=0", simp_all)
-      apply (cases "a=1", simp_all) done}
-  moreover
-  {assume n: "n \<noteq> 0" and a: "a\<noteq>1" and b: "b\<noteq>1" 
-    then obtain m where m: "n = Suc m" by (cases n, auto)
-    from divides_exp2[OF n pab] have pab': "p dvd a*b" .
-    from prime_divprod[OF p pab'] 
-    have "p dvd a \<or> p dvd b" .
-    moreover
-    {assume pa: "p dvd a"
-      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
-      from coprime_prime[OF ab, of p] p pa have "\<not> p dvd b" by blast
-      with prime_coprime[OF p, of b] b 
-      have cpb: "coprime b p" using coprime_commute by blast 
-      from coprime_exp[OF cpb] have pnb: "coprime (p^n) b" 
-	by (simp add: coprime_commute)
-      from coprime_divprod[OF pnba pnb] have ?thesis by blast }
-    moreover
-    {assume pb: "p dvd b"
-      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
-      from coprime_prime[OF ab, of p] p pb have "\<not> p dvd a" by blast
-      with prime_coprime[OF p, of a] a
-      have cpb: "coprime a p" using coprime_commute by blast 
-      from coprime_exp[OF cpb] have pnb: "coprime (p^n) a" 
-	by (simp add: coprime_commute)
-      from coprime_divprod[OF pab pnb] have ?thesis by blast }
-    ultimately have ?thesis by blast}
-  ultimately show ?thesis by blast
-qed
-
-lemma nat_mult_eq_one: "(n::nat) * m = 1 \<longleftrightarrow> n = 1 \<and> m = 1" (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume H: "?lhs"
-  hence "n dvd 1" "m dvd 1" unfolding dvd_def by (auto simp add: mult_commute)
-  thus ?rhs by auto
-next
-  assume ?rhs then show ?lhs by auto
-qed
-  
-lemma power_Suc0[simp]: "Suc 0 ^ n = Suc 0" 
-  unfolding One_nat_def[symmetric] power_one ..
-lemma coprime_pow: assumes ab: "coprime a b" and abcn: "a * b = c ^n"
-  shows "\<exists>r s. a = r^n  \<and> b = s ^n"
-  using ab abcn
-proof(induct c arbitrary: a b rule: nat_less_induct)
-  fix c a b
-  assume H: "\<forall>m<c. \<forall>a b. coprime a b \<longrightarrow> a * b = m ^ n \<longrightarrow> (\<exists>r s. a = r ^ n \<and> b = s ^ n)" "coprime a b" "a * b = c ^ n" 
-  let ?ths = "\<exists>r s. a = r^n  \<and> b = s ^n"
-  {assume n: "n = 0"
-    with H(3) power_one have "a*b = 1" by simp
-    hence "a = 1 \<and> b = 1" by simp
-    hence ?ths 
-      apply -
-      apply (rule exI[where x=1])
-      apply (rule exI[where x=1])
-      using power_one[of  n]
-      by simp}
-  moreover
-  {assume n: "n \<noteq> 0" then obtain m where m: "n = Suc m" by (cases n, auto)
-    {assume c: "c = 0"
-      with H(3) m H(2) have ?ths apply simp 
-	apply (cases "a=0", simp_all) 
-	apply (rule exI[where x="0"], simp)
-	apply (rule exI[where x="0"], simp)
-	done}
-    moreover
-    {assume "c=1" with H(3) power_one have "a*b = 1" by simp 
-	hence "a = 1 \<and> b = 1" by simp
-	hence ?ths 
-      apply -
-      apply (rule exI[where x=1])
-      apply (rule exI[where x=1])
-      using power_one[of  n]
-      by simp}
-  moreover
-  {assume c: "c\<noteq>1" "c \<noteq> 0"
-    from prime_factor[OF c(1)] obtain p where p: "prime p" "p dvd c" by blast
-    from prime_divprod_pow[OF p(1) H(2), unfolded H(3), OF divides_exp[OF p(2), of n]] 
-    have pnab: "p ^ n dvd a \<or> p^n dvd b" . 
-    from p(2) obtain l where l: "c = p*l" unfolding dvd_def by blast
-    have pn0: "p^n \<noteq> 0" using n prime_ge_2 [OF p(1)] by (simp add: neq0_conv)
-    {assume pa: "p^n dvd a"
-      then obtain k where k: "a = p^n * k" unfolding dvd_def by blast
-      from l have "l dvd c" by auto
-      with dvd_imp_le[of l c] c have "l \<le> c" by auto
-      moreover {assume "l = c" with l c  have "p = 1" by simp with p have False by simp}
-      ultimately have lc: "l < c" by arith
-      from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" b]]]
-      have kb: "coprime k b" by (simp add: coprime_commute) 
-      from H(3) l k pn0 have kbln: "k * b = l ^ n" 
-	by (auto simp add: power_mult_distrib)
-      from H(1)[rule_format, OF lc kb kbln]
-      obtain r s where rs: "k = r ^n" "b = s^n" by blast
-      from k rs(1) have "a = (p*r)^n" by (simp add: power_mult_distrib)
-      with rs(2) have ?ths by blast }
-    moreover
-    {assume pb: "p^n dvd b"
-      then obtain k where k: "b = p^n * k" unfolding dvd_def by blast
-      from l have "l dvd c" by auto
-      with dvd_imp_le[of l c] c have "l \<le> c" by auto
-      moreover {assume "l = c" with l c  have "p = 1" by simp with p have False by simp}
-      ultimately have lc: "l < c" by arith
-      from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" a]]]
-      have kb: "coprime k a" by (simp add: coprime_commute) 
-      from H(3) l k pn0 n have kbln: "k * a = l ^ n" 
-	by (simp add: power_mult_distrib mult_commute)
-      from H(1)[rule_format, OF lc kb kbln]
-      obtain r s where rs: "k = r ^n" "a = s^n" by blast
-      from k rs(1) have "b = (p*r)^n" by (simp add: power_mult_distrib)
-      with rs(2) have ?ths by blast }
-    ultimately have ?ths using pnab by blast}
-  ultimately have ?ths by blast}
-ultimately show ?ths by blast
-qed
-
-text {* More useful lemmas. *}
-lemma prime_product: 
-  assumes "prime (p * q)"
-  shows "p = 1 \<or> q = 1"
-proof -
-  from assms have 
-    "1 < p * q" and P: "\<And>m. m dvd p * q \<Longrightarrow> m = 1 \<or> m = p * q"
-    unfolding prime_def by auto
-  from `1 < p * q` have "p \<noteq> 0" by (cases p) auto
-  then have Q: "p = p * q \<longleftrightarrow> q = 1" by auto
-  have "p dvd p * q" by simp
-  then have "p = 1 \<or> p = p * q" by (rule P)
-  then show ?thesis by (simp add: Q)
-qed
-
-lemma prime_exp: "prime (p^n) \<longleftrightarrow> prime p \<and> n = 1"
-proof(induct n)
-  case 0 thus ?case by simp
-next
-  case (Suc n)
-  {assume "p = 0" hence ?case by simp}
-  moreover
-  {assume "p=1" hence ?case by simp}
-  moreover
-  {assume p: "p \<noteq> 0" "p\<noteq>1"
-    {assume pp: "prime (p^Suc n)"
-      hence "p = 1 \<or> p^n = 1" using prime_product[of p "p^n"] by simp
-      with p have n: "n = 0" 
-	by (simp only: exp_eq_1 ) simp
-      with pp have "prime p \<and> Suc n = 1" by simp}
-    moreover
-    {assume n: "prime p \<and> Suc n = 1" hence "prime (p^Suc n)" by simp}
-    ultimately have ?case by blast}
-  ultimately show ?case by blast
-qed
-
-lemma prime_power_mult: 
-  assumes p: "prime p" and xy: "x * y = p ^ k"
-  shows "\<exists>i j. x = p ^i \<and> y = p^ j"
-  using xy
-proof(induct k arbitrary: x y)
-  case 0 thus ?case apply simp by (rule exI[where x="0"], simp)
-next
-  case (Suc k x y)
-  from Suc.prems have pxy: "p dvd x*y" by auto
-  from prime_divprod[OF p pxy] have pxyc: "p dvd x \<or> p dvd y" .
-  from p have p0: "p \<noteq> 0" by - (rule ccontr, simp) 
-  {assume px: "p dvd x"
-    then obtain d where d: "x = p*d" unfolding dvd_def by blast
-    from Suc.prems d  have "p*d*y = p^Suc k" by simp
-    hence th: "d*y = p^k" using p0 by simp
-    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "y = p^j" by blast
-    with d have "x = p^Suc i" by simp 
-    with ij(2) have ?case by blast}
-  moreover 
-  {assume px: "p dvd y"
-    then obtain d where d: "y = p*d" unfolding dvd_def by blast
-    from Suc.prems d  have "p*d*x = p^Suc k" by (simp add: mult_commute)
-    hence th: "d*x = p^k" using p0 by simp
-    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "x = p^j" by blast
-    with d have "y = p^Suc i" by simp 
-    with ij(2) have ?case by blast}
-  ultimately show ?case  using pxyc by blast
-qed
-
-lemma prime_power_exp: assumes p: "prime p" and n:"n \<noteq> 0" 
-  and xn: "x^n = p^k" shows "\<exists>i. x = p^i"
-  using n xn
-proof(induct n arbitrary: k)
-  case 0 thus ?case by simp
-next
-  case (Suc n k) hence th: "x*x^n = p^k" by simp
-  {assume "n = 0" with prems have ?case apply simp 
-      by (rule exI[where x="k"],simp)}
-  moreover
-  {assume n: "n \<noteq> 0"
-    from prime_power_mult[OF p th] 
-    obtain i j where ij: "x = p^i" "x^n = p^j"by blast
-    from Suc.hyps[OF n ij(2)] have ?case .}
-  ultimately show ?case by blast
-qed
-
-lemma divides_primepow: assumes p: "prime p" 
-  shows "d dvd p^k \<longleftrightarrow> (\<exists> i. i \<le> k \<and> d = p ^i)"
-proof
-  assume H: "d dvd p^k" then obtain e where e: "d*e = p^k" 
-    unfolding dvd_def  apply (auto simp add: mult_commute) by blast
-  from prime_power_mult[OF p e] obtain i j where ij: "d = p^i" "e=p^j" by blast
-  from prime_ge_2[OF p] have p1: "p > 1" by arith
-  from e ij have "p^(i + j) = p^k" by (simp add: power_add)
-  hence "i + j = k" using power_inject_exp[of p "i+j" k, OF p1] by simp 
-  hence "i \<le> k" by arith
-  with ij(1) show "\<exists>i\<le>k. d = p ^ i" by blast
-next
-  {fix i assume H: "i \<le> k" "d = p^i"
-    hence "\<exists>j. k = i + j" by arith
-    then obtain j where j: "k = i + j" by blast
-    hence "p^k = p^j*d" using H(2) by (simp add: power_add)
-    hence "d dvd p^k" unfolding dvd_def by auto}
-  thus "\<exists>i\<le>k. d = p ^ i \<Longrightarrow> d dvd p ^ k" by blast
-qed
-
-lemma coprime_divisors: "d dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> coprime d e"
-  by (auto simp add: dvd_def coprime)
-
-declare power_Suc0[simp del]
-declare even_dvd[simp del]
-
-end
--- a/src/HOL/NSA/Examples/NSPrimes.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/NSA/Examples/NSPrimes.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -7,7 +7,7 @@
 header{*The Nonstandard Primes as an Extension of the Prime Numbers*}
 
 theory NSPrimes
-imports "~~/src/HOL/NumberTheory/Factorization" Hyperreal
+imports "~~/src/HOL/Old_Number_Theory/Factorization" Hyperreal
 begin
 
 text{*These can be used to derive an alternative proof of the infinitude of
--- a/src/HOL/NewNumberTheory/Binomial.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,373 +0,0 @@
-(*  Title:      Binomial.thy
-    Authors:    Lawrence C. Paulson, Jeremy Avigad, Tobias Nipkow
-
-
-Defines the "choose" function, and establishes basic properties.
-
-The original theory "Binomial" was by Lawrence C. Paulson, based on
-the work of Andy Gordon and Florian Kammueller. The approach here,
-which derives the definition of binomial coefficients in terms of the
-factorial function, is due to Jeremy Avigad. The binomial theorem was
-formalized by Tobias Nipkow.
-
-*)
-
-
-header {* Binomial *}
-
-theory Binomial
-imports Cong Fact
-begin
-
-
-subsection {* Main definitions *}
-
-class binomial =
-
-fixes 
-  binomial :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "choose" 65)
-
-(* definitions for the natural numbers *)
-
-instantiation nat :: binomial
-
-begin 
-
-fun
-  binomial_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-where
-  "binomial_nat n k =
-   (if k = 0 then 1 else
-    if n = 0 then 0 else
-      (binomial (n - 1) k) + (binomial (n - 1) (k - 1)))"
-
-instance proof qed
-
-end
-
-(* definitions for the integers *)
-
-instantiation int :: binomial
-
-begin 
-
-definition
-  binomial_int :: "int => int \<Rightarrow> int"
-where
-  "binomial_int n k = (if n \<ge> 0 \<and> k \<ge> 0 then int (binomial (nat n) (nat k))
-      else 0)"
-instance proof qed
-
-end
-
-
-subsection {* Set up Transfer *}
-
-lemma transfer_nat_int_binomial:
-  "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow> binomial (nat n) (nat k) = 
-      nat (binomial n k)"
-  unfolding binomial_int_def 
-  by auto
-
-lemma transfer_nat_int_binomial_closure:
-  "n >= (0::int) \<Longrightarrow> k >= 0 \<Longrightarrow> binomial n k >= 0"
-  by (auto simp add: binomial_int_def)
-
-declare TransferMorphism_nat_int[transfer add return: 
-    transfer_nat_int_binomial transfer_nat_int_binomial_closure]
-
-lemma transfer_int_nat_binomial:
-  "binomial (int n) (int k) = int (binomial n k)"
-  unfolding fact_int_def binomial_int_def by auto
-
-lemma transfer_int_nat_binomial_closure:
-  "is_nat n \<Longrightarrow> is_nat k \<Longrightarrow> binomial n k >= 0"
-  by (auto simp add: binomial_int_def)
-
-declare TransferMorphism_int_nat[transfer add return: 
-    transfer_int_nat_binomial transfer_int_nat_binomial_closure]
-
-
-subsection {* Binomial coefficients *}
-
-lemma choose_zero_nat [simp]: "(n::nat) choose 0 = 1"
-  by simp
-
-lemma choose_zero_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 0 = 1"
-  by (simp add: binomial_int_def)
-
-lemma zero_choose_nat [rule_format,simp]: "ALL (k::nat) > n. n choose k = 0"
-  by (induct n rule: induct'_nat, auto)
-
-lemma zero_choose_int [rule_format,simp]: "(k::int) > n \<Longrightarrow> n choose k = 0"
-  unfolding binomial_int_def apply (case_tac "n < 0")
-  apply force
-  apply (simp del: binomial_nat.simps)
-done
-
-lemma choose_reduce_nat: "(n::nat) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>
-    (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
-  by simp
-
-lemma choose_reduce_int: "(n::int) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>
-    (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
-  unfolding binomial_int_def apply (subst choose_reduce_nat)
-    apply (auto simp del: binomial_nat.simps 
-      simp add: nat_diff_distrib)
-done
-
-lemma choose_plus_one_nat: "((n::nat) + 1) choose (k + 1) = 
-    (n choose (k + 1)) + (n choose k)"
-  by (simp add: choose_reduce_nat)
-
-lemma choose_Suc_nat: "(Suc n) choose (Suc k) = 
-    (n choose (Suc k)) + (n choose k)"
-  by (simp add: choose_reduce_nat One_nat_def)
-
-lemma choose_plus_one_int: "n \<ge> 0 \<Longrightarrow> k \<ge> 0 \<Longrightarrow> ((n::int) + 1) choose (k + 1) = 
-    (n choose (k + 1)) + (n choose k)"
-  by (simp add: binomial_int_def choose_plus_one_nat nat_add_distrib del: binomial_nat.simps)
-
-declare binomial_nat.simps [simp del]
-
-lemma choose_self_nat [simp]: "((n::nat) choose n) = 1"
-  by (induct n rule: induct'_nat, auto simp add: choose_plus_one_nat)
-
-lemma choose_self_int [simp]: "n \<ge> 0 \<Longrightarrow> ((n::int) choose n) = 1"
-  by (auto simp add: binomial_int_def)
-
-lemma choose_one_nat [simp]: "(n::nat) choose 1 = n"
-  by (induct n rule: induct'_nat, auto simp add: choose_reduce_nat)
-
-lemma choose_one_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 1 = n"
-  by (auto simp add: binomial_int_def)
-
-lemma plus_one_choose_self_nat [simp]: "(n::nat) + 1 choose n = n + 1"
-  apply (induct n rule: induct'_nat, force)
-  apply (case_tac "n = 0")
-  apply auto
-  apply (subst choose_reduce_nat)
-  apply (auto simp add: One_nat_def)  
-  (* natdiff_cancel_numerals introduces Suc *)
-done
-
-lemma Suc_choose_self_nat [simp]: "(Suc n) choose n = Suc n"
-  using plus_one_choose_self_nat by (simp add: One_nat_def)
-
-lemma plus_one_choose_self_int [rule_format, simp]: 
-    "(n::int) \<ge> 0 \<longrightarrow> n + 1 choose n = n + 1"
-   by (auto simp add: binomial_int_def nat_add_distrib)
-
-(* bounded quantification doesn't work with the unicode characters? *)
-lemma choose_pos_nat [rule_format]: "ALL k <= (n::nat). 
-    ((n::nat) choose k) > 0"
-  apply (induct n rule: induct'_nat) 
-  apply force
-  apply clarify
-  apply (case_tac "k = 0")
-  apply force
-  apply (subst choose_reduce_nat)
-  apply auto
-done
-
-lemma choose_pos_int: "n \<ge> 0 \<Longrightarrow> k >= 0 \<Longrightarrow> k \<le> n \<Longrightarrow>
-    ((n::int) choose k) > 0"
-  by (auto simp add: binomial_int_def choose_pos_nat)
-
-lemma binomial_induct [rule_format]: "(ALL (n::nat). P n n) \<longrightarrow> 
-    (ALL n. P (n + 1) 0) \<longrightarrow> (ALL n. (ALL k < n. P n k \<longrightarrow> P n (k + 1) \<longrightarrow>
-    P (n + 1) (k + 1))) \<longrightarrow> (ALL k <= n. P n k)"
-  apply (induct n rule: induct'_nat)
-  apply auto
-  apply (case_tac "k = 0")
-  apply auto
-  apply (case_tac "k = n + 1")
-  apply auto
-  apply (drule_tac x = n in spec) back back 
-  apply (drule_tac x = "k - 1" in spec) back back back
-  apply auto
-done
-
-lemma choose_altdef_aux_nat: "(k::nat) \<le> n \<Longrightarrow> 
-    fact k * fact (n - k) * (n choose k) = fact n"
-  apply (rule binomial_induct [of _ k n])
-  apply auto
-proof -
-  fix k :: nat and n
-  assume less: "k < n"
-  assume ih1: "fact k * fact (n - k) * (n choose k) = fact n"
-  hence one: "fact (k + 1) * fact (n - k) * (n choose k) = (k + 1) * fact n"
-    by (subst fact_plus_one_nat, auto)
-  assume ih2: "fact (k + 1) * fact (n - (k + 1)) * (n choose (k + 1)) = 
-      fact n"
-  with less have "fact (k + 1) * fact ((n - (k + 1)) + 1) * 
-      (n choose (k + 1)) = (n - k) * fact n"
-    by (subst (2) fact_plus_one_nat, auto)
-  with less have two: "fact (k + 1) * fact (n - k) * (n choose (k + 1)) = 
-      (n - k) * fact n" by simp
-  have "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) =
-      fact (k + 1) * fact (n - k) * (n choose (k + 1)) + 
-      fact (k + 1) * fact (n - k) * (n choose k)" 
-    by (subst choose_reduce_nat, auto simp add: ring_simps)
-  also note one
-  also note two
-  also with less have "(n - k) * fact n + (k + 1) * fact n= fact (n + 1)" 
-    apply (subst fact_plus_one_nat)
-    apply (subst left_distrib [symmetric])
-    apply simp
-    done
-  finally show "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) = 
-    fact (n + 1)" .
-qed
-
-lemma choose_altdef_nat: "(k::nat) \<le> n \<Longrightarrow> 
-    n choose k = fact n div (fact k * fact (n - k))"
-  apply (frule choose_altdef_aux_nat)
-  apply (erule subst)
-  apply (simp add: mult_ac)
-done
-
-
-lemma choose_altdef_int: 
-  assumes "(0::int) <= k" and "k <= n"
-  shows "n choose k = fact n div (fact k * fact (n - k))"
-  
-  apply (subst tsub_eq [symmetric], rule prems)
-  apply (rule choose_altdef_nat [transferred])
-  using prems apply auto
-done
-
-lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"
-  unfolding dvd_def apply (frule choose_altdef_aux_nat)
-  (* why don't blast and auto get this??? *)
-  apply (rule exI)
-  apply (erule sym)
-done
-
-lemma choose_dvd_int: 
-  assumes "(0::int) <= k" and "k <= n"
-  shows "fact k * fact (n - k) dvd fact n"
- 
-  apply (subst tsub_eq [symmetric], rule prems)
-  apply (rule choose_dvd_nat [transferred])
-  using prems apply auto
-done
-
-(* generalizes Tobias Nipkow's proof to any commutative semiring *)
-theorem binomial: "(a+b::'a::{comm_ring_1,power})^n = 
-  (SUM k=0..n. (of_nat (n choose k)) * a^k * b^(n-k))" (is "?P n")
-proof (induct n rule: induct'_nat)
-  show "?P 0" by simp
-next
-  fix n
-  assume ih: "?P n"
-  have decomp: "{0..n+1} = {0} Un {n+1} Un {1..n}"
-    by auto
-  have decomp2: "{0..n} = {0} Un {1..n}"
-    by auto
-  have decomp3: "{1..n+1} = {n+1} Un {1..n}"
-    by auto
-  have "(a+b)^(n+1) = 
-      (a+b) * (SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
-    using ih by (simp add: power_plus_one)
-  also have "... =  a*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k)) +
-                   b*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
-    by (rule distrib)
-  also have "... = (SUM k=0..n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
-                  (SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k+1))"
-    by (subst (1 2) power_plus_one, simp add: setsum_right_distrib mult_ac)
-  also have "... = (SUM k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) +
-                  (SUM k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))"
-    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le 
-             power_Suc ring_simps One_nat_def del:setsum_cl_ivl_Suc)
-  also have "... = a^(n+1) + b^(n+1) +
-                  (SUM k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) +
-                  (SUM k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))"
-    by (simp add: decomp2 decomp3)
-  also have
-      "... = a^(n+1) + b^(n+1) + 
-         (SUM k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))"
-    by (auto simp add: ring_simps setsum_addf [symmetric]
-      choose_reduce_nat)
-  also have "... = (SUM k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))"
-    using decomp by (simp add: ring_simps)
-  finally show "?P (n + 1)" by simp
-qed
-
-lemma set_explicit: "{S. S = T \<and> P S} = (if P T then {T} else {})"
-  by auto
-
-lemma card_subsets_nat [rule_format]:
-  fixes S :: "'a set"
-  assumes "finite S"
-  shows "ALL k. card {T. T \<le> S \<and> card T = k} = card S choose k" 
-      (is "?P S")
-using `finite S`
-proof (induct set: finite)
-  show "?P {}" by (auto simp add: set_explicit)
-  next fix x :: "'a" and F
-  assume iassms: "finite F" "x ~: F"
-  assume ih: "?P F"
-  show "?P (insert x F)" (is "ALL k. ?Q k")
-  proof
-    fix k
-    show "card {T. T \<subseteq> (insert x F) \<and> card T = k} = 
-        card (insert x F) choose k" (is "?Q k")
-    proof (induct k rule: induct'_nat)
-      from iassms have "{T. T \<le> (insert x F) \<and> card T = 0} = {{}}"
-        apply auto
-        apply (subst (asm) card_0_eq)
-        apply (auto elim: finite_subset)
-        done
-      thus "?Q 0" 
-        by auto
-      next fix k
-      show "?Q (k + 1)"
-      proof -
-        from iassms have fin: "finite (insert x F)" by auto
-        hence "{ T. T \<subseteq> insert x F \<and> card T = k + 1} =
-          {T. T \<le> F & card T = k + 1} Un 
-          {T. T \<le> insert x F & x : T & card T = k + 1}"
-          by (auto intro!: subsetI)
-        with iassms fin have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
-          card ({T. T \<subseteq> F \<and> card T = k + 1}) + 
-          card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1})"
-          apply (subst card_Un_disjoint [symmetric])
-          apply auto
-          (* note: nice! Didn't have to say anything here *)
-          done
-        also from ih have "card ({T. T \<subseteq> F \<and> card T = k + 1}) = 
-          card F choose (k+1)" by auto
-        also have "card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}) =
-          card ({T. T <= F & card T = k})"
-        proof -
-          let ?f = "%T. T Un {x}"
-          from iassms have "inj_on ?f {T. T <= F & card T = k}"
-            unfolding inj_on_def by (auto intro!: subsetI)
-          hence "card ({T. T <= F & card T = k}) = 
-            card(?f ` {T. T <= F & card T = k})"
-            by (rule card_image [symmetric])
-          also from iassms fin have "?f ` {T. T <= F & card T = k} = 
-            {T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}"
-            unfolding image_def 
-            (* I can't figure out why this next line takes so long *)
-            apply auto
-            apply (frule (1) finite_subset, force)
-            apply (rule_tac x = "xa - {x}" in exI)
-            apply (subst card_Diff_singleton)
-            apply (auto elim: finite_subset)
-            done
-          finally show ?thesis by (rule sym)
-        qed
-        also from ih have "card ({T. T <= F & card T = k}) = card F choose k"
-          by auto
-        finally have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
-          card F choose (k + 1) + (card F choose k)".
-        with iassms choose_plus_one_nat show ?thesis
-          by auto
-      qed
-    qed
-  qed
-qed
-
-end
--- a/src/HOL/NewNumberTheory/Cong.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1091 +0,0 @@
-(*  Title:      HOL/Library/Cong.thy
-    ID:         
-    Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
-                Thomas M. Rasmussen, Jeremy Avigad
-
-
-Defines congruence (notation: [x = y] (mod z)) for natural numbers and
-integers.
-
-This file combines and revises a number of prior developments.
-
-The original theories "GCD" and "Primes" were by Christophe Tabacznyj
-and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
-gcd, lcm, and prime for the natural numbers.
-
-The original theory "IntPrimes" was by Thomas M. Rasmussen, and
-extended gcd, lcm, primes to the integers. Amine Chaieb provided
-another extension of the notions to the integers, and added a number
-of results to "Primes" and "GCD". 
-
-The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and
-developed the congruence relations on the integers. The notion was
-extended to the natural numbers by Chiaeb. Jeremy Avigad combined
-these, revised and tidied them, made the development uniform for the
-natural numbers and the integers, and added a number of new theorems.
-
-*)
-
-
-header {* Congruence *}
-
-theory Cong
-imports GCD
-begin
-
-subsection {* Turn off One_nat_def *}
-
-lemma induct'_nat [case_names zero plus1, induct type: nat]: 
-    "\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n"
-by (erule nat_induct) (simp add:One_nat_def)
-
-lemma cases_nat [case_names zero plus1, cases type: nat]: 
-    "P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n"
-by(metis induct'_nat)
-
-lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n"
-by (simp add: One_nat_def)
-
-lemma power_eq_one_eq_nat [simp]: 
-  "((x::nat)^m = 1) = (m = 0 | x = 1)"
-by (induct m, auto)
-
-lemma card_insert_if' [simp]: "finite A \<Longrightarrow>
-  card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)"
-by (auto simp add: insert_absorb)
-
-(* why wasn't card_insert_if a simp rule? *)
-declare card_insert_disjoint [simp del]
-
-lemma nat_1' [simp]: "nat 1 = 1"
-by simp
-
-(* For those annoying moments where Suc reappears, use Suc_eq_plus1 *)
-
-declare nat_1 [simp del]
-declare add_2_eq_Suc [simp del] 
-declare add_2_eq_Suc' [simp del]
-
-
-declare mod_pos_pos_trivial [simp]
-
-
-subsection {* Main definitions *}
-
-class cong =
-
-fixes 
-  cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
-
-begin
-
-abbreviation
-  notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
-where
-  "notcong x y m == (~cong x y m)" 
-
-end
-
-(* definitions for the natural numbers *)
-
-instantiation nat :: cong
-
-begin 
-
-definition 
-  cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
-where 
-  "cong_nat x y m = ((x mod m) = (y mod m))"
-
-instance proof qed
-
-end
-
-
-(* definitions for the integers *)
-
-instantiation int :: cong
-
-begin 
-
-definition 
-  cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
-where 
-  "cong_int x y m = ((x mod m) = (y mod m))"
-
-instance proof qed
-
-end
-
-
-subsection {* Set up Transfer *}
-
-
-lemma transfer_nat_int_cong:
-  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow> 
-    ([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))"
-  unfolding cong_int_def cong_nat_def 
-  apply (auto simp add: nat_mod_distrib [symmetric])
-  apply (subst (asm) eq_nat_nat_iff)
-  apply (case_tac "m = 0", force, rule pos_mod_sign, force)+
-  apply assumption
-done
-
-declare TransferMorphism_nat_int[transfer add return: 
-    transfer_nat_int_cong]
-
-lemma transfer_int_nat_cong:
-  "[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)"
-  apply (auto simp add: cong_int_def cong_nat_def)
-  apply (auto simp add: zmod_int [symmetric])
-done
-
-declare TransferMorphism_int_nat[transfer add return: 
-    transfer_int_nat_cong]
-
-
-subsection {* Congruence *}
-
-(* was zcong_0, etc. *)
-lemma cong_0_nat [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_0_int [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_1_nat [simp, presburger]: "[(a::nat) = b] (mod 1)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_Suc_0_nat [simp, presburger]: "[(a::nat) = b] (mod Suc 0)"
-  by (unfold cong_nat_def, auto simp add: One_nat_def)
-
-lemma cong_1_int [simp, presburger]: "[(a::int) = b] (mod 1)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_refl_nat [simp]: "[(k::nat) = k] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_refl_int [simp]: "[(k::int) = k] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_sym_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_sym_int: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_sym_eq_nat: "[(a::nat) = b] (mod m) = [b = a] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_sym_eq_int: "[(a::int) = b] (mod m) = [b = a] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_trans_nat [trans]:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_trans_int [trans]:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_add_nat:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  apply (unfold cong_nat_def)
-  apply (subst (1 2) mod_add_eq)
-  apply simp
-done
-
-lemma cong_add_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) mod_add_left_eq)
-  apply (subst (1 2) mod_add_right_eq)
-  apply simp
-done
-
-lemma cong_diff_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) mod_diff_eq)
-  apply simp
-done
-
-lemma cong_diff_aux_int:
-  "(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow> 
-      [c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
-  apply (subst (1 2) tsub_eq)
-  apply (auto intro: cong_diff_int)
-done;
-
-lemma cong_diff_nat:
-  assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and
-    "[c = d] (mod m)"
-  shows "[a - c = b - d] (mod m)"
-
-  using prems by (rule cong_diff_aux_int [transferred]);
-
-lemma cong_mult_nat:
-    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  apply (unfold cong_nat_def)
-  apply (subst (1 2) mod_mult_eq)
-  apply simp
-done
-
-lemma cong_mult_int:
-    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
-  apply (unfold cong_int_def)
-  apply (subst (1 2) zmod_zmult1_eq)
-  apply (subst (1 2) mult_commute)
-  apply (subst (1 2) zmod_zmult1_eq)
-  apply simp
-done
-
-lemma cong_exp_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  apply (induct k)
-  apply (auto simp add: cong_refl_nat cong_mult_nat)
-done
-
-lemma cong_exp_int: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
-  apply (induct k)
-  apply (auto simp add: cong_refl_int cong_mult_int)
-done
-
-lemma cong_setsum_nat [rule_format]: 
-    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
-      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_add_nat)
-done
-
-lemma cong_setsum_int [rule_format]:
-    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
-      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_add_int)
-done
-
-lemma cong_setprod_nat [rule_format]: 
-    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
-      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_mult_nat)
-done
-
-lemma cong_setprod_int [rule_format]: 
-    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
-      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
-  apply (case_tac "finite A")
-  apply (induct set: finite)
-  apply (auto intro: cong_mult_int)
-done
-
-lemma cong_scalar_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  by (rule cong_mult_nat, simp_all)
-
-lemma cong_scalar_int: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
-  by (rule cong_mult_int, simp_all)
-
-lemma cong_scalar2_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  by (rule cong_mult_nat, simp_all)
-
-lemma cong_scalar2_int: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
-  by (rule cong_mult_int, simp_all)
-
-lemma cong_mult_self_nat: "[(a::nat) * m = 0] (mod m)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_mult_self_int: "[(a::int) * m = 0] (mod m)"
-  by (unfold cong_int_def, auto)
-
-lemma cong_eq_diff_cong_0_int: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)"
-  apply (rule iffI)
-  apply (erule cong_diff_int [of a b m b b, simplified])
-  apply (erule cong_add_int [of "a - b" 0 m b b, simplified])
-done
-
-lemma cong_eq_diff_cong_0_aux_int: "a >= b \<Longrightarrow>
-    [(a::int) = b] (mod m) = [tsub a b = 0] (mod m)"
-  by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int)
-
-lemma cong_eq_diff_cong_0_nat:
-  assumes "(a::nat) >= b"
-  shows "[a = b] (mod m) = [a - b = 0] (mod m)"
-
-  using prems by (rule cong_eq_diff_cong_0_aux_int [transferred])
-
-lemma cong_diff_cong_0'_nat: 
-  "[(x::nat) = y] (mod n) \<longleftrightarrow> 
-    (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
-  apply (case_tac "y <= x")
-  apply (frule cong_eq_diff_cong_0_nat [where m = n])
-  apply auto [1]
-  apply (subgoal_tac "x <= y")
-  apply (frule cong_eq_diff_cong_0_nat [where m = n])
-  apply (subst cong_sym_eq_nat)
-  apply auto
-done
-
-lemma cong_altdef_nat: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))"
-  apply (subst cong_eq_diff_cong_0_nat, assumption)
-  apply (unfold cong_nat_def)
-  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
-done
-
-lemma cong_altdef_int: "[(a::int) = b] (mod m) = (m dvd (a - b))"
-  apply (subst cong_eq_diff_cong_0_int)
-  apply (unfold cong_int_def)
-  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
-done
-
-lemma cong_abs_int: "[(x::int) = y] (mod abs m) = [x = y] (mod m)"
-  by (simp add: cong_altdef_int)
-
-lemma cong_square_int:
-   "\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk>
-    \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
-  apply (simp only: cong_altdef_int)
-  apply (subst prime_dvd_mult_eq_int [symmetric], assumption)
-  (* any way around this? *)
-  apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)")
-  apply (auto simp add: ring_simps)
-done
-
-lemma cong_mult_rcancel_int:
-  "coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)"
-  apply (subst (1 2) cong_altdef_int)
-  apply (subst left_diff_distrib [symmetric])
-  apply (rule coprime_dvd_mult_iff_int)
-  apply (subst gcd_commute_int, assumption)
-done
-
-lemma cong_mult_rcancel_nat:
-  assumes  "coprime k (m::nat)"
-  shows "[a * k = b * k] (mod m) = [a = b] (mod m)"
-
-  apply (rule cong_mult_rcancel_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_mult_lcancel_nat:
-  "coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)"
-  by (simp add: mult_commute cong_mult_rcancel_nat)
-
-lemma cong_mult_lcancel_int:
-  "coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)"
-  by (simp add: mult_commute cong_mult_rcancel_int)
-
-(* was zcong_zgcd_zmult_zmod *)
-lemma coprime_cong_mult_int:
-  "[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n
-    \<Longrightarrow> [a = b] (mod m * n)"
-  apply (simp only: cong_altdef_int)
-  apply (erule (2) divides_mult_int)
-done
-
-lemma coprime_cong_mult_nat:
-  assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
-  shows "[a = b] (mod m * n)"
-
-  apply (rule coprime_cong_mult_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_less_imp_eq_nat: "0 \<le> (a::nat) \<Longrightarrow>
-    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
-  by (auto simp add: cong_nat_def mod_pos_pos_trivial)
-
-lemma cong_less_imp_eq_int: "0 \<le> (a::int) \<Longrightarrow>
-    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
-  by (auto simp add: cong_int_def mod_pos_pos_trivial)
-
-lemma cong_less_unique_nat:
-    "0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
-  apply auto
-  apply (rule_tac x = "a mod m" in exI)
-  apply (unfold cong_nat_def, auto)
-done
-
-lemma cong_less_unique_int:
-    "0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
-  apply auto
-  apply (rule_tac x = "a mod m" in exI)
-  apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial)
-done
-
-lemma cong_iff_lin_int: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)"
-  apply (auto simp add: cong_altdef_int dvd_def ring_simps)
-  apply (rule_tac [!] x = "-k" in exI, auto)
-done
-
-lemma cong_iff_lin_nat: "([(a::nat) = b] (mod m)) = 
-    (\<exists>k1 k2. b + k1 * m = a + k2 * m)"
-  apply (rule iffI)
-  apply (case_tac "b <= a")
-  apply (subst (asm) cong_altdef_nat, assumption)
-  apply (unfold dvd_def, auto)
-  apply (rule_tac x = k in exI)
-  apply (rule_tac x = 0 in exI)
-  apply (auto simp add: ring_simps)
-  apply (subst (asm) cong_sym_eq_nat)
-  apply (subst (asm) cong_altdef_nat)
-  apply force
-  apply (unfold dvd_def, auto)
-  apply (rule_tac x = 0 in exI)
-  apply (rule_tac x = k in exI)
-  apply (auto simp add: ring_simps)
-  apply (unfold cong_nat_def)
-  apply (subgoal_tac "a mod m = (a + k2 * m) mod m")
-  apply (erule ssubst)back
-  apply (erule subst)
-  apply auto
-done
-
-lemma cong_gcd_eq_int: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
-  apply (subst (asm) cong_iff_lin_int, auto)
-  apply (subst add_commute) 
-  apply (subst (2) gcd_commute_int)
-  apply (subst mult_commute)
-  apply (subst gcd_add_mult_int)
-  apply (rule gcd_commute_int)
-done
-
-lemma cong_gcd_eq_nat: 
-  assumes "[(a::nat) = b] (mod m)"
-  shows "gcd a m = gcd b m"
-
-  apply (rule cong_gcd_eq_int [transferred])
-  using prems apply auto
-done
-
-lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
-    coprime b m"
-  by (auto simp add: cong_gcd_eq_nat)
-
-lemma cong_imp_coprime_int: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
-    coprime b m"
-  by (auto simp add: cong_gcd_eq_int)
-
-lemma cong_cong_mod_nat: "[(a::nat) = b] (mod m) = 
-    [a mod m = b mod m] (mod m)"
-  by (auto simp add: cong_nat_def)
-
-lemma cong_cong_mod_int: "[(a::int) = b] (mod m) = 
-    [a mod m = b mod m] (mod m)"
-  by (auto simp add: cong_int_def)
-
-lemma cong_minus_int [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)"
-  by (subst (1 2) cong_altdef_int, auto)
-
-lemma cong_zero_nat [iff]: "[(a::nat) = b] (mod 0) = (a = b)"
-  by (auto simp add: cong_nat_def)
-
-lemma cong_zero_int [iff]: "[(a::int) = b] (mod 0) = (a = b)"
-  by (auto simp add: cong_int_def)
-
-(*
-lemma mod_dvd_mod_int:
-    "0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)"
-  apply (unfold dvd_def, auto)
-  apply (rule mod_mod_cancel)
-  apply auto
-done
-
-lemma mod_dvd_mod:
-  assumes "0 < (m::nat)" and "m dvd b"
-  shows "(a mod b mod m) = (a mod m)"
-
-  apply (rule mod_dvd_mod_int [transferred])
-  using prems apply auto
-done
-*)
-
-lemma cong_add_lcancel_nat: 
-    "[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_lcancel_int: 
-    "[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_rcancel_nat: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_rcancel_int: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_lcancel_0_nat: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_lcancel_0_int: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_add_rcancel_0_nat: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_nat)
-
-lemma cong_add_rcancel_0_int: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
-  by (simp add: cong_iff_lin_int)
-
-lemma cong_dvd_modulus_nat: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
-    [x = y] (mod n)"
-  apply (auto simp add: cong_iff_lin_nat dvd_def)
-  apply (rule_tac x="k1 * k" in exI)
-  apply (rule_tac x="k2 * k" in exI)
-  apply (simp add: ring_simps)
-done
-
-lemma cong_dvd_modulus_int: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
-    [x = y] (mod n)"
-  by (auto simp add: cong_altdef_int dvd_def)
-
-lemma cong_dvd_eq_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0)
-
-lemma cong_dvd_eq_int: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
-  by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0)
-
-lemma cong_mod_nat: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
-  by (simp add: cong_nat_def)
-
-lemma cong_mod_int: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
-  by (simp add: cong_int_def)
-
-lemma mod_mult_cong_nat: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0 
-    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  by (simp add: cong_nat_def mod_mult2_eq  mod_add_left_eq)
-
-lemma neg_cong_int: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))"
-  apply (simp add: cong_altdef_int)
-  apply (subst dvd_minus_iff [symmetric])
-  apply (simp add: ring_simps)
-done
-
-lemma cong_modulus_neg_int: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))"
-  by (auto simp add: cong_altdef_int)
-
-lemma mod_mult_cong_int: "(a::int) ~= 0 \<Longrightarrow> b ~= 0 
-    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
-  apply (case_tac "b > 0")
-  apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
-  apply (subst (1 2) cong_modulus_neg_int)
-  apply (unfold cong_int_def)
-  apply (subgoal_tac "a * b = (-a * -b)")
-  apply (erule ssubst)
-  apply (subst zmod_zmult2_eq)
-  apply (auto simp add: mod_add_left_eq) 
-done
-
-lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
-  apply (case_tac "a = 0")
-  apply force
-  apply (subst (asm) cong_altdef_nat)
-  apply auto
-done
-
-lemma cong_0_1_nat: "[(0::nat) = 1] (mod n) = (n = 1)"
-  by (unfold cong_nat_def, auto)
-
-lemma cong_0_1_int: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))"
-  by (unfold cong_int_def, auto simp add: zmult_eq_1_iff)
-
-lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow> 
-    a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
-  apply (case_tac "n = 1")
-  apply auto [1]
-  apply (drule_tac x = "a - 1" in spec)
-  apply force
-  apply (case_tac "a = 0")
-  apply (auto simp add: cong_0_1_nat) [1]
-  apply (rule iffI)
-  apply (drule cong_to_1_nat)
-  apply (unfold dvd_def)
-  apply auto [1]
-  apply (rule_tac x = k in exI)
-  apply (auto simp add: ring_simps) [1]
-  apply (subst cong_altdef_nat)
-  apply (auto simp add: dvd_def)
-done
-
-lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
-  apply (subst cong_altdef_nat)
-  apply assumption
-  apply (unfold dvd_def, auto simp add: ring_simps)
-  apply (rule_tac x = k in exI)
-  apply auto
-done
-
-lemma cong_solve_nat: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
-  apply (case_tac "n = 0")
-  apply force
-  apply (frule bezout_nat [of a n], auto)
-  apply (rule exI, erule ssubst)
-  apply (rule cong_trans_nat)
-  apply (rule cong_add_nat)
-  apply (subst mult_commute)
-  apply (rule cong_mult_self_nat)
-  prefer 2
-  apply simp
-  apply (rule cong_refl_nat)
-  apply (rule cong_refl_nat)
-done
-
-lemma cong_solve_int: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
-  apply (case_tac "n = 0")
-  apply (case_tac "a \<ge> 0")
-  apply auto
-  apply (rule_tac x = "-1" in exI)
-  apply auto
-  apply (insert bezout_int [of a n], auto)
-  apply (rule exI)
-  apply (erule subst)
-  apply (rule cong_trans_int)
-  prefer 2
-  apply (rule cong_add_int)
-  apply (rule cong_refl_int)
-  apply (rule cong_sym_int)
-  apply (rule cong_mult_self_int)
-  apply simp
-  apply (subst mult_commute)
-  apply (rule cong_refl_int)
-done
-  
-lemma cong_solve_dvd_nat: 
-  assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d"
-  shows "EX x. [a * x = d] (mod n)"
-proof -
-  from cong_solve_nat [OF a] obtain x where 
-      "[a * x = gcd a n](mod n)"
-    by auto
-  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
-    by (elim cong_scalar2_nat)
-  also from b have "(d div gcd a n) * gcd a n = d"
-    by (rule dvd_div_mult_self)
-  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
-    by auto
-  finally show ?thesis
-    by auto
-qed
-
-lemma cong_solve_dvd_int: 
-  assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
-  shows "EX x. [a * x = d] (mod n)"
-proof -
-  from cong_solve_int [OF a] obtain x where 
-      "[a * x = gcd a n](mod n)"
-    by auto
-  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
-    by (elim cong_scalar2_int)
-  also from b have "(d div gcd a n) * gcd a n = d"
-    by (rule dvd_div_mult_self)
-  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
-    by auto
-  finally show ?thesis
-    by auto
-qed
-
-lemma cong_solve_coprime_nat: "coprime (a::nat) n \<Longrightarrow> 
-    EX x. [a * x = 1] (mod n)"
-  apply (case_tac "a = 0")
-  apply force
-  apply (frule cong_solve_nat [of a n])
-  apply auto
-done
-
-lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow> 
-    EX x. [a * x = 1] (mod n)"
-  apply (case_tac "a = 0")
-  apply auto
-  apply (case_tac "n \<ge> 0")
-  apply auto
-  apply (subst cong_int_def, auto)
-  apply (frule cong_solve_int [of a n])
-  apply auto
-done
-
-lemma coprime_iff_invertible_nat: "m > (1::nat) \<Longrightarrow> coprime a m = 
-    (EX x. [a * x = 1] (mod m))"
-  apply (auto intro: cong_solve_coprime_nat)
-  apply (unfold cong_nat_def, auto intro: invertible_coprime_nat)
-done
-
-lemma coprime_iff_invertible_int: "m > (1::int) \<Longrightarrow> coprime a m = 
-    (EX x. [a * x = 1] (mod m))"
-  apply (auto intro: cong_solve_coprime_int)
-  apply (unfold cong_int_def)
-  apply (auto intro: invertible_coprime_int)
-done
-
-lemma coprime_iff_invertible'_int: "m > (1::int) \<Longrightarrow> coprime a m = 
-    (EX x. 0 <= x & x < m & [a * x = 1] (mod m))"
-  apply (subst coprime_iff_invertible_int)
-  apply auto
-  apply (auto simp add: cong_int_def)
-  apply (rule_tac x = "x mod m" in exI)
-  apply (auto simp add: mod_mult_right_eq [symmetric])
-done
-
-
-lemma cong_cong_lcm_nat: "[(x::nat) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
-  apply (case_tac "y \<le> x")
-  apply (auto simp add: cong_altdef_nat lcm_least_nat) [1]
-  apply (rule cong_sym_nat)
-  apply (subst (asm) (1 2) cong_sym_eq_nat)
-  apply (auto simp add: cong_altdef_nat lcm_least_nat)
-done
-
-lemma cong_cong_lcm_int: "[(x::int) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
-  by (auto simp add: cong_altdef_int lcm_least_int) [1]
-
-lemma cong_cong_coprime_nat: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
-  apply (frule (1) cong_cong_lcm_nat)back
-  apply (simp add: lcm_nat_def)
-done
-
-lemma cong_cong_coprime_int: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow>
-    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
-  apply (frule (1) cong_cong_lcm_int)back
-  apply (simp add: lcm_altdef_int cong_abs_int abs_mult [symmetric])
-done
-
-lemma cong_cong_setprod_coprime_nat [rule_format]: "finite A \<Longrightarrow>
-    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (PROD i:A. m i))"
-  apply (induct set: finite)
-  apply auto
-  apply (rule cong_cong_coprime_nat)
-  apply (subst gcd_commute_nat)
-  apply (rule setprod_coprime_nat)
-  apply auto
-done
-
-lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow>
-    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-    (ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow>
-      [x = y] (mod (PROD i:A. m i))"
-  apply (induct set: finite)
-  apply auto
-  apply (rule cong_cong_coprime_int)
-  apply (subst gcd_commute_int)
-  apply (rule setprod_coprime_int)
-  apply auto
-done
-
-lemma binary_chinese_remainder_aux_nat: 
-  assumes a: "coprime (m1::nat) m2"
-  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
-    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
-proof -
-  from cong_solve_coprime_nat [OF a]
-      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
-    by auto
-  from a have b: "coprime m2 m1" 
-    by (subst gcd_commute_nat)
-  from cong_solve_coprime_nat [OF b]
-      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
-    by auto
-  have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  moreover note one two
-  ultimately show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_aux_int: 
-  assumes a: "coprime (m1::int) m2"
-  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
-    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
-proof -
-  from cong_solve_coprime_int [OF a]
-      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
-    by auto
-  from a have b: "coprime m2 m1" 
-    by (subst gcd_commute_int)
-  from cong_solve_coprime_int [OF b]
-      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
-    by auto
-  have "[m1 * x1 = 0] (mod m1)"
-    by (subst mult_commute, rule cong_mult_self_int)
-  moreover have "[m2 * x2 = 0] (mod m2)"
-    by (subst mult_commute, rule cong_mult_self_int)
-  moreover note one two
-  ultimately show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_nat:
-  assumes a: "coprime (m1::nat) m2"
-  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_aux_nat [OF a] obtain b1 b2
-    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
-          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
-    by blast
-  let ?x = "u1 * b1 + u2 * b2"
-  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_nat)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b1 = 1] (mod m1)`)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b2 = 0] (mod m1)`)
-    done
-  hence "[?x = u1] (mod m1)" by simp
-  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_nat)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b1 = 0] (mod m2)`)
-    apply (rule cong_scalar2_nat)
-    apply (rule `[b2 = 1] (mod m2)`)
-    done
-  hence "[?x = u2] (mod m2)" by simp
-  with `[?x = u1] (mod m1)` show ?thesis by blast
-qed
-
-lemma binary_chinese_remainder_int:
-  assumes a: "coprime (m1::int) m2"
-  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_aux_int [OF a] obtain b1 b2
-    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
-          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
-    by blast
-  let ?x = "u1 * b1 + u2 * b2"
-  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
-    apply (rule cong_add_int)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b1 = 1] (mod m1)`)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b2 = 0] (mod m1)`)
-    done
-  hence "[?x = u1] (mod m1)" by simp
-  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
-    apply (rule cong_add_int)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b1 = 0] (mod m2)`)
-    apply (rule cong_scalar2_int)
-    apply (rule `[b2 = 1] (mod m2)`)
-    done
-  hence "[?x = u2] (mod m2)" by simp
-  with `[?x = u1] (mod m1)` show ?thesis by blast
-qed
-
-lemma cong_modulus_mult_nat: "[(x::nat) = y] (mod m * n) \<Longrightarrow> 
-    [x = y] (mod m)"
-  apply (case_tac "y \<le> x")
-  apply (simp add: cong_altdef_nat)
-  apply (erule dvd_mult_left)
-  apply (rule cong_sym_nat)
-  apply (subst (asm) cong_sym_eq_nat)
-  apply (simp add: cong_altdef_nat) 
-  apply (erule dvd_mult_left)
-done
-
-lemma cong_modulus_mult_int: "[(x::int) = y] (mod m * n) \<Longrightarrow> 
-    [x = y] (mod m)"
-  apply (simp add: cong_altdef_int) 
-  apply (erule dvd_mult_left)
-done
-
-lemma cong_less_modulus_unique_nat: 
-    "[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
-  by (simp add: cong_nat_def)
-
-lemma binary_chinese_remainder_unique_nat:
-  assumes a: "coprime (m1::nat) m2" and
-         nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
-  shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
-proof -
-  from binary_chinese_remainder_nat [OF a] obtain y where 
-      "[y = u1] (mod m1)" and "[y = u2] (mod m2)"
-    by blast
-  let ?x = "y mod (m1 * m2)"
-  from nz have less: "?x < m1 * m2"
-    by auto   
-  have one: "[?x = u1] (mod m1)"
-    apply (rule cong_trans_nat)
-    prefer 2
-    apply (rule `[y = u1] (mod m1)`)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
-    done
-  have two: "[?x = u2] (mod m2)"
-    apply (rule cong_trans_nat)
-    prefer 2
-    apply (rule `[y = u2] (mod m2)`)
-    apply (subst mult_commute)
-    apply (rule cong_modulus_mult_nat)
-    apply (rule cong_mod_nat)
-    using nz apply auto
-    done
-  have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow>
-      z = ?x"
-  proof (clarify)
-    fix z
-    assume "z < m1 * m2"
-    assume "[z = u1] (mod m1)" and  "[z = u2] (mod m2)"
-    have "[?x = z] (mod m1)"
-      apply (rule cong_trans_nat)
-      apply (rule `[?x = u1] (mod m1)`)
-      apply (rule cong_sym_nat)
-      apply (rule `[z = u1] (mod m1)`)
-      done
-    moreover have "[?x = z] (mod m2)"
-      apply (rule cong_trans_nat)
-      apply (rule `[?x = u2] (mod m2)`)
-      apply (rule cong_sym_nat)
-      apply (rule `[z = u2] (mod m2)`)
-      done
-    ultimately have "[?x = z] (mod m1 * m2)"
-      by (auto intro: coprime_cong_mult_nat a)
-    with `z < m1 * m2` `?x < m1 * m2` show "z = ?x"
-      apply (intro cong_less_modulus_unique_nat)
-      apply (auto, erule cong_sym_nat)
-      done
-  qed  
-  with less one two show ?thesis
-    by auto
- qed
-
-lemma chinese_remainder_aux_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat"
-  assumes fin: "finite A" and
-          cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX b. (ALL i : A. 
-      [b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
-proof (rule finite_set_choice, rule fin, rule ballI)
-  fix i
-  assume "i : A"
-  with cop have "coprime (PROD j : A - {i}. m j) (m i)"
-    by (intro setprod_coprime_nat, auto)
-  hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
-    by (elim cong_solve_coprime_nat)
-  then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
-    by auto
-  moreover have "[(PROD j : A - {i}. m j) * x = 0] 
-    (mod (PROD j : A - {i}. m j))"
-    by (subst mult_commute, rule cong_mult_self_nat)
-  ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] 
-      (mod setprod m (A - {i}))"
-    by blast
-qed
-
-lemma chinese_remainder_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat" and
-        u :: "'a \<Rightarrow> nat"
-  assumes 
-        fin: "finite A" and
-        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX x. (ALL i:A. [x = u i] (mod m i))"
-proof -
-  from chinese_remainder_aux_nat [OF fin cop] obtain b where
-    bprop: "ALL i:A. [b i = 1] (mod m i) \<and> 
-      [b i = 0] (mod (PROD j : A - {i}. m j))"
-    by blast
-  let ?x = "SUM i:A. (u i) * (b i)"
-  show "?thesis"
-  proof (rule exI, clarify)
-    fix i
-    assume a: "i : A"
-    show "[?x = u i] (mod m i)" 
-    proof -
-      from fin a have "?x = (SUM j:{i}. u j * b j) + 
-          (SUM j:A-{i}. u j * b j)"
-        by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong)
-      hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
-        by auto
-      also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
-                  u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
-        apply (rule cong_add_nat)
-        apply (rule cong_scalar2_nat)
-        using bprop a apply blast
-        apply (rule cong_setsum_nat)
-        apply (rule cong_scalar2_nat)
-        using bprop apply auto
-        apply (rule cong_dvd_modulus_nat)
-        apply (drule (1) bspec)
-        apply (erule conjE)
-        apply assumption
-        apply (rule dvd_setprod)
-        using fin a apply auto
-        done
-      finally show ?thesis
-        by simp
-    qed
-  qed
-qed
-
-lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow> 
-    (ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
-      (ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow>
-         [x = y] (mod (PROD i:A. m i))" 
-  apply (induct set: finite)
-  apply auto
-  apply (erule (1) coprime_cong_mult_nat)
-  apply (subst gcd_commute_nat)
-  apply (rule setprod_coprime_nat)
-  apply auto
-done
-
-lemma chinese_remainder_unique_nat:
-  fixes A :: "'a set" and
-        m :: "'a \<Rightarrow> nat" and
-        u :: "'a \<Rightarrow> nat"
-  assumes 
-        fin: "finite A" and
-         nz: "ALL i:A. m i \<noteq> 0" and
-        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-  shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))"
-proof -
-  from chinese_remainder_nat [OF fin cop] obtain y where
-      one: "(ALL i:A. [y = u i] (mod m i))" 
-    by blast
-  let ?x = "y mod (PROD i:A. m i)"
-  from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0"
-    by auto
-  hence less: "?x < (PROD i:A. m i)"
-    by auto
-  have cong: "ALL i:A. [?x = u i] (mod m i)"
-    apply auto
-    apply (rule cong_trans_nat)
-    prefer 2
-    using one apply auto
-    apply (rule cong_dvd_modulus_nat)
-    apply (rule cong_mod_nat)
-    using prodnz apply auto
-    apply (rule dvd_setprod)
-    apply (rule fin)
-    apply assumption
-    done
-  have unique: "ALL z. z < (PROD i:A. m i) \<and> 
-      (ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
-  proof (clarify)
-    fix z
-    assume zless: "z < (PROD i:A. m i)"
-    assume zcong: "(ALL i:A. [z = u i] (mod m i))"
-    have "ALL i:A. [?x = z] (mod m i)"
-      apply clarify     
-      apply (rule cong_trans_nat)
-      using cong apply (erule bspec)
-      apply (rule cong_sym_nat)
-      using zcong apply auto
-      done
-    with fin cop have "[?x = z] (mod (PROD i:A. m i))"
-      by (intro coprime_cong_prod_nat, auto)
-    with zless less show "z = ?x"
-      apply (intro cong_less_modulus_unique_nat)
-      apply (auto, erule cong_sym_nat)
-      done
-  qed 
-  from less cong unique show ?thesis
-    by blast  
-qed
-
-end
--- a/src/HOL/NewNumberTheory/Fib.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,319 +0,0 @@
-(*  Title:      Fib.thy
-    Authors:    Lawrence C. Paulson, Jeremy Avigad
-
-
-Defines the fibonacci function.
-
-The original "Fib" is due to Lawrence C. Paulson, and was adapted by
-Jeremy Avigad.
-*)
-
-
-header {* Fib *}
-
-theory Fib
-imports Binomial
-begin
-
-
-subsection {* Main definitions *}
-
-class fib =
-
-fixes 
-  fib :: "'a \<Rightarrow> 'a"
-
-
-(* definition for the natural numbers *)
-
-instantiation nat :: fib
-
-begin 
-
-fun 
-  fib_nat :: "nat \<Rightarrow> nat"
-where
-  "fib_nat n =
-   (if n = 0 then 0 else
-   (if n = 1 then 1 else
-     fib (n - 1) + fib (n - 2)))"
-
-instance proof qed
-
-end
-
-(* definition for the integers *)
-
-instantiation int :: fib
-
-begin 
-
-definition
-  fib_int :: "int \<Rightarrow> int"
-where  
-  "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)"
-
-instance proof qed
-
-end
-
-
-subsection {* Set up Transfer *}
-
-
-lemma transfer_nat_int_fib:
-  "(x::int) >= 0 \<Longrightarrow> fib (nat x) = nat (fib x)"
-  unfolding fib_int_def by auto
-
-lemma transfer_nat_int_fib_closure:
-  "n >= (0::int) \<Longrightarrow> fib n >= 0"
-  by (auto simp add: fib_int_def)
-
-declare TransferMorphism_nat_int[transfer add return: 
-    transfer_nat_int_fib transfer_nat_int_fib_closure]
-
-lemma transfer_int_nat_fib:
-  "fib (int n) = int (fib n)"
-  unfolding fib_int_def by auto
-
-lemma transfer_int_nat_fib_closure:
-  "is_nat n \<Longrightarrow> fib n >= 0"
-  unfolding fib_int_def by auto
-
-declare TransferMorphism_int_nat[transfer add return: 
-    transfer_int_nat_fib transfer_int_nat_fib_closure]
-
-
-subsection {* Fibonacci numbers *}
-
-lemma fib_0_nat [simp]: "fib (0::nat) = 0"
-  by simp
-
-lemma fib_0_int [simp]: "fib (0::int) = 0"
-  unfolding fib_int_def by simp
-
-lemma fib_1_nat [simp]: "fib (1::nat) = 1"
-  by simp
-
-lemma fib_Suc_0_nat [simp]: "fib (Suc 0) = Suc 0"
-  by simp
-
-lemma fib_1_int [simp]: "fib (1::int) = 1"
-  unfolding fib_int_def by simp
-
-lemma fib_reduce_nat: "(n::nat) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)"
-  by simp
-
-declare fib_nat.simps [simp del]
-
-lemma fib_reduce_int: "(n::int) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)"
-  unfolding fib_int_def
-  by (auto simp add: fib_reduce_nat nat_diff_distrib)
-
-lemma fib_neg_int [simp]: "(n::int) < 0 \<Longrightarrow> fib n = 0"
-  unfolding fib_int_def by auto
-
-lemma fib_2_nat [simp]: "fib (2::nat) = 1"
-  by (subst fib_reduce_nat, auto)
-
-lemma fib_2_int [simp]: "fib (2::int) = 1"
-  by (subst fib_reduce_int, auto)
-
-lemma fib_plus_2_nat: "fib ((n::nat) + 2) = fib (n + 1) + fib n"
-  by (subst fib_reduce_nat, auto simp add: One_nat_def)
-(* the need for One_nat_def is due to the natdiff_cancel_numerals
-   procedure *)
-
-lemma fib_induct_nat: "P (0::nat) \<Longrightarrow> P (1::nat) \<Longrightarrow> 
-    (!!n. P n \<Longrightarrow> P (n + 1) \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n"
-  apply (atomize, induct n rule: nat_less_induct)
-  apply auto
-  apply (case_tac "n = 0", force)
-  apply (case_tac "n = 1", force)
-  apply (subgoal_tac "n >= 2")
-  apply (frule_tac x = "n - 1" in spec)
-  apply (drule_tac x = "n - 2" in spec)
-  apply (drule_tac x = "n - 2" in spec)
-  apply auto
-  apply (auto simp add: One_nat_def) (* again, natdiff_cancel *)
-done
-
-lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) + 
-    fib k * fib n"
-  apply (induct n rule: fib_induct_nat)
-  apply auto
-  apply (subst fib_reduce_nat)
-  apply (auto simp add: ring_simps)
-  apply (subst (1 3 5) fib_reduce_nat)
-  apply (auto simp add: ring_simps Suc_eq_plus1)
-(* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *)
-  apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))")
-  apply (erule ssubst) back back
-  apply (erule ssubst) back 
-  apply auto
-done
-
-lemma fib_add'_nat: "fib (n + Suc k) = fib (Suc k) * fib (Suc n) + 
-    fib k * fib n"
-  using fib_add_nat by (auto simp add: One_nat_def)
-
-
-(* transfer from nats to ints *)
-lemma fib_add_int [rule_format]: "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow>
-    fib (n + k + 1) = fib (k + 1) * fib (n + 1) + 
-    fib k * fib n "
-
-  by (rule fib_add_nat [transferred])
-
-lemma fib_neq_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n ~= 0"
-  apply (induct n rule: fib_induct_nat)
-  apply (auto simp add: fib_plus_2_nat)
-done
-
-lemma fib_gr_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n > 0"
-  by (frule fib_neq_0_nat, simp)
-
-lemma fib_gr_0_int: "(n::int) > 0 \<Longrightarrow> fib n > 0"
-  unfolding fib_int_def by (simp add: fib_gr_0_nat)
-
-text {*
-  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
-  much easier using integers, not natural numbers!
-*}
-
-lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) - 
-    (fib (int n + 1))^2 = (-1)^(n + 1)"
-  apply (induct n)
-  apply (auto simp add: ring_simps power2_eq_square fib_reduce_int
-      power_add)
-done
-
-lemma fib_Cassini_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n - 
-    (fib (n + 1))^2 = (-1)^(nat n + 1)"
-  by (insert fib_Cassini_aux_int [of "nat n"], auto)
-
-(*
-lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n = 
-    (fib (n + 1))^2 + (-1)^(nat n + 1)"
-  by (frule fib_Cassini_int, simp) 
-*)
-
-lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib ((n::int) + 2) * fib n =
-  (if even n then tsub ((fib (n + 1))^2) 1
-   else (fib (n + 1))^2 + 1)"
-  apply (frule fib_Cassini_int, auto simp add: pos_int_even_equiv_nat_even)
-  apply (subst tsub_eq)
-  apply (insert fib_gr_0_int [of "n + 1"], force)
-  apply auto
-done
-
-lemma fib_Cassini_nat: "fib ((n::nat) + 2) * fib n =
-  (if even n then (fib (n + 1))^2 - 1
-   else (fib (n + 1))^2 + 1)"
-
-  by (rule fib_Cassini'_int [transferred, of n], auto)
-
-
-text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
-
-lemma coprime_fib_plus_1_nat: "coprime (fib (n::nat)) (fib (n + 1))"
-  apply (induct n rule: fib_induct_nat)
-  apply auto
-  apply (subst (2) fib_reduce_nat)
-  apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *)
-  apply (subst add_commute, auto)
-  apply (subst gcd_commute_nat, auto simp add: ring_simps)
-done
-
-lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))"
-  using coprime_fib_plus_1_nat by (simp add: One_nat_def)
-
-lemma coprime_fib_plus_1_int: 
-    "n >= 0 \<Longrightarrow> coprime (fib (n::int)) (fib (n + 1))"
-  by (erule coprime_fib_plus_1_nat [transferred])
-
-lemma gcd_fib_add_nat: "gcd (fib (m::nat)) (fib (n + m)) = gcd (fib m) (fib n)"
-  apply (simp add: gcd_commute_nat [of "fib m"])
-  apply (rule cases_nat [of _ m])
-  apply simp
-  apply (subst add_assoc [symmetric])
-  apply (simp add: fib_add_nat)
-  apply (subst gcd_commute_nat)
-  apply (subst mult_commute)
-  apply (subst gcd_add_mult_nat)
-  apply (subst gcd_commute_nat)
-  apply (rule gcd_mult_cancel_nat)
-  apply (rule coprime_fib_plus_1_nat)
-done
-
-lemma gcd_fib_add_int [rule_format]: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow> 
-    gcd (fib (m::int)) (fib (n + m)) = gcd (fib m) (fib n)"
-  by (erule gcd_fib_add_nat [transferred])
-
-lemma gcd_fib_diff_nat: "(m::nat) \<le> n \<Longrightarrow> 
-    gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
-  by (simp add: gcd_fib_add_nat [symmetric, of _ "n-m"])
-
-lemma gcd_fib_diff_int: "0 <= (m::int) \<Longrightarrow> m \<le> n \<Longrightarrow> 
-    gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
-  by (simp add: gcd_fib_add_int [symmetric, of _ "n-m"])
-
-lemma gcd_fib_mod_nat: "0 < (m::nat) \<Longrightarrow> 
-    gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-proof (induct n rule: less_induct)
-  case (less n)
-  from less.prems have pos_m: "0 < m" .
-  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-  proof (cases "m < n")
-    case True note m_n = True
-    then have m_n': "m \<le> n" by auto
-    with pos_m have pos_n: "0 < n" by auto
-    with pos_m m_n have diff: "n - m < n" by auto
-    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-    by (simp add: mod_if [of n]) (insert m_n, auto)
-    also have "\<dots> = gcd (fib m)  (fib (n - m))" 
-      by (simp add: less.hyps diff pos_m)
-    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff_nat m_n')
-    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
-  next
-    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-    by (cases "m = n") auto
-  qed
-qed
-
-lemma gcd_fib_mod_int: 
-  assumes "0 < (m::int)" and "0 <= n"
-  shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-
-  apply (rule gcd_fib_mod_nat [transferred])
-  using prems apply auto
-done
-
-lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)"  
-    -- {* Law 6.111 *}
-  apply (induct m n rule: gcd_nat_induct)
-  apply (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod_nat)
-done
-
-lemma fib_gcd_int: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
-    fib (gcd (m::int) n) = gcd (fib m) (fib n)"
-  by (erule fib_gcd_nat [transferred])
-
-lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}" 
-  by auto
-
-theorem fib_mult_eq_setsum_nat:
-    "fib ((n::nat) + 1) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
-  apply (induct n)
-  apply (auto simp add: atMost_plus_one_nat fib_plus_2_nat ring_simps)
-done
-
-theorem fib_mult_eq_setsum'_nat:
-    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
-  using fib_mult_eq_setsum_nat by (simp add: One_nat_def)
-
-theorem fib_mult_eq_setsum_int [rule_format]:
-    "n >= 0 \<Longrightarrow> fib ((n::int) + 1) * fib n = (\<Sum>k \<in> {0..n}. fib k * fib k)"
-  by (erule fib_mult_eq_setsum_nat [transferred])
-
-end
--- a/src/HOL/NewNumberTheory/MiscAlgebra.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,355 +0,0 @@
-(*  Title:      MiscAlgebra.thy
-    Author:     Jeremy Avigad
-
-These are things that can be added to the Algebra library.
-*)
-
-theory MiscAlgebra
-imports
-  "~~/src/HOL/Algebra/Ring"
-  "~~/src/HOL/Algebra/FiniteProduct"
-begin;
-
-(* finiteness stuff *)
-
-lemma bounded_set1_int [intro]: "finite {(x::int). a < x & x < b & P x}" 
-  apply (subgoal_tac "{x. a < x & x < b & P x} <= {a<..<b}")
-  apply (erule finite_subset)
-  apply auto
-done
-
-
-(* The rest is for the algebra libraries *)
-
-(* These go in Group.thy. *)
-
-(*
-  Show that the units in any monoid give rise to a group.
-
-  The file Residues.thy provides some infrastructure to use
-  facts about the unit group within the ring locale.
-*)
-
-
-constdefs 
-  units_of :: "('a, 'b) monoid_scheme => 'a monoid"
-  "units_of G == (| carrier = Units G,
-     Group.monoid.mult = Group.monoid.mult G,
-     one  = one G |)";
-
-(*
-
-lemma (in monoid) Units_mult_closed [intro]:
-  "x : Units G ==> y : Units G ==> x \<otimes> y : Units G"
-  apply (unfold Units_def)
-  apply (clarsimp)
-  apply (rule_tac x = "xaa \<otimes> xa" in bexI)
-  apply auto
-  apply (subst m_assoc)
-  apply auto
-  apply (subst (2) m_assoc [symmetric])
-  apply auto
-  apply (subst m_assoc)
-  apply auto
-  apply (subst (2) m_assoc [symmetric])
-  apply auto
-done
-
-*)
-
-lemma (in monoid) units_group: "group(units_of G)"
-  apply (unfold units_of_def)
-  apply (rule groupI)
-  apply auto
-  apply (subst m_assoc)
-  apply auto
-  apply (rule_tac x = "inv x" in bexI)
-  apply auto
-done
-
-lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
-  apply (rule group.group_comm_groupI)
-  apply (rule units_group)
-  apply (insert prems)
-  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
-  apply auto;
-done;
-
-lemma units_of_carrier: "carrier (units_of G) = Units G"
-  by (unfold units_of_def, auto)
-
-lemma units_of_mult: "mult(units_of G) = mult G"
-  by (unfold units_of_def, auto)
-
-lemma units_of_one: "one(units_of G) = one G"
-  by (unfold units_of_def, auto)
-
-lemma (in monoid) units_of_inv: "x : Units G ==> 
-    m_inv (units_of G) x = m_inv G x"
-  apply (rule sym)
-  apply (subst m_inv_def)
-  apply (rule the1_equality)
-  apply (rule ex_ex1I)
-  apply (subst (asm) Units_def)
-  apply auto
-  apply (erule inv_unique)
-  apply auto
-  apply (rule Units_closed)
-  apply (simp_all only: units_of_carrier [symmetric])
-  apply (insert units_group)
-  apply auto
-  apply (subst units_of_mult [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (erule group.r_inv, assumption)
-  apply (subst units_of_mult [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (erule group.l_inv, assumption)
-done
-
-lemma (in group) inj_on_const_mult: "a: (carrier G) ==> 
-    inj_on (%x. a \<otimes> x) (carrier G)"
-  by (unfold inj_on_def, auto)
-
-lemma (in group) surj_const_mult: "a : (carrier G) ==>
-    (%x. a \<otimes> x) ` (carrier G) = (carrier G)" 
-  apply (auto simp add: image_def)
-  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
-  apply auto
-(* auto should get this. I suppose we need "comm_monoid_simprules"
-   for mult_ac rewriting. *)
-  apply (subst m_assoc [symmetric])
-  apply auto
-done
-
-lemma (in group) l_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
-    (x \<otimes> a = x) = (a = one G)"
-  apply auto
-  apply (subst l_cancel [symmetric])
-  prefer 4
-  apply (erule ssubst)
-  apply auto
-done
-
-lemma (in group) r_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
-    (a \<otimes> x = x) = (a = one G)"
-  apply auto
-  apply (subst r_cancel [symmetric])
-  prefer 4
-  apply (erule ssubst)
-  apply auto
-done
-
-(* Is there a better way to do this? *)
-
-lemma (in group) l_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
-    (x = x \<otimes> a) = (a = one G)"
-  by (subst eq_commute, simp)
-
-lemma (in group) r_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
-    (x = a \<otimes> x) = (a = one G)"
-  by (subst eq_commute, simp)
-
-(* This should be generalized to arbitrary groups, not just commutative
-   ones, using Lagrange's theorem. *)
-
-lemma (in comm_group) power_order_eq_one:
-    assumes fin [simp]: "finite (carrier G)"
-        and a [simp]: "a : carrier G" 
-      shows "a (^) card(carrier G) = one G" 
-proof -
-  have "(\<Otimes>x:carrier G. x) = (\<Otimes>x:carrier G. a \<otimes> x)"
-    by (subst (2) finprod_reindex [symmetric], 
-      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
-  also have "\<dots> = (\<Otimes>x:carrier G. a) \<otimes> (\<Otimes>x:carrier G. x)"
-    by (auto simp add: finprod_multf Pi_def)
-  also have "(\<Otimes>x:carrier G. a) = a (^) card(carrier G)"
-    by (auto simp add: finprod_const)
-  finally show ?thesis
-(* uses the preceeding lemma *)
-    by auto
-qed
-
-
-(* Miscellaneous *)
-
-lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> ~= \<one>\<^bsub>R\<^esub> \<Longrightarrow> ALL x : carrier R - {\<zero>\<^bsub>R\<^esub>}.
-    x : Units R \<Longrightarrow> field R"
-  apply (unfold_locales)
-  apply (insert prems, auto)
-  apply (rule trans)
-  apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
-  apply assumption
-  apply (subst m_assoc) 
-  apply (auto simp add: Units_r_inv)
-  apply (unfold Units_def)
-  apply auto
-done
-
-lemma (in monoid) inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
-  x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
-  apply (subgoal_tac "x : Units G")
-  apply (subgoal_tac "y = inv x \<otimes> \<one>")
-  apply simp
-  apply (erule subst)
-  apply (subst m_assoc [symmetric])
-  apply auto
-  apply (unfold Units_def)
-  apply auto
-done
-
-lemma (in comm_monoid) comm_inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
-  x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
-  apply (rule inv_char)
-  apply auto
-  apply (subst m_comm, auto) 
-done
-
-lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"  
-  apply (rule inv_char)
-  apply (auto simp add: l_minus r_minus)
-done
-
-lemma (in monoid) inv_eq_imp_eq: "x : Units G \<Longrightarrow> y : Units G \<Longrightarrow> 
-    inv x = inv y \<Longrightarrow> x = y"
-  apply (subgoal_tac "inv(inv x) = inv(inv y)")
-  apply (subst (asm) Units_inv_inv)+
-  apply auto
-done
-
-lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> : Units R"
-  apply (unfold Units_def)
-  apply auto
-  apply (rule_tac x = "\<ominus> \<one>" in bexI)
-  apply auto
-  apply (simp add: l_minus r_minus)
-done
-
-lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
-  apply (rule inv_char)
-  apply auto
-done
-
-lemma (in ring) inv_eq_neg_one_eq: "x : Units R \<Longrightarrow> (inv x = \<ominus> \<one>) = (x = \<ominus> \<one>)"
-  apply auto
-  apply (subst Units_inv_inv [symmetric])
-  apply auto
-done
-
-lemma (in monoid) inv_eq_one_eq: "x : Units G \<Longrightarrow> (inv x = \<one>) = (x = \<one>)"
-  apply auto
-  apply (subst Units_inv_inv [symmetric])
-  apply auto
-done
-
-
-(* This goes in FiniteProduct *)
-
-lemma (in comm_monoid) finprod_UN_disjoint:
-  "finite I \<Longrightarrow> (ALL i:I. finite (A i)) \<longrightarrow> (ALL i:I. ALL j:I. i ~= j \<longrightarrow>
-     (A i) Int (A j) = {}) \<longrightarrow>
-      (ALL i:I. ALL x: (A i). g x : carrier G) \<longrightarrow>
-        finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
-  apply (induct set: finite)
-  apply force
-  apply clarsimp
-  apply (subst finprod_Un_disjoint)
-  apply blast
-  apply (erule finite_UN_I)
-  apply blast
-  apply (fastsimp)
-  apply (auto intro!: funcsetI finprod_closed) 
-done
-
-lemma (in comm_monoid) finprod_Union_disjoint:
-  "[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
-      (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |] 
-   ==> finprod G f (Union C) = finprod G (finprod G f) C" 
-  apply (frule finprod_UN_disjoint [of C id f])
-  apply (unfold Union_def id_def, auto)
-done
-
-lemma (in comm_monoid) finprod_one [rule_format]: 
-  "finite A \<Longrightarrow> (ALL x:A. f x = \<one>) \<longrightarrow>
-     finprod G f A = \<one>"
-by (induct set: finite) auto
-
-
-(* need better simplification rules for rings *)
-(* the next one holds more generally for abelian groups *)
-
-lemma (in cring) sum_zero_eq_neg:
-  "x : carrier R \<Longrightarrow> y : carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
-  apply (subgoal_tac "\<ominus> y = \<zero> \<oplus> \<ominus> y") 
-  apply (erule ssubst)back
-  apply (erule subst)
-  apply (simp add: ring_simprules)+
-done
-
-(* there's a name conflict -- maybe "domain" should be
-   "integral_domain" *)
-
-lemma (in Ring.domain) square_eq_one: 
-  fixes x
-  assumes [simp]: "x : carrier R" and
-    "x \<otimes> x = \<one>"
-  shows "x = \<one> | x = \<ominus>\<one>"
-proof -
-  have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
-    by (simp add: ring_simprules)
-  also with `x \<otimes> x = \<one>` have "\<dots> = \<zero>"
-    by (simp add: ring_simprules)
-  finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
-  hence "(x \<oplus> \<one>) = \<zero> | (x \<oplus> \<ominus> \<one>) = \<zero>"
-    by (intro integral, auto)
-  thus ?thesis
-    apply auto
-    apply (erule notE)
-    apply (rule sum_zero_eq_neg)
-    apply auto
-    apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
-    apply (simp add: ring_simprules) 
-    apply (rule sum_zero_eq_neg)
-    apply auto
-    done
-qed
-
-lemma (in Ring.domain) inv_eq_self: "x : Units R \<Longrightarrow>
-    x = inv x \<Longrightarrow> x = \<one> | x = \<ominus> \<one>"
-  apply (rule square_eq_one)
-  apply auto
-  apply (erule ssubst)back
-  apply (erule Units_r_inv)
-done
-
-
-(*
-  The following translates theorems about groups to the facts about
-  the units of a ring. (The list should be expanded as more things are
-  needed.)
-*)
-
-lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> 
-    finite (Units R)"
-  by (rule finite_subset, auto)
-
-(* this belongs with MiscAlgebra.thy *)
-lemma (in monoid) units_of_pow: 
-    "x : Units G \<Longrightarrow> x (^)\<^bsub>units_of G\<^esub> (n::nat) = x (^)\<^bsub>G\<^esub> n"
-  apply (induct n)
-  apply (auto simp add: units_group group.is_monoid  
-    monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult
-    One_nat_def)
-done
-
-lemma (in cring) units_power_order_eq_one: "finite (Units R) \<Longrightarrow> a : Units R
-    \<Longrightarrow> a (^) card(Units R) = \<one>"
-  apply (subst units_of_carrier [symmetric])
-  apply (subst units_of_one [symmetric])
-  apply (subst units_of_pow [symmetric])
-  apply assumption
-  apply (rule comm_group.power_order_eq_one)
-  apply (rule units_comm_group)
-  apply (unfold units_of_def, auto)
-done
-
-end
--- a/src/HOL/NewNumberTheory/ROOT.ML	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1 +0,0 @@
-use_thys ["Fib","Residues"];
--- a/src/HOL/NewNumberTheory/Residues.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,466 +0,0 @@
-(*  Title:      HOL/Library/Residues.thy
-    ID:         
-    Author:     Jeremy Avigad
-
-    An algebraic treatment of residue rings, and resulting proofs of
-    Euler's theorem and Wilson's theorem. 
-*)
-
-header {* Residue rings *}
-
-theory Residues
-imports
-   UniqueFactorization
-   Binomial
-   MiscAlgebra
-begin
-
-
-(*
- 
-  A locale for residue rings
-
-*)
-
-constdefs 
-  residue_ring :: "int => int ring"
-  "residue_ring m == (| 
-    carrier =       {0..m - 1}, 
-    mult =          (%x y. (x * y) mod m),
-    one =           1,
-    zero =          0,
-    add =           (%x y. (x + y) mod m) |)"
-
-locale residues =
-  fixes m :: int and R (structure)
-  assumes m_gt_one: "m > 1"
-  defines "R == residue_ring m"
-
-context residues begin
-
-lemma abelian_group: "abelian_group R"
-  apply (insert m_gt_one)
-  apply (rule abelian_groupI)
-  apply (unfold R_def residue_ring_def)
-  apply (auto simp add: mod_pos_pos_trivial mod_add_right_eq [symmetric]
-    add_ac)
-  apply (case_tac "x = 0")
-  apply force
-  apply (subgoal_tac "(x + (m - x)) mod m = 0")
-  apply (erule bexI)
-  apply auto
-done
-
-lemma comm_monoid: "comm_monoid R"
-  apply (insert m_gt_one)
-  apply (unfold R_def residue_ring_def)
-  apply (rule comm_monoidI)
-  apply auto
-  apply (subgoal_tac "x * y mod m * z mod m = z * (x * y mod m) mod m")
-  apply (erule ssubst)
-  apply (subst zmod_zmult1_eq [symmetric])+
-  apply (simp_all only: mult_ac)
-done
-
-lemma cring: "cring R"
-  apply (rule cringI)
-  apply (rule abelian_group)
-  apply (rule comm_monoid)
-  apply (unfold R_def residue_ring_def, auto)
-  apply (subst mod_add_eq [symmetric])
-  apply (subst mult_commute)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (simp add: ring_simps)
-done
-
-end
-
-sublocale residues < cring
-  by (rule cring)
-
-
-context residues begin
-
-(* These lemmas translate back and forth between internal and 
-   external concepts *)
-
-lemma res_carrier_eq: "carrier R = {0..m - 1}"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_zero_eq: "\<zero> = 0"
-  by (unfold R_def residue_ring_def, auto)
-
-lemma res_one_eq: "\<one> = 1"
-  by (unfold R_def residue_ring_def units_of_def residue_ring_def, auto)
-
-lemma res_units_eq: "Units R = { x. 0 < x & x < m & coprime x m}"
-  apply (insert m_gt_one)
-  apply (unfold Units_def R_def residue_ring_def)
-  apply auto
-  apply (subgoal_tac "x ~= 0")
-  apply auto
-  apply (rule invertible_coprime_int)
-  apply (subgoal_tac "x ~= 0")
-  apply auto
-  apply (subst (asm) coprime_iff_invertible'_int)
-  apply (rule m_gt_one)
-  apply (auto simp add: cong_int_def mult_commute)
-done
-
-lemma res_neg_eq: "\<ominus> x = (- x) mod m"
-  apply (insert m_gt_one)
-  apply (unfold R_def a_inv_def m_inv_def residue_ring_def)
-  apply auto
-  apply (rule the_equality)
-  apply auto
-  apply (subst mod_add_right_eq [symmetric])
-  apply auto
-  apply (subst mod_add_left_eq [symmetric])
-  apply auto
-  apply (subgoal_tac "y mod m = - x mod m")
-  apply simp
-  apply (subst zmod_eq_dvd_iff)
-  apply auto
-done
-
-lemma finite [iff]: "finite(carrier R)"
-  by (subst res_carrier_eq, auto)
-
-lemma finite_Units [iff]: "finite(Units R)"
-  by (subst res_units_eq, auto)
-
-(* The function a -> a mod m maps the integers to the 
-   residue classes. The following lemmas show that this mapping 
-   respects addition and multiplication on the integers. *)
-
-lemma mod_in_carrier [iff]: "a mod m : carrier R"
-  apply (unfold res_carrier_eq)
-  apply (insert m_gt_one, auto)
-done
-
-lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
-  by (unfold R_def residue_ring_def, auto, arith)
-
-lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
-  apply (unfold R_def residue_ring_def, auto)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (subst mult_commute)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (subst mult_commute)
-  apply auto
-done  
-
-lemma zero_cong: "\<zero> = 0"
-  apply (unfold R_def residue_ring_def, auto)
-done
-
-lemma one_cong: "\<one> = 1 mod m"
-  apply (insert m_gt_one)
-  apply (unfold R_def residue_ring_def, auto)
-done
-
-(* revise algebra library to use 1? *)
-lemma pow_cong: "(x mod m) (^) n = x^n mod m"
-  apply (insert m_gt_one)
-  apply (induct n)
-  apply (auto simp add: nat_pow_def one_cong One_nat_def)
-  apply (subst mult_commute)
-  apply (rule mult_cong)
-done
-
-lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
-  apply (rule sym)
-  apply (rule sum_zero_eq_neg)
-  apply auto
-  apply (subst add_cong)
-  apply (subst zero_cong)
-  apply auto
-done
-
-lemma (in residues) prod_cong: 
-  "finite A \<Longrightarrow> (\<Otimes> i:A. (f i) mod m) = (PROD i:A. f i) mod m"
-  apply (induct set: finite)
-  apply (auto simp: one_cong mult_cong)
-done
-
-lemma (in residues) sum_cong:
-  "finite A \<Longrightarrow> (\<Oplus> i:A. (f i) mod m) = (SUM i: A. f i) mod m"
-  apply (induct set: finite)
-  apply (auto simp: zero_cong add_cong)
-done
-
-lemma mod_in_res_units [simp]: "1 < m \<Longrightarrow> coprime a m \<Longrightarrow> 
-    a mod m : Units R"
-  apply (subst res_units_eq, auto)
-  apply (insert pos_mod_sign [of m a])
-  apply (subgoal_tac "a mod m ~= 0")
-  apply arith
-  apply auto
-  apply (subst (asm) gcd_red_int)
-  apply (subst gcd_commute_int, assumption)
-done
-
-lemma res_eq_to_cong: "((a mod m) = (b mod m)) = [a = b] (mod (m::int))" 
-  unfolding cong_int_def by auto
-
-(* Simplifying with these will translate a ring equation in R to a 
-   congruence. *)
-
-lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
-    prod_cong sum_cong neg_cong res_eq_to_cong
-
-(* Other useful facts about the residue ring *)
-
-lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
-  apply (simp add: res_one_eq res_neg_eq)
-  apply (insert m_gt_one)
-  apply (subgoal_tac "~(m > 2)")
-  apply arith
-  apply (rule notI)
-  apply (subgoal_tac "-1 mod m = m - 1")
-  apply force
-  apply (subst mod_add_self2 [symmetric])
-  apply (subst mod_pos_pos_trivial)
-  apply auto
-done
-
-end
-
-
-(* prime residues *)
-
-locale residues_prime =
-  fixes p :: int and R (structure)
-  assumes p_prime [intro]: "prime p"
-  defines "R == residue_ring p"
-
-sublocale residues_prime < residues p
-  apply (unfold R_def residues_def)
-  using p_prime apply auto
-done
-
-context residues_prime begin
-
-lemma is_field: "field R"
-  apply (rule cring.field_intro2)
-  apply (rule cring)
-  apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq
-    res_units_eq)
-  apply (rule classical)
-  apply (erule notE)
-  apply (subst gcd_commute_int)
-  apply (rule prime_imp_coprime_int)
-  apply (rule p_prime)
-  apply (rule notI)
-  apply (frule zdvd_imp_le)
-  apply auto
-done
-
-lemma res_prime_units_eq: "Units R = {1..p - 1}"
-  apply (subst res_units_eq)
-  apply auto
-  apply (subst gcd_commute_int)
-  apply (rule prime_imp_coprime_int)
-  apply (rule p_prime)
-  apply (rule zdvd_not_zless)
-  apply auto
-done
-
-end
-
-sublocale residues_prime < field
-  by (rule is_field)
-
-
-(*
-  Test cases: Euler's theorem and Wilson's theorem.
-*)
-
-
-subsection{* Euler's theorem *}
-
-(* the definition of the phi function *)
-
-constdefs
-  phi :: "int => nat"
-  "phi m == card({ x. 0 < x & x < m & gcd x m = 1})" 
-
-lemma phi_zero [simp]: "phi 0 = 0"
-  apply (subst phi_def)
-(* Auto hangs here. Once again, where is the simplification rule 
-   1 == Suc 0 coming from? *)
-  apply (auto simp add: card_eq_0_iff)
-(* Add card_eq_0_iff as a simp rule? delete card_empty_imp? *)
-done
-
-lemma phi_one [simp]: "phi 1 = 0"
-  apply (auto simp add: phi_def card_eq_0_iff)
-done
-
-lemma (in residues) phi_eq: "phi m = card(Units R)"
-  by (simp add: phi_def res_units_eq)
-
-lemma (in residues) euler_theorem1: 
-  assumes a: "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof -
-  from a m_gt_one have [simp]: "a mod m : Units R"
-    by (intro mod_in_res_units)
-  from phi_eq have "(a mod m) (^) (phi m) = (a mod m) (^) (card (Units R))"
-    by simp
-  also have "\<dots> = \<one>" 
-    by (intro units_power_order_eq_one, auto)
-  finally show ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-(* In fact, there is a two line proof!
-
-lemma (in residues) euler_theorem1: 
-  assumes a: "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof -
-  have "(a mod m) (^) (phi m) = \<one>"
-    by (simp add: phi_eq units_power_order_eq_one a m_gt_one)
-  thus ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-*)
-
-(* outside the locale, we can relax the restriction m > 1 *)
-
-lemma euler_theorem:
-  assumes "m >= 0" and "gcd a m = 1"
-  shows "[a^phi m = 1] (mod m)"
-proof (cases)
-  assume "m = 0 | m = 1"
-  thus ?thesis by auto
-next
-  assume "~(m = 0 | m = 1)"
-  with prems show ?thesis
-    by (intro residues.euler_theorem1, unfold residues_def, auto)
-qed
-
-lemma (in residues_prime) phi_prime: "phi p = (nat p - 1)"
-  apply (subst phi_eq)
-  apply (subst res_prime_units_eq)
-  apply auto
-done
-
-lemma phi_prime: "prime p \<Longrightarrow> phi p = (nat p - 1)"
-  apply (rule residues_prime.phi_prime)
-  apply (erule residues_prime.intro)
-done
-
-lemma fermat_theorem:
-  assumes "prime p" and "~ (p dvd a)"
-  shows "[a^(nat p - 1) = 1] (mod p)"
-proof -
-  from prems have "[a^phi p = 1] (mod p)"
-    apply (intro euler_theorem)
-    (* auto should get this next part. matching across
-       substitutions is needed. *)
-    apply (frule prime_gt_1_int, arith)
-    apply (subst gcd_commute_int, erule prime_imp_coprime_int, assumption)
-    done
-  also have "phi p = nat p - 1"
-    by (rule phi_prime, rule prems)
-  finally show ?thesis .
-qed
-
-
-subsection {* Wilson's theorem *}
-
-lemma (in field) inv_pair_lemma: "x : Units R \<Longrightarrow> y : Units R \<Longrightarrow> 
-  {x, inv x} ~= {y, inv y} \<Longrightarrow> {x, inv x} Int {y, inv y} = {}" 
-  apply auto
-  apply (erule notE)
-  apply (erule inv_eq_imp_eq)
-  apply auto
-  apply (erule notE)
-  apply (erule inv_eq_imp_eq)
-  apply auto
-done
-
-lemma (in residues_prime) wilson_theorem1:
-  assumes a: "p > 2"
-  shows "[fact (p - 1) = - 1] (mod p)"
-proof -
-  let ?InversePairs = "{ {x, inv x} | x. x : Units R - {\<one>, \<ominus> \<one>}}" 
-  have UR: "Units R = {\<one>, \<ominus> \<one>} Un (Union ?InversePairs)"
-    by auto
-  have "(\<Otimes>i: Units R. i) = 
-    (\<Otimes>i: {\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i: Union ?InversePairs. i)"
-    apply (subst UR)
-    apply (subst finprod_Un_disjoint)
-    apply (auto intro:funcsetI)
-    apply (drule sym, subst (asm) inv_eq_one_eq)
-    apply auto
-    apply (drule sym, subst (asm) inv_eq_neg_one_eq)
-    apply auto
-    done
-  also have "(\<Otimes>i: {\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
-    apply (subst finprod_insert)
-    apply auto
-    apply (frule one_eq_neg_one)
-    apply (insert a, force)
-    done
-  also have "(\<Otimes>i:(Union ?InversePairs). i) = 
-      (\<Otimes> A: ?InversePairs. (\<Otimes> y:A. y))"
-    apply (subst finprod_Union_disjoint)
-    apply force
-    apply force
-    apply clarify
-    apply (rule inv_pair_lemma)
-    apply auto
-    done
-  also have "\<dots> = \<one>"
-    apply (rule finprod_one)
-    apply auto
-    apply (subst finprod_insert)
-    apply auto
-    apply (frule inv_eq_self)
-    apply (auto)
-    done
-  finally have "(\<Otimes>i: Units R. i) = \<ominus> \<one>"
-    by simp
-  also have "(\<Otimes>i: Units R. i) = (\<Otimes>i: Units R. i mod p)"
-    apply (rule finprod_cong')
-    apply (auto)
-    apply (subst (asm) res_prime_units_eq)
-    apply auto
-    done
-  also have "\<dots> = (PROD i: Units R. i) mod p"
-    apply (rule prod_cong)
-    apply auto
-    done
-  also have "\<dots> = fact (p - 1) mod p"
-    apply (subst fact_altdef_int)
-    apply (insert prems, force)
-    apply (subst res_prime_units_eq, rule refl)
-    done
-  finally have "fact (p - 1) mod p = \<ominus> \<one>".
-  thus ?thesis
-    by (simp add: res_to_cong_simps)
-qed
-
-lemma wilson_theorem: "prime (p::int) \<Longrightarrow> [fact (p - 1) = - 1] (mod p)"
-  apply (frule prime_gt_1_int)
-  apply (case_tac "p = 2")
-  apply (subst fact_altdef_int, simp)
-  apply (subst cong_int_def)
-  apply simp
-  apply (rule residues_prime.wilson_theorem1)
-  apply (rule residues_prime.intro)
-  apply auto
-done
-
-
-end
--- a/src/HOL/NewNumberTheory/UniqueFactorization.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,967 +0,0 @@
-(*  Title:      UniqueFactorization.thy
-    ID:         
-    Author:     Jeremy Avigad
-
-    
-    Unique factorization for the natural numbers and the integers.
-
-    Note: there were previous Isabelle formalizations of unique
-    factorization due to Thomas Marthedal Rasmussen, and, building on
-    that, by Jeremy Avigad and David Gray.  
-*)
-
-header {* UniqueFactorization *}
-
-theory UniqueFactorization
-imports Cong Multiset
-begin
-
-(* inherited from Multiset *)
-declare One_nat_def [simp del] 
-
-(* As a simp or intro rule,
-
-     prime p \<Longrightarrow> p > 0
-
-   wreaks havoc here. When the premise includes ALL x :# M. prime x, it 
-   leads to the backchaining
-
-     x > 0  
-     prime x 
-     x :# M   which is, unfortunately,
-     count M x > 0
-*)
-
-
-(* useful facts *)
-
-lemma setsum_Un2: "finite (A Un B) \<Longrightarrow> 
-    setsum f (A Un B) = setsum f (A - B) + setsum f (B - A) + 
-      setsum f (A Int B)"
-  apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
-  apply (erule ssubst)
-  apply (subst setsum_Un_disjoint)
-  apply auto
-  apply (subst setsum_Un_disjoint)
-  apply auto
-done
-
-lemma setprod_Un2: "finite (A Un B) \<Longrightarrow> 
-    setprod f (A Un B) = setprod f (A - B) * setprod f (B - A) * 
-      setprod f (A Int B)"
-  apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
-  apply (erule ssubst)
-  apply (subst setprod_Un_disjoint)
-  apply auto
-  apply (subst setprod_Un_disjoint)
-  apply auto
-done
- 
-(* Should this go in Multiset.thy? *)
-(* TN: No longer an intro-rule; needed only once and might get in the way *)
-lemma multiset_eqI: "[| !!x. count M x = count N x |] ==> M = N"
-  by (subst multiset_eq_conv_count_eq, blast)
-
-(* Here is a version of set product for multisets. Is it worth moving
-   to multiset.thy? If so, one should similarly define msetsum for abelian 
-   semirings, using of_nat. Also, is it worth developing bounded quantifiers 
-   "ALL i :# M. P i"? 
-*)
-
-constdefs
-  msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b"
-  "msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)"
-
-syntax
-  "_msetprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" 
-      ("(3PROD _:#_. _)" [0, 51, 10] 10)
-
-translations
-  "PROD i :# A. b" == "msetprod (%i. b) A"
-
-lemma msetprod_Un: "msetprod f (A+B) = msetprod f A * msetprod f B" 
-  apply (simp add: msetprod_def power_add)
-  apply (subst setprod_Un2)
-  apply auto
-  apply (subgoal_tac 
-      "(PROD x:set_of A - set_of B. f x ^ count A x * f x ^ count B x) =
-       (PROD x:set_of A - set_of B. f x ^ count A x)")
-  apply (erule ssubst)
-  apply (subgoal_tac 
-      "(PROD x:set_of B - set_of A. f x ^ count A x * f x ^ count B x) =
-       (PROD x:set_of B - set_of A. f x ^ count B x)")
-  apply (erule ssubst)
-  apply (subgoal_tac "(PROD x:set_of A. f x ^ count A x) = 
-    (PROD x:set_of A - set_of B. f x ^ count A x) *
-    (PROD x:set_of A Int set_of B. f x ^ count A x)")
-  apply (erule ssubst)
-  apply (subgoal_tac "(PROD x:set_of B. f x ^ count B x) = 
-    (PROD x:set_of B - set_of A. f x ^ count B x) *
-    (PROD x:set_of A Int set_of B. f x ^ count B x)")
-  apply (erule ssubst)
-  apply (subst setprod_timesf)
-  apply (force simp add: mult_ac)
-  apply (subst setprod_Un_disjoint [symmetric])
-  apply (auto intro: setprod_cong)
-  apply (subst setprod_Un_disjoint [symmetric])
-  apply (auto intro: setprod_cong)
-done
-
-
-subsection {* unique factorization: multiset version *}
-
-lemma multiset_prime_factorization_exists [rule_format]: "n > 0 --> 
-    (EX M. (ALL (p::nat) : set_of M. prime p) & n = (PROD i :# M. i))"
-proof (rule nat_less_induct, clarify)
-  fix n :: nat
-  assume ih: "ALL m < n. 0 < m --> (EX M. (ALL p : set_of M. prime p) & m = 
-      (PROD i :# M. i))"
-  assume "(n::nat) > 0"
-  then have "n = 1 | (n > 1 & prime n) | (n > 1 & ~ prime n)"
-    by arith
-  moreover 
-  {
-    assume "n = 1"
-    then have "(ALL p : set_of {#}. prime p) & n = (PROD i :# {#}. i)"
-        by (auto simp add: msetprod_def)
-  } 
-  moreover 
-  {
-    assume "n > 1" and "prime n"
-    then have "(ALL p : set_of {# n #}. prime p) & n = (PROD i :# {# n #}. i)"
-      by (auto simp add: msetprod_def)
-  } 
-  moreover 
-  {
-    assume "n > 1" and "~ prime n"
-    from prems not_prime_eq_prod_nat
-      obtain m k where "n = m * k & 1 < m & m < n & 1 < k & k < n"
-        by blast
-    with ih obtain Q R where "(ALL p : set_of Q. prime p) & m = (PROD i:#Q. i)"
-        and "(ALL p: set_of R. prime p) & k = (PROD i:#R. i)"
-      by blast
-    hence "(ALL p: set_of (Q + R). prime p) & n = (PROD i :# Q + R. i)"
-      by (auto simp add: prems msetprod_Un set_of_union)
-    then have "EX M. (ALL p : set_of M. prime p) & n = (PROD i :# M. i)"..
-  }
-  ultimately show "EX M. (ALL p : set_of M. prime p) & n = (PROD i::nat:#M. i)"
-    by blast
-qed
-
-lemma multiset_prime_factorization_unique_aux:
-  fixes a :: nat
-  assumes "(ALL p : set_of M. prime p)" and
-    "(ALL p : set_of N. prime p)" and
-    "(PROD i :# M. i) dvd (PROD i:# N. i)"
-  shows
-    "count M a <= count N a"
-proof cases
-  assume "a : set_of M"
-  with prems have a: "prime a"
-    by auto
-  with prems have "a ^ count M a dvd (PROD i :# M. i)"
-    by (auto intro: dvd_setprod simp add: msetprod_def)
-  also have "... dvd (PROD i :# N. i)"
-    by (rule prems)
-  also have "... = (PROD i : (set_of N). i ^ (count N i))"
-    by (simp add: msetprod_def)
-  also have "... = 
-      a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))"
-    proof (cases)
-      assume "a : set_of N"
-      hence b: "set_of N = {a} Un (set_of N - {a})"
-        by auto
-      thus ?thesis
-        by (subst (1) b, subst setprod_Un_disjoint, auto)
-    next
-      assume "a ~: set_of N" 
-      thus ?thesis
-        by auto
-    qed
-  finally have "a ^ count M a dvd 
-      a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))".
-  moreover have "coprime (a ^ count M a)
-      (PROD i : (set_of N - {a}). i ^ (count N i))"
-    apply (subst gcd_commute_nat)
-    apply (rule setprod_coprime_nat)
-    apply (rule primes_imp_powers_coprime_nat)
-    apply (insert prems, auto) 
-    done
-  ultimately have "a ^ count M a dvd a^(count N a)"
-    by (elim coprime_dvd_mult_nat)
-  with a show ?thesis 
-    by (intro power_dvd_imp_le, auto)
-next
-  assume "a ~: set_of M"
-  thus ?thesis by auto
-qed
-
-lemma multiset_prime_factorization_unique:
-  assumes "(ALL (p::nat) : set_of M. prime p)" and
-    "(ALL p : set_of N. prime p)" and
-    "(PROD i :# M. i) = (PROD i:# N. i)"
-  shows
-    "M = N"
-proof -
-  {
-    fix a
-    from prems have "count M a <= count N a"
-      by (intro multiset_prime_factorization_unique_aux, auto) 
-    moreover from prems have "count N a <= count M a"
-      by (intro multiset_prime_factorization_unique_aux, auto) 
-    ultimately have "count M a = count N a"
-      by auto
-  }
-  thus ?thesis by (simp add:multiset_eq_conv_count_eq)
-qed
-
-constdefs
-  multiset_prime_factorization :: "nat => nat multiset"
-  "multiset_prime_factorization n ==
-     if n > 0 then (THE M. ((ALL p : set_of M. prime p) & 
-       n = (PROD i :# M. i)))
-     else {#}"
-
-lemma multiset_prime_factorization: "n > 0 ==>
-    (ALL p : set_of (multiset_prime_factorization n). prime p) &
-       n = (PROD i :# (multiset_prime_factorization n). i)"
-  apply (unfold multiset_prime_factorization_def)
-  apply clarsimp
-  apply (frule multiset_prime_factorization_exists)
-  apply clarify
-  apply (rule theI)
-  apply (insert multiset_prime_factorization_unique, blast)+
-done
-
-
-subsection {* Prime factors and multiplicity for nats and ints *}
-
-class unique_factorization =
-
-fixes
-  multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" and
-  prime_factors :: "'a \<Rightarrow> 'a set"
-
-(* definitions for the natural numbers *)
-
-instantiation nat :: unique_factorization
-
-begin
-
-definition
-  multiplicity_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
-where
-  "multiplicity_nat p n = count (multiset_prime_factorization n) p"
-
-definition
-  prime_factors_nat :: "nat \<Rightarrow> nat set"
-where
-  "prime_factors_nat n = set_of (multiset_prime_factorization n)"
-
-instance proof qed
-
-end
-
-(* definitions for the integers *)
-
-instantiation int :: unique_factorization
-
-begin
-
-definition
-  multiplicity_int :: "int \<Rightarrow> int \<Rightarrow> nat"
-where
-  "multiplicity_int p n = multiplicity (nat p) (nat n)"
-
-definition
-  prime_factors_int :: "int \<Rightarrow> int set"
-where
-  "prime_factors_int n = int ` (prime_factors (nat n))"
-
-instance proof qed
-
-end
-
-
-subsection {* Set up transfer *}
-
-lemma transfer_nat_int_prime_factors: 
-  "prime_factors (nat n) = nat ` prime_factors n"
-  unfolding prime_factors_int_def apply auto
-  by (subst transfer_int_nat_set_return_embed, assumption)
-
-lemma transfer_nat_int_prime_factors_closure: "n >= 0 \<Longrightarrow> 
-    nat_set (prime_factors n)"
-  by (auto simp add: nat_set_def prime_factors_int_def)
-
-lemma transfer_nat_int_multiplicity: "p >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
-  multiplicity (nat p) (nat n) = multiplicity p n"
-  by (auto simp add: multiplicity_int_def)
-
-declare TransferMorphism_nat_int[transfer add return: 
-  transfer_nat_int_prime_factors transfer_nat_int_prime_factors_closure
-  transfer_nat_int_multiplicity]
-
-
-lemma transfer_int_nat_prime_factors:
-    "prime_factors (int n) = int ` prime_factors n"
-  unfolding prime_factors_int_def by auto
-
-lemma transfer_int_nat_prime_factors_closure: "is_nat n \<Longrightarrow> 
-    nat_set (prime_factors n)"
-  by (simp only: transfer_nat_int_prime_factors_closure is_nat_def)
-
-lemma transfer_int_nat_multiplicity: 
-    "multiplicity (int p) (int n) = multiplicity p n"
-  by (auto simp add: multiplicity_int_def)
-
-declare TransferMorphism_int_nat[transfer add return: 
-  transfer_int_nat_prime_factors transfer_int_nat_prime_factors_closure
-  transfer_int_nat_multiplicity]
-
-
-subsection {* Properties of prime factors and multiplicity for nats and ints *}
-
-lemma prime_factors_ge_0_int [elim]: "p : prime_factors (n::int) \<Longrightarrow> p >= 0"
-  by (unfold prime_factors_int_def, auto)
-
-lemma prime_factors_prime_nat [intro]: "p : prime_factors (n::nat) \<Longrightarrow> prime p"
-  apply (case_tac "n = 0")
-  apply (simp add: prime_factors_nat_def multiset_prime_factorization_def)
-  apply (auto simp add: prime_factors_nat_def multiset_prime_factorization)
-done
-
-lemma prime_factors_prime_int [intro]:
-  assumes "n >= 0" and "p : prime_factors (n::int)"
-  shows "prime p"
-
-  apply (rule prime_factors_prime_nat [transferred, of n p])
-  using prems apply auto
-done
-
-lemma prime_factors_gt_0_nat [elim]: "p : prime_factors x \<Longrightarrow> p > (0::nat)"
-  by (frule prime_factors_prime_nat, auto)
-
-lemma prime_factors_gt_0_int [elim]: "x >= 0 \<Longrightarrow> p : prime_factors x \<Longrightarrow> 
-    p > (0::int)"
-  by (frule (1) prime_factors_prime_int, auto)
-
-lemma prime_factors_finite_nat [iff]: "finite (prime_factors (n::nat))"
-  by (unfold prime_factors_nat_def, auto)
-
-lemma prime_factors_finite_int [iff]: "finite (prime_factors (n::int))"
-  by (unfold prime_factors_int_def, auto)
-
-lemma prime_factors_altdef_nat: "prime_factors (n::nat) = 
-    {p. multiplicity p n > 0}"
-  by (force simp add: prime_factors_nat_def multiplicity_nat_def)
-
-lemma prime_factors_altdef_int: "prime_factors (n::int) = 
-    {p. p >= 0 & multiplicity p n > 0}"
-  apply (unfold prime_factors_int_def multiplicity_int_def)
-  apply (subst prime_factors_altdef_nat)
-  apply (auto simp add: image_def)
-done
-
-lemma prime_factorization_nat: "(n::nat) > 0 \<Longrightarrow> 
-    n = (PROD p : prime_factors n. p^(multiplicity p n))"
-  by (frule multiset_prime_factorization, 
-    simp add: prime_factors_nat_def multiplicity_nat_def msetprod_def)
-
-thm prime_factorization_nat [transferred] 
-
-lemma prime_factorization_int: 
-  assumes "(n::int) > 0"
-  shows "n = (PROD p : prime_factors n. p^(multiplicity p n))"
-
-  apply (rule prime_factorization_nat [transferred, of n])
-  using prems apply auto
-done
-
-lemma neq_zero_eq_gt_zero_nat: "((x::nat) ~= 0) = (x > 0)"
-  by auto
-
-lemma prime_factorization_unique_nat: 
-    "S = { (p::nat) . f p > 0} \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
-      n = (PROD p : S. p^(f p)) \<Longrightarrow>
-        S = prime_factors n & (ALL p. f p = multiplicity p n)"
-  apply (subgoal_tac "multiset_prime_factorization n = Abs_multiset
-      f")
-  apply (unfold prime_factors_nat_def multiplicity_nat_def)
-  apply (simp add: set_of_def count_def Abs_multiset_inverse multiset_def)
-  apply (unfold multiset_prime_factorization_def)
-  apply (subgoal_tac "n > 0")
-  prefer 2
-  apply force
-  apply (subst if_P, assumption)
-  apply (rule the1_equality)
-  apply (rule ex_ex1I)
-  apply (rule multiset_prime_factorization_exists, assumption)
-  apply (rule multiset_prime_factorization_unique)
-  apply force
-  apply force
-  apply force
-  unfolding set_of_def count_def msetprod_def
-  apply (subgoal_tac "f : multiset")
-  apply (auto simp only: Abs_multiset_inverse)
-  unfolding multiset_def apply force 
-done
-
-lemma prime_factors_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow> 
-    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
-      prime_factors n = S"
-  by (rule prime_factorization_unique_nat [THEN conjunct1, symmetric],
-    assumption+)
-
-lemma prime_factors_characterization'_nat: 
-  "finite {p. 0 < f (p::nat)} \<Longrightarrow>
-    (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
-      prime_factors (PROD p | 0 < f p . p ^ f p) = {p. 0 < f p}"
-  apply (rule prime_factors_characterization_nat)
-  apply auto
-done
-
-(* A minor glitch:*)
-
-thm prime_factors_characterization'_nat 
-    [where f = "%x. f (int (x::nat))", 
-      transferred direction: nat "op <= (0::int)", rule_format]
-
-(*
-  Transfer isn't smart enough to know that the "0 < f p" should 
-  remain a comparison between nats. But the transfer still works. 
-*)
-
-lemma primes_characterization'_int [rule_format]: 
-    "finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
-      (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
-        prime_factors (PROD p | p >=0 & 0 < f p . p ^ f p) = 
-          {p. p >= 0 & 0 < f p}"
-
-  apply (insert prime_factors_characterization'_nat 
-    [where f = "%x. f (int (x::nat))", 
-    transferred direction: nat "op <= (0::int)"])
-  apply auto
-done
-
-lemma prime_factors_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow> 
-    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
-      prime_factors n = S"
-  apply simp
-  apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
-  apply (simp only:)
-  apply (subst primes_characterization'_int)
-  apply auto
-  apply (auto simp add: prime_ge_0_int)
-done
-
-lemma multiplicity_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow> 
-    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
-      multiplicity p n = f p"
-  by (frule prime_factorization_unique_nat [THEN conjunct2, rule_format, 
-    symmetric], auto)
-
-lemma multiplicity_characterization'_nat: "finite {p. 0 < f (p::nat)} \<longrightarrow>
-    (ALL p. 0 < f p \<longrightarrow> prime p) \<longrightarrow>
-      multiplicity p (PROD p | 0 < f p . p ^ f p) = f p"
-  apply (rule impI)+
-  apply (rule multiplicity_characterization_nat)
-  apply auto
-done
-
-lemma multiplicity_characterization'_int [rule_format]: 
-  "finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
-    (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow> p >= 0 \<Longrightarrow>
-      multiplicity p (PROD p | p >= 0 & 0 < f p . p ^ f p) = f p"
-
-  apply (insert multiplicity_characterization'_nat 
-    [where f = "%x. f (int (x::nat))", 
-      transferred direction: nat "op <= (0::int)", rule_format])
-  apply auto
-done
-
-lemma multiplicity_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow> 
-    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
-      p >= 0 \<Longrightarrow> multiplicity p n = f p"
-  apply simp
-  apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
-  apply (simp only:)
-  apply (subst multiplicity_characterization'_int)
-  apply auto
-  apply (auto simp add: prime_ge_0_int)
-done
-
-lemma multiplicity_zero_nat [simp]: "multiplicity (p::nat) 0 = 0"
-  by (simp add: multiplicity_nat_def multiset_prime_factorization_def)
-
-lemma multiplicity_zero_int [simp]: "multiplicity (p::int) 0 = 0"
-  by (simp add: multiplicity_int_def) 
-
-lemma multiplicity_one_nat [simp]: "multiplicity p (1::nat) = 0"
-  by (subst multiplicity_characterization_nat [where f = "%x. 0"], auto)
-
-lemma multiplicity_one_int [simp]: "multiplicity p (1::int) = 0"
-  by (simp add: multiplicity_int_def)
-
-lemma multiplicity_prime_nat [simp]: "prime (p::nat) \<Longrightarrow> multiplicity p p = 1"
-  apply (subst multiplicity_characterization_nat
-      [where f = "(%q. if q = p then 1 else 0)"])
-  apply auto
-  apply (case_tac "x = p")
-  apply auto
-done
-
-lemma multiplicity_prime_int [simp]: "prime (p::int) \<Longrightarrow> multiplicity p p = 1"
-  unfolding prime_int_def multiplicity_int_def by auto
-
-lemma multiplicity_prime_power_nat [simp]: "prime (p::nat) \<Longrightarrow> 
-    multiplicity p (p^n) = n"
-  apply (case_tac "n = 0")
-  apply auto
-  apply (subst multiplicity_characterization_nat
-      [where f = "(%q. if q = p then n else 0)"])
-  apply auto
-  apply (case_tac "x = p")
-  apply auto
-done
-
-lemma multiplicity_prime_power_int [simp]: "prime (p::int) \<Longrightarrow> 
-    multiplicity p (p^n) = n"
-  apply (frule prime_ge_0_int)
-  apply (auto simp add: prime_int_def multiplicity_int_def nat_power_eq)
-done
-
-lemma multiplicity_nonprime_nat [simp]: "~ prime (p::nat) \<Longrightarrow> 
-    multiplicity p n = 0"
-  apply (case_tac "n = 0")
-  apply auto
-  apply (frule multiset_prime_factorization)
-  apply (auto simp add: set_of_def multiplicity_nat_def)
-done
-
-lemma multiplicity_nonprime_int [simp]: "~ prime (p::int) \<Longrightarrow> multiplicity p n = 0"
-  by (unfold multiplicity_int_def prime_int_def, auto)
-
-lemma multiplicity_not_factor_nat [simp]: 
-    "p ~: prime_factors (n::nat) \<Longrightarrow> multiplicity p n = 0"
-  by (subst (asm) prime_factors_altdef_nat, auto)
-
-lemma multiplicity_not_factor_int [simp]: 
-    "p >= 0 \<Longrightarrow> p ~: prime_factors (n::int) \<Longrightarrow> multiplicity p n = 0"
-  by (subst (asm) prime_factors_altdef_int, auto)
-
-lemma multiplicity_product_aux_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow>
-    (prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
-    (ALL p. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
-  apply (rule prime_factorization_unique_nat)
-  apply (simp only: prime_factors_altdef_nat)
-  apply auto
-  apply (subst power_add)
-  apply (subst setprod_timesf)
-  apply (rule arg_cong2)back back
-  apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors k Un 
-      (prime_factors l - prime_factors k)")
-  apply (erule ssubst)
-  apply (subst setprod_Un_disjoint)
-  apply auto
-  apply (subgoal_tac "(\<Prod>p\<in>prime_factors l - prime_factors k. p ^ multiplicity p k) = 
-      (\<Prod>p\<in>prime_factors l - prime_factors k. 1)")
-  apply (erule ssubst)
-  apply (simp add: setprod_1)
-  apply (erule prime_factorization_nat)
-  apply (rule setprod_cong, auto)
-  apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors l Un 
-      (prime_factors k - prime_factors l)")
-  apply (erule ssubst)
-  apply (subst setprod_Un_disjoint)
-  apply auto
-  apply (subgoal_tac "(\<Prod>p\<in>prime_factors k - prime_factors l. p ^ multiplicity p l) = 
-      (\<Prod>p\<in>prime_factors k - prime_factors l. 1)")
-  apply (erule ssubst)
-  apply (simp add: setprod_1)
-  apply (erule prime_factorization_nat)
-  apply (rule setprod_cong, auto)
-done
-
-(* transfer doesn't have the same problem here with the right 
-   choice of rules. *)
-
-lemma multiplicity_product_aux_int: 
-  assumes "(k::int) > 0" and "l > 0"
-  shows 
-    "(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
-    (ALL p >= 0. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
-
-  apply (rule multiplicity_product_aux_nat [transferred, of l k])
-  using prems apply auto
-done
-
-lemma prime_factors_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) = 
-    prime_factors k Un prime_factors l"
-  by (rule multiplicity_product_aux_nat [THEN conjunct1, symmetric])
-
-lemma prime_factors_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) = 
-    prime_factors k Un prime_factors l"
-  by (rule multiplicity_product_aux_int [THEN conjunct1, symmetric])
-
-lemma multiplicity_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> multiplicity p (k * l) = 
-    multiplicity p k + multiplicity p l"
-  by (rule multiplicity_product_aux_nat [THEN conjunct2, rule_format, 
-      symmetric])
-
-lemma multiplicity_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> p >= 0 \<Longrightarrow> 
-    multiplicity p (k * l) = multiplicity p k + multiplicity p l"
-  by (rule multiplicity_product_aux_int [THEN conjunct2, rule_format, 
-      symmetric])
-
-lemma multiplicity_setprod_nat: "finite S \<Longrightarrow> (ALL x : S. f x > 0) \<Longrightarrow> 
-    multiplicity (p::nat) (PROD x : S. f x) = 
-      (SUM x : S. multiplicity p (f x))"
-  apply (induct set: finite)
-  apply auto
-  apply (subst multiplicity_product_nat)
-  apply auto
-done
-
-(* Transfer is delicate here for two reasons: first, because there is
-   an implicit quantifier over functions (f), and, second, because the 
-   product over the multiplicity should not be translated to an integer 
-   product.
-
-   The way to handle the first is to use quantifier rules for functions.
-   The way to handle the second is to turn off the offending rule.
-*)
-
-lemma transfer_nat_int_sum_prod_closure3:
-  "(SUM x : A. int (f x)) >= 0"
-  "(PROD x : A. int (f x)) >= 0"
-  apply (rule setsum_nonneg, auto)
-  apply (rule setprod_nonneg, auto)
-done
-
-declare TransferMorphism_nat_int[transfer 
-  add return: transfer_nat_int_sum_prod_closure3
-  del: transfer_nat_int_sum_prod2 (1)]
-
-lemma multiplicity_setprod_int: "p >= 0 \<Longrightarrow> finite S \<Longrightarrow> 
-  (ALL x : S. f x > 0) \<Longrightarrow> 
-    multiplicity (p::int) (PROD x : S. f x) = 
-      (SUM x : S. multiplicity p (f x))"
-
-  apply (frule multiplicity_setprod_nat
-    [where f = "%x. nat(int(nat(f x)))", 
-      transferred direction: nat "op <= (0::int)"])
-  apply auto
-  apply (subst (asm) setprod_cong)
-  apply (rule refl)
-  apply (rule if_P)
-  apply auto
-  apply (rule setsum_cong)
-  apply auto
-done
-
-declare TransferMorphism_nat_int[transfer 
-  add return: transfer_nat_int_sum_prod2 (1)]
-
-lemma multiplicity_prod_prime_powers_nat:
-    "finite S \<Longrightarrow> (ALL p : S. prime (p::nat)) \<Longrightarrow>
-       multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
-  apply (subgoal_tac "(PROD p : S. p ^ f p) = 
-      (PROD p : S. p ^ (%x. if x : S then f x else 0) p)")
-  apply (erule ssubst)
-  apply (subst multiplicity_characterization_nat)
-  prefer 5 apply (rule refl)
-  apply (rule refl)
-  apply auto
-  apply (subst setprod_mono_one_right)
-  apply assumption
-  prefer 3
-  apply (rule setprod_cong)
-  apply (rule refl)
-  apply auto
-done
-
-(* Here the issue with transfer is the implicit quantifier over S *)
-
-lemma multiplicity_prod_prime_powers_int:
-    "(p::int) >= 0 \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
-       multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
-
-  apply (subgoal_tac "int ` nat ` S = S")
-  apply (frule multiplicity_prod_prime_powers_nat [where f = "%x. f(int x)" 
-    and S = "nat ` S", transferred])
-  apply auto
-  apply (subst prime_int_def [symmetric])
-  apply auto
-  apply (subgoal_tac "xb >= 0")
-  apply force
-  apply (rule prime_ge_0_int)
-  apply force
-  apply (subst transfer_nat_int_set_return_embed)
-  apply (unfold nat_set_def, auto)
-done
-
-lemma multiplicity_distinct_prime_power_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow>
-    p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
-  apply (subgoal_tac "q^n = setprod (%x. x^n) {q}")
-  apply (erule ssubst)
-  apply (subst multiplicity_prod_prime_powers_nat)
-  apply auto
-done
-
-lemma multiplicity_distinct_prime_power_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow>
-    p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
-  apply (frule prime_ge_0_int [of q])
-  apply (frule multiplicity_distinct_prime_power_nat [transferred leaving: n]) 
-  prefer 4
-  apply assumption
-  apply auto
-done
-
-lemma dvd_multiplicity_nat: 
-    "(0::nat) < y \<Longrightarrow> x dvd y \<Longrightarrow> multiplicity p x <= multiplicity p y"
-  apply (case_tac "x = 0")
-  apply (auto simp add: dvd_def multiplicity_product_nat)
-done
-
-lemma dvd_multiplicity_int: 
-    "(0::int) < y \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> p >= 0 \<Longrightarrow> 
-      multiplicity p x <= multiplicity p y"
-  apply (case_tac "x = 0")
-  apply (auto simp add: dvd_def)
-  apply (subgoal_tac "0 < k")
-  apply (auto simp add: multiplicity_product_int)
-  apply (erule zero_less_mult_pos)
-  apply arith
-done
-
-lemma dvd_prime_factors_nat [intro]:
-    "0 < (y::nat) \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
-  apply (simp only: prime_factors_altdef_nat)
-  apply auto
-  apply (frule dvd_multiplicity_nat)
-  apply auto
-(* It is a shame that auto and arith don't get this. *)
-  apply (erule order_less_le_trans)back
-  apply assumption
-done
-
-lemma dvd_prime_factors_int [intro]:
-    "0 < (y::int) \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
-  apply (auto simp add: prime_factors_altdef_int)
-  apply (erule order_less_le_trans)
-  apply (rule dvd_multiplicity_int)
-  apply auto
-done
-
-lemma multiplicity_dvd_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow> 
-    ALL p. multiplicity p x <= multiplicity p y \<Longrightarrow>
-      x dvd y"
-  apply (subst prime_factorization_nat [of x], assumption)
-  apply (subst prime_factorization_nat [of y], assumption)
-  apply (rule setprod_dvd_setprod_subset2)
-  apply force
-  apply (subst prime_factors_altdef_nat)+
-  apply auto
-(* Again, a shame that auto and arith don't get this. *)
-  apply (drule_tac x = xa in spec, auto)
-  apply (rule le_imp_power_dvd)
-  apply blast
-done
-
-lemma multiplicity_dvd_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow> 
-    ALL p >= 0. multiplicity p x <= multiplicity p y \<Longrightarrow>
-      x dvd y"
-  apply (subst prime_factorization_int [of x], assumption)
-  apply (subst prime_factorization_int [of y], assumption)
-  apply (rule setprod_dvd_setprod_subset2)
-  apply force
-  apply (subst prime_factors_altdef_int)+
-  apply auto
-  apply (rule dvd_power_le)
-  apply auto
-  apply (drule_tac x = xa in spec)
-  apply (erule impE)
-  apply auto
-done
-
-lemma multiplicity_dvd'_nat: "(0::nat) < x \<Longrightarrow> 
-    \<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
-  apply (cases "y = 0")
-  apply auto
-  apply (rule multiplicity_dvd_nat, auto)
-  apply (case_tac "prime p")
-  apply auto
-done
-
-lemma multiplicity_dvd'_int: "(0::int) < x \<Longrightarrow> 0 <= y \<Longrightarrow>
-    \<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
-  apply (cases "y = 0")
-  apply auto
-  apply (rule multiplicity_dvd_int, auto)
-  apply (case_tac "prime p")
-  apply auto
-done
-
-lemma dvd_multiplicity_eq_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
-    (x dvd y) = (ALL p. multiplicity p x <= multiplicity p y)"
-  by (auto intro: dvd_multiplicity_nat multiplicity_dvd_nat)
-
-lemma dvd_multiplicity_eq_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
-    (x dvd y) = (ALL p >= 0. multiplicity p x <= multiplicity p y)"
-  by (auto intro: dvd_multiplicity_int multiplicity_dvd_int)
-
-lemma prime_factors_altdef2_nat: "(n::nat) > 0 \<Longrightarrow> 
-    (p : prime_factors n) = (prime p & p dvd n)"
-  apply (case_tac "prime p")
-  apply auto
-  apply (subst prime_factorization_nat [where n = n], assumption)
-  apply (rule dvd_trans) 
-  apply (rule dvd_power [where x = p and n = "multiplicity p n"])
-  apply (subst (asm) prime_factors_altdef_nat, force)
-  apply (rule dvd_setprod)
-  apply auto  
-  apply (subst prime_factors_altdef_nat)
-  apply (subst (asm) dvd_multiplicity_eq_nat)
-  apply auto
-  apply (drule spec [where x = p])
-  apply auto
-done
-
-lemma prime_factors_altdef2_int: 
-  assumes "(n::int) > 0" 
-  shows "(p : prime_factors n) = (prime p & p dvd n)"
-
-  apply (case_tac "p >= 0")
-  apply (rule prime_factors_altdef2_nat [transferred])
-  using prems apply auto
-  apply (auto simp add: prime_ge_0_int prime_factors_ge_0_int)
-done
-
-lemma multiplicity_eq_nat:
-  fixes x and y::nat 
-  assumes [arith]: "x > 0" "y > 0" and
-    mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
-  shows "x = y"
-
-  apply (rule dvd_anti_sym)
-  apply (auto intro: multiplicity_dvd'_nat) 
-done
-
-lemma multiplicity_eq_int:
-  fixes x and y::int 
-  assumes [arith]: "x > 0" "y > 0" and
-    mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
-  shows "x = y"
-
-  apply (rule dvd_anti_sym [transferred])
-  apply (auto intro: multiplicity_dvd'_int) 
-done
-
-
-subsection {* An application *}
-
-lemma gcd_eq_nat: 
-  assumes pos [arith]: "x > 0" "y > 0"
-  shows "gcd (x::nat) y = 
-    (PROD p: prime_factors x Un prime_factors y. 
-      p ^ (min (multiplicity p x) (multiplicity p y)))"
-proof -
-  def z == "(PROD p: prime_factors (x::nat) Un prime_factors y. 
-      p ^ (min (multiplicity p x) (multiplicity p y)))"
-  have [arith]: "z > 0"
-    unfolding z_def by (rule setprod_pos_nat, auto)
-  have aux: "!!p. prime p \<Longrightarrow> multiplicity p z = 
-      min (multiplicity p x) (multiplicity p y)"
-    unfolding z_def
-    apply (subst multiplicity_prod_prime_powers_nat)
-    apply (auto simp add: multiplicity_not_factor_nat)
-    done
-  have "z dvd x" 
-    by (intro multiplicity_dvd'_nat, auto simp add: aux)
-  moreover have "z dvd y" 
-    by (intro multiplicity_dvd'_nat, auto simp add: aux)
-  moreover have "ALL w. w dvd x & w dvd y \<longrightarrow> w dvd z"
-    apply auto
-    apply (case_tac "w = 0", auto)
-    apply (erule multiplicity_dvd'_nat)
-    apply (auto intro: dvd_multiplicity_nat simp add: aux)
-    done
-  ultimately have "z = gcd x y"
-    by (subst gcd_unique_nat [symmetric], blast)
-  thus ?thesis
-    unfolding z_def by auto
-qed
-
-lemma lcm_eq_nat: 
-  assumes pos [arith]: "x > 0" "y > 0"
-  shows "lcm (x::nat) y = 
-    (PROD p: prime_factors x Un prime_factors y. 
-      p ^ (max (multiplicity p x) (multiplicity p y)))"
-proof -
-  def z == "(PROD p: prime_factors (x::nat) Un prime_factors y. 
-      p ^ (max (multiplicity p x) (multiplicity p y)))"
-  have [arith]: "z > 0"
-    unfolding z_def by (rule setprod_pos_nat, auto)
-  have aux: "!!p. prime p \<Longrightarrow> multiplicity p z = 
-      max (multiplicity p x) (multiplicity p y)"
-    unfolding z_def
-    apply (subst multiplicity_prod_prime_powers_nat)
-    apply (auto simp add: multiplicity_not_factor_nat)
-    done
-  have "x dvd z" 
-    by (intro multiplicity_dvd'_nat, auto simp add: aux)
-  moreover have "y dvd z" 
-    by (intro multiplicity_dvd'_nat, auto simp add: aux)
-  moreover have "ALL w. x dvd w & y dvd w \<longrightarrow> z dvd w"
-    apply auto
-    apply (case_tac "w = 0", auto)
-    apply (rule multiplicity_dvd'_nat)
-    apply (auto intro: dvd_multiplicity_nat simp add: aux)
-    done
-  ultimately have "z = lcm x y"
-    by (subst lcm_unique_nat [symmetric], blast)
-  thus ?thesis
-    unfolding z_def by auto
-qed
-
-lemma multiplicity_gcd_nat: 
-  assumes [arith]: "x > 0" "y > 0"
-  shows "multiplicity (p::nat) (gcd x y) = 
-    min (multiplicity p x) (multiplicity p y)"
-
-  apply (subst gcd_eq_nat)
-  apply auto
-  apply (subst multiplicity_prod_prime_powers_nat)
-  apply auto
-done
-
-lemma multiplicity_lcm_nat: 
-  assumes [arith]: "x > 0" "y > 0"
-  shows "multiplicity (p::nat) (lcm x y) = 
-    max (multiplicity p x) (multiplicity p y)"
-
-  apply (subst lcm_eq_nat)
-  apply auto
-  apply (subst multiplicity_prod_prime_powers_nat)
-  apply auto
-done
-
-lemma gcd_lcm_distrib_nat: "gcd (x::nat) (lcm y z) = lcm (gcd x y) (gcd x z)"
-  apply (case_tac "x = 0 | y = 0 | z = 0") 
-  apply auto
-  apply (rule multiplicity_eq_nat)
-  apply (auto simp add: multiplicity_gcd_nat multiplicity_lcm_nat 
-      lcm_pos_nat)
-done
-
-lemma gcd_lcm_distrib_int: "gcd (x::int) (lcm y z) = lcm (gcd x y) (gcd x z)"
-  apply (subst (1 2 3) gcd_abs_int)
-  apply (subst lcm_abs_int)
-  apply (subst (2) abs_of_nonneg)
-  apply force
-  apply (rule gcd_lcm_distrib_nat [transferred])
-  apply auto
-done
-
-end
--- a/src/HOL/NumberTheory/BijectionRel.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,231 +0,0 @@
-(*  Title:      HOL/NumberTheory/BijectionRel.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Bijections between sets *}
-
-theory BijectionRel imports Main begin
-
-text {*
-  Inductive definitions of bijections between two different sets and
-  between the same set.  Theorem for relating the two definitions.
-
-  \bigskip
-*}
-
-inductive_set
-  bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
-  for P :: "'a => 'b => bool"
-where
-  empty [simp]: "({}, {}) \<in> bijR P"
-| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P
-    ==> (insert a A, insert b B) \<in> bijR P"
-
-text {*
-  Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
-  (and similar for @{term A}).
-*}
-
-definition
-  bijP :: "('a => 'a => bool) => 'a set => bool" where
-  "bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"
-
-definition
-  uniqP :: "('a => 'a => bool) => bool" where
-  "uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"
-
-definition
-  symP :: "('a => 'a => bool) => bool" where
-  "symP P = (\<forall>a b. P a b = P b a)"
-
-inductive_set
-  bijER :: "('a => 'a => bool) => 'a set set"
-  for P :: "'a => 'a => bool"
-where
-  empty [simp]: "{} \<in> bijER P"
-| insert1: "P a a ==> a \<notin> A ==> A \<in> bijER P ==> insert a A \<in> bijER P"
-| insert2: "P a b ==> a \<noteq> b ==> a \<notin> A ==> b \<notin> A ==> A \<in> bijER P
-    ==> insert a (insert b A) \<in> bijER P"
-
-
-text {* \medskip @{term bijR} *}
-
-lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"
-  apply (erule bijR.induct)
-  apply auto
-  done
-
-lemma fin_bijRr: "(A, B) \<in> bijR P ==> finite B"
-  apply (erule bijR.induct)
-  apply auto
-  done
-
-lemma aux_induct:
-  assumes major: "finite F"
-    and subs: "F \<subseteq> A"
-    and cases: "P {}"
-      "!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
-  shows "P F"
-  using major subs
-  apply (induct set: finite)
-   apply (blast intro: cases)+
-  done
-
-
-lemma inj_func_bijR_aux1:
-    "A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"
-  apply (unfold inj_on_def)
-  apply auto
-  done
-
-lemma inj_func_bijR_aux2:
-  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A
-    ==> (F, f ` F) \<in> bijR P"
-  apply (rule_tac F = F and A = A in aux_induct)
-     apply (rule finite_subset)
-      apply auto
-  apply (rule bijR.insert)
-     apply (rule_tac [3] inj_func_bijR_aux1)
-        apply auto
-  done
-
-lemma inj_func_bijR:
-  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A
-    ==> (A, f ` A) \<in> bijR P"
-  apply (rule inj_func_bijR_aux2)
-     apply auto
-  done
-
-
-text {* \medskip @{term bijER} *}
-
-lemma fin_bijER: "A \<in> bijER P ==> finite A"
-  apply (erule bijER.induct)
-    apply auto
-  done
-
-lemma aux1:
-  "a \<notin> A ==> a \<notin> B ==> F \<subseteq> insert a A ==> F \<subseteq> insert a B ==> a \<in> F
-    ==> \<exists>C. F = insert a C \<and> a \<notin> C \<and> C <= A \<and> C <= B"
-  apply (rule_tac x = "F - {a}" in exI)
-  apply auto
-  done
-
-lemma aux2: "a \<noteq> b ==> a \<notin> A ==> b \<notin> B ==> a \<in> F ==> b \<in> F
-    ==> F \<subseteq> insert a A ==> F \<subseteq> insert b B
-    ==> \<exists>C. F = insert a (insert b C) \<and> a \<notin> C \<and> b \<notin> C \<and> C \<subseteq> A \<and> C \<subseteq> B"
-  apply (rule_tac x = "F - {a, b}" in exI)
-  apply auto
-  done
-
-lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)"
-  apply (unfold uniqP_def)
-  apply auto
-  done
-
-lemma aux_sym: "symP P ==> P a b = P b a"
-  apply (unfold symP_def)
-  apply auto
-  done
-
-lemma aux_in1:
-    "uniqP P ==> b \<notin> C ==> P b b ==> bijP P (insert b C) ==> bijP P C"
-  apply (unfold bijP_def)
-  apply auto
-  apply (subgoal_tac "b \<noteq> a")
-   prefer 2
-   apply clarify
-  apply (simp add: aux_uniq)
-  apply auto
-  done
-
-lemma aux_in2:
-  "symP P ==> uniqP P ==> a \<notin> C ==> b \<notin> C ==> a \<noteq> b ==> P a b
-    ==> bijP P (insert a (insert b C)) ==> bijP P C"
-  apply (unfold bijP_def)
-  apply auto
-  apply (subgoal_tac "aa \<noteq> a")
-   prefer 2
-   apply clarify
-  apply (subgoal_tac "aa \<noteq> b")
-   prefer 2
-   apply clarify
-  apply (simp add: aux_uniq)
-  apply (subgoal_tac "ba \<noteq> a")
-   apply auto
-  apply (subgoal_tac "P a aa")
-   prefer 2
-   apply (simp add: aux_sym)
-  apply (subgoal_tac "b = aa")
-   apply (rule_tac [2] iffD1)
-    apply (rule_tac [2] a = a and c = a and P = P in aux_uniq)
-      apply auto
-  done
-
-lemma aux_foo: "\<forall>a b. Q a \<and> P a b --> R b ==> P a b ==> Q a ==> R b"
-  apply auto
-  done
-
-lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a \<in> F) = (b \<in> F)"
-  apply (unfold bijP_def)
-  apply (rule iffI)
-  apply (erule_tac [!] aux_foo)
-      apply simp_all
-  apply (rule iffD2)
-   apply (rule_tac P = P in aux_sym)
-   apply simp_all
-  done
-
-
-lemma aux_bijRER:
-  "(A, B) \<in> bijR P ==> uniqP P ==> symP P
-    ==> \<forall>F. bijP P F \<and> F \<subseteq> A \<and> F \<subseteq> B --> F \<in> bijER P"
-  apply (erule bijR.induct)
-   apply simp
-  apply (case_tac "a = b")
-   apply clarify
-   apply (case_tac "b \<in> F")
-    prefer 2
-    apply (simp add: subset_insert)
-   apply (cut_tac F = F and a = b and A = A and B = B in aux1)
-        prefer 6
-        apply clarify
-        apply (rule bijER.insert1)
-          apply simp_all
-   apply (subgoal_tac "bijP P C")
-    apply simp
-   apply (rule aux_in1)
-      apply simp_all
-  apply clarify
-  apply (case_tac "a \<in> F")
-   apply (case_tac [!] "b \<in> F")
-     apply (cut_tac F = F and a = a and b = b and A = A and B = B
-       in aux2)
-            apply (simp_all add: subset_insert)
-    apply clarify
-    apply (rule bijER.insert2)
-        apply simp_all
-    apply (subgoal_tac "bijP P C")
-     apply simp
-    apply (rule aux_in2)
-          apply simp_all
-   apply (subgoal_tac "b \<in> F")
-    apply (rule_tac [2] iffD1)
-     apply (rule_tac [2] a = a and F = F and P = P in aux_bij)
-       apply (simp_all (no_asm_simp))
-   apply (subgoal_tac [2] "a \<in> F")
-    apply (rule_tac [3] iffD2)
-     apply (rule_tac [3] b = b and F = F and P = P in aux_bij)
-       apply auto
-  done
-
-lemma bijR_bijER:
-  "(A, A) \<in> bijR P ==>
-    bijP P A ==> uniqP P ==> symP P ==> A \<in> bijER P"
-  apply (cut_tac A = A and B = A and P = P in aux_bijRER)
-     apply auto
-  done
-
-end
--- a/src/HOL/NumberTheory/Chinese.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,259 +0,0 @@
-(*  Title:      HOL/NumberTheory/Chinese.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* The Chinese Remainder Theorem *}
-
-theory Chinese 
-imports IntPrimes
-begin
-
-text {*
-  The Chinese Remainder Theorem for an arbitrary finite number of
-  equations.  (The one-equation case is included in theory @{text
-  IntPrimes}.  Uses functions for indexing.\footnote{Maybe @{term
-  funprod} and @{term funsum} should be based on general @{term fold}
-  on indices?}
-*}
-
-
-subsection {* Definitions *}
-
-consts
-  funprod :: "(nat => int) => nat => nat => int"
-  funsum :: "(nat => int) => nat => nat => int"
-
-primrec
-  "funprod f i 0 = f i"
-  "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
-
-primrec
-  "funsum f i 0 = f i"
-  "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
-
-definition
-  m_cond :: "nat => (nat => int) => bool" where
-  "m_cond n mf =
-    ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
-      (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
-
-definition
-  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
-  "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
-
-definition
-  lincong_sol ::
-    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
-  "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
-
-definition
-  mhf :: "(nat => int) => nat => nat => int" where
-  "mhf mf n i =
-    (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
-     else if i = n then funprod mf 0 (n - Suc 0)
-     else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
-
-definition
-  xilin_sol ::
-    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
-  "xilin_sol i n kf bf mf =
-    (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
-        (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
-     else 0)"
-
-definition
-  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
-  "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
-
-
-text {* \medskip @{term funprod} and @{term funsum} *}
-
-lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
-  apply (induct n)
-   apply auto
-  apply (simp add: zero_less_mult_iff)
-  done
-
-lemma funprod_zgcd [rule_format (no_asm)]:
-  "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
-    zgcd (funprod mf k l) (mf m) = 1"
-  apply (induct l)
-   apply simp_all
-  apply (rule impI)+
-  apply (subst zgcd_zmult_cancel)
-  apply auto
-  done
-
-lemma funprod_zdvd [rule_format]:
-    "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
-  apply (induct l)
-   apply auto
-  apply (subgoal_tac "i = Suc (k + l)")
-   apply (simp_all (no_asm_simp))
-  done
-
-lemma funsum_mod:
-    "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
-  apply (induct l)
-   apply auto
-  apply (rule trans)
-   apply (rule mod_add_eq)
-  apply simp
-  apply (rule mod_add_right_eq [symmetric])
-  done
-
-lemma funsum_zero [rule_format (no_asm)]:
-    "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
-  apply (induct l)
-   apply auto
-  done
-
-lemma funsum_oneelem [rule_format (no_asm)]:
-  "k \<le> j --> j \<le> k + l -->
-    (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
-    funsum f k l = f j"
-  apply (induct l)
-   prefer 2
-   apply clarify
-   defer
-   apply clarify
-   apply (subgoal_tac "k = j")
-    apply (simp_all (no_asm_simp))
-  apply (case_tac "Suc (k + l) = j")
-   apply (subgoal_tac "funsum f k l = 0")
-    apply (rule_tac [2] funsum_zero)
-    apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
-     apply (subgoal_tac [3] "j \<le> k + l")
-      prefer 4
-      apply arith
-     apply auto
-  done
-
-
-subsection {* Chinese: uniqueness *}
-
-lemma zcong_funprod_aux:
-  "m_cond n mf ==> km_cond n kf mf
-    ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
-    ==> [x = y] (mod mf n)"
-  apply (unfold m_cond_def km_cond_def lincong_sol_def)
-  apply (rule iffD1)
-   apply (rule_tac k = "kf n" in zcong_cancel2)
-    apply (rule_tac [3] b = "bf n" in zcong_trans)
-     prefer 4
-     apply (subst zcong_sym)
-     defer
-     apply (rule order_less_imp_le)
-     apply simp_all
-  done
-
-lemma zcong_funprod [rule_format]:
-  "m_cond n mf --> km_cond n kf mf -->
-    lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
-    [x = y] (mod funprod mf 0 n)"
-  apply (induct n)
-   apply (simp_all (no_asm))
-   apply (blast intro: zcong_funprod_aux)
-  apply (rule impI)+
-  apply (rule zcong_zgcd_zmult_zmod)
-    apply (blast intro: zcong_funprod_aux)
-    prefer 2
-    apply (subst zgcd_commute)
-    apply (rule funprod_zgcd)
-   apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
-  done
-
-
-subsection {* Chinese: existence *}
-
-lemma unique_xi_sol:
-  "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
-    ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
-  apply (rule zcong_lineq_unique)
-   apply (tactic {* stac (thm "zgcd_zmult_cancel") 2 *})
-    apply (unfold m_cond_def km_cond_def mhf_def)
-    apply (simp_all (no_asm_simp))
-  apply safe
-    apply (tactic {* stac (thm "zgcd_zmult_cancel") 3 *})
-     apply (rule_tac [!] funprod_zgcd)
-     apply safe
-     apply simp_all
-   apply (subgoal_tac "i<n")
-    prefer 2
-    apply arith
-   apply (case_tac [2] i)
-    apply simp_all
-  done
-
-lemma x_sol_lin_aux:
-    "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
-  apply (unfold mhf_def)
-  apply (case_tac "i = 0")
-   apply (case_tac [2] "i = n")
-    apply (simp_all (no_asm_simp))
-    apply (case_tac [3] "j < i")
-     apply (rule_tac [3] dvd_mult2)
-     apply (rule_tac [4] dvd_mult)
-     apply (rule_tac [!] funprod_zdvd)
-     apply arith
-     apply arith
-     apply arith
-     apply arith
-     apply arith
-     apply arith
-     apply arith
-     apply arith
-  done
-
-lemma x_sol_lin:
-  "0 < n ==> i \<le> n
-    ==> x_sol n kf bf mf mod mf i =
-      xilin_sol i n kf bf mf * mhf mf n i mod mf i"
-  apply (unfold x_sol_def)
-  apply (subst funsum_mod)
-  apply (subst funsum_oneelem)
-     apply auto
-  apply (subst dvd_eq_mod_eq_0 [symmetric])
-  apply (rule dvd_mult)
-  apply (rule x_sol_lin_aux)
-  apply auto
-  done
-
-
-subsection {* Chinese *}
-
-lemma chinese_remainder:
-  "0 < n ==> m_cond n mf ==> km_cond n kf mf
-    ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
-  apply safe
-   apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
-       apply (rule_tac [6] zcong_funprod)
-          apply auto
-  apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
-  apply (unfold lincong_sol_def)
-  apply safe
-    apply (tactic {* stac (thm "zcong_zmod") 3 *})
-    apply (tactic {* stac (thm "mod_mult_eq") 3 *})
-    apply (tactic {* stac (thm "mod_mod_cancel") 3 *})
-      apply (tactic {* stac (thm "x_sol_lin") 4 *})
-        apply (tactic {* stac (thm "mod_mult_eq" RS sym) 6 *})
-        apply (tactic {* stac (thm "zcong_zmod" RS sym) 6 *})
-        apply (subgoal_tac [6]
-          "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
-          \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
-         prefer 6
-         apply (simp add: zmult_ac)
-        apply (unfold xilin_sol_def)
-        apply (tactic {* asm_simp_tac @{simpset} 6 *})
-        apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
-        apply (rule_tac [6] unique_xi_sol)
-           apply (rule_tac [3] funprod_zdvd)
-            apply (unfold m_cond_def)
-            apply (rule funprod_pos [THEN pos_mod_sign])
-            apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
-            apply auto
-  done
-
-end
--- a/src/HOL/NumberTheory/Euler.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,304 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/Euler.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {* Euler's criterion *}
-
-theory Euler imports Residues EvenOdd begin
-
-definition
-  MultInvPair :: "int => int => int => int set" where
-  "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
-
-definition
-  SetS        :: "int => int => int set set" where
-  "SetS        a p   =  (MultInvPair a p ` SRStar p)"
-
-
-subsection {* Property for MultInvPair *}
-
-lemma MultInvPair_prop1a:
-  "[| zprime p; 2 < p; ~([a = 0](mod p));
-      X \<in> (SetS a p); Y \<in> (SetS a p);
-      ~((X \<inter> Y) = {}) |] ==> X = Y"
-  apply (auto simp add: SetS_def)
-  apply (drule StandardRes_SRStar_prop1a)+ defer 1
-  apply (drule StandardRes_SRStar_prop1a)+
-  apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym)
-  apply (drule notE, rule MultInv_zcong_prop1, auto)[]
-  apply (drule notE, rule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
-  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
-  apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
-  apply (drule MultInv_zcong_prop1, auto)[]
-  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
-  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
-  apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
-  done
-
-lemma MultInvPair_prop1b:
-  "[| zprime p; 2 < p; ~([a = 0](mod p));
-      X \<in> (SetS a p); Y \<in> (SetS a p);
-      X \<noteq> Y |] ==> X \<inter> Y = {}"
-  apply (rule notnotD)
-  apply (rule notI)
-  apply (drule MultInvPair_prop1a, auto)
-  done
-
-lemma MultInvPair_prop1c: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>  
-    \<forall>X \<in> SetS a p. \<forall>Y \<in> SetS a p. X \<noteq> Y --> X\<inter>Y = {}"
-  by (auto simp add: MultInvPair_prop1b)
-
-lemma MultInvPair_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
-                          Union ( SetS a p) = SRStar p"
-  apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4 
-    SRStar_mult_prop2)
-  apply (frule StandardRes_SRStar_prop3)
-  apply (rule bexI, auto)
-  done
-
-lemma MultInvPair_distinct: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
-                                ~([j = 0] (mod p)); 
-                                ~(QuadRes p a) |]  ==> 
-                             ~([j = a * MultInv p j] (mod p))"
-proof
-  assume "zprime p" and "2 < p" and "~([a = 0] (mod p))" and 
-    "~([j = 0] (mod p))" and "~(QuadRes p a)"
-  assume "[j = a * MultInv p j] (mod p)"
-  then have "[j * j = (a * MultInv p j) * j] (mod p)"
-    by (auto simp add: zcong_scalar)
-  then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
-    by (auto simp add: zmult_ac)
-  have "[j * j = a] (mod p)"
-    proof -
-      from prems have b: "[MultInv p j * j = 1] (mod p)"
-        by (simp add: MultInv_prop2a)
-      from b a show ?thesis
-        by (auto simp add: zcong_zmult_prop2)
-    qed
-  then have "[j^2 = a] (mod p)"
-    by (metis  number_of_is_id power2_eq_square succ_bin_simps)
-  with prems show False
-    by (simp add: QuadRes_def)
-qed
-
-lemma MultInvPair_card_two: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
-                                ~(QuadRes p a); ~([j = 0] (mod p)) |]  ==> 
-                             card (MultInvPair a p j) = 2"
-  apply (auto simp add: MultInvPair_def)
-  apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
-  apply auto
-  apply (metis MultInvPair_distinct Pls_def StandardRes_def aux number_of_is_id one_is_num_one)
-  done
-
-
-subsection {* Properties of SetS *}
-
-lemma SetS_finite: "2 < p ==> finite (SetS a p)"
-  by (auto simp add: SetS_def SRStar_finite [of p] finite_imageI)
-
-lemma SetS_elems_finite: "\<forall>X \<in> SetS a p. finite X"
-  by (auto simp add: SetS_def MultInvPair_def)
-
-lemma SetS_elems_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
-                        ~(QuadRes p a) |]  ==>
-                        \<forall>X \<in> SetS a p. card X = 2"
-  apply (auto simp add: SetS_def)
-  apply (frule StandardRes_SRStar_prop1a)
-  apply (rule MultInvPair_card_two, auto)
-  done
-
-lemma Union_SetS_finite: "2 < p ==> finite (Union (SetS a p))"
-  by (auto simp add: SetS_finite SetS_elems_finite finite_Union)
-
-lemma card_setsum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set); 
-    \<forall>X \<in> S. card X = n |] ==> setsum card S = setsum (%x. n) S"
-  by (induct set: finite) auto
-
-lemma SetS_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> 
-                  int(card(SetS a p)) = (p - 1) div 2"
-proof -
-  assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
-  then have "(p - 1) = 2 * int(card(SetS a p))"
-  proof -
-    have "p - 1 = int(card(Union (SetS a p)))"
-      by (auto simp add: prems MultInvPair_prop2 SRStar_card)
-    also have "... = int (setsum card (SetS a p))"
-      by (auto simp add: prems SetS_finite SetS_elems_finite
-                         MultInvPair_prop1c [of p a] card_Union_disjoint)
-    also have "... = int(setsum (%x.2) (SetS a p))"
-      using prems
-      by (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite 
-        card_setsum_aux simp del: setsum_constant)
-    also have "... = 2 * int(card( SetS a p))"
-      by (auto simp add: prems SetS_finite setsum_const2)
-    finally show ?thesis .
-  qed
-  from this show ?thesis
-    by auto
-qed
-
-lemma SetS_setprod_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p));
-                              ~(QuadRes p a); x \<in> (SetS a p) |] ==> 
-                          [\<Prod>x = a] (mod p)"
-  apply (auto simp add: SetS_def MultInvPair_def)
-  apply (frule StandardRes_SRStar_prop1a)
-  apply (subgoal_tac "StandardRes p x \<noteq> StandardRes p (a * MultInv p x)")
-  apply (auto simp add: StandardRes_prop2 MultInvPair_distinct)
-  apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in 
-    StandardRes_prop4)
-  apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)")
-  apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and
-                   b = "x * (a * MultInv p x)" and
-                   c = "a * (x * MultInv p x)" in  zcong_trans, force)
-  apply (frule_tac p = p and x = x in MultInv_prop2, auto)
-apply (metis StandardRes_SRStar_prop3 mult_1_right mult_commute zcong_sym zcong_zmult_prop1)
-  apply (auto simp add: zmult_ac)
-  done
-
-lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"
-  by arith
-
-lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
-  by auto
-
-lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
-  apply (induct p rule: d22set.induct)
-  apply auto
-  apply (simp add: SRStar_def d22set.simps)
-  apply (simp add: SRStar_def d22set.simps, clarify)
-  apply (frule aux1)
-  apply (frule aux2, auto)
-  apply (simp_all add: SRStar_def)
-  apply (simp add: d22set.simps)
-  apply (frule d22set_le)
-  apply (frule d22set_g_1, auto)
-  done
-
-lemma Union_SetS_setprod_prop1: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
-                                 [\<Prod>(Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
-proof -
-  assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
-  then have "[\<Prod>(Union (SetS a p)) = 
-      setprod (setprod (%x. x)) (SetS a p)] (mod p)"
-    by (auto simp add: SetS_finite SetS_elems_finite
-                       MultInvPair_prop1c setprod_Union_disjoint)
-  also have "[setprod (setprod (%x. x)) (SetS a p) = 
-      setprod (%x. a) (SetS a p)] (mod p)"
-    by (rule setprod_same_function_zcong)
-      (auto simp add: prems SetS_setprod_prop SetS_finite)
-  also (zcong_trans) have "[setprod (%x. a) (SetS a p) = 
-      a^(card (SetS a p))] (mod p)"
-    by (auto simp add: prems SetS_finite setprod_constant)
-  finally (zcong_trans) show ?thesis
-    apply (rule zcong_trans)
-    apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
-    apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
-    apply (auto simp add: prems SetS_card)
-    done
-qed
-
-lemma Union_SetS_setprod_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
-                                    \<Prod>(Union (SetS a p)) = zfact (p - 1)"
-proof -
-  assume "zprime p" and "2 < p" and "~([a = 0](mod p))"
-  then have "\<Prod>(Union (SetS a p)) = \<Prod>(SRStar p)"
-    by (auto simp add: MultInvPair_prop2)
-  also have "... = \<Prod>({1} \<union> (d22set (p - 1)))"
-    by (auto simp add: prems SRStar_d22set_prop)
-  also have "... = zfact(p - 1)"
-  proof -
-    have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
-      by (metis d22set_fin d22set_g_1 linorder_neq_iff)
-    then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
-      by auto
-    then show ?thesis
-      by (auto simp add: d22set_prod_zfact)
-  qed
-  finally show ?thesis .
-qed
-
-lemma zfact_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
-                   [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
-  apply (frule Union_SetS_setprod_prop1) 
-  apply (auto simp add: Union_SetS_setprod_prop2)
-  done
-
-text {* \medskip Prove the first part of Euler's Criterion: *}
-
-lemma Euler_part1: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
-    ~(QuadRes p x) |] ==> 
-      [x^(nat (((p) - 1) div 2)) = -1](mod p)"
-  by (metis Wilson_Russ number_of_is_id zcong_sym zcong_trans zfact_prop)
-
-text {* \medskip Prove another part of Euler Criterion: *}
-
-lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"
-proof -
-  assume "0 < p"
-  then have "a ^ (nat p) =  a ^ (1 + (nat p - 1))"
-    by (auto simp add: diff_add_assoc)
-  also have "... = (a ^ 1) * a ^ (nat(p) - 1)"
-    by (simp only: zpower_zadd_distrib)
-  also have "... = a * a ^ (nat(p) - 1)"
-    by auto
-  finally show ?thesis .
-qed
-
-lemma aux_2: "[| (2::int) < p; p \<in> zOdd |] ==> 0 < ((p - 1) div 2)"
-proof -
-  assume "2 < p" and "p \<in> zOdd"
-  then have "(p - 1):zEven"
-    by (auto simp add: zEven_def zOdd_def)
-  then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"
-    by (auto simp add: even_div_2_prop2)
-  with `2 < p` have "1 < (p - 1)"
-    by auto
-  then have " 1 < (2 * ((p - 1) div 2))"
-    by (auto simp add: aux_1)
-  then have "0 < (2 * ((p - 1) div 2)) div 2"
-    by auto
-  then show ?thesis by auto
-qed
-
-lemma Euler_part2:
-    "[| 2 < p; zprime p; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"
-  apply (frule zprime_zOdd_eq_grt_2)
-  apply (frule aux_2, auto)
-  apply (frule_tac a = a in aux_1, auto)
-  apply (frule zcong_zmult_prop1, auto)
-  done
-
-text {* \medskip Prove the final part of Euler's Criterion: *}
-
-lemma aux__1: "[| ~([x = 0] (mod p)); [y ^ 2 = x] (mod p)|] ==> ~(p dvd y)"
-  by (metis dvdI power2_eq_square zcong_sym zcong_trans zcong_zero_equiv_div dvd_trans)
-
-lemma aux__2: "2 * nat((p - 1) div 2) =  nat (2 * ((p - 1) div 2))"
-  by (auto simp add: nat_mult_distrib)
-
-lemma Euler_part3: "[| 2 < p; zprime p; ~([x = 0](mod p)); QuadRes p x |] ==> 
-                      [x^(nat (((p) - 1) div 2)) = 1](mod p)"
-  apply (subgoal_tac "p \<in> zOdd")
-  apply (auto simp add: QuadRes_def)
-   prefer 2 
-   apply (metis number_of_is_id numeral_1_eq_1 zprime_zOdd_eq_grt_2)
-  apply (frule aux__1, auto)
-  apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
-  apply (auto simp add: zpower_zpower) 
-  apply (rule zcong_trans)
-  apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
-  apply (metis Little_Fermat even_div_2_prop2 mult_Bit0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2)
-  done
-
-
-text {* \medskip Finally show Euler's Criterion: *}
-
-theorem Euler_Criterion: "[| 2 < p; zprime p |] ==> [(Legendre a p) =
-    a^(nat (((p) - 1) div 2))] (mod p)"
-  apply (auto simp add: Legendre_def Euler_part2)
-  apply (frule Euler_part3, auto simp add: zcong_sym)[]
-  apply (frule Euler_part1, auto simp add: zcong_sym)[]
-  done
-
-end
--- a/src/HOL/NumberTheory/EulerFermat.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,348 +0,0 @@
-(*  Title:      HOL/NumberTheory/EulerFermat.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Fermat's Little Theorem extended to Euler's Totient function *}
-
-theory EulerFermat
-imports BijectionRel IntFact
-begin
-
-text {*
-  Fermat's Little Theorem extended to Euler's Totient function. More
-  abstract approach than Boyer-Moore (which seems necessary to achieve
-  the extended version).
-*}
-
-
-subsection {* Definitions and lemmas *}
-
-inductive_set
-  RsetR :: "int => int set set"
-  for m :: int
-  where
-    empty [simp]: "{} \<in> RsetR m"
-  | insert: "A \<in> RsetR m ==> zgcd a m = 1 ==>
-      \<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m"
-
-consts
-  BnorRset :: "int * int => int set"
-
-recdef BnorRset
-  "measure ((\<lambda>(a, m). nat a) :: int * int => nat)"
-  "BnorRset (a, m) =
-   (if 0 < a then
-    let na = BnorRset (a - 1, m)
-    in (if zgcd a m = 1 then insert a na else na)
-    else {})"
-
-definition
-  norRRset :: "int => int set" where
-  "norRRset m = BnorRset (m - 1, m)"
-
-definition
-  noXRRset :: "int => int => int set" where
-  "noXRRset m x = (\<lambda>a. a * x) ` norRRset m"
-
-definition
-  phi :: "int => nat" where
-  "phi m = card (norRRset m)"
-
-definition
-  is_RRset :: "int set => int => bool" where
-  "is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)"
-
-definition
-  RRset2norRR :: "int set => int => int => int" where
-  "RRset2norRR A m a =
-     (if 1 < m \<and> is_RRset A m \<and> a \<in> A then
-        SOME b. zcong a b m \<and> b \<in> norRRset m
-      else 0)"
-
-definition
-  zcongm :: "int => int => int => bool" where
-  "zcongm m = (\<lambda>a b. zcong a b m)"
-
-lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
-  -- {* LCP: not sure why this lemma is needed now *}
-  by (auto simp add: abs_if)
-
-
-text {* \medskip @{text norRRset} *}
-
-declare BnorRset.simps [simp del]
-
-lemma BnorRset_induct:
-  assumes "!!a m. P {} a m"
-    and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
-      ==> P (BnorRset(a,m)) a m"
-  shows "P (BnorRset(u,v)) u v"
-  apply (rule BnorRset.induct)
-  apply safe
-   apply (case_tac [2] "0 < a")
-    apply (rule_tac [2] prems)
-     apply simp_all
-   apply (simp_all add: BnorRset.simps prems)
-  done
-
-lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
-  apply (induct a m rule: BnorRset_induct)
-   apply simp
-  apply (subst BnorRset.simps)
-   apply (unfold Let_def, auto)
-  done
-
-lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
-  by (auto dest: Bnor_mem_zle)
-
-lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
-  apply (induct a m rule: BnorRset_induct)
-   prefer 2
-   apply (subst BnorRset.simps)
-   apply (unfold Let_def, auto)
-  done
-
-lemma Bnor_mem_if [rule_format]:
-    "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset (a, m)"
-  apply (induct a m rule: BnorRset.induct, auto)
-   apply (subst BnorRset.simps)
-   defer
-   apply (subst BnorRset.simps)
-   apply (unfold Let_def, auto)
-  done
-
-lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) \<in> RsetR m"
-  apply (induct a m rule: BnorRset_induct, simp)
-  apply (subst BnorRset.simps)
-  apply (unfold Let_def, auto)
-  apply (rule RsetR.insert)
-    apply (rule_tac [3] allI)
-    apply (rule_tac [3] impI)
-    apply (rule_tac [3] zcong_not)
-       apply (subgoal_tac [6] "a' \<le> a - 1")
-        apply (rule_tac [7] Bnor_mem_zle)
-        apply (rule_tac [5] Bnor_mem_zg, auto)
-  done
-
-lemma Bnor_fin: "finite (BnorRset (a, m))"
-  apply (induct a m rule: BnorRset_induct)
-   prefer 2
-   apply (subst BnorRset.simps)
-   apply (unfold Let_def, auto)
-  done
-
-lemma norR_mem_unique_aux: "a \<le> b - 1 ==> a < (b::int)"
-  apply auto
-  done
-
-lemma norR_mem_unique:
-  "1 < m ==>
-    zgcd a m = 1 ==> \<exists>!b. [a = b] (mod m) \<and> b \<in> norRRset m"
-  apply (unfold norRRset_def)
-  apply (cut_tac a = a and m = m in zcong_zless_unique, auto)
-   apply (rule_tac [2] m = m in zcong_zless_imp_eq)
-       apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans
-	 order_less_imp_le norR_mem_unique_aux simp add: zcong_sym)
-  apply (rule_tac x = b in exI, safe)
-  apply (rule Bnor_mem_if)
-    apply (case_tac [2] "b = 0")
-     apply (auto intro: order_less_le [THEN iffD2])
-   prefer 2
-   apply (simp only: zcong_def)
-   apply (subgoal_tac "zgcd a m = m")
-    prefer 2
-    apply (subst zdvd_iff_zgcd [symmetric])
-     apply (rule_tac [4] zgcd_zcong_zgcd)
-       apply (simp_all add: zcong_sym)
-  done
-
-
-text {* \medskip @{term noXRRset} *}
-
-lemma RRset_gcd [rule_format]:
-    "is_RRset A m ==> a \<in> A --> zgcd a m = 1"
-  apply (unfold is_RRset_def)
-  apply (rule RsetR.induct [where P="%A. a \<in> A --> zgcd a m = 1"], auto)
-  done
-
-lemma RsetR_zmult_mono:
-  "A \<in> RsetR m ==>
-    0 < m ==> zgcd x m = 1 ==> (\<lambda>a. a * x) ` A \<in> RsetR m"
-  apply (erule RsetR.induct, simp_all)
-  apply (rule RsetR.insert, auto)
-   apply (blast intro: zgcd_zgcd_zmult)
-  apply (simp add: zcong_cancel)
-  done
-
-lemma card_nor_eq_noX:
-  "0 < m ==>
-    zgcd x m = 1 ==> card (noXRRset m x) = card (norRRset m)"
-  apply (unfold norRRset_def noXRRset_def)
-  apply (rule card_image)
-   apply (auto simp add: inj_on_def Bnor_fin)
-  apply (simp add: BnorRset.simps)
-  done
-
-lemma noX_is_RRset:
-    "0 < m ==> zgcd x m = 1 ==> is_RRset (noXRRset m x) m"
-  apply (unfold is_RRset_def phi_def)
-  apply (auto simp add: card_nor_eq_noX)
-  apply (unfold noXRRset_def norRRset_def)
-  apply (rule RsetR_zmult_mono)
-    apply (rule Bnor_in_RsetR, simp_all)
-  done
-
-lemma aux_some:
-  "1 < m ==> is_RRset A m ==> a \<in> A
-    ==> zcong a (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) m \<and>
-      (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) \<in> norRRset m"
-  apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex])
-   apply (rule_tac [2] RRset_gcd, simp_all)
-  done
-
-lemma RRset2norRR_correct:
-  "1 < m ==> is_RRset A m ==> a \<in> A ==>
-    [a = RRset2norRR A m a] (mod m) \<and> RRset2norRR A m a \<in> norRRset m"
-  apply (unfold RRset2norRR_def, simp)
-  apply (rule aux_some, simp_all)
-  done
-
-lemmas RRset2norRR_correct1 =
-  RRset2norRR_correct [THEN conjunct1, standard]
-lemmas RRset2norRR_correct2 =
-  RRset2norRR_correct [THEN conjunct2, standard]
-
-lemma RsetR_fin: "A \<in> RsetR m ==> finite A"
-  by (induct set: RsetR) auto
-
-lemma RRset_zcong_eq [rule_format]:
-  "1 < m ==>
-    is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b"
-  apply (unfold is_RRset_def)
-  apply (rule RsetR.induct [where P="%A. a \<in> A --> b \<in> A --> a = b"])
-    apply (auto simp add: zcong_sym)
-  done
-
-lemma aux:
-  "P (SOME a. P a) ==> Q (SOME a. Q a) ==>
-    (SOME a. P a) = (SOME a. Q a) ==> \<exists>a. P a \<and> Q a"
-  apply auto
-  done
-
-lemma RRset2norRR_inj:
-    "1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A"
-  apply (unfold RRset2norRR_def inj_on_def, auto)
-  apply (subgoal_tac "\<exists>b. ([x = b] (mod m) \<and> b \<in> norRRset m) \<and>
-      ([y = b] (mod m) \<and> b \<in> norRRset m)")
-   apply (rule_tac [2] aux)
-     apply (rule_tac [3] aux_some)
-       apply (rule_tac [2] aux_some)
-         apply (rule RRset_zcong_eq, auto)
-  apply (rule_tac b = b in zcong_trans)
-   apply (simp_all add: zcong_sym)
-  done
-
-lemma RRset2norRR_eq_norR:
-    "1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m"
-  apply (rule card_seteq)
-    prefer 3
-    apply (subst card_image)
-      apply (rule_tac RRset2norRR_inj, auto)
-     apply (rule_tac [3] RRset2norRR_correct2, auto)
-    apply (unfold is_RRset_def phi_def norRRset_def)
-    apply (auto simp add: Bnor_fin)
-  done
-
-
-lemma Bnor_prod_power_aux: "a \<notin> A ==> inj f ==> f a \<notin> f ` A"
-by (unfold inj_on_def, auto)
-
-lemma Bnor_prod_power [rule_format]:
-  "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset (a, m)) =
-      \<Prod>(BnorRset(a, m)) * x^card (BnorRset (a, m))"
-  apply (induct a m rule: BnorRset_induct)
-   prefer 2
-   apply (simplesubst BnorRset.simps)  --{*multiple redexes*}
-   apply (unfold Let_def, auto)
-  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
-  apply (subst setprod_insert)
-    apply (rule_tac [2] Bnor_prod_power_aux)
-     apply (unfold inj_on_def)
-     apply (simp_all add: zmult_ac Bnor_fin finite_imageI
-       Bnor_mem_zle_swap)
-  done
-
-
-subsection {* Fermat *}
-
-lemma bijzcong_zcong_prod:
-    "(A, B) \<in> bijR (zcongm m) ==> [\<Prod>A = \<Prod>B] (mod m)"
-  apply (unfold zcongm_def)
-  apply (erule bijR.induct)
-   apply (subgoal_tac [2] "a \<notin> A \<and> b \<notin> B \<and> finite A \<and> finite B")
-    apply (auto intro: fin_bijRl fin_bijRr zcong_zmult)
-  done
-
-lemma Bnor_prod_zgcd [rule_format]:
-    "a < m --> zgcd (\<Prod>(BnorRset(a, m))) m = 1"
-  apply (induct a m rule: BnorRset_induct)
-   prefer 2
-   apply (subst BnorRset.simps)
-   apply (unfold Let_def, auto)
-  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
-  apply (blast intro: zgcd_zgcd_zmult)
-  done
-
-theorem Euler_Fermat:
-    "0 < m ==> zgcd x m = 1 ==> [x^(phi m) = 1] (mod m)"
-  apply (unfold norRRset_def phi_def)
-  apply (case_tac "x = 0")
-   apply (case_tac [2] "m = 1")
-    apply (rule_tac [3] iffD1)
-     apply (rule_tac [3] k = "\<Prod>(BnorRset(m - 1, m))"
-       in zcong_cancel2)
-      prefer 5
-      apply (subst Bnor_prod_power [symmetric])
-        apply (rule_tac [7] Bnor_prod_zgcd, simp_all)
-  apply (rule bijzcong_zcong_prod)
-  apply (fold norRRset_def noXRRset_def)
-  apply (subst RRset2norRR_eq_norR [symmetric])
-    apply (rule_tac [3] inj_func_bijR, auto)
-     apply (unfold zcongm_def)
-     apply (rule_tac [2] RRset2norRR_correct1)
-       apply (rule_tac [5] RRset2norRR_inj)
-        apply (auto intro: order_less_le [THEN iffD2]
-	   simp add: noX_is_RRset)
-  apply (unfold noXRRset_def norRRset_def)
-  apply (rule finite_imageI)
-  apply (rule Bnor_fin)
-  done
-
-lemma Bnor_prime:
-  "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset (a, p)) = nat a"
-  apply (induct a p rule: BnorRset.induct)
-  apply (subst BnorRset.simps)
-  apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime)
-  apply (subgoal_tac "finite (BnorRset (a - 1,m))")
-   apply (subgoal_tac "a ~: BnorRset (a - 1,m)")
-    apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1)
-   apply (frule Bnor_mem_zle, arith)
-  apply (frule Bnor_fin)
-  done
-
-lemma phi_prime: "zprime p ==> phi p = nat (p - 1)"
-  apply (unfold phi_def norRRset_def)
-  apply (rule Bnor_prime, auto)
-  done
-
-theorem Little_Fermat:
-    "zprime p ==> \<not> p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)"
-  apply (subst phi_prime [symmetric])
-   apply (rule_tac [2] Euler_Fermat)
-    apply (erule_tac [3] zprime_imp_zrelprime)
-    apply (unfold zprime_def, auto)
-  done
-
-end
--- a/src/HOL/NumberTheory/EvenOdd.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,256 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/EvenOdd.thy
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {*Parity: Even and Odd Integers*}
-
-theory EvenOdd
-imports Int2
-begin
-
-definition
-  zOdd    :: "int set" where
-  "zOdd = {x. \<exists>k. x = 2 * k + 1}"
-
-definition
-  zEven   :: "int set" where
-  "zEven = {x. \<exists>k. x = 2 * k}"
-
-subsection {* Some useful properties about even and odd *}
-
-lemma zOddI [intro?]: "x = 2 * k + 1 \<Longrightarrow> x \<in> zOdd"
-  and zOddE [elim?]: "x \<in> zOdd \<Longrightarrow> (!!k. x = 2 * k + 1 \<Longrightarrow> C) \<Longrightarrow> C"
-  by (auto simp add: zOdd_def)
-
-lemma zEvenI [intro?]: "x = 2 * k \<Longrightarrow> x \<in> zEven"
-  and zEvenE [elim?]: "x \<in> zEven \<Longrightarrow> (!!k. x = 2 * k \<Longrightarrow> C) \<Longrightarrow> C"
-  by (auto simp add: zEven_def)
-
-lemma one_not_even: "~(1 \<in> zEven)"
-proof
-  assume "1 \<in> zEven"
-  then obtain k :: int where "1 = 2 * k" ..
-  then show False by arith
-qed
-
-lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)"
-proof -
-  {
-    fix a b
-    assume "2 * (a::int) = 2 * (b::int) + 1"
-    then have "2 * (a::int) - 2 * (b :: int) = 1"
-      by arith
-    then have "2 * (a - b) = 1"
-      by (auto simp add: zdiff_zmult_distrib)
-    moreover have "(2 * (a - b)):zEven"
-      by (auto simp only: zEven_def)
-    ultimately have False
-      by (auto simp add: one_not_even)
-  }
-  then show ?thesis
-    by (auto simp add: zOdd_def zEven_def)
-qed
-
-lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)"
-  by (simp add: zOdd_def zEven_def) arith
-
-lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven"
-  using even_odd_disj by auto
-
-lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd"
-proof (rule classical)
-  assume "\<not> ?thesis"
-  then have "x \<in> zEven" by (rule not_odd_impl_even)
-  then obtain a where a: "x = 2 * a" ..
-  assume "x * y : zOdd"
-  then obtain b where "x * y = 2 * b + 1" ..
-  with a have "2 * a * y = 2 * b + 1" by simp
-  then have "2 * a * y - 2 * b = 1"
-    by arith
-  then have "2 * (a * y - b) = 1"
-    by (auto simp add: zdiff_zmult_distrib)
-  moreover have "(2 * (a * y - b)):zEven"
-    by (auto simp only: zEven_def)
-  ultimately have False
-    by (auto simp add: one_not_even)
-  then show ?thesis ..
-qed
-
-lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven"
-  by (auto simp add: zOdd_def zEven_def)
-
-lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0"
-  by (auto simp add: zEven_def)
-
-lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x"
-  by (auto simp add: zEven_def)
-
-lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven"
-  apply (auto simp add: zEven_def)
-  apply (auto simp only: zadd_zmult_distrib2 [symmetric])
-  done
-
-lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven"
-  by (auto simp add: zEven_def)
-
-lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven"
-  apply (auto simp add: zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (rule_tac x = "k - ka - 1" in exI)
-  apply auto
-  done
-
-lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd"
-  apply (auto simp add: zOdd_def zEven_def)
-  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
-  done
-
-lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd"
-  apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
-  apply (rule_tac x = "2 * ka * k + ka + k" in exI)
-  apply (auto simp add: zadd_zmult_distrib)
-  done
-
-lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))"
-  using even_odd_conj even_odd_disj by auto
-
-lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"
-  using odd_iff_not_even odd_times_odd by auto
-
-lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))"
-proof
-  assume xy: "x - y \<in> zEven"
-  {
-    assume x: "x \<in> zEven"
-    have "y \<in> zEven"
-    proof (rule classical)
-      assume "\<not> ?thesis"
-      then have "y \<in> zOdd"
-        by (simp add: odd_iff_not_even)
-      with x have "x - y \<in> zOdd"
-        by (simp add: even_minus_odd)
-      with xy have False
-        by (auto simp add: odd_iff_not_even)
-      then show ?thesis ..
-    qed
-  } moreover {
-    assume y: "y \<in> zEven"
-    have "x \<in> zEven"
-    proof (rule classical)
-      assume "\<not> ?thesis"
-      then have "x \<in> zOdd"
-        by (auto simp add: odd_iff_not_even)
-      with y have "x - y \<in> zOdd"
-        by (simp add: odd_minus_even)
-      with xy have False
-        by (auto simp add: odd_iff_not_even)
-      then show ?thesis ..
-    qed
-  }
-  ultimately show "(x \<in> zEven) = (y \<in> zEven)"
-    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
-      even_minus_odd odd_minus_even)
-next
-  assume "(x \<in> zEven) = (y \<in> zEven)"
-  then show "x - y \<in> zEven"
-    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
-      even_minus_odd odd_minus_even)
-qed
-
-lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1"
-proof -
-  assume "x \<in> zEven" and "0 \<le> x"
-  from `x \<in> zEven` obtain a where "x = 2 * a" ..
-  with `0 \<le> x` have "0 \<le> a" by simp
-  from `0 \<le> x` and `x = 2 * a` have "nat x = nat (2 * a)"
-    by simp
-  also from `x = 2 * a` have "nat (2 * a) = 2 * nat a"
-    by (simp add: nat_mult_distrib)
-  finally have "(-1::int)^nat x = (-1)^(2 * nat a)"
-    by simp
-  also have "... = ((-1::int)^2)^ (nat a)"
-    by (simp add: zpower_zpower [symmetric])
-  also have "(-1::int)^2 = 1"
-    by simp
-  finally show ?thesis
-    by simp
-qed
-
-lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1"
-proof -
-  assume "x \<in> zOdd" and "0 \<le> x"
-  from `x \<in> zOdd` obtain a where "x = 2 * a + 1" ..
-  with `0 \<le> x` have a: "0 \<le> a" by simp
-  with `0 \<le> x` and `x = 2 * a + 1` have "nat x = nat (2 * a + 1)"
-    by simp
-  also from a have "nat (2 * a + 1) = 2 * nat a + 1"
-    by (auto simp add: nat_mult_distrib nat_add_distrib)
-  finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"
-    by simp
-  also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"
-    by (auto simp add: zpower_zpower [symmetric] zpower_zadd_distrib)
-  also have "(-1::int)^2 = 1"
-    by simp
-  finally show ?thesis
-    by simp
-qed
-
-lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==>
-    (-1::int)^(nat x) = (-1::int)^(nat y)"
-  using even_odd_disj [of x] even_odd_disj [of y]
-  by (auto simp add: neg_one_even_power neg_one_odd_power)
-
-
-lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"
-  by (auto simp add: zcong_def zdvd_not_zless)
-
-lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2"
-proof -
-  assume "y \<in> zEven" and "x < y"
-  from `y \<in> zEven` obtain k where k: "y = 2 * k" ..
-  with `x < y` have "x < 2 * k" by simp
-  then have "x div 2 < k" by (auto simp add: div_prop1)
-  also have "k = (2 * k) div 2" by simp
-  finally have "x div 2 < 2 * k div 2" by simp
-  with k show ?thesis by simp
-qed
-
-lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2"
-  by (auto simp add: zEven_def)
-
-lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y"
-  by (auto simp add: zEven_def)
-
-(* An odd prime is greater than 2 *)
-
-lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)"
-  apply (auto simp add: zOdd_def zprime_def)
-  apply (drule_tac x = 2 in allE)
-  using odd_iff_not_even [of p]
-  apply (auto simp add: zOdd_def zEven_def)
-  done
-
-(* Powers of -1 and parity *)
-
-lemma neg_one_special: "finite A ==>
-    ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"
-  by (induct set: finite) auto
-
-lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"
-  by (induct n) auto
-
-lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
-    ==> ((-1::int)^j = (-1::int)^k)"
-  using neg_one_power [of j] and ListMem.insert neg_one_power [of k]
-  by (auto simp add: one_not_neg_one_mod_m zcong_sym)
-
-end
--- a/src/HOL/NumberTheory/Factorization.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,341 +0,0 @@
-(*  Title:      HOL/NumberTheory/Factorization.thy
-    ID:         $Id$
-    Author:     Thomas Marthedal Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Fundamental Theorem of Arithmetic (unique factorization into primes) *}
-
-theory Factorization
-imports Main Primes Permutation
-begin
-
-
-subsection {* Definitions *}
-
-definition
-  primel :: "nat list => bool" where
-  "primel xs = (\<forall>p \<in> set xs. prime p)"
-
-consts
-  nondec :: "nat list => bool "
-  prod :: "nat list => nat"
-  oinsert :: "nat => nat list => nat list"
-  sort :: "nat list => nat list"
-
-primrec
-  "nondec [] = True"
-  "nondec (x # xs) = (case xs of [] => True | y # ys => x \<le> y \<and> nondec xs)"
-
-primrec
-  "prod [] = Suc 0"
-  "prod (x # xs) = x * prod xs"
-
-primrec
-  "oinsert x [] = [x]"
-  "oinsert x (y # ys) = (if x \<le> y then x # y # ys else y # oinsert x ys)"
-
-primrec
-  "sort [] = []"
-  "sort (x # xs) = oinsert x (sort xs)"
-
-
-subsection {* Arithmetic *}
-
-lemma one_less_m: "(m::nat) \<noteq> m * k ==> m \<noteq> Suc 0 ==> Suc 0 < m"
-  apply (cases m)
-   apply auto
-  done
-
-lemma one_less_k: "(m::nat) \<noteq> m * k ==> Suc 0 < m * k ==> Suc 0 < k"
-  apply (cases k)
-   apply auto
-  done
-
-lemma mult_left_cancel: "(0::nat) < k ==> k * n = k * m ==> n = m"
-  apply auto
-  done
-
-lemma mn_eq_m_one: "(0::nat) < m ==> m * n = m ==> n = Suc 0"
-  apply (cases n)
-   apply auto
-  done
-
-lemma prod_mn_less_k:
-    "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k"
-  apply (induct m)
-   apply auto
-  done
-
-
-subsection {* Prime list and product *}
-
-lemma prod_append: "prod (xs @ ys) = prod xs * prod ys"
-  apply (induct xs)
-   apply (simp_all add: mult_assoc)
-  done
-
-lemma prod_xy_prod:
-    "prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys"
-  apply auto
-  done
-
-lemma primel_append: "primel (xs @ ys) = (primel xs \<and> primel ys)"
-  apply (unfold primel_def)
-  apply auto
-  done
-
-lemma prime_primel: "prime n ==> primel [n] \<and> prod [n] = n"
-  apply (unfold primel_def)
-  apply auto
-  done
-
-lemma prime_nd_one: "prime p ==> \<not> p dvd Suc 0"
-  apply (unfold prime_def dvd_def)
-  apply auto
-  done
-
-lemma hd_dvd_prod: "prod (x # xs) = prod ys ==> x dvd (prod ys)" 
-  by (metis dvd_mult_left dvd_refl prod.simps(2))
-
-lemma primel_tl: "primel (x # xs) ==> primel xs"
-  apply (unfold primel_def)
-  apply auto
-  done
-
-lemma primel_hd_tl: "(primel (x # xs)) = (prime x \<and> primel xs)"
-  apply (unfold primel_def)
-  apply auto
-  done
-
-lemma primes_eq: "prime p ==> prime q ==> p dvd q ==> p = q"
-  apply (unfold prime_def)
-  apply auto
-  done
-
-lemma primel_one_empty: "primel xs ==> prod xs = Suc 0 ==> xs = []"
-  apply (cases xs)
-   apply (simp_all add: primel_def prime_def)
-  done
-
-lemma prime_g_one: "prime p ==> Suc 0 < p"
-  apply (unfold prime_def)
-  apply auto
-  done
-
-lemma prime_g_zero: "prime p ==> 0 < p"
-  apply (unfold prime_def)
-  apply auto
-  done
-
-lemma primel_nempty_g_one:
-    "primel xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> Suc 0 < prod xs"
-  apply (induct xs)
-   apply simp
-  apply (fastsimp simp: primel_def prime_def elim: one_less_mult)
-  done
-
-lemma primel_prod_gz: "primel xs ==> 0 < prod xs"
-  apply (induct xs)
-   apply (auto simp: primel_def prime_def)
-  done
-
-
-subsection {* Sorting *}
-
-lemma nondec_oinsert: "nondec xs \<Longrightarrow> nondec (oinsert x xs)"
-  apply (induct xs)
-   apply simp
-   apply (case_tac xs)
-    apply (simp_all cong del: list.weak_case_cong)
-  done
-
-lemma nondec_sort: "nondec (sort xs)"
-  apply (induct xs)
-   apply simp_all
-  apply (erule nondec_oinsert)
-  done
-
-lemma x_less_y_oinsert: "x \<le> y ==> l = y # ys ==> x # l = oinsert x l"
-  apply simp_all
-  done
-
-lemma nondec_sort_eq [rule_format]: "nondec xs \<longrightarrow> xs = sort xs"
-  apply (induct xs)
-   apply safe
-    apply simp_all
-   apply (case_tac xs)
-    apply simp_all
-  apply (case_tac xs)
-   apply simp
-  apply (rule_tac y = aa and ys = list in x_less_y_oinsert)
-   apply simp_all
-  done
-
-lemma oinsert_x_y: "oinsert x (oinsert y l) = oinsert y (oinsert x l)"
-  apply (induct l)
-  apply auto
-  done
-
-
-subsection {* Permutation *}
-
-lemma perm_primel [rule_format]: "xs <~~> ys ==> primel xs --> primel ys"
-  apply (unfold primel_def)
-  apply (induct set: perm)
-     apply simp
-    apply simp
-   apply (simp (no_asm))
-   apply blast
-  apply blast
-  done
-
-lemma perm_prod: "xs <~~> ys ==> prod xs = prod ys"
-  apply (induct set: perm)
-     apply (simp_all add: mult_ac)
-  done
-
-lemma perm_subst_oinsert: "xs <~~> ys ==> oinsert a xs <~~> oinsert a ys"
-  apply (induct set: perm)
-     apply auto
-  done
-
-lemma perm_oinsert: "x # xs <~~> oinsert x xs"
-  apply (induct xs)
-   apply auto
-  done
-
-lemma perm_sort: "xs <~~> sort xs"
-  apply (induct xs)
-  apply (auto intro: perm_oinsert elim: perm_subst_oinsert)
-  done
-
-lemma perm_sort_eq: "xs <~~> ys ==> sort xs = sort ys"
-  apply (induct set: perm)
-     apply (simp_all add: oinsert_x_y)
-  done
-
-
-subsection {* Existence *}
-
-lemma ex_nondec_lemma:
-    "primel xs ==> \<exists>ys. primel ys \<and> nondec ys \<and> prod ys = prod xs"
-  apply (blast intro: nondec_sort perm_prod perm_primel perm_sort perm_sym)
-  done
-
-lemma not_prime_ex_mk:
-  "Suc 0 < n \<and> \<not> prime n ==>
-    \<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k"
-  apply (unfold prime_def dvd_def)
-  apply (auto intro: n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k)
-  done
-
-lemma split_primel:
-  "primel xs \<Longrightarrow> primel ys \<Longrightarrow> \<exists>l. primel l \<and> prod l = prod xs * prod ys"
-  apply (rule exI)
-  apply safe
-   apply (rule_tac [2] prod_append)
-  apply (simp add: primel_append)
-  done
-
-lemma factor_exists [rule_format]: "Suc 0 < n --> (\<exists>l. primel l \<and> prod l = n)"
-  apply (induct n rule: nat_less_induct)
-  apply (rule impI)
-  apply (case_tac "prime n")
-   apply (rule exI)
-   apply (erule prime_primel)
-  apply (cut_tac n = n in not_prime_ex_mk)
-   apply (auto intro!: split_primel)
-  done
-
-lemma nondec_factor_exists: "Suc 0 < n ==> \<exists>l. primel l \<and> nondec l \<and> prod l = n"
-  apply (erule factor_exists [THEN exE])
-  apply (blast intro!: ex_nondec_lemma)
-  done
-
-
-subsection {* Uniqueness *}
-
-lemma prime_dvd_mult_list [rule_format]:
-    "prime p ==> p dvd (prod xs) --> (\<exists>m. m:set xs \<and> p dvd m)"
-  apply (induct xs)
-   apply (force simp add: prime_def)
-   apply (force dest: prime_dvd_mult)
-  done
-
-lemma hd_xs_dvd_prod:
-  "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys
-    ==> \<exists>m. m \<in> set ys \<and> x dvd m"
-  apply (rule prime_dvd_mult_list)
-   apply (simp add: primel_hd_tl)
-  apply (erule hd_dvd_prod)
-  done
-
-lemma prime_dvd_eq: "primel (x # xs) ==> primel ys ==> m \<in> set ys ==> x dvd m ==> x = m"
-  apply (rule primes_eq)
-    apply (auto simp add: primel_def primel_hd_tl)
-  done
-
-lemma hd_xs_eq_prod:
-  "primel (x # xs) ==>
-    primel ys ==> prod (x # xs) = prod ys ==> x \<in> set ys"
-  apply (frule hd_xs_dvd_prod)
-    apply auto
-  apply (drule prime_dvd_eq)
-     apply auto
-  done
-
-lemma perm_primel_ex:
-  "primel (x # xs) ==>
-    primel ys ==> prod (x # xs) = prod ys ==> \<exists>l. ys <~~> (x # l)"
-  apply (rule exI)
-  apply (rule perm_remove)
-  apply (erule hd_xs_eq_prod)
-   apply simp_all
-  done
-
-lemma primel_prod_less:
-  "primel (x # xs) ==>
-    primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys"
-  by (metis less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff
-    nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2))
-
-lemma prod_one_empty:
-    "primel xs ==> p * prod xs = p ==> prime p ==> xs = []"
-  apply (auto intro: primel_one_empty simp add: prime_def)
-  done
-
-lemma uniq_ex_aux:
-  "\<forall>m. m < prod ys --> (\<forall>xs ys. primel xs \<and> primel ys \<and>
-      prod xs = prod ys \<and> prod xs = m --> xs <~~> ys) ==>
-    primel list ==> primel x ==> prod list = prod x ==> prod x < prod ys
-    ==> x <~~> list"
-  apply simp
-  done
-
-lemma factor_unique [rule_format]:
-  "\<forall>xs ys. primel xs \<and> primel ys \<and> prod xs = prod ys \<and> prod xs = n
-    --> xs <~~> ys"
-  apply (induct n rule: nat_less_induct)
-  apply safe
-  apply (case_tac xs)
-   apply (force intro: primel_one_empty)
-  apply (rule perm_primel_ex [THEN exE])
-     apply simp_all
-  apply (rule perm.trans [THEN perm_sym])
-  apply assumption
-  apply (rule perm.Cons)
-  apply (case_tac "x = []")
-   apply (metis perm_prod perm_refl prime_primel primel_hd_tl primel_tl prod_one_empty)
-  apply (metis nat_0_less_mult_iff nat_mult_eq_cancel1 perm_primel perm_prod primel_prod_gz primel_prod_less primel_tl prod.simps(2))
-  done
-
-lemma perm_nondec_unique:
-    "xs <~~> ys ==> nondec xs ==> nondec ys ==> xs = ys"
-  by (metis nondec_sort_eq perm_sort_eq)
-
-theorem unique_prime_factorization [rule_format]:
-    "\<forall>n. Suc 0 < n --> (\<exists>!l. primel l \<and> nondec l \<and> prod l = n)"
-  by (metis factor_unique nondec_factor_exists perm_nondec_unique)
-
-end
--- a/src/HOL/NumberTheory/Fib.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,150 +0,0 @@
-(*  ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1997  University of Cambridge
-*)
-
-header {* The Fibonacci function *}
-
-theory Fib
-imports Primes
-begin
-
-text {*
-  Fibonacci numbers: proofs of laws taken from:
-  R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
-  (Addison-Wesley, 1989)
-
-  \bigskip
-*}
-
-fun fib :: "nat \<Rightarrow> nat"
-where
-         "fib 0 = 0"
-|        "fib (Suc 0) = 1"
-| fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)"
-
-text {*
-  \medskip The difficulty in these proofs is to ensure that the
-  induction hypotheses are applied before the definition of @{term
-  fib}.  Towards this end, the @{term fib} equations are not declared
-  to the Simplifier and are applied very selectively at first.
-*}
-
-text{*We disable @{text fib.fib_2fib_2} for simplification ...*}
-declare fib_2 [simp del]
-
-text{*...then prove a version that has a more restrictive pattern.*}
-lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
-  by (rule fib_2)
-
-text {* \medskip Concrete Mathematics, page 280 *}
-
-lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
-proof (induct n rule: fib.induct)
-  case 1 show ?case by simp
-next
-  case 2 show ?case  by (simp add: fib_2)
-next
-  case 3 thus ?case by (simp add: fib_2 add_mult_distrib2)
-qed
-
-lemma fib_Suc_neq_0: "fib (Suc n) \<noteq> 0"
-  apply (induct n rule: fib.induct)
-    apply (simp_all add: fib_2)
-  done
-
-lemma fib_Suc_gr_0: "0 < fib (Suc n)"
-  by (insert fib_Suc_neq_0 [of n], simp)  
-
-lemma fib_gr_0: "0 < n ==> 0 < fib n"
-  by (case_tac n, auto simp add: fib_Suc_gr_0) 
-
-
-text {*
-  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
-  much easier using integers, not natural numbers!
-*}
-
-lemma fib_Cassini_int:
- "int (fib (Suc (Suc n)) * fib n) =
-  (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1
-   else int (fib (Suc n) * fib (Suc n)) + 1)"
-proof(induct n rule: fib.induct)
-  case 1 thus ?case by (simp add: fib_2)
-next
-  case 2 thus ?case by (simp add: fib_2 mod_Suc)
-next 
-  case (3 x) 
-  have "Suc 0 \<noteq> x mod 2 \<longrightarrow> x mod 2 = 0" by presburger
-  with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2)
-qed
-
-text{*We now obtain a version for the natural numbers via the coercion 
-   function @{term int}.*}
-theorem fib_Cassini:
- "fib (Suc (Suc n)) * fib n =
-  (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1
-   else fib (Suc n) * fib (Suc n) + 1)"
-  apply (rule int_int_eq [THEN iffD1]) 
-  apply (simp add: fib_Cassini_int)
-  apply (subst zdiff_int [symmetric]) 
-   apply (insert fib_Suc_gr_0 [of n], simp_all)
-  done
-
-
-text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
-
-lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0"
-  apply (induct n rule: fib.induct)
-    prefer 3
-    apply (simp add: gcd_commute fib_Suc3)
-   apply (simp_all add: fib_2)
-  done
-
-lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)"
-  apply (simp add: gcd_commute [of "fib m"])
-  apply (case_tac m)
-   apply simp 
-  apply (simp add: fib_add)
-  apply (simp add: add_commute gcd_non_0 [OF fib_Suc_gr_0])
-  apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric])
-  apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
-  done
-
-lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
-  by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) 
-
-lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-proof (induct n rule: less_induct)
-  case (less n)
-  from less.prems have pos_m: "0 < m" .
-  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-  proof (cases "m < n")
-    case True note m_n = True
-    then have m_n': "m \<le> n" by auto
-    with pos_m have pos_n: "0 < n" by auto
-    with pos_m m_n have diff: "n - m < n" by auto
-    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
-    by (simp add: mod_if [of n]) (insert m_n, auto)
-    also have "\<dots> = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m)
-    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n')
-    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
-  next
-    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
-    by (cases "m = n") auto
-  qed
-qed
-
-lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"  -- {* Law 6.111 *}
-  apply (induct m n rule: gcd_induct)
-  apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod)
-  done
-
-theorem fib_mult_eq_setsum:
-    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
-  apply (induct n rule: fib.induct)
-    apply (auto simp add: atMost_Suc fib_2)
-  apply (simp add: add_mult_distrib add_mult_distrib2)
-  done
-
-end
--- a/src/HOL/NumberTheory/Finite2.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,223 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/Finite2.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {*Finite Sets and Finite Sums*}
-
-theory Finite2
-imports Main IntFact Infinite_Set
-begin
-
-text{*
-  These are useful for combinatorial and number-theoretic counting
-  arguments.
-*}
-
-
-subsection {* Useful properties of sums and products *}
-
-lemma setsum_same_function_zcong:
-  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
-  shows "[setsum f S = setsum g S] (mod m)"
-proof cases
-  assume "finite S"
-  thus ?thesis using a by induct (simp_all add: zcong_zadd)
-next
-  assume "infinite S" thus ?thesis by(simp add:setsum_def)
-qed
-
-lemma setprod_same_function_zcong:
-  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
-  shows "[setprod f S = setprod g S] (mod m)"
-proof cases
-  assume "finite S"
-  thus ?thesis using a by induct (simp_all add: zcong_zmult)
-next
-  assume "infinite S" thus ?thesis by(simp add:setprod_def)
-qed
-
-lemma setsum_const: "finite X ==> setsum (%x. (c :: int)) X = c * int(card X)"
-  apply (induct set: finite)
-  apply (auto simp add: left_distrib right_distrib int_eq_of_nat)
-  done
-
-lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) =
-    int(c) * int(card X)"
-  apply (induct set: finite)
-  apply (auto simp add: zadd_zmult_distrib2)
-  done
-
-lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A =
-    c * setsum f A"
-  by (induct set: finite) (auto simp add: zadd_zmult_distrib2)
-
-
-subsection {* Cardinality of explicit finite sets *}
-
-lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
-  by (simp add: finite_subset finite_imageI)
-
-lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
-  by (rule bounded_nat_set_is_finite) blast
-
-lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
-proof -
-  have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
-  then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
-qed
-
-lemma  bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
-  apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
-      int ` {(x :: nat). x < nat n}")
-   apply (erule finite_surjI)
-   apply (auto simp add: bdd_nat_set_l_finite image_def)
-  apply (rule_tac x = "nat x" in exI, simp)
-  done
-
-lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
-  apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
-   apply (erule ssubst)
-   apply (rule bdd_int_set_l_finite)
-  apply auto
-  done
-
-lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
-proof -
-  have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
-    by auto
-  then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
-qed
-
-lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
-proof -
-  have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
-    by auto
-  then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
-qed
-
-lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
-proof (induct x)
-  case 0
-  show "card {y::nat . y < 0} = 0" by simp
-next
-  case (Suc n)
-  have "{y. y < Suc n} = insert n {y. y < n}"
-    by auto
-  then have "card {y. y < Suc n} = card (insert n {y. y < n})"
-    by auto
-  also have "... = Suc (card {y. y < n})"
-    by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
-  finally show "card {y. y < Suc n} = Suc n"
-    using `card {y. y < n} = n` by simp
-qed
-
-lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
-proof -
-  have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
-    by auto
-  then show ?thesis by (auto simp add: card_bdd_nat_set_l)
-qed
-
-lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
-proof -
-  assume "0 \<le> n"
-  have "inj_on (%y. int y) {y. y < nat n}"
-    by (auto simp add: inj_on_def)
-  hence "card (int ` {y. y < nat n}) = card {y. y < nat n}"
-    by (rule card_image)
-  also from `0 \<le> n` have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
-    apply (auto simp add: zless_nat_eq_int_zless image_def)
-    apply (rule_tac x = "nat x" in exI)
-    apply (auto simp add: nat_0_le)
-    done
-  also have "card {y. y < nat n} = nat n"
-    by (rule card_bdd_nat_set_l)
-  finally show "card {y. 0 \<le> y & y < n} = nat n" .
-qed
-
-lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
-  nat n + 1"
-proof -
-  assume "0 \<le> n"
-  moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
-  ultimately show ?thesis
-    using card_bdd_int_set_l [of "n + 1"]
-    by (auto simp add: nat_add_distrib)
-qed
-
-lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
-    card {x. 0 < x & x \<le> n} = nat n"
-proof -
-  assume "0 \<le> n"
-  have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
-    by (auto simp add: inj_on_def)
-  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
-     card {x. 0 \<le> x & x < n}"
-    by (rule card_image)
-  also from `0 \<le> n` have "... = nat n"
-    by (rule card_bdd_int_set_l)
-  also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
-    apply (auto simp add: image_def)
-    apply (rule_tac x = "x - 1" in exI)
-    apply arith
-    done
-  finally show "card {x. 0 < x & x \<le> n} = nat n" .
-qed
-
-lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
-  card {x. 0 < x & x < n} = nat n - 1"
-proof -
-  assume "0 < n"
-  moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
-    by simp
-  ultimately show ?thesis
-    using insert card_bdd_int_set_l_le [of "n - 1"]
-    by (auto simp add: nat_diff_distrib)
-qed
-
-lemma int_card_bdd_int_set_l_l: "0 < n ==>
-    int(card {x. 0 < x & x < n}) = n - 1"
-  apply (auto simp add: card_bdd_int_set_l_l)
-  done
-
-lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
-    int(card {x. 0 < x & x \<le> n}) = n"
-  by (auto simp add: card_bdd_int_set_l_le)
-
-
-subsection {* Cardinality of finite cartesian products *}
-
-(* FIXME could be useful in general but not needed here
-lemma insert_Sigma [simp]: "(insert x A) <*> B = ({ x } <*> B) \<union> (A <*> B)"
-  by blast
- *)
-
-text {* Lemmas for counting arguments. *}
-
-lemma setsum_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
-    g ` B \<subseteq> A; inj_on g B |] ==> setsum g B = setsum (g \<circ> f) A"
-  apply (frule_tac h = g and f = f in setsum_reindex)
-  apply (subgoal_tac "setsum g B = setsum g (f ` A)")
-   apply (simp add: inj_on_def)
-  apply (subgoal_tac "card A = card B")
-   apply (drule_tac A = "f ` A" and B = B in card_seteq)
-     apply (auto simp add: card_image)
-  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
-  apply (frule_tac A = B and B = A and f = g in card_inj_on_le)
-    apply auto
-  done
-
-lemma setprod_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
-    g ` B \<subseteq> A; inj_on g B |] ==> setprod g B = setprod (g \<circ> f) A"
-  apply (frule_tac h = g and f = f in setprod_reindex)
-  apply (subgoal_tac "setprod g B = setprod g (f ` A)")
-   apply (simp add: inj_on_def)
-  apply (subgoal_tac "card A = card B")
-   apply (drule_tac A = "f ` A" and B = B in card_seteq)
-     apply (auto simp add: card_image)
-  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
-  apply (frule_tac A = B and B = A and f = g in card_inj_on_le, auto)
-  done
-
-end
--- a/src/HOL/NumberTheory/Gauss.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,535 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer)
-*)
-
-header {* Gauss' Lemma *}
-
-theory Gauss
-imports Euler
-begin
-
-locale GAUSS =
-  fixes p :: "int"
-  fixes a :: "int"
-
-  assumes p_prime: "zprime p"
-  assumes p_g_2: "2 < p"
-  assumes p_a_relprime: "~[a = 0](mod p)"
-  assumes a_nonzero:    "0 < a"
-begin
-
-definition
-  A :: "int set" where
-  "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}"
-
-definition
-  B :: "int set" where
-  "B = (%x. x * a) ` A"
-
-definition
-  C :: "int set" where
-  "C = StandardRes p ` B"
-
-definition
-  D :: "int set" where
-  "D = C \<inter> {x. x \<le> ((p - 1) div 2)}"
-
-definition
-  E :: "int set" where
-  "E = C \<inter> {x. ((p - 1) div 2) < x}"
-
-definition
-  F :: "int set" where
-  "F = (%x. (p - x)) ` E"
-
-
-subsection {* Basic properties of p *}
-
-lemma p_odd: "p \<in> zOdd"
-  by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
-
-lemma p_g_0: "0 < p"
-  using p_g_2 by auto
-
-lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
-  using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
-
-lemma p_minus_one_l: "(p - 1) div 2 < p"
-proof -
-  have "(p - 1) div 2 \<le> (p - 1) div 1"
-    by (rule zdiv_mono2) (auto simp add: p_g_0)
-  also have "\<dots> = p - 1" by simp
-  finally show ?thesis by simp
-qed
-
-lemma p_eq: "p = (2 * (p - 1) div 2) + 1"
-  using div_mult_self1_is_id [of 2 "p - 1"] by auto
-
-
-lemma (in -) zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
-  apply (frule odd_minus_one_even)
-  apply (simp add: zEven_def)
-  apply (subgoal_tac "2 \<noteq> 0")
-  apply (frule_tac b = "2 :: int" and a = "x - 1" in div_mult_self1_is_id)
-  apply (auto simp add: even_div_2_prop2)
-  done
-
-
-lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
-  apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
-  apply (frule zodd_imp_zdiv_eq, auto)
-  done
-
-
-subsection {* Basic Properties of the Gauss Sets *}
-
-lemma finite_A: "finite (A)"
-  apply (auto simp add: A_def)
-  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}")
-  apply (auto simp add: bdd_int_set_l_finite finite_subset)
-  done
-
-lemma finite_B: "finite (B)"
-  by (auto simp add: B_def finite_A finite_imageI)
-
-lemma finite_C: "finite (C)"
-  by (auto simp add: C_def finite_B finite_imageI)
-
-lemma finite_D: "finite (D)"
-  by (auto simp add: D_def finite_Int finite_C)
-
-lemma finite_E: "finite (E)"
-  by (auto simp add: E_def finite_Int finite_C)
-
-lemma finite_F: "finite (F)"
-  by (auto simp add: F_def finite_E finite_imageI)
-
-lemma C_eq: "C = D \<union> E"
-  by (auto simp add: C_def D_def E_def)
-
-lemma A_card_eq: "card A = nat ((p - 1) div 2)"
-  apply (auto simp add: A_def)
-  apply (insert int_nat)
-  apply (erule subst)
-  apply (auto simp add: card_bdd_int_set_l_le)
-  done
-
-lemma inj_on_xa_A: "inj_on (%x. x * a) A"
-  using a_nonzero by (simp add: A_def inj_on_def)
-
-lemma A_res: "ResSet p A"
-  apply (auto simp add: A_def ResSet_def)
-  apply (rule_tac m = p in zcong_less_eq)
-  apply (insert p_g_2, auto)
-  done
-
-lemma B_res: "ResSet p B"
-  apply (insert p_g_2 p_a_relprime p_minus_one_l)
-  apply (auto simp add: B_def)
-  apply (rule ResSet_image)
-  apply (auto simp add: A_res)
-  apply (auto simp add: A_def)
-proof -
-  fix x fix y
-  assume a: "[x * a = y * a] (mod p)"
-  assume b: "0 < x"
-  assume c: "x \<le> (p - 1) div 2"
-  assume d: "0 < y"
-  assume e: "y \<le> (p - 1) div 2"
-  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
-  have "[x = y](mod p)"
-    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
-  with zcong_less_eq [of x y p] p_minus_one_l
-      order_le_less_trans [of x "(p - 1) div 2" p]
-      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
-    by (simp add: prems p_minus_one_l p_g_0)
-qed
-
-lemma SR_B_inj: "inj_on (StandardRes p) B"
-  apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems)
-proof -
-  fix x fix y
-  assume a: "x * a mod p = y * a mod p"
-  assume b: "0 < x"
-  assume c: "x \<le> (p - 1) div 2"
-  assume d: "0 < y"
-  assume e: "y \<le> (p - 1) div 2"
-  assume f: "x \<noteq> y"
-  from a have "[x * a = y * a](mod p)"
-    by (simp add: zcong_zmod_eq p_g_0)
-  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
-  have "[x = y](mod p)"
-    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
-  with zcong_less_eq [of x y p] p_minus_one_l
-    order_le_less_trans [of x "(p - 1) div 2" p]
-    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
-    by (simp add: prems p_minus_one_l p_g_0)
-  then have False
-    by (simp add: f)
-  then show "a = 0"
-    by simp
-qed
-
-lemma inj_on_pminusx_E: "inj_on (%x. p - x) E"
-  apply (auto simp add: E_def C_def B_def A_def)
-  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
-  apply auto
-  done
-
-lemma A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
-  apply (auto simp add: A_def)
-  apply (frule_tac m = p in zcong_not_zero)
-  apply (insert p_minus_one_l)
-  apply auto
-  done
-
-lemma A_greater_zero: "x \<in> A ==> 0 < x"
-  by (auto simp add: A_def)
-
-lemma B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
-  apply (auto simp add: B_def)
-  apply (frule A_ncong_p)
-  apply (insert p_a_relprime p_prime a_nonzero)
-  apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
-  apply (auto simp add: A_greater_zero)
-  done
-
-lemma B_greater_zero: "x \<in> B ==> 0 < x"
-  using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero)
-
-lemma C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
-  apply (auto simp add: C_def)
-  apply (frule B_ncong_p)
-  apply (subgoal_tac "[x = StandardRes p x](mod p)")
-  defer apply (simp add: StandardRes_prop1)
-  apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
-  apply auto
-  done
-
-lemma C_greater_zero: "y \<in> C ==> 0 < y"
-  apply (auto simp add: C_def)
-proof -
-  fix x
-  assume a: "x \<in> B"
-  from p_g_0 have "0 \<le> StandardRes p x"
-    by (simp add: StandardRes_lbound)
-  moreover have "~[x = 0] (mod p)"
-    by (simp add: a B_ncong_p)
-  then have "StandardRes p x \<noteq> 0"
-    by (simp add: StandardRes_prop3)
-  ultimately show "0 < StandardRes p x"
-    by (simp add: order_le_less)
-qed
-
-lemma D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
-  by (auto simp add: D_def C_ncong_p)
-
-lemma E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
-  by (auto simp add: E_def C_ncong_p)
-
-lemma F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
-  apply (auto simp add: F_def)
-proof -
-  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
-  from E_ncong_p have "~[x = 0] (mod p)"
-    by (simp add: a)
-  moreover from a have "0 < x"
-    by (simp add: a E_def C_greater_zero)
-  moreover from a have "x < p"
-    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
-  ultimately have "~[p - x = 0] (mod p)"
-    by (simp add: zcong_not_zero)
-  from this show False by (simp add: b)
-qed
-
-lemma F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
-  apply (auto simp add: F_def E_def)
-  apply (insert p_g_0)
-  apply (frule_tac x = xa in StandardRes_ubound)
-  apply (frule_tac x = x in StandardRes_ubound)
-  apply (subgoal_tac "xa = StandardRes p xa")
-  apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
-proof -
-  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
-    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
-    by simp
-  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
-      ==> p - StandardRes p x \<le> (p - 1) div 2"
-    by simp
-qed
-
-lemma D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
-  by (auto simp add: D_def C_greater_zero)
-
-lemma F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
-  by (auto simp add: F_def E_def D_def C_def B_def A_def)
-
-lemma D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
-  by (auto simp add: D_def C_def B_def A_def)
-
-lemma D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
-  by (auto simp add: D_eq)
-
-lemma F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
-  apply (auto simp add: F_eq A_def)
-proof -
-  fix y
-  assume "(p - 1) div 2 < StandardRes p (y * a)"
-  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
-    by arith
-  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
-    by auto
-  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
-    by arith
-  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
-    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
-qed
-
-lemma all_A_relprime: "\<forall>x \<in> A. zgcd x p = 1"
-  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
-
-lemma A_prod_relprime: "zgcd (setprod id A) p = 1"
-by(rule all_relprime_prod_relprime[OF finite_A all_A_relprime])
-
-
-subsection {* Relationships Between Gauss Sets *}
-
-lemma B_card_eq_A: "card B = card A"
-  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
-
-lemma B_card_eq: "card B = nat ((p - 1) div 2)"
-  by (simp add: B_card_eq_A A_card_eq)
-
-lemma F_card_eq_E: "card F = card E"
-  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
-
-lemma C_card_eq_B: "card C = card B"
-  apply (insert finite_B)
-  apply (subgoal_tac "inj_on (StandardRes p) B")
-  apply (simp add: B_def C_def card_image)
-  apply (rule StandardRes_inj_on_ResSet)
-  apply (simp add: B_res)
-  done
-
-lemma D_E_disj: "D \<inter> E = {}"
-  by (auto simp add: D_def E_def)
-
-lemma C_card_eq_D_plus_E: "card C = card D + card E"
-  by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
-
-lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
-  apply (insert D_E_disj finite_D finite_E C_eq)
-  apply (frule setprod_Un_disjoint [of D E id])
-  apply auto
-  done
-
-lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
-  apply (auto simp add: C_def)
-  apply (insert finite_B SR_B_inj)
-  apply (frule_tac f = "StandardRes p" in setprod_reindex_id [symmetric], auto)
-  apply (rule setprod_same_function_zcong)
-  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
-  done
-
-lemma F_Un_D_subset: "(F \<union> D) \<subseteq> A"
-  apply (rule Un_least)
-  apply (auto simp add: A_def F_subset D_subset)
-  done
-
-lemma F_D_disj: "(F \<inter> D) = {}"
-  apply (simp add: F_eq D_eq)
-  apply (auto simp add: F_eq D_eq)
-proof -
-  fix y fix ya
-  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
-  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
-    by arith
-  moreover have "p dvd p"
-    by auto
-  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
-    by auto
-  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
-    by (auto simp add: zcong_def)
-  have "[y * a = StandardRes p (y * a)] (mod p)"
-    by (simp only: zcong_sym StandardRes_prop1)
-  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
-    by (simp only: zcong_sym StandardRes_prop1)
-  ultimately have "[y * a + ya * a =
-    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
-    by (rule zcong_zadd)
-  with a have "[y * a + ya * a = 0] (mod p)"
-    apply (elim zcong_trans)
-    by (simp only: zcong_refl)
-  also have "y * a + ya * a = a * (y + ya)"
-    by (simp add: zadd_zmult_distrib2 zmult_commute)
-  finally have "[a * (y + ya) = 0] (mod p)" .
-  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
-    p_a_relprime
-  have a: "[y + ya = 0] (mod p)"
-    by auto
-  assume b: "y \<in> A" and c: "ya: A"
-  with A_def have "0 < y + ya"
-    by auto
-  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
-    by auto
-  moreover from b c p_eq2 A_def have "y + ya < p"
-    by auto
-  ultimately show False
-    apply simp
-    apply (frule_tac m = p in zcong_not_zero)
-    apply (auto simp add: a)
-    done
-qed
-
-lemma F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
-proof -
-  have "card (F \<union> D) = card E + card D"
-    by (auto simp add: finite_F finite_D F_D_disj
-      card_Un_disjoint F_card_eq_E)
-  then have "card (F \<union> D) = card C"
-    by (simp add: C_card_eq_D_plus_E)
-  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
-    by (simp add: C_card_eq_B B_card_eq)
-qed
-
-lemma F_Un_D_eq_A: "F \<union> D = A"
-  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
-
-lemma prod_D_F_eq_prod_A:
-    "(setprod id D) * (setprod id F) = setprod id A"
-  apply (insert F_D_disj finite_D finite_F)
-  apply (frule setprod_Un_disjoint [of F D id])
-  apply (auto simp add: F_Un_D_eq_A)
-  done
-
-lemma prod_F_zcong:
-  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
-proof -
-  have "setprod id F = setprod id (op - p ` E)"
-    by (auto simp add: F_def)
-  then have "setprod id F = setprod (op - p) E"
-    apply simp
-    apply (insert finite_E inj_on_pminusx_E)
-    apply (frule_tac f = "op - p" in setprod_reindex_id, auto)
-    done
-  then have one:
-    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
-    apply simp
-    apply (insert p_g_0 finite_E StandardRes_prod)
-    by (auto)
-  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
-    apply clarify
-    apply (insert zcong_id [of p])
-    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
-    done
-  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
-    apply clarify
-    apply (simp add: StandardRes_prop1 zcong_sym)
-    done
-  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
-    apply clarify
-    apply (insert a b)
-    apply (rule_tac b = "p - x" in zcong_trans, auto)
-    done
-  ultimately have c:
-    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
-    apply simp
-    using finite_E p_g_0
-      setprod_same_function_zcong [of E "StandardRes p o (op - p)" uminus p]
-    by auto
-  then have two: "[setprod id F = setprod (uminus) E](mod p)"
-    apply (insert one c)
-    apply (rule zcong_trans [of "setprod id F"
-                               "setprod (StandardRes p o op - p) E" p
-                               "setprod uminus E"], auto)
-    done
-  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
-    using finite_E by (induct set: finite) auto
-  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
-    by (simp add: zmult_commute)
-  with two show ?thesis
-    by simp
-qed
-
-
-subsection {* Gauss' Lemma *}
-
-lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A"
-  by (auto simp add: finite_E neg_one_special)
-
-theorem pre_gauss_lemma:
-  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
-proof -
-  have "[setprod id A = setprod id F * setprod id D](mod p)"
-    by (auto simp add: prod_D_F_eq_prod_A zmult_commute cong del:setprod_cong)
-  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
-      setprod id D] (mod p)"
-    apply (rule zcong_trans)
-    apply (auto simp add: prod_F_zcong zcong_scalar cong del: setprod_cong)
-    done
-  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
-    apply (rule zcong_trans)
-    apply (insert C_prod_eq_D_times_E, erule subst)
-    apply (subst zmult_assoc, auto)
-    done
-  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
-    apply (rule zcong_trans)
-    apply (simp add: C_B_zcong_prod zcong_scalar2 cong del:setprod_cong)
-    done
-  then have "[setprod id A = ((-1)^(card E) *
-    (setprod id ((%x. x * a) ` A)))] (mod p)"
-    by (simp add: B_def)
-  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
-    (mod p)"
-    by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric] cong del:setprod_cong)
-  moreover have "setprod (%x. x * a) A =
-    setprod (%x. a) A * setprod id A"
-    using finite_A by (induct set: finite) auto
-  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
-    setprod id A))] (mod p)"
-    by simp
-  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
-      setprod id A)](mod p)"
-    apply (rule zcong_trans)
-    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant zmult_assoc)
-    done
-  then have a: "[setprod id A * (-1)^(card E) =
-      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
-    by (rule zcong_scalar)
-  then have "[setprod id A * (-1)^(card E) = setprod id A *
-      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
-    apply (rule zcong_trans)
-    apply (simp add: a mult_commute mult_left_commute)
-    done
-  then have "[setprod id A * (-1)^(card E) = setprod id A *
-      a^(card A)](mod p)"
-    apply (rule zcong_trans)
-    apply (simp add: aux cong del:setprod_cong)
-    done
-  with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
-      p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
-    by (simp add: order_less_imp_le)
-  from this show ?thesis
-    by (simp add: A_card_eq zcong_sym)
-qed
-
-theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
-proof -
-  from Euler_Criterion p_prime p_g_2 have
-      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
-    by auto
-  moreover note pre_gauss_lemma
-  ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"
-    by (rule zcong_trans)
-  moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)"
-    by (auto simp add: Legendre_def)
-  moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1"
-    by (rule neg_one_power)
-  ultimately show ?thesis
-    by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym)
-qed
-
-end
-
-end
--- a/src/HOL/NumberTheory/Int2.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,299 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {*Integers: Divisibility and Congruences*}
-
-theory Int2
-imports Finite2 WilsonRuss
-begin
-
-definition
-  MultInv :: "int => int => int" where
-  "MultInv p x = x ^ nat (p - 2)"
-
-
-subsection {* Useful lemmas about dvd and powers *}
-
-lemma zpower_zdvd_prop1:
-  "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
-  by (induct n) (auto simp add: dvd_mult2 [of p y])
-
-lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
-proof -
-  assume "n dvd m"
-  then have "~(0 < m & m < n)"
-    using zdvd_not_zless [of m n] by auto
-  then show ?thesis by auto
-qed
-
-lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==>
-    (p dvd m) | (p dvd n)"
-  apply (cases "0 \<le> m")
-  apply (simp add: zprime_zdvd_zmult)
-  apply (insert zprime_zdvd_zmult [of "-m" p n])
-  apply auto
-  done
-
-lemma zpower_zdvd_prop2:
-    "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
-  apply (induct n)
-   apply simp
-  apply (frule zprime_zdvd_zmult_better)
-   apply simp
-  apply (force simp del:dvd_mult)
-  done
-
-lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
-proof -
-  assume "0 < z" then have modth: "x mod z \<ge> 0" by simp
-  have "(x div z) * z \<le> (x div z) * z" by simp
-  then have "(x div z) * z \<le> (x div z) * z + x mod z" using modth by arith 
-  also have "\<dots> = x"
-    by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
-  also assume  "x < y * z"
-  finally show ?thesis
-    by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
-qed
-
-lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
-proof -
-  assume "0 < z" and "x < (y * z) + z"
-  then have "x < (y + 1) * z" by (auto simp add: int_distrib)
-  then have "x div z < y + 1"
-    apply -
-    apply (rule_tac y = "y + 1" in div_prop1)
-    apply (auto simp add: prems)
-    done
-  then show ?thesis by auto
-qed
-
-lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
-proof-
-  assume "0 < y"
-  from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
-  moreover have "0 \<le> x mod y"
-    by (auto simp add: prems pos_mod_sign)
-  ultimately show ?thesis
-    by arith
-qed
-
-
-subsection {* Useful properties of congruences *}
-
-lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
-  by (auto simp add: zcong_def)
-
-lemma zcong_id: "[m = 0] (mod m)"
-  by (auto simp add: zcong_def)
-
-lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
-  by (auto simp add: zcong_refl zcong_zadd)
-
-lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
-  by (induct z) (auto simp add: zcong_zmult)
-
-lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==>
-    [a = d](mod m)"
-  apply (erule zcong_trans)
-  apply simp
-  done
-
-lemma aux1: "a - b = (c::int) ==> a = c + b"
-  by auto
-
-lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) =
-    [c = b * d] (mod m))"
-  apply (auto simp add: zcong_def dvd_def)
-  apply (rule_tac x = "ka + k * d" in exI)
-  apply (drule aux1)+
-  apply (auto simp add: int_distrib)
-  apply (rule_tac x = "ka - k * d" in exI)
-  apply (drule aux1)+
-  apply (auto simp add: int_distrib)
-  done
-
-lemma zcong_zmult_prop2: "[a = b](mod m) ==>
-    ([c = d * a](mod m) = [c = d * b] (mod m))"
-  by (auto simp add: zmult_ac zcong_zmult_prop1)
-
-lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p);
-    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
-  apply (auto simp add: zcong_def)
-  apply (drule zprime_zdvd_zmult_better, auto)
-  done
-
-lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m);
-    x < m; y < m |] ==> x = y"
-  by (metis zcong_not zcong_sym zless_linear)
-
-lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==>
-    ~([x = 1] (mod p))"
-proof
-  assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
-  then have "[1 = -1] (mod p)"
-    apply (auto simp add: zcong_sym)
-    apply (drule zcong_trans, auto)
-    done
-  then have "[1 + 1 = -1 + 1] (mod p)"
-    by (simp only: zcong_shift)
-  then have "[2 = 0] (mod p)"
-    by auto
-  then have "p dvd 2"
-    by (auto simp add: dvd_def zcong_def)
-  with prems show False
-    by (auto simp add: zdvd_not_zless)
-qed
-
-lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
-  by (auto simp add: zcong_def)
-
-lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==>
-    [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"
-  by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
-
-lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
-  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
-  apply auto
-  apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
-  apply auto
-  done
-
-lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"
-  by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
-
-lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
-  apply (drule order_le_imp_less_or_eq, auto)
-  apply (frule_tac m = m in zcong_not_zero)
-  apply auto
-  done
-
-lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. zgcd x y = 1 |]
-    ==> zgcd (setprod id A) y = 1"
-  by (induct set: finite) (auto simp add: zgcd_zgcd_zmult)
-
-
-subsection {* Some properties of MultInv *}
-
-lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==>
-    [(MultInv p x) = (MultInv p y)] (mod p)"
-  by (auto simp add: MultInv_def zcong_zpower)
-
-lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
-  [(x * (MultInv p x)) = 1] (mod p)"
-proof (simp add: MultInv_def zcong_eq_zdvd_prop)
-  assume "2 < p" and "zprime p" and "~ p dvd x"
-  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
-    by auto
-  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
-    by (simp only: nat_add_distrib)
-  also have "p - 2 + 1 = p - 1" by arith
-  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
-    by (rule ssubst, auto)
-  also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
-    by (auto simp add: Little_Fermat)
-  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
-qed
-
-lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
-    [(MultInv p x) * x = 1] (mod p)"
-  by (auto simp add: MultInv_prop2 zmult_ac)
-
-lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
-  by (simp add: nat_diff_distrib)
-
-lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
-  by auto
-
-lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
-    ~([MultInv p x = 0](mod p))"
-  apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
-  apply (drule aux_2)
-  apply (drule zpower_zdvd_prop2, auto)
-  done
-
-lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
-    [(MultInv p (MultInv p x)) = (x * (MultInv p x) *
-      (MultInv p (MultInv p x)))] (mod p)"
-  apply (drule MultInv_prop2, auto)
-  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
-  apply (auto simp add: zcong_sym)
-  done
-
-lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
-    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
-  apply (frule MultInv_prop3, auto)
-  apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
-  apply (drule MultInv_prop2, auto)
-  apply (drule_tac k = x in zcong_scalar2, auto)
-  apply (auto simp add: zmult_ac)
-  done
-
-lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
-    [(MultInv p (MultInv p x)) = x] (mod p)"
-  apply (frule aux__1, auto)
-  apply (drule aux__2, auto)
-  apply (drule zcong_trans, auto)
-  done
-
-lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p));
-    ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==>
-    [x = y] (mod p)"
-  apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and
-    m = p and k = x in zcong_scalar)
-  apply (insert MultInv_prop2 [of p x], simp)
-  apply (auto simp only: zcong_sym [of "MultInv p x * x"])
-  apply (auto simp add:  zmult_ac)
-  apply (drule zcong_trans, auto)
-  apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
-  apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
-  apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
-  apply (auto simp add: zcong_sym)
-  done
-
-lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==>
-    [a * MultInv p j = a * MultInv p k] (mod p)"
-  by (drule MultInv_prop1, auto simp add: zcong_scalar2)
-
-lemma aux___1: "[j = a * MultInv p k] (mod p) ==>
-    [j * k = a * MultInv p k * k] (mod p)"
-  by (auto simp add: zcong_scalar)
-
-lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p));
-    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
-  apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2
-    [of "MultInv p k * k" 1 p "j * k" a])
-  apply (auto simp add: zmult_ac)
-  done
-
-lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k =
-     (MultInv p j) * a] (mod p)"
-  by (auto simp add: zmult_assoc zcong_scalar2)
-
-lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p));
-    [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
-       ==> [k = a * (MultInv p j)] (mod p)"
-  apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1
-    [of "MultInv p j * j" 1 p "MultInv p j * a" k])
-  apply (auto simp add: zmult_ac zcong_sym)
-  done
-
-lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p));
-    ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==>
-    [k = a * MultInv p j] (mod p)"
-  apply (drule aux___1)
-  apply (frule aux___2, auto)
-  by (drule aux___3, drule aux___4, auto)
-
-lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p));
-    ~([k = 0](mod p)); ~([j = 0](mod p));
-    [a * MultInv p j = a * MultInv p k] (mod p) |] ==>
-      [j = k] (mod p)"
-  apply (auto simp add: zcong_eq_zdvd_prop [of a p])
-  apply (frule zprime_imp_zrelprime, auto)
-  apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
-  apply (drule MultInv_prop5, auto)
-  done
-
-end
--- a/src/HOL/NumberTheory/IntFact.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,96 +0,0 @@
-(*  Title:      HOL/NumberTheory/IntFact.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Factorial on integers *}
-
-theory IntFact imports IntPrimes begin
-
-text {*
-  Factorial on integers and recursively defined set including all
-  Integers from @{text 2} up to @{text a}.  Plus definition of product
-  of finite set.
-
-  \bigskip
-*}
-
-consts
-  zfact :: "int => int"
-  d22set :: "int => int set"
-
-recdef zfact  "measure ((\<lambda>n. nat n) :: int => nat)"
-  "zfact n = (if n \<le> 0 then 1 else n * zfact (n - 1))"
-
-recdef d22set  "measure ((\<lambda>a. nat a) :: int => nat)"
-  "d22set a = (if 1 < a then insert a (d22set (a - 1)) else {})"
-
-
-text {*
-  \medskip @{term d22set} --- recursively defined set including all
-  integers from @{text 2} up to @{text a}
-*}
-
-declare d22set.simps [simp del]
-
-
-lemma d22set_induct:
-  assumes "!!a. P {} a"
-    and "!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1) ==> P (d22set a) a"
-  shows "P (d22set u) u"
-  apply (rule d22set.induct)
-  apply safe
-   prefer 2
-   apply (case_tac "1 < a")
-    apply (rule_tac prems)
-     apply (simp_all (no_asm_simp))
-   apply (simp_all (no_asm_simp) add: d22set.simps prems)
-  done
-
-lemma d22set_g_1 [rule_format]: "b \<in> d22set a --> 1 < b"
-  apply (induct a rule: d22set_induct)
-   apply simp
-  apply (subst d22set.simps)
-  apply auto
-  done
-
-lemma d22set_le [rule_format]: "b \<in> d22set a --> b \<le> a"
-  apply (induct a rule: d22set_induct)
-  apply simp
-   apply (subst d22set.simps)
-   apply auto
-  done
-
-lemma d22set_le_swap: "a < b ==> b \<notin> d22set a"
-  by (auto dest: d22set_le)
-
-lemma d22set_mem: "1 < b \<Longrightarrow> b \<le> a \<Longrightarrow> b \<in> d22set a"
-  apply (induct a rule: d22set.induct)
-  apply auto
-   apply (simp_all add: d22set.simps)
-  done
-
-lemma d22set_fin: "finite (d22set a)"
-  apply (induct a rule: d22set_induct)
-   prefer 2
-   apply (subst d22set.simps)
-   apply auto
-  done
-
-
-declare zfact.simps [simp del]
-
-lemma d22set_prod_zfact: "\<Prod>(d22set a) = zfact a"
-  apply (induct a rule: d22set.induct)
-  apply safe
-   apply (simp add: d22set.simps zfact.simps)
-  apply (subst d22set.simps)
-  apply (subst zfact.simps)
-  apply (case_tac "1 < a")
-   prefer 2
-   apply (simp add: d22set.simps zfact.simps)
-  apply (simp add: d22set_fin d22set_le_swap)
-  done
-
-end
--- a/src/HOL/NumberTheory/IntPrimes.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,423 +0,0 @@
-(*  Title:      HOL/NumberTheory/IntPrimes.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Divisibility and prime numbers (on integers) *}
-
-theory IntPrimes
-imports Main Primes
-begin
-
-text {*
-  The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
-  congruences (all on the Integers).  Comparable to theory @{text
-  Primes}, but @{text dvd} is included here as it is not present in
-  main HOL.  Also includes extended GCD and congruences not present in
-  @{text Primes}.
-*}
-
-
-subsection {* Definitions *}
-
-consts
-  xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
-
-recdef xzgcda
-  "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
-    :: int * int * int * int *int * int * int * int => nat)"
-  "xzgcda (m, n, r', r, s', s, t', t) =
-	(if r \<le> 0 then (r', s', t')
-	 else xzgcda (m, n, r, r' mod r, 
-		      s, s' - (r' div r) * s, 
-		      t, t' - (r' div r) * t))"
-
-definition
-  zprime :: "int \<Rightarrow> bool" where
-  "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"
-
-definition
-  xzgcd :: "int => int => int * int * int" where
-  "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
-
-definition
-  zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
-  "[a = b] (mod m) = (m dvd (a - b))"
-
-subsection {* Euclid's Algorithm and GCD *}
-
-
-lemma zrelprime_zdvd_zmult_aux:
-     "zgcd n k = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"
-    by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs zmult_1_right)
-
-lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"
-  apply (case_tac "0 \<le> m")
-   apply (blast intro: zrelprime_zdvd_zmult_aux)
-  apply (subgoal_tac "k dvd -m")
-   apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
-  done
-
-lemma zgcd_geq_zero: "0 <= zgcd x y"
-  by (auto simp add: zgcd_def)
-
-text{*This is merely a sanity check on zprime, since the previous version
-      denoted the empty set.*}
-lemma "zprime 2"
-  apply (auto simp add: zprime_def) 
-  apply (frule zdvd_imp_le, simp) 
-  apply (auto simp add: order_le_less dvd_def) 
-  done
-
-lemma zprime_imp_zrelprime:
-    "zprime p ==> \<not> p dvd n ==> zgcd n p = 1"
-  apply (auto simp add: zprime_def)
-  apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)
-  done
-
-lemma zless_zprime_imp_zrelprime:
-    "zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"
-  apply (erule zprime_imp_zrelprime)
-  apply (erule zdvd_not_zless, assumption)
-  done
-
-lemma zprime_zdvd_zmult:
-    "0 \<le> (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
-  by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)
-
-lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"
-  apply (rule zgcd_eq [THEN trans])
-  apply (simp add: mod_add_eq)
-  apply (rule zgcd_eq [symmetric])
-  done
-
-lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"
-by (simp add: zgcd_greatest_iff)
-
-lemma zgcd_zmult_zdvd_zgcd:
-    "zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"
-  apply (simp add: zgcd_greatest_iff)
-  apply (rule_tac n = k in zrelprime_zdvd_zmult)
-   prefer 2
-   apply (simp add: zmult_commute)
-  apply (metis zgcd_1 zgcd_commute zgcd_left_commute)
-  done
-
-lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"
-  by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
-
-lemma zgcd_zgcd_zmult:
-    "zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"
-  by (simp add: zgcd_zmult_cancel)
-
-lemma zdvd_iff_zgcd: "0 < m ==> m dvd n \<longleftrightarrow> zgcd n m = m"
-  by (metis abs_of_pos zdvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)
-
-
-
-subsection {* Congruences *}
-
-lemma zcong_1 [simp]: "[a = b] (mod 1)"
-  by (unfold zcong_def, auto)
-
-lemma zcong_refl [simp]: "[k = k] (mod m)"
-  by (unfold zcong_def, auto)
-
-lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
-  unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..
-
-lemma zcong_zadd:
-    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
-  apply (unfold zcong_def)
-  apply (rule_tac s = "(a - b) + (c - d)" in subst)
-   apply (rule_tac [2] dvd_add, auto)
-  done
-
-lemma zcong_zdiff:
-    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
-  apply (unfold zcong_def)
-  apply (rule_tac s = "(a - b) - (c - d)" in subst)
-   apply (rule_tac [2] dvd_diff, auto)
-  done
-
-lemma zcong_trans:
-  "[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
-unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)
-
-lemma zcong_zmult:
-    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
-  apply (rule_tac b = "b * c" in zcong_trans)
-   apply (unfold zcong_def)
-  apply (metis zdiff_zmult_distrib2 dvd_mult zmult_commute)
-  apply (metis zdiff_zmult_distrib2 dvd_mult)
-  done
-
-lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
-  by (rule zcong_zmult, simp_all)
-
-lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
-  by (rule zcong_zmult, simp_all)
-
-lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
-  apply (unfold zcong_def)
-  apply (rule dvd_diff, simp_all)
-  done
-
-lemma zcong_square:
-   "[| zprime p;  0 < a;  [a * a = 1] (mod p)|]
-    ==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"
-  apply (unfold zcong_def)
-  apply (rule zprime_zdvd_zmult)
-    apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
-     prefer 4
-     apply (simp add: zdvd_reduce)
-    apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2)
-  done
-
-lemma zcong_cancel:
-  "0 \<le> m ==>
-    zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
-  apply safe
-   prefer 2
-   apply (blast intro: zcong_scalar)
-  apply (case_tac "b < a")
-   prefer 2
-   apply (subst zcong_sym)
-   apply (unfold zcong_def)
-   apply (rule_tac [!] zrelprime_zdvd_zmult)
-     apply (simp_all add: zdiff_zmult_distrib)
-  apply (subgoal_tac "m dvd (-(a * k - b * k))")
-   apply simp
-  apply (subst dvd_minus_iff, assumption)
-  done
-
-lemma zcong_cancel2:
-  "0 \<le> m ==>
-    zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
-  by (simp add: zmult_commute zcong_cancel)
-
-lemma zcong_zgcd_zmult_zmod:
-  "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1
-    ==> [a = b] (mod m * n)"
-  apply (auto simp add: zcong_def dvd_def)
-  apply (subgoal_tac "m dvd n * ka")
-   apply (subgoal_tac "m dvd ka")
-    apply (case_tac [2] "0 \<le> ka")
-  apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult)
-  apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute)
-  apply (metis mult_le_0_iff  zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
-  apply (metis dvd_triv_left)
-  done
-
-lemma zcong_zless_imp_eq:
-  "0 \<le> a ==>
-    a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"
-  apply (unfold zcong_def dvd_def, auto)
-  apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)
-  apply (metis diff_add_cancel mod_pos_pos_trivial zadd_0 zadd_commute zmod_eq_0_iff mod_add_right_eq)
-  done
-
-lemma zcong_square_zless:
-  "zprime p ==> 0 < a ==> a < p ==>
-    [a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"
-  apply (cut_tac p = p and a = a in zcong_square)
-     apply (simp add: zprime_def)
-    apply (auto intro: zcong_zless_imp_eq)
-  done
-
-lemma zcong_not:
-    "0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"
-  apply (unfold zcong_def)
-  apply (rule zdvd_not_zless, auto)
-  done
-
-lemma zcong_zless_0:
-    "0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
-  apply (unfold zcong_def dvd_def, auto)
-  apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)
-  done
-
-lemma zcong_zless_unique:
-    "0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
-  apply auto
-   prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)
-  apply (unfold zcong_def dvd_def)
-  apply (rule_tac x = "a mod m" in exI, auto)
-  apply (metis zmult_div_cancel)
-  done
-
-lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"
-  unfolding zcong_def
-  apply (auto elim!: dvdE simp add: algebra_simps)
-  apply (rule_tac x = "-k" in exI) apply simp
-  done
-
-lemma zgcd_zcong_zgcd:
-  "0 < m ==>
-    zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"
-  by (auto simp add: zcong_iff_lin)
-
-lemma zcong_zmod_aux:
-     "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
-  by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac)
-
-lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
-  apply (unfold zcong_def)
-  apply (rule_tac t = "a - b" in ssubst)
-  apply (rule_tac m = m in zcong_zmod_aux)
-  apply (rule trans)
-   apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
-  apply (simp add: zadd_commute)
-  done
-
-lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
-  apply auto
-  apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)
-  apply (metis zcong_refl zcong_zmod)
-  done
-
-lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
-  by (auto simp add: zcong_def)
-
-lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
-  by (auto simp add: zcong_def)
-
-lemma "[a = b] (mod m) = (a mod m = b mod m)"
-  apply (case_tac "m = 0", simp add: DIVISION_BY_ZERO)
-  apply (simp add: linorder_neq_iff)
-  apply (erule disjE)  
-   prefer 2 apply (simp add: zcong_zmod_eq)
-  txt{*Remainding case: @{term "m<0"}*}
-  apply (rule_tac t = m in zminus_zminus [THEN subst])
-  apply (subst zcong_zminus)
-  apply (subst zcong_zmod_eq, arith)
-  apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) 
-  apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
-  done
-
-subsection {* Modulo *}
-
-lemma zmod_zdvd_zmod:
-    "0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
-  by (rule mod_mod_cancel) 
-
-
-subsection {* Extended GCD *}
-
-declare xzgcda.simps [simp del]
-
-lemma xzgcd_correct_aux1:
-  "zgcd r' r = k --> 0 < r -->
-    (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
-  apply (subst zgcd_eq)
-  apply (subst xzgcda.simps, auto)
-  apply (case_tac "r' mod r = 0")
-   prefer 2
-   apply (frule_tac a = "r'" in pos_mod_sign, auto)
-  apply (rule exI)
-  apply (rule exI)
-  apply (subst xzgcda.simps, auto)
-  done
-
-lemma xzgcd_correct_aux2:
-  "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
-    zgcd r' r = k"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
-  apply (subst zgcd_eq)
-  apply (subst xzgcda.simps)
-  apply (auto simp add: linorder_not_le)
-  apply (case_tac "r' mod r = 0")
-   prefer 2
-   apply (frule_tac a = "r'" in pos_mod_sign, auto)
-  apply (metis Pair_eq simps zle_refl)
-  done
-
-lemma xzgcd_correct:
-    "0 < n ==> (zgcd m n = k) = (\<exists>s t. xzgcd m n = (k, s, t))"
-  apply (unfold xzgcd_def)
-  apply (rule iffI)
-   apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
-    apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
-  done
-
-
-text {* \medskip @{term xzgcd} linear *}
-
-lemma xzgcda_linear_aux1:
-  "(a - r * b) * m + (c - r * d) * (n::int) =
-   (a * m + c * n) - r * (b * m + d * n)"
-  by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc)
-
-lemma xzgcda_linear_aux2:
-  "r' = s' * m + t' * n ==> r = s * m + t * n
-    ==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
-  apply (rule trans)
-   apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
-  apply (simp add: eq_diff_eq mult_commute)
-  done
-
-lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"
-  by (rule iffD2 [OF order_less_le conjI])
-
-lemma xzgcda_linear [rule_format]:
-  "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
-    r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
-  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
-    z = s and aa = t' and ab = t in xzgcda.induct)
-  apply (subst xzgcda.simps)
-  apply (simp (no_asm))
-  apply (rule impI)+
-  apply (case_tac "r' mod r = 0")
-   apply (simp add: xzgcda.simps, clarify)
-  apply (subgoal_tac "0 < r' mod r")
-   apply (rule_tac [2] order_le_neq_implies_less)
-   apply (rule_tac [2] pos_mod_sign)
-    apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
-      s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
-  done
-
-lemma xzgcd_linear:
-    "0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
-  apply (unfold xzgcd_def)
-  apply (erule xzgcda_linear, assumption, auto)
-  done
-
-lemma zgcd_ex_linear:
-    "0 < n ==> zgcd m n = k ==> (\<exists>s t. k = s * m + t * n)"
-  apply (simp add: xzgcd_correct, safe)
-  apply (rule exI)+
-  apply (erule xzgcd_linear, auto)
-  done
-
-lemma zcong_lineq_ex:
-    "0 < n ==> zgcd a n = 1 ==> \<exists>x. [a * x = 1] (mod n)"
-  apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
-  apply (rule_tac x = s in exI)
-  apply (rule_tac b = "s * a + t * n" in zcong_trans)
-   prefer 2
-   apply simp
-  apply (unfold zcong_def)
-  apply (simp (no_asm) add: zmult_commute)
-  done
-
-lemma zcong_lineq_unique:
-  "0 < n ==>
-    zgcd a n = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"
-  apply auto
-   apply (rule_tac [2] zcong_zless_imp_eq)
-       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 6 *})
-         apply (rule_tac [8] zcong_trans)
-          apply (simp_all (no_asm_simp))
-   prefer 2
-   apply (simp add: zcong_sym)
-  apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
-  apply (rule_tac x = "x * b mod n" in exI, safe)
-    apply (simp_all (no_asm_simp))
-  apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq zmult_1 zmult_assoc)
-  done
-
-end
--- a/src/HOL/NumberTheory/Quadratic_Reciprocity.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,644 +0,0 @@
-(*  Title:      HOL/NumberTheory/Quadratic_Reciprocity.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {* The law of Quadratic reciprocity *}
-
-theory Quadratic_Reciprocity
-imports Gauss
-begin
-
-text {*
-  Lemmas leading up to the proof of theorem 3.3 in Niven and
-  Zuckerman's presentation.
-*}
-
-context GAUSS
-begin
-
-lemma QRLemma1: "a * setsum id A =
-  p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E"
-proof -
-  from finite_A have "a * setsum id A = setsum (%x. a * x) A"
-    by (auto simp add: setsum_const_mult id_def)
-  also have "setsum (%x. a * x) = setsum (%x. x * a)"
-    by (auto simp add: zmult_commute)
-  also have "setsum (%x. x * a) A = setsum id B"
-    by (simp add: B_def setsum_reindex_id[OF inj_on_xa_A])
-  also have "... = setsum (%x. p * (x div p) + StandardRes p x) B"
-    by (auto simp add: StandardRes_def zmod_zdiv_equality)
-  also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B"
-    by (rule setsum_addf)
-  also have "setsum (StandardRes p) B = setsum id C"
-    by (auto simp add: C_def setsum_reindex_id[OF SR_B_inj])
-  also from C_eq have "... = setsum id (D \<union> E)"
-    by auto
-  also from finite_D finite_E have "... = setsum id D + setsum id E"
-    by (rule setsum_Un_disjoint) (auto simp add: D_def E_def)
-  also have "setsum (%x. p * (x div p)) B =
-      setsum ((%x. p * (x div p)) o (%x. (x * a))) A"
-    by (auto simp add: B_def setsum_reindex inj_on_xa_A)
-  also have "... = setsum (%x. p * ((x * a) div p)) A"
-    by (auto simp add: o_def)
-  also from finite_A have "setsum (%x. p * ((x * a) div p)) A =
-    p * setsum (%x. ((x * a) div p)) A"
-    by (auto simp add: setsum_const_mult)
-  finally show ?thesis by arith
-qed
-
-lemma QRLemma2: "setsum id A = p * int (card E) - setsum id E +
-  setsum id D"
-proof -
-  from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)"
-    by (simp add: Un_commute)
-  also from F_D_disj finite_D finite_F
-  have "... = setsum id D + setsum id F"
-    by (auto simp add: Int_commute intro: setsum_Un_disjoint)
-  also from F_def have "F = (%x. (p - x)) ` E"
-    by auto
-  also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
-      setsum (%x. (p - x)) E"
-    by (auto simp add: setsum_reindex)
-  also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E"
-    by (auto simp add: setsum_subtractf id_def)
-  also from finite_E have "setsum (%x. p) E = p * int(card E)"
-    by (intro setsum_const)
-  finally show ?thesis
-    by arith
-qed
-
-lemma QRLemma3: "(a - 1) * setsum id A =
-    p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E"
-proof -
-  have "(a - 1) * setsum id A = a * setsum id A - setsum id A"
-    by (auto simp add: zdiff_zmult_distrib)
-  also note QRLemma1
-  also from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
-     setsum id E - setsum id A =
-      p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
-      setsum id E - (p * int (card E) - setsum id E + setsum id D)"
-    by auto
-  also have "... = p * (\<Sum>x \<in> A. x * a div p) -
-      p * int (card E) + 2 * setsum id E"
-    by arith
-  finally show ?thesis
-    by (auto simp only: zdiff_zmult_distrib2)
-qed
-
-lemma QRLemma4: "a \<in> zOdd ==>
-    (setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)"
-proof -
-  assume a_odd: "a \<in> zOdd"
-  from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
-      (a - 1) * setsum id A - 2 * setsum id E"
-    by arith
-  from a_odd have "a - 1 \<in> zEven"
-    by (rule odd_minus_one_even)
-  hence "(a - 1) * setsum id A \<in> zEven"
-    by (rule even_times_either)
-  moreover have "2 * setsum id E \<in> zEven"
-    by (auto simp add: zEven_def)
-  ultimately have "(a - 1) * setsum id A - 2 * setsum id E \<in> zEven"
-    by (rule even_minus_even)
-  with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by simp
-  hence "p \<in> zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by (rule EvenOdd.even_product)
-  with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
-    by (auto simp add: odd_iff_not_even)
-  thus ?thesis
-    by (auto simp only: even_diff [symmetric])
-qed
-
-lemma QRLemma5: "a \<in> zOdd ==>
-   (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
-proof -
-  assume "a \<in> zOdd"
-  from QRLemma4 [OF this] have
-    "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \<in> zEven)" ..
-  moreover have "0 \<le> int(card E)"
-    by auto
-  moreover have "0 \<le> setsum (%x. ((x * a) div p)) A"
-    proof (intro setsum_nonneg)
-      show "\<forall>x \<in> A. 0 \<le> x * a div p"
-      proof
-        fix x
-        assume "x \<in> A"
-        then have "0 \<le> x"
-          by (auto simp add: A_def)
-        with a_nonzero have "0 \<le> x * a"
-          by (auto simp add: zero_le_mult_iff)
-        with p_g_2 show "0 \<le> x * a div p"
-          by (auto simp add: pos_imp_zdiv_nonneg_iff)
-      qed
-    qed
-  ultimately have "(-1::int)^nat((int (card E))) =
-      (-1)^nat(((\<Sum>x \<in> A. x * a div p)))"
-    by (intro neg_one_power_parity, auto)
-  also have "nat (int(card E)) = card E"
-    by auto
-  finally show ?thesis .
-qed
-
-end
-
-lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p)); zprime p; 2 < p;
-  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==>
-  (Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
-  apply (subst GAUSS.gauss_lemma)
-  apply (auto simp add: GAUSS_def)
-  apply (subst GAUSS.QRLemma5)
-  apply (auto simp add: GAUSS_def)
-  apply (simp add: GAUSS.A_def [OF GAUSS.intro] GAUSS_def)
-  done
-
-
-subsection {* Stuff about S, S1 and S2 *}
-
-locale QRTEMP =
-  fixes p     :: "int"
-  fixes q     :: "int"
-
-  assumes p_prime: "zprime p"
-  assumes p_g_2: "2 < p"
-  assumes q_prime: "zprime q"
-  assumes q_g_2: "2 < q"
-  assumes p_neq_q:      "p \<noteq> q"
-begin
-
-definition
-  P_set :: "int set" where
-  "P_set = {x. 0 < x & x \<le> ((p - 1) div 2) }"
-
-definition
-  Q_set :: "int set" where
-  "Q_set = {x. 0 < x & x \<le> ((q - 1) div 2) }"
-  
-definition
-  S :: "(int * int) set" where
-  "S = P_set <*> Q_set"
-
-definition
-  S1 :: "(int * int) set" where
-  "S1 = { (x, y). (x, y):S & ((p * y) < (q * x)) }"
-
-definition
-  S2 :: "(int * int) set" where
-  "S2 = { (x, y). (x, y):S & ((q * x) < (p * y)) }"
-
-definition
-  f1 :: "int => (int * int) set" where
-  "f1 j = { (j1, y). (j1, y):S & j1 = j & (y \<le> (q * j) div p) }"
-
-definition
-  f2 :: "int => (int * int) set" where
-  "f2 j = { (x, j1). (x, j1):S & j1 = j & (x \<le> (p * j) div q) }"
-
-lemma p_fact: "0 < (p - 1) div 2"
-proof -
-  from p_g_2 have "2 \<le> p - 1" by arith
-  then have "2 div 2 \<le> (p - 1) div 2" by (rule zdiv_mono1, auto)
-  then show ?thesis by auto
-qed
-
-lemma q_fact: "0 < (q - 1) div 2"
-proof -
-  from q_g_2 have "2 \<le> q - 1" by arith
-  then have "2 div 2 \<le> (q - 1) div 2" by (rule zdiv_mono1, auto)
-  then show ?thesis by auto
-qed
-
-lemma pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>
-    (p * b \<noteq> q * a)"
-proof
-  assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2"
-  then have "q dvd (p * b)" by (auto simp add: dvd_def)
-  with q_prime p_g_2 have "q dvd p | q dvd b"
-    by (auto simp add: zprime_zdvd_zmult)
-  moreover have "~ (q dvd p)"
-  proof
-    assume "q dvd p"
-    with p_prime have "q = 1 | q = p"
-      apply (auto simp add: zprime_def QRTEMP_def)
-      apply (drule_tac x = q and R = False in allE)
-      apply (simp add: QRTEMP_def)
-      apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)
-      apply (insert prems)
-      apply (auto simp add: QRTEMP_def)
-      done
-    with q_g_2 p_neq_q show False by auto
-  qed
-  ultimately have "q dvd b" by auto
-  then have "q \<le> b"
-  proof -
-    assume "q dvd b"
-    moreover from prems have "0 < b" by auto
-    ultimately show ?thesis using zdvd_bounds [of q b] by auto
-  qed
-  with prems have "q \<le> (q - 1) div 2" by auto
-  then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith
-  then have "2 * q \<le> q - 1"
-  proof -
-    assume "2 * q \<le> 2 * ((q - 1) div 2)"
-    with prems have "q \<in> zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)
-    with odd_minus_one_even have "(q - 1):zEven" by auto
-    with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto
-    with prems show ?thesis by auto
-  qed
-  then have p1: "q \<le> -1" by arith
-  with q_g_2 show False by auto
-qed
-
-lemma P_set_finite: "finite (P_set)"
-  using p_fact by (auto simp add: P_set_def bdd_int_set_l_le_finite)
-
-lemma Q_set_finite: "finite (Q_set)"
-  using q_fact by (auto simp add: Q_set_def bdd_int_set_l_le_finite)
-
-lemma S_finite: "finite S"
-  by (auto simp add: S_def  P_set_finite Q_set_finite finite_cartesian_product)
-
-lemma S1_finite: "finite S1"
-proof -
-  have "finite S" by (auto simp add: S_finite)
-  moreover have "S1 \<subseteq> S" by (auto simp add: S1_def S_def)
-  ultimately show ?thesis by (auto simp add: finite_subset)
-qed
-
-lemma S2_finite: "finite S2"
-proof -
-  have "finite S" by (auto simp add: S_finite)
-  moreover have "S2 \<subseteq> S" by (auto simp add: S2_def S_def)
-  ultimately show ?thesis by (auto simp add: finite_subset)
-qed
-
-lemma P_set_card: "(p - 1) div 2 = int (card (P_set))"
-  using p_fact by (auto simp add: P_set_def card_bdd_int_set_l_le)
-
-lemma Q_set_card: "(q - 1) div 2 = int (card (Q_set))"
-  using q_fact by (auto simp add: Q_set_def card_bdd_int_set_l_le)
-
-lemma S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
-  using P_set_card Q_set_card P_set_finite Q_set_finite
-  by (auto simp add: S_def zmult_int setsum_constant)
-
-lemma S1_Int_S2_prop: "S1 \<inter> S2 = {}"
-  by (auto simp add: S1_def S2_def)
-
-lemma S1_Union_S2_prop: "S = S1 \<union> S2"
-  apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
-proof -
-  fix a and b
-  assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2"
-  with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
-  moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
-  ultimately show "p * b < q * a" by auto
-qed
-
-lemma card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =
-    int(card(S1)) + int(card(S2))"
-proof -
-  have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
-    by (auto simp add: S_card)
-  also have "... = int( card(S1) + card(S2))"
-    apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
-    apply (drule card_Un_disjoint, auto)
-    done
-  also have "... = int(card(S1)) + int(card(S2))" by auto
-  finally show ?thesis .
-qed
-
-lemma aux1a: "[| 0 < a; a \<le> (p - 1) div 2;
-                             0 < b; b \<le> (q - 1) div 2 |] ==>
-                          (p * b < q * a) = (b \<le> q * a div p)"
-proof -
-  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
-  have "p * b < q * a ==> b \<le> q * a div p"
-  proof -
-    assume "p * b < q * a"
-    then have "p * b \<le> q * a" by auto
-    then have "(p * b) div p \<le> (q * a) div p"
-      by (rule zdiv_mono1) (insert p_g_2, auto)
-    then show "b \<le> (q * a) div p"
-      apply (subgoal_tac "p \<noteq> 0")
-      apply (frule div_mult_self1_is_id, force)
-      apply (insert p_g_2, auto)
-      done
-  qed
-  moreover have "b \<le> q * a div p ==> p * b < q * a"
-  proof -
-    assume "b \<le> q * a div p"
-    then have "p * b \<le> p * ((q * a) div p)"
-      using p_g_2 by (auto simp add: mult_le_cancel_left)
-    also have "... \<le> q * a"
-      by (rule zdiv_leq_prop) (insert p_g_2, auto)
-    finally have "p * b \<le> q * a" .
-    then have "p * b < q * a | p * b = q * a"
-      by (simp only: order_le_imp_less_or_eq)
-    moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa) (insert prems, auto)
-    ultimately show ?thesis by auto
-  qed
-  ultimately show ?thesis ..
-qed
-
-lemma aux1b: "[| 0 < a; a \<le> (p - 1) div 2;
-                             0 < b; b \<le> (q - 1) div 2 |] ==>
-                          (q * a < p * b) = (a \<le> p * b div q)"
-proof -
-  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
-  have "q * a < p * b ==> a \<le> p * b div q"
-  proof -
-    assume "q * a < p * b"
-    then have "q * a \<le> p * b" by auto
-    then have "(q * a) div q \<le> (p * b) div q"
-      by (rule zdiv_mono1) (insert q_g_2, auto)
-    then show "a \<le> (p * b) div q"
-      apply (subgoal_tac "q \<noteq> 0")
-      apply (frule div_mult_self1_is_id, force)
-      apply (insert q_g_2, auto)
-      done
-  qed
-  moreover have "a \<le> p * b div q ==> q * a < p * b"
-  proof -
-    assume "a \<le> p * b div q"
-    then have "q * a \<le> q * ((p * b) div q)"
-      using q_g_2 by (auto simp add: mult_le_cancel_left)
-    also have "... \<le> p * b"
-      by (rule zdiv_leq_prop) (insert q_g_2, auto)
-    finally have "q * a \<le> p * b" .
-    then have "q * a < p * b | q * a = p * b"
-      by (simp only: order_le_imp_less_or_eq)
-    moreover have "p * b \<noteq> q * a"
-      by (rule  pb_neq_qa) (insert prems, auto)
-    ultimately show ?thesis by auto
-  qed
-  ultimately show ?thesis ..
-qed
-
-lemma (in -) aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==>
-             (q * ((p - 1) div 2)) div p \<le> (q - 1) div 2"
-proof-
-  assume "zprime p" and "zprime q" and "2 < p" and "2 < q"
-  (* Set up what's even and odd *)
-  then have "p \<in> zOdd & q \<in> zOdd"
-    by (auto simp add:  zprime_zOdd_eq_grt_2)
-  then have even1: "(p - 1):zEven & (q - 1):zEven"
-    by (auto simp add: odd_minus_one_even)
-  then have even2: "(2 * p):zEven & ((q - 1) * p):zEven"
-    by (auto simp add: zEven_def)
-  then have even3: "(((q - 1) * p) + (2 * p)):zEven"
-    by (auto simp: EvenOdd.even_plus_even)
-  (* using these prove it *)
-  from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)"
-    by (auto simp add: int_distrib)
-  then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2"
-    apply (rule_tac x = "((p - 1) * q)" in even_div_2_l)
-    by (auto simp add: even3, auto simp add: zmult_ac)
-  also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)"
-    by (auto simp add: even1 even_prod_div_2)
-  also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p"
-    by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
-  finally show ?thesis
-    apply (rule_tac x = " q * ((p - 1) div 2)" and
-                    y = "(q - 1) div 2" in div_prop2)
-    using prems by auto
-qed
-
-lemma aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p"
-proof
-  fix j
-  assume j_fact: "j \<in> P_set"
-  have "int (card (f1 j)) = int (card {y. y \<in> Q_set & y \<le> (q * j) div p})"
-  proof -
-    have "finite (f1 j)"
-    proof -
-      have "(f1 j) \<subseteq> S" by (auto simp add: f1_def)
-      with S_finite show ?thesis by (auto simp add: finite_subset)
-    qed
-    moreover have "inj_on (%(x,y). y) (f1 j)"
-      by (auto simp add: f1_def inj_on_def)
-    ultimately have "card ((%(x,y). y) ` (f1 j)) = card  (f1 j)"
-      by (auto simp add: f1_def card_image)
-    moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}"
-      using prems by (auto simp add: f1_def S_def Q_set_def P_set_def image_def)
-    ultimately show ?thesis by (auto simp add: f1_def)
-  qed
-  also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})"
-  proof -
-    have "{y. y \<in> Q_set & y \<le> (q * j) div p} =
-        {y. 0 < y & y \<le> (q * j) div p}"
-      apply (auto simp add: Q_set_def)
-    proof -
-      fix x
-      assume "0 < x" and "x \<le> q * j div p"
-      with j_fact P_set_def  have "j \<le> (p - 1) div 2" by auto
-      with q_g_2 have "q * j \<le> q * ((p - 1) div 2)"
-        by (auto simp add: mult_le_cancel_left)
-      with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p"
-        by (auto simp add: zdiv_mono1)
-      also from prems P_set_def have "... \<le> (q - 1) div 2"
-        apply simp
-        apply (insert aux2)
-        apply (simp add: QRTEMP_def)
-        done
-      finally show "x \<le> (q - 1) div 2" using prems by auto
-    qed
-    then show ?thesis by auto
-  qed
-  also have "... = (q * j) div p"
-  proof -
-    from j_fact P_set_def have "0 \<le> j" by auto
-    with q_g_2 have "q * 0 \<le> q * j" by (auto simp only: mult_left_mono)
-    then have "0 \<le> q * j" by auto
-    then have "0 div p \<le> (q * j) div p"
-      apply (rule_tac a = 0 in zdiv_mono1)
-      apply (insert p_g_2, auto)
-      done
-    also have "0 div p = 0" by auto
-    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
-  qed
-  finally show "int (card (f1 j)) = q * j div p" .
-qed
-
-lemma aux3b: "\<forall>j \<in> Q_set. int (card (f2 j)) = (p * j) div q"
-proof
-  fix j
-  assume j_fact: "j \<in> Q_set"
-  have "int (card (f2 j)) = int (card {y. y \<in> P_set & y \<le> (p * j) div q})"
-  proof -
-    have "finite (f2 j)"
-    proof -
-      have "(f2 j) \<subseteq> S" by (auto simp add: f2_def)
-      with S_finite show ?thesis by (auto simp add: finite_subset)
-    qed
-    moreover have "inj_on (%(x,y). x) (f2 j)"
-      by (auto simp add: f2_def inj_on_def)
-    ultimately have "card ((%(x,y). x) ` (f2 j)) = card  (f2 j)"
-      by (auto simp add: f2_def card_image)
-    moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}"
-      using prems by (auto simp add: f2_def S_def Q_set_def P_set_def image_def)
-    ultimately show ?thesis by (auto simp add: f2_def)
-  qed
-  also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})"
-  proof -
-    have "{y. y \<in> P_set & y \<le> (p * j) div q} =
-        {y. 0 < y & y \<le> (p * j) div q}"
-      apply (auto simp add: P_set_def)
-    proof -
-      fix x
-      assume "0 < x" and "x \<le> p * j div q"
-      with j_fact Q_set_def  have "j \<le> (q - 1) div 2" by auto
-      with p_g_2 have "p * j \<le> p * ((q - 1) div 2)"
-        by (auto simp add: mult_le_cancel_left)
-      with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q"
-        by (auto simp add: zdiv_mono1)
-      also from prems have "... \<le> (p - 1) div 2"
-        by (auto simp add: aux2 QRTEMP_def)
-      finally show "x \<le> (p - 1) div 2" using prems by auto
-      qed
-    then show ?thesis by auto
-  qed
-  also have "... = (p * j) div q"
-  proof -
-    from j_fact Q_set_def have "0 \<le> j" by auto
-    with p_g_2 have "p * 0 \<le> p * j" by (auto simp only: mult_left_mono)
-    then have "0 \<le> p * j" by auto
-    then have "0 div q \<le> (p * j) div q"
-      apply (rule_tac a = 0 in zdiv_mono1)
-      apply (insert q_g_2, auto)
-      done
-    also have "0 div q = 0" by auto
-    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
-  qed
-  finally show "int (card (f2 j)) = p * j div q" .
-qed
-
-lemma S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set"
-proof -
-  have "\<forall>x \<in> P_set. finite (f1 x)"
-  proof
-    fix x
-    have "f1 x \<subseteq> S" by (auto simp add: f1_def)
-    with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)
-  qed
-  moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})"
-    by (auto simp add: f1_def)
-  moreover note P_set_finite
-  ultimately have "int(card (UNION P_set f1)) =
-      setsum (%x. int(card (f1 x))) P_set"
-    by(simp add:card_UN_disjoint int_setsum o_def)
-  moreover have "S1 = UNION P_set f1"
-    by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
-  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"
-    by auto
-  also have "... = setsum (%j. q * j div p) P_set"
-    using aux3a by(fastsimp intro: setsum_cong)
-  finally show ?thesis .
-qed
-
-lemma S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set"
-proof -
-  have "\<forall>x \<in> Q_set. finite (f2 x)"
-  proof
-    fix x
-    have "f2 x \<subseteq> S" by (auto simp add: f2_def)
-    with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
-  qed
-  moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->
-      (f2 x) \<inter> (f2 y) = {})"
-    by (auto simp add: f2_def)
-  moreover note Q_set_finite
-  ultimately have "int(card (UNION Q_set f2)) =
-      setsum (%x. int(card (f2 x))) Q_set"
-    by(simp add:card_UN_disjoint int_setsum o_def)
-  moreover have "S2 = UNION Q_set f2"
-    by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
-  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"
-    by auto
-  also have "... = setsum (%j. p * j div q) Q_set"
-    using aux3b by(fastsimp intro: setsum_cong)
-  finally show ?thesis .
-qed
-
-lemma S1_carda: "int (card(S1)) =
-    setsum (%j. (j * q) div p) P_set"
-  by (auto simp add: S1_card zmult_ac)
-
-lemma S2_carda: "int (card(S2)) =
-    setsum (%j. (j * p) div q) Q_set"
-  by (auto simp add: S2_card zmult_ac)
-
-lemma pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +
-    (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)"
-proof -
-  have "(setsum (%j. (j * p) div q) Q_set) +
-      (setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)"
-    by (auto simp add: S1_carda S2_carda)
-  also have "... = int (card S1) + int (card S2)"
-    by auto
-  also have "... = ((p - 1) div 2) * ((q - 1) div 2)"
-    by (auto simp add: card_sum_S1_S2)
-  finally show ?thesis .
-qed
-
-
-lemma (in -) pq_prime_neq: "[| zprime p; zprime q; p \<noteq> q |] ==> (~[p = 0] (mod q))"
-  apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
-  apply (drule_tac x = q in allE)
-  apply (drule_tac x = p in allE)
-  apply auto
-  done
-
-
-lemma QR_short: "(Legendre p q) * (Legendre q p) =
-    (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
-proof -
-  from prems have "~([p = 0] (mod q))"
-    by (auto simp add: pq_prime_neq QRTEMP_def)
-  with prems Q_set_def have a1: "(Legendre p q) = (-1::int) ^
-      nat(setsum (%x. ((x * p) div q)) Q_set)"
-    apply (rule_tac p = q in  MainQRLemma)
-    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
-    done
-  from prems have "~([q = 0] (mod p))"
-    apply (rule_tac p = q and q = p in pq_prime_neq)
-    apply (simp add: QRTEMP_def)+
-    done
-  with prems P_set_def have a2: "(Legendre q p) =
-      (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
-    apply (rule_tac p = p in  MainQRLemma)
-    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
-    done
-  from a1 a2 have "(Legendre p q) * (Legendre q p) =
-      (-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
-        (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
-    by auto
-  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +
-                   nat(setsum (%x. ((x * q) div p)) P_set))"
-    by (auto simp add: zpower_zadd_distrib)
-  also have "nat(setsum (%x. ((x * p) div q)) Q_set) +
-      nat(setsum (%x. ((x * q) div p)) P_set) =
-        nat((setsum (%x. ((x * p) div q)) Q_set) +
-          (setsum (%x. ((x * q) div p)) P_set))"
-    apply (rule_tac z = "setsum (%x. ((x * p) div q)) Q_set" in
-      nat_add_distrib [symmetric])
-    apply (auto simp add: S1_carda [symmetric] S2_carda [symmetric])
-    done
-  also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))"
-    by (auto simp add: pq_sum_prop)
-  finally show ?thesis .
-qed
-
-end
-
-theorem Quadratic_Reciprocity:
-     "[| p \<in> zOdd; zprime p; q \<in> zOdd; zprime q;
-         p \<noteq> q |]
-      ==> (Legendre p q) * (Legendre q p) =
-          (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
-  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [symmetric]
-                     QRTEMP_def)
-
-end
--- a/src/HOL/NumberTheory/ROOT.ML	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,5 +0,0 @@
-(* $Id$ *)
-
-no_document use_thys ["Infinite_Set", "Permutation", "Primes"];
-use_thys ["Fib", "Factorization", "Chinese", "WilsonRuss",
-  "WilsonBij", "Quadratic_Reciprocity"];
--- a/src/HOL/NumberTheory/Residues.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,172 +0,0 @@
-(*  Title:      HOL/Quadratic_Reciprocity/Residues.thy
-    ID:         $Id$
-    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
-*)
-
-header {* Residue Sets *}
-
-theory Residues imports Int2 begin
-
-text {*
-  \medskip Define the residue of a set, the standard residue,
-  quadratic residues, and prove some basic properties. *}
-
-definition
-  ResSet      :: "int => int set => bool" where
-  "ResSet m X = (\<forall>y1 y2. (y1 \<in> X & y2 \<in> X & [y1 = y2] (mod m) --> y1 = y2))"
-
-definition
-  StandardRes :: "int => int => int" where
-  "StandardRes m x = x mod m"
-
-definition
-  QuadRes     :: "int => int => bool" where
-  "QuadRes m x = (\<exists>y. ([(y ^ 2) = x] (mod m)))"
-
-definition
-  Legendre    :: "int => int => int" where
-  "Legendre a p = (if ([a = 0] (mod p)) then 0
-                     else if (QuadRes p a) then 1
-                     else -1)"
-
-definition
-  SR          :: "int => int set" where
-  "SR p = {x. (0 \<le> x) & (x < p)}"
-
-definition
-  SRStar      :: "int => int set" where
-  "SRStar p = {x. (0 < x) & (x < p)}"
-
-
-subsection {* Some useful properties of StandardRes *}
-
-lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)"
-  by (auto simp add: StandardRes_def zcong_zmod)
-
-lemma StandardRes_prop2: "0 < m ==> (StandardRes m x1 = StandardRes m x2)
-      = ([x1 = x2] (mod m))"
-  by (auto simp add: StandardRes_def zcong_zmod_eq)
-
-lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))"
-  by (auto simp add: StandardRes_def zcong_def dvd_eq_mod_eq_0)
-
-lemma StandardRes_prop4: "2 < m 
-     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)"
-  by (auto simp add: StandardRes_def zcong_zmod_eq 
-                     mod_mult_eq [of x y m])
-
-lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x"
-  by (auto simp add: StandardRes_def pos_mod_sign)
-
-lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p"
-  by (auto simp add: StandardRes_def pos_mod_bound)
-
-lemma StandardRes_eq_zcong: 
-   "(StandardRes m x = 0) = ([x = 0](mod m))"
-  by (auto simp add: StandardRes_def zcong_eq_zdvd_prop dvd_def) 
-
-
-subsection {* Relations between StandardRes, SRStar, and SR *}
-
-lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p"
-  by (auto simp add: SRStar_def SR_def)
-
-lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x"
-  by (auto simp add: SR_def StandardRes_def mod_pos_pos_trivial)
-
-lemma StandardRes_SRStar_prop1: "2 < p ==> (StandardRes p x \<in> SRStar p) 
-     = (~[x = 0] (mod p))"
-  apply (auto simp add: StandardRes_prop3 StandardRes_def
-                        SRStar_def pos_mod_bound)
-  apply (subgoal_tac "0 < p")
-  apply (drule_tac a = x in pos_mod_sign, arith, simp)
-  done
-
-lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))"
-  by (auto simp add: SRStar_def zcong_def zdvd_not_zless)
-
-lemma StandardRes_SRStar_prop2: "[| 2 < p; zprime p; x \<in> SRStar p |] 
-     ==> StandardRes p (MultInv p x) \<in> SRStar p"
-  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp)
-  apply (rule MultInv_prop3)
-  apply (auto simp add: SRStar_def zcong_def zdvd_not_zless)
-  done
-
-lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x"
-  by (auto simp add: SRStar_SR_prop StandardRes_SR_prop)
-
-lemma StandardRes_SRStar_prop4: "[| zprime p; 2 < p; x \<in> SRStar p |] 
-     ==> StandardRes p x \<in> SRStar p"
-  by (frule StandardRes_SRStar_prop3, auto)
-
-lemma SRStar_mult_prop1: "[| zprime p; 2 < p; x \<in> SRStar p; y \<in> SRStar p|] 
-     ==> (StandardRes p (x * y)):SRStar p"
-  apply (frule_tac x = x in StandardRes_SRStar_prop4, auto)
-  apply (frule_tac x = y in StandardRes_SRStar_prop4, auto)
-  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
-  done
-
-lemma SRStar_mult_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)); 
-     x \<in> SRStar p |] 
-     ==> StandardRes p (a * MultInv p x) \<in> SRStar p"
-  apply (frule_tac x = x in StandardRes_SRStar_prop2, auto)
-  apply (frule_tac x = "MultInv p x" in StandardRes_SRStar_prop1)
-  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
-  done
-
-lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1"
-  by (auto simp add: SRStar_def int_card_bdd_int_set_l_l)
-
-lemma SRStar_finite: "2 < p ==> finite( SRStar p)"
-  by (auto simp add: SRStar_def bdd_int_set_l_l_finite)
-
-
-subsection {* Properties relating ResSets with StandardRes *}
-
-lemma aux: "x mod m = y mod m ==> [x = y] (mod m)"
-  apply (subgoal_tac "x = y ==> [x = y](mod m)")
-  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)")
-  apply (auto simp add: zcong_zmod [of x y m])
-  done
-
-lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)"
-  apply (auto simp add: ResSet_def StandardRes_def inj_on_def)
-  apply (drule_tac m = m in aux, auto)
-  done
-
-lemma StandardRes_Sum: "[| finite X; 0 < m |] 
-     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)" 
-  apply (rule_tac F = X in finite_induct)
-  apply (auto intro!: zcong_zadd simp add: StandardRes_prop1)
-  done
-
-lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}"
-  by (auto simp add: StandardRes_ubound StandardRes_lbound)
-
-lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X"
-  apply (rule_tac f = "StandardRes m" in finite_imageD) 
-  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset)
-  apply (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
-  done
-
-lemma mod_mod_is_mod: "[x = x mod m](mod m)"
-  by (auto simp add: zcong_zmod)
-
-lemma StandardRes_prod: "[| finite X; 0 < m |] 
-     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)"
-  apply (rule_tac F = X in finite_induct)
-  apply (auto intro!: zcong_zmult simp add: StandardRes_prop1)
-  done
-
-lemma ResSet_image:
-  "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==>
-    ResSet m (f ` A)"
-  by (auto simp add: ResSet_def)
-
-
-subsection {* Property for SRStar *}
-
-lemma ResSet_SRStar_prop: "ResSet p (SRStar p)"
-  by (auto simp add: SRStar_def ResSet_def zcong_zless_imp_eq)
-
-end
--- a/src/HOL/NumberTheory/WilsonBij.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,263 +0,0 @@
-(*  Title:      HOL/NumberTheory/WilsonBij.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Wilson's Theorem using a more abstract approach *}
-
-theory WilsonBij imports BijectionRel IntFact begin
-
-text {*
-  Wilson's Theorem using a more ``abstract'' approach based on
-  bijections between sets.  Does not use Fermat's Little Theorem
-  (unlike Russinoff).
-*}
-
-
-subsection {* Definitions and lemmas *}
-
-definition
-  reciR :: "int => int => int => bool" where
-  "reciR p = (\<lambda>a b. zcong (a * b) 1 p \<and> 1 < a \<and> a < p - 1 \<and> 1 < b \<and> b < p - 1)"
-
-definition
-  inv :: "int => int => int" where
-  "inv p a =
-    (if zprime p \<and> 0 < a \<and> a < p then
-      (SOME x. 0 \<le> x \<and> x < p \<and> zcong (a * x) 1 p)
-     else 0)"
-
-
-text {* \medskip Inverse *}
-
-lemma inv_correct:
-  "zprime p ==> 0 < a ==> a < p
-    ==> 0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = 1] (mod p)"
-  apply (unfold inv_def)
-  apply (simp (no_asm_simp))
-  apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex])
-   apply (erule_tac [2] zless_zprime_imp_zrelprime)
-    apply (unfold zprime_def)
-    apply auto
-  done
-
-lemmas inv_ge = inv_correct [THEN conjunct1, standard]
-lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard]
-lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard]
-
-lemma inv_not_0:
-  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> 0"
-  -- {* same as @{text WilsonRuss} *}
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv)
-     apply (unfold zcong_def)
-     apply auto
-  apply (subgoal_tac "\<not> p dvd 1")
-   apply (rule_tac [2] zdvd_not_zless)
-    apply (subgoal_tac "p dvd 1")
-     prefer 2
-     apply (subst dvd_minus_iff [symmetric])
-     apply auto
-  done
-
-lemma inv_not_1:
-  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> 1"
-  -- {* same as @{text WilsonRuss} *}
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv)
-     prefer 4
-     apply simp
-     apply (subgoal_tac "a = 1")
-      apply (rule_tac [2] zcong_zless_imp_eq)
-          apply auto
-  done
-
-lemma aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
-  -- {* same as @{text WilsonRuss} *}
-  apply (unfold zcong_def)
-  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
-  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
-   apply (simp add: mult_commute)
-  apply (subst dvd_minus_iff)
-  apply (subst zdvd_reduce)
-  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
-   apply (subst zdvd_reduce)
-   apply auto
-  done
-
-lemma inv_not_p_minus_1:
-  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> p - 1"
-  -- {* same as @{text WilsonRuss} *}
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv)
-     apply auto
-  apply (simp add: aux)
-  apply (subgoal_tac "a = p - 1")
-   apply (rule_tac [2] zcong_zless_imp_eq)
-       apply auto
-  done
-
-text {*
-  Below is slightly different as we don't expand @{term [source] inv}
-  but use ``@{text correct}'' theorems.
-*}
-
-lemma inv_g_1: "zprime p ==> 1 < a ==> a < p - 1 ==> 1 < inv p a"
-  apply (subgoal_tac "inv p a \<noteq> 1")
-   apply (subgoal_tac "inv p a \<noteq> 0")
-    apply (subst order_less_le)
-    apply (subst zle_add1_eq_le [symmetric])
-    apply (subst order_less_le)
-    apply (rule_tac [2] inv_not_0)
-      apply (rule_tac [5] inv_not_1)
-        apply auto
-  apply (rule inv_ge)
-    apply auto
-  done
-
-lemma inv_less_p_minus_1:
-  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a < p - 1"
-  -- {* ditto *}
-  apply (subst order_less_le)
-  apply (simp add: inv_not_p_minus_1 inv_less)
-  done
-
-
-text {* \medskip Bijection *}
-
-lemma aux1: "1 < x ==> 0 \<le> (x::int)"
-  apply auto
-  done
-
-lemma aux2: "1 < x ==> 0 < (x::int)"
-  apply auto
-  done
-
-lemma aux3: "x \<le> p - 2 ==> x < (p::int)"
-  apply auto
-  done
-
-lemma aux4: "x \<le> p - 2 ==> x < (p::int) - 1"
-  apply auto
-  done
-
-lemma inv_inj: "zprime p ==> inj_on (inv p) (d22set (p - 2))"
-  apply (unfold inj_on_def)
-  apply auto
-  apply (rule zcong_zless_imp_eq)
-      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
-        apply (rule_tac [7] zcong_trans)
-         apply (tactic {* stac (thm "zcong_sym") 8 *})
-         apply (erule_tac [7] inv_is_inv)
-          apply (tactic "asm_simp_tac @{simpset} 9")
-          apply (erule_tac [9] inv_is_inv)
-           apply (rule_tac [6] zless_zprime_imp_zrelprime)
-             apply (rule_tac [8] inv_less)
-               apply (rule_tac [7] inv_g_1 [THEN aux2])
-                 apply (unfold zprime_def)
-                 apply (auto intro: d22set_g_1 d22set_le
-		   aux1 aux2 aux3 aux4)
-  done
-
-lemma inv_d22set_d22set:
-    "zprime p ==> inv p ` d22set (p - 2) = d22set (p - 2)"
-  apply (rule endo_inj_surj)
-    apply (rule d22set_fin)
-   apply (erule_tac [2] inv_inj)
-  apply auto
-  apply (rule d22set_mem)
-   apply (erule inv_g_1)
-    apply (subgoal_tac [3] "inv p xa < p - 1")
-     apply (erule_tac [4] inv_less_p_minus_1)
-      apply (auto intro: d22set_g_1 d22set_le aux4)
-  done
-
-lemma d22set_d22set_bij:
-    "zprime p ==> (d22set (p - 2), d22set (p - 2)) \<in> bijR (reciR p)"
-  apply (unfold reciR_def)
-  apply (rule_tac s = "(d22set (p - 2), inv p ` d22set (p - 2))" in subst)
-   apply (simp add: inv_d22set_d22set)
-  apply (rule inj_func_bijR)
-    apply (rule_tac [3] d22set_fin)
-   apply (erule_tac [2] inv_inj)
-  apply auto
-      apply (erule inv_is_inv)
-       apply (erule_tac [5] inv_g_1)
-        apply (erule_tac [7] inv_less_p_minus_1)
-         apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
-  done
-
-lemma reciP_bijP: "zprime p ==> bijP (reciR p) (d22set (p - 2))"
-  apply (unfold reciR_def bijP_def)
-  apply auto
-  apply (rule d22set_mem)
-   apply auto
-  done
-
-lemma reciP_uniq: "zprime p ==> uniqP (reciR p)"
-  apply (unfold reciR_def uniqP_def)
-  apply auto
-   apply (rule zcong_zless_imp_eq)
-       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 5 *})
-         apply (rule_tac [7] zcong_trans)
-          apply (tactic {* stac (thm "zcong_sym") 8 *})
-          apply (rule_tac [6] zless_zprime_imp_zrelprime)
-            apply auto
-  apply (rule zcong_zless_imp_eq)
-      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
-        apply (rule_tac [7] zcong_trans)
-         apply (tactic {* stac (thm "zcong_sym") 8 *})
-         apply (rule_tac [6] zless_zprime_imp_zrelprime)
-           apply auto
-  done
-
-lemma reciP_sym: "zprime p ==> symP (reciR p)"
-  apply (unfold reciR_def symP_def)
-  apply (simp add: zmult_commute)
-  apply auto
-  done
-
-lemma bijER_d22set: "zprime p ==> d22set (p - 2) \<in> bijER (reciR p)"
-  apply (rule bijR_bijER)
-     apply (erule d22set_d22set_bij)
-    apply (erule reciP_bijP)
-   apply (erule reciP_uniq)
-  apply (erule reciP_sym)
-  done
-
-
-subsection {* Wilson *}
-
-lemma bijER_zcong_prod_1:
-    "zprime p ==> A \<in> bijER (reciR p) ==> [\<Prod>A = 1] (mod p)"
-  apply (unfold reciR_def)
-  apply (erule bijER.induct)
-    apply (subgoal_tac [2] "a = 1 \<or> a = p - 1")
-     apply (rule_tac [3] zcong_square_zless)
-        apply auto
-  apply (subst setprod_insert)
-    prefer 3
-    apply (subst setprod_insert)
-      apply (auto simp add: fin_bijER)
-  apply (subgoal_tac "zcong ((a * b) * \<Prod>A) (1 * 1) p")
-   apply (simp add: zmult_assoc)
-  apply (rule zcong_zmult)
-   apply auto
-  done
-
-theorem Wilson_Bij: "zprime p ==> [zfact (p - 1) = -1] (mod p)"
-  apply (subgoal_tac "zcong ((p - 1) * zfact (p - 2)) (-1 * 1) p")
-   apply (rule_tac [2] zcong_zmult)
-    apply (simp add: zprime_def)
-    apply (subst zfact.simps)
-    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst)
-     apply auto
-   apply (simp add: zcong_def)
-  apply (subst d22set_prod_zfact [symmetric])
-  apply (rule bijER_zcong_prod_1)
-   apply (rule_tac [2] bijER_d22set)
-   apply auto
-  done
-
-end
--- a/src/HOL/NumberTheory/WilsonRuss.thy	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,329 +0,0 @@
-(*  Title:      HOL/NumberTheory/WilsonRuss.thy
-    ID:         $Id$
-    Author:     Thomas M. Rasmussen
-    Copyright   2000  University of Cambridge
-*)
-
-header {* Wilson's Theorem according to Russinoff *}
-
-theory WilsonRuss imports EulerFermat begin
-
-text {*
-  Wilson's Theorem following quite closely Russinoff's approach
-  using Boyer-Moore (using finite sets instead of lists, though).
-*}
-
-subsection {* Definitions and lemmas *}
-
-definition
-  inv :: "int => int => int" where
-  "inv p a = (a^(nat (p - 2))) mod p"
-
-consts
-  wset :: "int * int => int set"
-
-recdef wset
-  "measure ((\<lambda>(a, p). nat a) :: int * int => nat)"
-  "wset (a, p) =
-    (if 1 < a then
-      let ws = wset (a - 1, p)
-      in (if a \<in> ws then ws else insert a (insert (inv p a) ws)) else {})"
-
-
-text {* \medskip @{term [source] inv} *}
-
-lemma inv_is_inv_aux: "1 < m ==> Suc (nat (m - 2)) = nat (m - 1)"
-by (subst int_int_eq [symmetric], auto)
-
-lemma inv_is_inv:
-    "zprime p \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> [a * inv p a = 1] (mod p)"
-  apply (unfold inv_def)
-  apply (subst zcong_zmod)
-  apply (subst zmod_zmult1_eq [symmetric])
-  apply (subst zcong_zmod [symmetric])
-  apply (subst power_Suc [symmetric])
-  apply (subst inv_is_inv_aux)
-   apply (erule_tac [2] Little_Fermat)
-   apply (erule_tac [2] zdvd_not_zless)
-   apply (unfold zprime_def, auto)
-  done
-
-lemma inv_distinct:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> a \<noteq> inv p a"
-  apply safe
-  apply (cut_tac a = a and p = p in zcong_square)
-     apply (cut_tac [3] a = a and p = p in inv_is_inv, auto)
-   apply (subgoal_tac "a = 1")
-    apply (rule_tac [2] m = p in zcong_zless_imp_eq)
-        apply (subgoal_tac [7] "a = p - 1")
-         apply (rule_tac [8] m = p in zcong_zless_imp_eq, auto)
-  done
-
-lemma inv_not_0:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 0"
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv)
-     apply (unfold zcong_def, auto)
-  apply (subgoal_tac "\<not> p dvd 1")
-   apply (rule_tac [2] zdvd_not_zless)
-    apply (subgoal_tac "p dvd 1")
-     prefer 2
-     apply (subst dvd_minus_iff [symmetric], auto)
-  done
-
-lemma inv_not_1:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 1"
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv)
-     prefer 4
-     apply simp
-     apply (subgoal_tac "a = 1")
-      apply (rule_tac [2] zcong_zless_imp_eq, auto)
-  done
-
-lemma inv_not_p_minus_1_aux:
-    "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
-  apply (unfold zcong_def)
-  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
-  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
-   apply (simp add: mult_commute)
-  apply (subst dvd_minus_iff)
-  apply (subst zdvd_reduce)
-  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
-   apply (subst zdvd_reduce, auto)
-  done
-
-lemma inv_not_p_minus_1:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> p - 1"
-  apply safe
-  apply (cut_tac a = a and p = p in inv_is_inv, auto)
-  apply (simp add: inv_not_p_minus_1_aux)
-  apply (subgoal_tac "a = p - 1")
-   apply (rule_tac [2] zcong_zless_imp_eq, auto)
-  done
-
-lemma inv_g_1:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> 1 < inv p a"
-  apply (case_tac "0\<le> inv p a")
-   apply (subgoal_tac "inv p a \<noteq> 1")
-    apply (subgoal_tac "inv p a \<noteq> 0")
-     apply (subst order_less_le)
-     apply (subst zle_add1_eq_le [symmetric])
-     apply (subst order_less_le)
-     apply (rule_tac [2] inv_not_0)
-       apply (rule_tac [5] inv_not_1, auto)
-  apply (unfold inv_def zprime_def, simp)
-  done
-
-lemma inv_less_p_minus_1:
-    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a < p - 1"
-  apply (case_tac "inv p a < p")
-   apply (subst order_less_le)
-   apply (simp add: inv_not_p_minus_1, auto)
-  apply (unfold inv_def zprime_def, simp)
-  done
-
-lemma inv_inv_aux: "5 \<le> p ==>
-    nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))"
-  apply (subst int_int_eq [symmetric])
-  apply (simp add: zmult_int [symmetric])
-  apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2)
-  done
-
-lemma zcong_zpower_zmult:
-    "[x^y = 1] (mod p) \<Longrightarrow> [x^(y * z) = 1] (mod p)"
-  apply (induct z)
-   apply (auto simp add: zpower_zadd_distrib)
-  apply (subgoal_tac "zcong (x^y * x^(y * z)) (1 * 1) p")
-   apply (rule_tac [2] zcong_zmult, simp_all)
-  done
-
-lemma inv_inv: "zprime p \<Longrightarrow>
-    5 \<le> p \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> inv p (inv p a) = a"
-  apply (unfold inv_def)
-  apply (subst zpower_zmod)
-  apply (subst zpower_zpower)
-  apply (rule zcong_zless_imp_eq)
-      prefer 5
-      apply (subst zcong_zmod)
-      apply (subst mod_mod_trivial)
-      apply (subst zcong_zmod [symmetric])
-      apply (subst inv_inv_aux)
-       apply (subgoal_tac [2]
-	 "zcong (a * a^(nat (p - 1) * nat (p - 3))) (a * 1) p")
-        apply (rule_tac [3] zcong_zmult)
-         apply (rule_tac [4] zcong_zpower_zmult)
-         apply (erule_tac [4] Little_Fermat)
-         apply (rule_tac [4] zdvd_not_zless, simp_all)
-  done
-
-
-text {* \medskip @{term wset} *}
-
-declare wset.simps [simp del]
-
-lemma wset_induct:
-  assumes "!!a p. P {} a p"
-    and "!!a p. 1 < (a::int) \<Longrightarrow>
-      P (wset (a - 1, p)) (a - 1) p ==> P (wset (a, p)) a p"
-  shows "P (wset (u, v)) u v"
-  apply (rule wset.induct, safe)
-   prefer 2
-   apply (case_tac "1 < a")
-    apply (rule prems)
-     apply simp_all
-   apply (simp_all add: wset.simps prems)
-  done
-
-lemma wset_mem_imp_or [rule_format]:
-  "1 < a \<Longrightarrow> b \<notin> wset (a - 1, p)
-    ==> b \<in> wset (a, p) --> b = a \<or> b = inv p a"
-  apply (subst wset.simps)
-  apply (unfold Let_def, simp)
-  done
-
-lemma wset_mem_mem [simp]: "1 < a ==> a \<in> wset (a, p)"
-  apply (subst wset.simps)
-  apply (unfold Let_def, simp)
-  done
-
-lemma wset_subset: "1 < a \<Longrightarrow> b \<in> wset (a - 1, p) ==> b \<in> wset (a, p)"
-  apply (subst wset.simps)
-  apply (unfold Let_def, auto)
-  done
-
-lemma wset_g_1 [rule_format]:
-    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> 1 < b"
-  apply (induct a p rule: wset_induct, auto)
-  apply (case_tac "b = a")
-   apply (case_tac [2] "b = inv p a")
-    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
-     apply (rule_tac [4] wset_mem_imp_or)
-       prefer 2
-       apply simp
-       apply (rule inv_g_1, auto)
-  done
-
-lemma wset_less [rule_format]:
-    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> b < p - 1"
-  apply (induct a p rule: wset_induct, auto)
-  apply (case_tac "b = a")
-   apply (case_tac [2] "b = inv p a")
-    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
-     apply (rule_tac [4] wset_mem_imp_or)
-       prefer 2
-       apply simp
-       apply (rule inv_less_p_minus_1, auto)
-  done
-
-lemma wset_mem [rule_format]:
-  "zprime p -->
-    a < p - 1 --> 1 < b --> b \<le> a --> b \<in> wset (a, p)"
-  apply (induct a p rule: wset.induct, auto)
-  apply (rule_tac wset_subset)
-  apply (simp (no_asm_simp))
-  apply auto
-  done
-
-lemma wset_mem_inv_mem [rule_format]:
-  "zprime p --> 5 \<le> p --> a < p - 1 --> b \<in> wset (a, p)
-    --> inv p b \<in> wset (a, p)"
-  apply (induct a p rule: wset_induct, auto)
-   apply (case_tac "b = a")
-    apply (subst wset.simps)
-    apply (unfold Let_def)
-    apply (rule_tac [3] wset_subset, auto)
-  apply (case_tac "b = inv p a")
-   apply (simp (no_asm_simp))
-   apply (subst inv_inv)
-       apply (subgoal_tac [6] "b = a \<or> b = inv p a")
-        apply (rule_tac [7] wset_mem_imp_or, auto)
-  done
-
-lemma wset_inv_mem_mem:
-  "zprime p \<Longrightarrow> 5 \<le> p \<Longrightarrow> a < p - 1 \<Longrightarrow> 1 < b \<Longrightarrow> b < p - 1
-    \<Longrightarrow> inv p b \<in> wset (a, p) \<Longrightarrow> b \<in> wset (a, p)"
-  apply (rule_tac s = "inv p (inv p b)" and t = b in subst)
-   apply (rule_tac [2] wset_mem_inv_mem)
-      apply (rule inv_inv, simp_all)
-  done
-
-lemma wset_fin: "finite (wset (a, p))"
-  apply (induct a p rule: wset_induct)
-   prefer 2
-   apply (subst wset.simps)
-   apply (unfold Let_def, auto)
-  done
-
-lemma wset_zcong_prod_1 [rule_format]:
-  "zprime p -->
-    5 \<le> p --> a < p - 1 --> [(\<Prod>x\<in>wset(a, p). x) = 1] (mod p)"
-  apply (induct a p rule: wset_induct)
-   prefer 2
-   apply (subst wset.simps)
-   apply (unfold Let_def, auto)
-  apply (subst setprod_insert)
-    apply (tactic {* stac (thm "setprod_insert") 3 *})
-      apply (subgoal_tac [5]
-	"zcong (a * inv p a * (\<Prod>x\<in> wset(a - 1, p). x)) (1 * 1) p")
-       prefer 5
-       apply (simp add: zmult_assoc)
-      apply (rule_tac [5] zcong_zmult)
-       apply (rule_tac [5] inv_is_inv)
-         apply (tactic "clarify_tac @{claset} 4")
-         apply (subgoal_tac [4] "a \<in> wset (a - 1, p)")
-          apply (rule_tac [5] wset_inv_mem_mem)
-               apply (simp_all add: wset_fin)
-  apply (rule inv_distinct, auto)
-  done
-
-lemma d22set_eq_wset: "zprime p ==> d22set (p - 2) = wset (p - 2, p)"
-  apply safe
-   apply (erule wset_mem)
-     apply (rule_tac [2] d22set_g_1)
-     apply (rule_tac [3] d22set_le)
-     apply (rule_tac [4] d22set_mem)
-      apply (erule_tac [4] wset_g_1)
-       prefer 6
-       apply (subst zle_add1_eq_le [symmetric])
-       apply (subgoal_tac "p - 2 + 1 = p - 1")
-        apply (simp (no_asm_simp))
-        apply (erule wset_less, auto)
-  done
-
-
-subsection {* Wilson *}
-
-lemma prime_g_5: "zprime p \<Longrightarrow> p \<noteq> 2 \<Longrightarrow> p \<noteq> 3 ==> 5 \<le> p"
-  apply (unfold zprime_def dvd_def)
-  apply (case_tac "p = 4", auto)
-   apply (rule notE)
-    prefer 2
-    apply assumption
-   apply (simp (no_asm))
-   apply (rule_tac x = 2 in exI)
-   apply (safe, arith)
-     apply (rule_tac x = 2 in exI, auto)
-  done
-
-theorem Wilson_Russ:
-    "zprime p ==> [zfact (p - 1) = -1] (mod p)"
-  apply (subgoal_tac "[(p - 1) * zfact (p - 2) = -1 * 1] (mod p)")
-   apply (rule_tac [2] zcong_zmult)
-    apply (simp only: zprime_def)
-    apply (subst zfact.simps)
-    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst, auto)
-   apply (simp only: zcong_def)
-   apply (simp (no_asm_simp))
-  apply (case_tac "p = 2")
-   apply (simp add: zfact.simps)
-  apply (case_tac "p = 3")
-   apply (simp add: zfact.simps)
-  apply (subgoal_tac "5 \<le> p")
-   apply (erule_tac [2] prime_g_5)
-    apply (subst d22set_prod_zfact [symmetric])
-    apply (subst d22set_eq_wset)
-     apply (rule_tac [2] wset_zcong_prod_1, auto)
-  done
-
-end
--- a/src/HOL/NumberTheory/document/root.tex	Tue Sep 01 14:13:34 2009 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,56 +0,0 @@
-
-\documentclass[11pt,a4paper]{article}
-\usepackage{graphicx}
-\usepackage{isabelle,isabellesym,pdfsetup}
-
-\urlstyle{rm}
-\isabellestyle{it}
-
-\begin{document}
-
-\title{Some results of number theory}
-\author{Jeremy Avigad\\
-    David Gray\\
-    Adam Kramer\\
-    Thomas M Rasmussen}
-
-\maketitle
-
-\begin{abstract}
-This is a collection of formalized proofs of many results of number theory.
-The proofs of the Chinese Remainder Theorem and Wilson's Theorem are due to
-Rasmussen.  The proof of Gauss's law of quadratic reciprocity is due to
-Avigad, Gray and Kramer.  Proofs can be found in most introductory number
-theory textbooks; Goldman's \emph{The Queen of Mathematics: a Historically
-Motivated Guide to Number Theory} provides some historical context.
-
-Avigad, Gray and Kramer have also provided library theories dealing with
-finite sets and finite sums, divisibility and congruences, parity and
-residues.  The authors are engaged in redesigning and polishing these theories
-for more serious use.  For the latest information in this respect, please see
-the web page \url{http://www.andrew.cmu.edu/~avigad/isabelle}.  Other theories
-contain proofs of Euler's criteria, Gauss' lemma, and the law of quadratic
-reciprocity.  The formalization follows Eisenstein's proof, which is the one
-most commonly found in introductory textbooks; in particular, it follows the
-presentation in Niven and Zuckerman, \emph{The Theory of Numbers}.
-
-To avoid having to count roots of polynomials, however, we relied on a trick
-previously used by David Russinoff in formalizing quadratic reciprocity for
-the Boyer-Moore theorem prover; see Russinoff, David, ``A mechanical proof
-of quadratic reciprocity,'' \emph{Journal of Automated Reasoning} 8:3-21,
-1992.  We are grateful to Larry Paulson for calling our attention to this
-reference.
-\end{abstract}
-
-\tableofcontents
-
-\begin{center}
-  \includegraphics[scale=0.5]{session_graph}  
-\end{center}
-
-\newpage
-
-\parindent 0pt\parskip 0.5ex
-\input{session}
-
-\end{document}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Binomial.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,373 @@
+(*  Title:      Binomial.thy
+    Authors:    Lawrence C. Paulson, Jeremy Avigad, Tobias Nipkow
+
+
+Defines the "choose" function, and establishes basic properties.
+
+The original theory "Binomial" was by Lawrence C. Paulson, based on
+the work of Andy Gordon and Florian Kammueller. The approach here,
+which derives the definition of binomial coefficients in terms of the
+factorial function, is due to Jeremy Avigad. The binomial theorem was
+formalized by Tobias Nipkow.
+
+*)
+
+
+header {* Binomial *}
+
+theory Binomial
+imports Cong Fact
+begin
+
+
+subsection {* Main definitions *}
+
+class binomial =
+
+fixes 
+  binomial :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "choose" 65)
+
+(* definitions for the natural numbers *)
+
+instantiation nat :: binomial
+
+begin 
+
+fun
+  binomial_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "binomial_nat n k =
+   (if k = 0 then 1 else
+    if n = 0 then 0 else
+      (binomial (n - 1) k) + (binomial (n - 1) (k - 1)))"
+
+instance proof qed
+
+end
+
+(* definitions for the integers *)
+
+instantiation int :: binomial
+
+begin 
+
+definition
+  binomial_int :: "int => int \<Rightarrow> int"
+where
+  "binomial_int n k = (if n \<ge> 0 \<and> k \<ge> 0 then int (binomial (nat n) (nat k))
+      else 0)"
+instance proof qed
+
+end
+
+
+subsection {* Set up Transfer *}
+
+lemma transfer_nat_int_binomial:
+  "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow> binomial (nat n) (nat k) = 
+      nat (binomial n k)"
+  unfolding binomial_int_def 
+  by auto
+
+lemma transfer_nat_int_binomial_closure:
+  "n >= (0::int) \<Longrightarrow> k >= 0 \<Longrightarrow> binomial n k >= 0"
+  by (auto simp add: binomial_int_def)
+
+declare TransferMorphism_nat_int[transfer add return: 
+    transfer_nat_int_binomial transfer_nat_int_binomial_closure]
+
+lemma transfer_int_nat_binomial:
+  "binomial (int n) (int k) = int (binomial n k)"
+  unfolding fact_int_def binomial_int_def by auto
+
+lemma transfer_int_nat_binomial_closure:
+  "is_nat n \<Longrightarrow> is_nat k \<Longrightarrow> binomial n k >= 0"
+  by (auto simp add: binomial_int_def)
+
+declare TransferMorphism_int_nat[transfer add return: 
+    transfer_int_nat_binomial transfer_int_nat_binomial_closure]
+
+
+subsection {* Binomial coefficients *}
+
+lemma choose_zero_nat [simp]: "(n::nat) choose 0 = 1"
+  by simp
+
+lemma choose_zero_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 0 = 1"
+  by (simp add: binomial_int_def)
+
+lemma zero_choose_nat [rule_format,simp]: "ALL (k::nat) > n. n choose k = 0"
+  by (induct n rule: induct'_nat, auto)
+
+lemma zero_choose_int [rule_format,simp]: "(k::int) > n \<Longrightarrow> n choose k = 0"
+  unfolding binomial_int_def apply (case_tac "n < 0")
+  apply force
+  apply (simp del: binomial_nat.simps)
+done
+
+lemma choose_reduce_nat: "(n::nat) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>
+    (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
+  by simp
+
+lemma choose_reduce_int: "(n::int) > 0 \<Longrightarrow> 0 < k \<Longrightarrow>
+    (n choose k) = ((n - 1) choose k) + ((n - 1) choose (k - 1))"
+  unfolding binomial_int_def apply (subst choose_reduce_nat)
+    apply (auto simp del: binomial_nat.simps 
+      simp add: nat_diff_distrib)
+done
+
+lemma choose_plus_one_nat: "((n::nat) + 1) choose (k + 1) = 
+    (n choose (k + 1)) + (n choose k)"
+  by (simp add: choose_reduce_nat)
+
+lemma choose_Suc_nat: "(Suc n) choose (Suc k) = 
+    (n choose (Suc k)) + (n choose k)"
+  by (simp add: choose_reduce_nat One_nat_def)
+
+lemma choose_plus_one_int: "n \<ge> 0 \<Longrightarrow> k \<ge> 0 \<Longrightarrow> ((n::int) + 1) choose (k + 1) = 
+    (n choose (k + 1)) + (n choose k)"
+  by (simp add: binomial_int_def choose_plus_one_nat nat_add_distrib del: binomial_nat.simps)
+
+declare binomial_nat.simps [simp del]
+
+lemma choose_self_nat [simp]: "((n::nat) choose n) = 1"
+  by (induct n rule: induct'_nat, auto simp add: choose_plus_one_nat)
+
+lemma choose_self_int [simp]: "n \<ge> 0 \<Longrightarrow> ((n::int) choose n) = 1"
+  by (auto simp add: binomial_int_def)
+
+lemma choose_one_nat [simp]: "(n::nat) choose 1 = n"
+  by (induct n rule: induct'_nat, auto simp add: choose_reduce_nat)
+
+lemma choose_one_int [simp]: "n \<ge> 0 \<Longrightarrow> (n::int) choose 1 = n"
+  by (auto simp add: binomial_int_def)
+
+lemma plus_one_choose_self_nat [simp]: "(n::nat) + 1 choose n = n + 1"
+  apply (induct n rule: induct'_nat, force)
+  apply (case_tac "n = 0")
+  apply auto
+  apply (subst choose_reduce_nat)
+  apply (auto simp add: One_nat_def)  
+  (* natdiff_cancel_numerals introduces Suc *)
+done
+
+lemma Suc_choose_self_nat [simp]: "(Suc n) choose n = Suc n"
+  using plus_one_choose_self_nat by (simp add: One_nat_def)
+
+lemma plus_one_choose_self_int [rule_format, simp]: 
+    "(n::int) \<ge> 0 \<longrightarrow> n + 1 choose n = n + 1"
+   by (auto simp add: binomial_int_def nat_add_distrib)
+
+(* bounded quantification doesn't work with the unicode characters? *)
+lemma choose_pos_nat [rule_format]: "ALL k <= (n::nat). 
+    ((n::nat) choose k) > 0"
+  apply (induct n rule: induct'_nat) 
+  apply force
+  apply clarify
+  apply (case_tac "k = 0")
+  apply force
+  apply (subst choose_reduce_nat)
+  apply auto
+done
+
+lemma choose_pos_int: "n \<ge> 0 \<Longrightarrow> k >= 0 \<Longrightarrow> k \<le> n \<Longrightarrow>
+    ((n::int) choose k) > 0"
+  by (auto simp add: binomial_int_def choose_pos_nat)
+
+lemma binomial_induct [rule_format]: "(ALL (n::nat). P n n) \<longrightarrow> 
+    (ALL n. P (n + 1) 0) \<longrightarrow> (ALL n. (ALL k < n. P n k \<longrightarrow> P n (k + 1) \<longrightarrow>
+    P (n + 1) (k + 1))) \<longrightarrow> (ALL k <= n. P n k)"
+  apply (induct n rule: induct'_nat)
+  apply auto
+  apply (case_tac "k = 0")
+  apply auto
+  apply (case_tac "k = n + 1")
+  apply auto
+  apply (drule_tac x = n in spec) back back 
+  apply (drule_tac x = "k - 1" in spec) back back back
+  apply auto
+done
+
+lemma choose_altdef_aux_nat: "(k::nat) \<le> n \<Longrightarrow> 
+    fact k * fact (n - k) * (n choose k) = fact n"
+  apply (rule binomial_induct [of _ k n])
+  apply auto
+proof -
+  fix k :: nat and n
+  assume less: "k < n"
+  assume ih1: "fact k * fact (n - k) * (n choose k) = fact n"
+  hence one: "fact (k + 1) * fact (n - k) * (n choose k) = (k + 1) * fact n"
+    by (subst fact_plus_one_nat, auto)
+  assume ih2: "fact (k + 1) * fact (n - (k + 1)) * (n choose (k + 1)) = 
+      fact n"
+  with less have "fact (k + 1) * fact ((n - (k + 1)) + 1) * 
+      (n choose (k + 1)) = (n - k) * fact n"
+    by (subst (2) fact_plus_one_nat, auto)
+  with less have two: "fact (k + 1) * fact (n - k) * (n choose (k + 1)) = 
+      (n - k) * fact n" by simp
+  have "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) =
+      fact (k + 1) * fact (n - k) * (n choose (k + 1)) + 
+      fact (k + 1) * fact (n - k) * (n choose k)" 
+    by (subst choose_reduce_nat, auto simp add: ring_simps)
+  also note one
+  also note two
+  also with less have "(n - k) * fact n + (k + 1) * fact n= fact (n + 1)" 
+    apply (subst fact_plus_one_nat)
+    apply (subst left_distrib [symmetric])
+    apply simp
+    done
+  finally show "fact (k + 1) * fact (n - k) * (n + 1 choose (k + 1)) = 
+    fact (n + 1)" .
+qed
+
+lemma choose_altdef_nat: "(k::nat) \<le> n \<Longrightarrow> 
+    n choose k = fact n div (fact k * fact (n - k))"
+  apply (frule choose_altdef_aux_nat)
+  apply (erule subst)
+  apply (simp add: mult_ac)
+done
+
+
+lemma choose_altdef_int: 
+  assumes "(0::int) <= k" and "k <= n"
+  shows "n choose k = fact n div (fact k * fact (n - k))"
+  
+  apply (subst tsub_eq [symmetric], rule prems)
+  apply (rule choose_altdef_nat [transferred])
+  using prems apply auto
+done
+
+lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"
+  unfolding dvd_def apply (frule choose_altdef_aux_nat)
+  (* why don't blast and auto get this??? *)
+  apply (rule exI)
+  apply (erule sym)
+done
+
+lemma choose_dvd_int: 
+  assumes "(0::int) <= k" and "k <= n"
+  shows "fact k * fact (n - k) dvd fact n"
+ 
+  apply (subst tsub_eq [symmetric], rule prems)
+  apply (rule choose_dvd_nat [transferred])
+  using prems apply auto
+done
+
+(* generalizes Tobias Nipkow's proof to any commutative semiring *)
+theorem binomial: "(a+b::'a::{comm_ring_1,power})^n = 
+  (SUM k=0..n. (of_nat (n choose k)) * a^k * b^(n-k))" (is "?P n")
+proof (induct n rule: induct'_nat)
+  show "?P 0" by simp
+next
+  fix n
+  assume ih: "?P n"
+  have decomp: "{0..n+1} = {0} Un {n+1} Un {1..n}"
+    by auto
+  have decomp2: "{0..n} = {0} Un {1..n}"
+    by auto
+  have decomp3: "{1..n+1} = {n+1} Un {1..n}"
+    by auto
+  have "(a+b)^(n+1) = 
+      (a+b) * (SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
+    using ih by (simp add: power_plus_one)
+  also have "... =  a*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k)) +
+                   b*(SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
+    by (rule distrib)
+  also have "... = (SUM k=0..n. of_nat (n choose k) * a^(k+1) * b^(n-k)) +
+                  (SUM k=0..n. of_nat (n choose k) * a^k * b^(n-k+1))"
+    by (subst (1 2) power_plus_one, simp add: setsum_right_distrib mult_ac)
+  also have "... = (SUM k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) +
+                  (SUM k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))"
+    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le 
+             power_Suc ring_simps One_nat_def del:setsum_cl_ivl_Suc)
+  also have "... = a^(n+1) + b^(n+1) +
+                  (SUM k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) +
+                  (SUM k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))"
+    by (simp add: decomp2 decomp3)
+  also have
+      "... = a^(n+1) + b^(n+1) + 
+         (SUM k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))"
+    by (auto simp add: ring_simps setsum_addf [symmetric]
+      choose_reduce_nat)
+  also have "... = (SUM k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))"
+    using decomp by (simp add: ring_simps)
+  finally show "?P (n + 1)" by simp
+qed
+
+lemma set_explicit: "{S. S = T \<and> P S} = (if P T then {T} else {})"
+  by auto
+
+lemma card_subsets_nat [rule_format]:
+  fixes S :: "'a set"
+  assumes "finite S"
+  shows "ALL k. card {T. T \<le> S \<and> card T = k} = card S choose k" 
+      (is "?P S")
+using `finite S`
+proof (induct set: finite)
+  show "?P {}" by (auto simp add: set_explicit)
+  next fix x :: "'a" and F
+  assume iassms: "finite F" "x ~: F"
+  assume ih: "?P F"
+  show "?P (insert x F)" (is "ALL k. ?Q k")
+  proof
+    fix k
+    show "card {T. T \<subseteq> (insert x F) \<and> card T = k} = 
+        card (insert x F) choose k" (is "?Q k")
+    proof (induct k rule: induct'_nat)
+      from iassms have "{T. T \<le> (insert x F) \<and> card T = 0} = {{}}"
+        apply auto
+        apply (subst (asm) card_0_eq)
+        apply (auto elim: finite_subset)
+        done
+      thus "?Q 0" 
+        by auto
+      next fix k
+      show "?Q (k + 1)"
+      proof -
+        from iassms have fin: "finite (insert x F)" by auto
+        hence "{ T. T \<subseteq> insert x F \<and> card T = k + 1} =
+          {T. T \<le> F & card T = k + 1} Un 
+          {T. T \<le> insert x F & x : T & card T = k + 1}"
+          by (auto intro!: subsetI)
+        with iassms fin have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
+          card ({T. T \<subseteq> F \<and> card T = k + 1}) + 
+          card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1})"
+          apply (subst card_Un_disjoint [symmetric])
+          apply auto
+          (* note: nice! Didn't have to say anything here *)
+          done
+        also from ih have "card ({T. T \<subseteq> F \<and> card T = k + 1}) = 
+          card F choose (k+1)" by auto
+        also have "card ({T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}) =
+          card ({T. T <= F & card T = k})"
+        proof -
+          let ?f = "%T. T Un {x}"
+          from iassms have "inj_on ?f {T. T <= F & card T = k}"
+            unfolding inj_on_def by (auto intro!: subsetI)
+          hence "card ({T. T <= F & card T = k}) = 
+            card(?f ` {T. T <= F & card T = k})"
+            by (rule card_image [symmetric])
+          also from iassms fin have "?f ` {T. T <= F & card T = k} = 
+            {T. T \<subseteq> insert x F \<and> x : T \<and> card T = k + 1}"
+            unfolding image_def 
+            (* I can't figure out why this next line takes so long *)
+            apply auto
+            apply (frule (1) finite_subset, force)
+            apply (rule_tac x = "xa - {x}" in exI)
+            apply (subst card_Diff_singleton)
+            apply (auto elim: finite_subset)
+            done
+          finally show ?thesis by (rule sym)
+        qed
+        also from ih have "card ({T. T <= F & card T = k}) = card F choose k"
+          by auto
+        finally have "card ({T. T \<le> insert x F \<and> card T = k + 1}) = 
+          card F choose (k + 1) + (card F choose k)".
+        with iassms choose_plus_one_nat show ?thesis
+          by auto
+      qed
+    qed
+  qed
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Cong.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,1091 @@
+(*  Title:      HOL/Library/Cong.thy
+    ID:         
+    Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
+                Thomas M. Rasmussen, Jeremy Avigad
+
+
+Defines congruence (notation: [x = y] (mod z)) for natural numbers and
+integers.
+
+This file combines and revises a number of prior developments.
+
+The original theories "GCD" and "Primes" were by Christophe Tabacznyj
+and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
+gcd, lcm, and prime for the natural numbers.
+
+The original theory "IntPrimes" was by Thomas M. Rasmussen, and
+extended gcd, lcm, primes to the integers. Amine Chaieb provided
+another extension of the notions to the integers, and added a number
+of results to "Primes" and "GCD". 
+
+The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and
+developed the congruence relations on the integers. The notion was
+extended to the natural numbers by Chiaeb. Jeremy Avigad combined
+these, revised and tidied them, made the development uniform for the
+natural numbers and the integers, and added a number of new theorems.
+
+*)
+
+
+header {* Congruence *}
+
+theory Cong
+imports GCD Primes
+begin
+
+subsection {* Turn off One_nat_def *}
+
+lemma induct'_nat [case_names zero plus1, induct type: nat]: 
+    "\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n"
+by (erule nat_induct) (simp add:One_nat_def)
+
+lemma cases_nat [case_names zero plus1, cases type: nat]: 
+    "P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n"
+by(metis induct'_nat)
+
+lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n"
+by (simp add: One_nat_def)
+
+lemma power_eq_one_eq_nat [simp]: 
+  "((x::nat)^m = 1) = (m = 0 | x = 1)"
+by (induct m, auto)
+
+lemma card_insert_if' [simp]: "finite A \<Longrightarrow>
+  card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)"
+by (auto simp add: insert_absorb)
+
+(* why wasn't card_insert_if a simp rule? *)
+declare card_insert_disjoint [simp del]
+
+lemma nat_1' [simp]: "nat 1 = 1"
+by simp
+
+(* For those annoying moments where Suc reappears, use Suc_eq_plus1 *)
+
+declare nat_1 [simp del]
+declare add_2_eq_Suc [simp del] 
+declare add_2_eq_Suc' [simp del]
+
+
+declare mod_pos_pos_trivial [simp]
+
+
+subsection {* Main definitions *}
+
+class cong =
+
+fixes 
+  cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
+
+begin
+
+abbreviation
+  notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
+where
+  "notcong x y m == (~cong x y m)" 
+
+end
+
+(* definitions for the natural numbers *)
+
+instantiation nat :: cong
+
+begin 
+
+definition 
+  cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where 
+  "cong_nat x y m = ((x mod m) = (y mod m))"
+
+instance proof qed
+
+end
+
+
+(* definitions for the integers *)
+
+instantiation int :: cong
+
+begin 
+
+definition 
+  cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
+where 
+  "cong_int x y m = ((x mod m) = (y mod m))"
+
+instance proof qed
+
+end
+
+
+subsection {* Set up Transfer *}
+
+
+lemma transfer_nat_int_cong:
+  "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow> 
+    ([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))"
+  unfolding cong_int_def cong_nat_def 
+  apply (auto simp add: nat_mod_distrib [symmetric])
+  apply (subst (asm) eq_nat_nat_iff)
+  apply (case_tac "m = 0", force, rule pos_mod_sign, force)+
+  apply assumption
+done
+
+declare TransferMorphism_nat_int[transfer add return: 
+    transfer_nat_int_cong]
+
+lemma transfer_int_nat_cong:
+  "[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)"
+  apply (auto simp add: cong_int_def cong_nat_def)
+  apply (auto simp add: zmod_int [symmetric])
+done
+
+declare TransferMorphism_int_nat[transfer add return: 
+    transfer_int_nat_cong]
+
+
+subsection {* Congruence *}
+
+(* was zcong_0, etc. *)
+lemma cong_0_nat [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_0_int [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_1_nat [simp, presburger]: "[(a::nat) = b] (mod 1)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_Suc_0_nat [simp, presburger]: "[(a::nat) = b] (mod Suc 0)"
+  by (unfold cong_nat_def, auto simp add: One_nat_def)
+
+lemma cong_1_int [simp, presburger]: "[(a::int) = b] (mod 1)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_refl_nat [simp]: "[(k::nat) = k] (mod m)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_refl_int [simp]: "[(k::int) = k] (mod m)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_sym_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_sym_int: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_sym_eq_nat: "[(a::nat) = b] (mod m) = [b = a] (mod m)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_sym_eq_int: "[(a::int) = b] (mod m) = [b = a] (mod m)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_trans_nat [trans]:
+    "[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_trans_int [trans]:
+    "[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_add_nat:
+    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
+  apply (unfold cong_nat_def)
+  apply (subst (1 2) mod_add_eq)
+  apply simp
+done
+
+lemma cong_add_int:
+    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
+  apply (unfold cong_int_def)
+  apply (subst (1 2) mod_add_left_eq)
+  apply (subst (1 2) mod_add_right_eq)
+  apply simp
+done
+
+lemma cong_diff_int:
+    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
+  apply (unfold cong_int_def)
+  apply (subst (1 2) mod_diff_eq)
+  apply simp
+done
+
+lemma cong_diff_aux_int:
+  "(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow> 
+      [c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
+  apply (subst (1 2) tsub_eq)
+  apply (auto intro: cong_diff_int)
+done;
+
+lemma cong_diff_nat:
+  assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and
+    "[c = d] (mod m)"
+  shows "[a - c = b - d] (mod m)"
+
+  using prems by (rule cong_diff_aux_int [transferred]);
+
+lemma cong_mult_nat:
+    "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
+  apply (unfold cong_nat_def)
+  apply (subst (1 2) mod_mult_eq)
+  apply simp
+done
+
+lemma cong_mult_int:
+    "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
+  apply (unfold cong_int_def)
+  apply (subst (1 2) zmod_zmult1_eq)
+  apply (subst (1 2) mult_commute)
+  apply (subst (1 2) zmod_zmult1_eq)
+  apply simp
+done
+
+lemma cong_exp_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
+  apply (induct k)
+  apply (auto simp add: cong_refl_nat cong_mult_nat)
+done
+
+lemma cong_exp_int: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
+  apply (induct k)
+  apply (auto simp add: cong_refl_int cong_mult_int)
+done
+
+lemma cong_setsum_nat [rule_format]: 
+    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
+      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
+  apply (case_tac "finite A")
+  apply (induct set: finite)
+  apply (auto intro: cong_add_nat)
+done
+
+lemma cong_setsum_int [rule_format]:
+    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
+      [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
+  apply (case_tac "finite A")
+  apply (induct set: finite)
+  apply (auto intro: cong_add_int)
+done
+
+lemma cong_setprod_nat [rule_format]: 
+    "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow> 
+      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
+  apply (case_tac "finite A")
+  apply (induct set: finite)
+  apply (auto intro: cong_mult_nat)
+done
+
+lemma cong_setprod_int [rule_format]: 
+    "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow> 
+      [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
+  apply (case_tac "finite A")
+  apply (induct set: finite)
+  apply (auto intro: cong_mult_int)
+done
+
+lemma cong_scalar_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
+  by (rule cong_mult_nat, simp_all)
+
+lemma cong_scalar_int: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
+  by (rule cong_mult_int, simp_all)
+
+lemma cong_scalar2_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
+  by (rule cong_mult_nat, simp_all)
+
+lemma cong_scalar2_int: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
+  by (rule cong_mult_int, simp_all)
+
+lemma cong_mult_self_nat: "[(a::nat) * m = 0] (mod m)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_mult_self_int: "[(a::int) * m = 0] (mod m)"
+  by (unfold cong_int_def, auto)
+
+lemma cong_eq_diff_cong_0_int: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)"
+  apply (rule iffI)
+  apply (erule cong_diff_int [of a b m b b, simplified])
+  apply (erule cong_add_int [of "a - b" 0 m b b, simplified])
+done
+
+lemma cong_eq_diff_cong_0_aux_int: "a >= b \<Longrightarrow>
+    [(a::int) = b] (mod m) = [tsub a b = 0] (mod m)"
+  by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int)
+
+lemma cong_eq_diff_cong_0_nat:
+  assumes "(a::nat) >= b"
+  shows "[a = b] (mod m) = [a - b = 0] (mod m)"
+
+  using prems by (rule cong_eq_diff_cong_0_aux_int [transferred])
+
+lemma cong_diff_cong_0'_nat: 
+  "[(x::nat) = y] (mod n) \<longleftrightarrow> 
+    (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
+  apply (case_tac "y <= x")
+  apply (frule cong_eq_diff_cong_0_nat [where m = n])
+  apply auto [1]
+  apply (subgoal_tac "x <= y")
+  apply (frule cong_eq_diff_cong_0_nat [where m = n])
+  apply (subst cong_sym_eq_nat)
+  apply auto
+done
+
+lemma cong_altdef_nat: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))"
+  apply (subst cong_eq_diff_cong_0_nat, assumption)
+  apply (unfold cong_nat_def)
+  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
+done
+
+lemma cong_altdef_int: "[(a::int) = b] (mod m) = (m dvd (a - b))"
+  apply (subst cong_eq_diff_cong_0_int)
+  apply (unfold cong_int_def)
+  apply (simp add: dvd_eq_mod_eq_0 [symmetric])
+done
+
+lemma cong_abs_int: "[(x::int) = y] (mod abs m) = [x = y] (mod m)"
+  by (simp add: cong_altdef_int)
+
+lemma cong_square_int:
+   "\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk>
+    \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
+  apply (simp only: cong_altdef_int)
+  apply (subst prime_dvd_mult_eq_int [symmetric], assumption)
+  (* any way around this? *)
+  apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)")
+  apply (auto simp add: ring_simps)
+done
+
+lemma cong_mult_rcancel_int:
+  "coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)"
+  apply (subst (1 2) cong_altdef_int)
+  apply (subst left_diff_distrib [symmetric])
+  apply (rule coprime_dvd_mult_iff_int)
+  apply (subst gcd_commute_int, assumption)
+done
+
+lemma cong_mult_rcancel_nat:
+  assumes  "coprime k (m::nat)"
+  shows "[a * k = b * k] (mod m) = [a = b] (mod m)"
+
+  apply (rule cong_mult_rcancel_int [transferred])
+  using prems apply auto
+done
+
+lemma cong_mult_lcancel_nat:
+  "coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)"
+  by (simp add: mult_commute cong_mult_rcancel_nat)
+
+lemma cong_mult_lcancel_int:
+  "coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)"
+  by (simp add: mult_commute cong_mult_rcancel_int)
+
+(* was zcong_zgcd_zmult_zmod *)
+lemma coprime_cong_mult_int:
+  "[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n
+    \<Longrightarrow> [a = b] (mod m * n)"
+  apply (simp only: cong_altdef_int)
+  apply (erule (2) divides_mult_int)
+done
+
+lemma coprime_cong_mult_nat:
+  assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
+  shows "[a = b] (mod m * n)"
+
+  apply (rule coprime_cong_mult_int [transferred])
+  using prems apply auto
+done
+
+lemma cong_less_imp_eq_nat: "0 \<le> (a::nat) \<Longrightarrow>
+    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
+  by (auto simp add: cong_nat_def mod_pos_pos_trivial)
+
+lemma cong_less_imp_eq_int: "0 \<le> (a::int) \<Longrightarrow>
+    a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
+  by (auto simp add: cong_int_def mod_pos_pos_trivial)
+
+lemma cong_less_unique_nat:
+    "0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
+  apply auto
+  apply (rule_tac x = "a mod m" in exI)
+  apply (unfold cong_nat_def, auto)
+done
+
+lemma cong_less_unique_int:
+    "0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
+  apply auto
+  apply (rule_tac x = "a mod m" in exI)
+  apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial)
+done
+
+lemma cong_iff_lin_int: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)"
+  apply (auto simp add: cong_altdef_int dvd_def ring_simps)
+  apply (rule_tac [!] x = "-k" in exI, auto)
+done
+
+lemma cong_iff_lin_nat: "([(a::nat) = b] (mod m)) = 
+    (\<exists>k1 k2. b + k1 * m = a + k2 * m)"
+  apply (rule iffI)
+  apply (case_tac "b <= a")
+  apply (subst (asm) cong_altdef_nat, assumption)
+  apply (unfold dvd_def, auto)
+  apply (rule_tac x = k in exI)
+  apply (rule_tac x = 0 in exI)
+  apply (auto simp add: ring_simps)
+  apply (subst (asm) cong_sym_eq_nat)
+  apply (subst (asm) cong_altdef_nat)
+  apply force
+  apply (unfold dvd_def, auto)
+  apply (rule_tac x = 0 in exI)
+  apply (rule_tac x = k in exI)
+  apply (auto simp add: ring_simps)
+  apply (unfold cong_nat_def)
+  apply (subgoal_tac "a mod m = (a + k2 * m) mod m")
+  apply (erule ssubst)back
+  apply (erule subst)
+  apply auto
+done
+
+lemma cong_gcd_eq_int: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
+  apply (subst (asm) cong_iff_lin_int, auto)
+  apply (subst add_commute) 
+  apply (subst (2) gcd_commute_int)
+  apply (subst mult_commute)
+  apply (subst gcd_add_mult_int)
+  apply (rule gcd_commute_int)
+done
+
+lemma cong_gcd_eq_nat: 
+  assumes "[(a::nat) = b] (mod m)"
+  shows "gcd a m = gcd b m"
+
+  apply (rule cong_gcd_eq_int [transferred])
+  using prems apply auto
+done
+
+lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
+    coprime b m"
+  by (auto simp add: cong_gcd_eq_nat)
+
+lemma cong_imp_coprime_int: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> 
+    coprime b m"
+  by (auto simp add: cong_gcd_eq_int)
+
+lemma cong_cong_mod_nat: "[(a::nat) = b] (mod m) = 
+    [a mod m = b mod m] (mod m)"
+  by (auto simp add: cong_nat_def)
+
+lemma cong_cong_mod_int: "[(a::int) = b] (mod m) = 
+    [a mod m = b mod m] (mod m)"
+  by (auto simp add: cong_int_def)
+
+lemma cong_minus_int [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)"
+  by (subst (1 2) cong_altdef_int, auto)
+
+lemma cong_zero_nat [iff]: "[(a::nat) = b] (mod 0) = (a = b)"
+  by (auto simp add: cong_nat_def)
+
+lemma cong_zero_int [iff]: "[(a::int) = b] (mod 0) = (a = b)"
+  by (auto simp add: cong_int_def)
+
+(*
+lemma mod_dvd_mod_int:
+    "0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)"
+  apply (unfold dvd_def, auto)
+  apply (rule mod_mod_cancel)
+  apply auto
+done
+
+lemma mod_dvd_mod:
+  assumes "0 < (m::nat)" and "m dvd b"
+  shows "(a mod b mod m) = (a mod m)"
+
+  apply (rule mod_dvd_mod_int [transferred])
+  using prems apply auto
+done
+*)
+
+lemma cong_add_lcancel_nat: 
+    "[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
+  by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_lcancel_int: 
+    "[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
+  by (simp add: cong_iff_lin_int)
+
+lemma cong_add_rcancel_nat: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+  by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_rcancel_int: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+  by (simp add: cong_iff_lin_int)
+
+lemma cong_add_lcancel_0_nat: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
+  by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_lcancel_0_int: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
+  by (simp add: cong_iff_lin_int)
+
+lemma cong_add_rcancel_0_nat: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
+  by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_rcancel_0_int: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
+  by (simp add: cong_iff_lin_int)
+
+lemma cong_dvd_modulus_nat: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
+    [x = y] (mod n)"
+  apply (auto simp add: cong_iff_lin_nat dvd_def)
+  apply (rule_tac x="k1 * k" in exI)
+  apply (rule_tac x="k2 * k" in exI)
+  apply (simp add: ring_simps)
+done
+
+lemma cong_dvd_modulus_int: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> 
+    [x = y] (mod n)"
+  by (auto simp add: cong_altdef_int dvd_def)
+
+lemma cong_dvd_eq_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
+  by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0)
+
+lemma cong_dvd_eq_int: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
+  by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0)
+
+lemma cong_mod_nat: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
+  by (simp add: cong_nat_def)
+
+lemma cong_mod_int: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)" 
+  by (simp add: cong_int_def)
+
+lemma mod_mult_cong_nat: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0 
+    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
+  by (simp add: cong_nat_def mod_mult2_eq  mod_add_left_eq)
+
+lemma neg_cong_int: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))"
+  apply (simp add: cong_altdef_int)
+  apply (subst dvd_minus_iff [symmetric])
+  apply (simp add: ring_simps)
+done
+
+lemma cong_modulus_neg_int: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))"
+  by (auto simp add: cong_altdef_int)
+
+lemma mod_mult_cong_int: "(a::int) ~= 0 \<Longrightarrow> b ~= 0 
+    \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
+  apply (case_tac "b > 0")
+  apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
+  apply (subst (1 2) cong_modulus_neg_int)
+  apply (unfold cong_int_def)
+  apply (subgoal_tac "a * b = (-a * -b)")
+  apply (erule ssubst)
+  apply (subst zmod_zmult2_eq)
+  apply (auto simp add: mod_add_left_eq) 
+done
+
+lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
+  apply (case_tac "a = 0")
+  apply force
+  apply (subst (asm) cong_altdef_nat)
+  apply auto
+done
+
+lemma cong_0_1_nat: "[(0::nat) = 1] (mod n) = (n = 1)"
+  by (unfold cong_nat_def, auto)
+
+lemma cong_0_1_int: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))"
+  by (unfold cong_int_def, auto simp add: zmult_eq_1_iff)
+
+lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow> 
+    a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
+  apply (case_tac "n = 1")
+  apply auto [1]
+  apply (drule_tac x = "a - 1" in spec)
+  apply force
+  apply (case_tac "a = 0")
+  apply (auto simp add: cong_0_1_nat) [1]
+  apply (rule iffI)
+  apply (drule cong_to_1_nat)
+  apply (unfold dvd_def)
+  apply auto [1]
+  apply (rule_tac x = k in exI)
+  apply (auto simp add: ring_simps) [1]
+  apply (subst cong_altdef_nat)
+  apply (auto simp add: dvd_def)
+done
+
+lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
+  apply (subst cong_altdef_nat)
+  apply assumption
+  apply (unfold dvd_def, auto simp add: ring_simps)
+  apply (rule_tac x = k in exI)
+  apply auto
+done
+
+lemma cong_solve_nat: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
+  apply (case_tac "n = 0")
+  apply force
+  apply (frule bezout_nat [of a n], auto)
+  apply (rule exI, erule ssubst)
+  apply (rule cong_trans_nat)
+  apply (rule cong_add_nat)
+  apply (subst mult_commute)
+  apply (rule cong_mult_self_nat)
+  prefer 2
+  apply simp
+  apply (rule cong_refl_nat)
+  apply (rule cong_refl_nat)
+done
+
+lemma cong_solve_int: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
+  apply (case_tac "n = 0")
+  apply (case_tac "a \<ge> 0")
+  apply auto
+  apply (rule_tac x = "-1" in exI)
+  apply auto
+  apply (insert bezout_int [of a n], auto)
+  apply (rule exI)
+  apply (erule subst)
+  apply (rule cong_trans_int)
+  prefer 2
+  apply (rule cong_add_int)
+  apply (rule cong_refl_int)
+  apply (rule cong_sym_int)
+  apply (rule cong_mult_self_int)
+  apply simp
+  apply (subst mult_commute)
+  apply (rule cong_refl_int)
+done
+  
+lemma cong_solve_dvd_nat: 
+  assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d"
+  shows "EX x. [a * x = d] (mod n)"
+proof -
+  from cong_solve_nat [OF a] obtain x where 
+      "[a * x = gcd a n](mod n)"
+    by auto
+  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
+    by (elim cong_scalar2_nat)
+  also from b have "(d div gcd a n) * gcd a n = d"
+    by (rule dvd_div_mult_self)
+  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
+    by auto
+  finally show ?thesis
+    by auto
+qed
+
+lemma cong_solve_dvd_int: 
+  assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
+  shows "EX x. [a * x = d] (mod n)"
+proof -
+  from cong_solve_int [OF a] obtain x where 
+      "[a * x = gcd a n](mod n)"
+    by auto
+  hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)" 
+    by (elim cong_scalar2_int)
+  also from b have "(d div gcd a n) * gcd a n = d"
+    by (rule dvd_div_mult_self)
+  also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
+    by auto
+  finally show ?thesis
+    by auto
+qed
+
+lemma cong_solve_coprime_nat: "coprime (a::nat) n \<Longrightarrow> 
+    EX x. [a * x = 1] (mod n)"
+  apply (case_tac "a = 0")
+  apply force
+  apply (frule cong_solve_nat [of a n])
+  apply auto
+done
+
+lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow> 
+    EX x. [a * x = 1] (mod n)"
+  apply (case_tac "a = 0")
+  apply auto
+  apply (case_tac "n \<ge> 0")
+  apply auto
+  apply (subst cong_int_def, auto)
+  apply (frule cong_solve_int [of a n])
+  apply auto
+done
+
+lemma coprime_iff_invertible_nat: "m > (1::nat) \<Longrightarrow> coprime a m = 
+    (EX x. [a * x = 1] (mod m))"
+  apply (auto intro: cong_solve_coprime_nat)
+  apply (unfold cong_nat_def, auto intro: invertible_coprime_nat)
+done
+
+lemma coprime_iff_invertible_int: "m > (1::int) \<Longrightarrow> coprime a m = 
+    (EX x. [a * x = 1] (mod m))"
+  apply (auto intro: cong_solve_coprime_int)
+  apply (unfold cong_int_def)
+  apply (auto intro: invertible_coprime_int)
+done
+
+lemma coprime_iff_invertible'_int: "m > (1::int) \<Longrightarrow> coprime a m = 
+    (EX x. 0 <= x & x < m & [a * x = 1] (mod m))"
+  apply (subst coprime_iff_invertible_int)
+  apply auto
+  apply (auto simp add: cong_int_def)
+  apply (rule_tac x = "x mod m" in exI)
+  apply (auto simp add: mod_mult_right_eq [symmetric])
+done
+
+
+lemma cong_cong_lcm_nat: "[(x::nat) = y] (mod a) \<Longrightarrow>
+    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
+  apply (case_tac "y \<le> x")
+  apply (auto simp add: cong_altdef_nat lcm_least_nat) [1]
+  apply (rule cong_sym_nat)
+  apply (subst (asm) (1 2) cong_sym_eq_nat)
+  apply (auto simp add: cong_altdef_nat lcm_least_nat)
+done
+
+lemma cong_cong_lcm_int: "[(x::int) = y] (mod a) \<Longrightarrow>
+    [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
+  by (auto simp add: cong_altdef_int lcm_least_int) [1]
+
+lemma cong_cong_coprime_nat: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow>
+    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
+  apply (frule (1) cong_cong_lcm_nat)back
+  apply (simp add: lcm_nat_def)
+done
+
+lemma cong_cong_coprime_int: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow>
+    [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
+  apply (frule (1) cong_cong_lcm_int)back
+  apply (simp add: lcm_altdef_int cong_abs_int abs_mult [symmetric])
+done
+
+lemma cong_cong_setprod_coprime_nat [rule_format]: "finite A \<Longrightarrow>
+    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+    (ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow>
+      [x = y] (mod (PROD i:A. m i))"
+  apply (induct set: finite)
+  apply auto
+  apply (rule cong_cong_coprime_nat)
+  apply (subst gcd_commute_nat)
+  apply (rule setprod_coprime_nat)
+  apply auto
+done
+
+lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow>
+    (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+    (ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow>
+      [x = y] (mod (PROD i:A. m i))"
+  apply (induct set: finite)
+  apply auto
+  apply (rule cong_cong_coprime_int)
+  apply (subst gcd_commute_int)
+  apply (rule setprod_coprime_int)
+  apply auto
+done
+
+lemma binary_chinese_remainder_aux_nat: 
+  assumes a: "coprime (m1::nat) m2"
+  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
+    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
+proof -
+  from cong_solve_coprime_nat [OF a]
+      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
+    by auto
+  from a have b: "coprime m2 m1" 
+    by (subst gcd_commute_nat)
+  from cong_solve_coprime_nat [OF b]
+      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
+    by auto
+  have "[m1 * x1 = 0] (mod m1)"
+    by (subst mult_commute, rule cong_mult_self_nat)
+  moreover have "[m2 * x2 = 0] (mod m2)"
+    by (subst mult_commute, rule cong_mult_self_nat)
+  moreover note one two
+  ultimately show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_aux_int: 
+  assumes a: "coprime (m1::int) m2"
+  shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
+    [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
+proof -
+  from cong_solve_coprime_int [OF a]
+      obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
+    by auto
+  from a have b: "coprime m2 m1" 
+    by (subst gcd_commute_int)
+  from cong_solve_coprime_int [OF b]
+      obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
+    by auto
+  have "[m1 * x1 = 0] (mod m1)"
+    by (subst mult_commute, rule cong_mult_self_int)
+  moreover have "[m2 * x2 = 0] (mod m2)"
+    by (subst mult_commute, rule cong_mult_self_int)
+  moreover note one two
+  ultimately show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_nat:
+  assumes a: "coprime (m1::nat) m2"
+  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+  from binary_chinese_remainder_aux_nat [OF a] obtain b1 b2
+    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
+          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
+    by blast
+  let ?x = "u1 * b1 + u2 * b2"
+  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
+    apply (rule cong_add_nat)
+    apply (rule cong_scalar2_nat)
+    apply (rule `[b1 = 1] (mod m1)`)
+    apply (rule cong_scalar2_nat)
+    apply (rule `[b2 = 0] (mod m1)`)
+    done
+  hence "[?x = u1] (mod m1)" by simp
+  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
+    apply (rule cong_add_nat)
+    apply (rule cong_scalar2_nat)
+    apply (rule `[b1 = 0] (mod m2)`)
+    apply (rule cong_scalar2_nat)
+    apply (rule `[b2 = 1] (mod m2)`)
+    done
+  hence "[?x = u2] (mod m2)" by simp
+  with `[?x = u1] (mod m1)` show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_int:
+  assumes a: "coprime (m1::int) m2"
+  shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+  from binary_chinese_remainder_aux_int [OF a] obtain b1 b2
+    where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
+          "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
+    by blast
+  let ?x = "u1 * b1 + u2 * b2"
+  have "[?x = u1 * 1 + u2 * 0] (mod m1)"
+    apply (rule cong_add_int)
+    apply (rule cong_scalar2_int)
+    apply (rule `[b1 = 1] (mod m1)`)
+    apply (rule cong_scalar2_int)
+    apply (rule `[b2 = 0] (mod m1)`)
+    done
+  hence "[?x = u1] (mod m1)" by simp
+  have "[?x = u1 * 0 + u2 * 1] (mod m2)"
+    apply (rule cong_add_int)
+    apply (rule cong_scalar2_int)
+    apply (rule `[b1 = 0] (mod m2)`)
+    apply (rule cong_scalar2_int)
+    apply (rule `[b2 = 1] (mod m2)`)
+    done
+  hence "[?x = u2] (mod m2)" by simp
+  with `[?x = u1] (mod m1)` show ?thesis by blast
+qed
+
+lemma cong_modulus_mult_nat: "[(x::nat) = y] (mod m * n) \<Longrightarrow> 
+    [x = y] (mod m)"
+  apply (case_tac "y \<le> x")
+  apply (simp add: cong_altdef_nat)
+  apply (erule dvd_mult_left)
+  apply (rule cong_sym_nat)
+  apply (subst (asm) cong_sym_eq_nat)
+  apply (simp add: cong_altdef_nat) 
+  apply (erule dvd_mult_left)
+done
+
+lemma cong_modulus_mult_int: "[(x::int) = y] (mod m * n) \<Longrightarrow> 
+    [x = y] (mod m)"
+  apply (simp add: cong_altdef_int) 
+  apply (erule dvd_mult_left)
+done
+
+lemma cong_less_modulus_unique_nat: 
+    "[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
+  by (simp add: cong_nat_def)
+
+lemma binary_chinese_remainder_unique_nat:
+  assumes a: "coprime (m1::nat) m2" and
+         nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
+  shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+  from binary_chinese_remainder_nat [OF a] obtain y where 
+      "[y = u1] (mod m1)" and "[y = u2] (mod m2)"
+    by blast
+  let ?x = "y mod (m1 * m2)"
+  from nz have less: "?x < m1 * m2"
+    by auto   
+  have one: "[?x = u1] (mod m1)"
+    apply (rule cong_trans_nat)
+    prefer 2
+    apply (rule `[y = u1] (mod m1)`)
+    apply (rule cong_modulus_mult_nat)
+    apply (rule cong_mod_nat)
+    using nz apply auto
+    done
+  have two: "[?x = u2] (mod m2)"
+    apply (rule cong_trans_nat)
+    prefer 2
+    apply (rule `[y = u2] (mod m2)`)
+    apply (subst mult_commute)
+    apply (rule cong_modulus_mult_nat)
+    apply (rule cong_mod_nat)
+    using nz apply auto
+    done
+  have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow>
+      z = ?x"
+  proof (clarify)
+    fix z
+    assume "z < m1 * m2"
+    assume "[z = u1] (mod m1)" and  "[z = u2] (mod m2)"
+    have "[?x = z] (mod m1)"
+      apply (rule cong_trans_nat)
+      apply (rule `[?x = u1] (mod m1)`)
+      apply (rule cong_sym_nat)
+      apply (rule `[z = u1] (mod m1)`)
+      done
+    moreover have "[?x = z] (mod m2)"
+      apply (rule cong_trans_nat)
+      apply (rule `[?x = u2] (mod m2)`)
+      apply (rule cong_sym_nat)
+      apply (rule `[z = u2] (mod m2)`)
+      done
+    ultimately have "[?x = z] (mod m1 * m2)"
+      by (auto intro: coprime_cong_mult_nat a)
+    with `z < m1 * m2` `?x < m1 * m2` show "z = ?x"
+      apply (intro cong_less_modulus_unique_nat)
+      apply (auto, erule cong_sym_nat)
+      done
+  qed  
+  with less one two show ?thesis
+    by auto
+ qed
+
+lemma chinese_remainder_aux_nat:
+  fixes A :: "'a set" and
+        m :: "'a \<Rightarrow> nat"
+  assumes fin: "finite A" and
+          cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+  shows "EX b. (ALL i : A. 
+      [b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
+proof (rule finite_set_choice, rule fin, rule ballI)
+  fix i
+  assume "i : A"
+  with cop have "coprime (PROD j : A - {i}. m j) (m i)"
+    by (intro setprod_coprime_nat, auto)
+  hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
+    by (elim cong_solve_coprime_nat)
+  then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
+    by auto
+  moreover have "[(PROD j : A - {i}. m j) * x = 0] 
+    (mod (PROD j : A - {i}. m j))"
+    by (subst mult_commute, rule cong_mult_self_nat)
+  ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] 
+      (mod setprod m (A - {i}))"
+    by blast
+qed
+
+lemma chinese_remainder_nat:
+  fixes A :: "'a set" and
+        m :: "'a \<Rightarrow> nat" and
+        u :: "'a \<Rightarrow> nat"
+  assumes 
+        fin: "finite A" and
+        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+  shows "EX x. (ALL i:A. [x = u i] (mod m i))"
+proof -
+  from chinese_remainder_aux_nat [OF fin cop] obtain b where
+    bprop: "ALL i:A. [b i = 1] (mod m i) \<and> 
+      [b i = 0] (mod (PROD j : A - {i}. m j))"
+    by blast
+  let ?x = "SUM i:A. (u i) * (b i)"
+  show "?thesis"
+  proof (rule exI, clarify)
+    fix i
+    assume a: "i : A"
+    show "[?x = u i] (mod m i)" 
+    proof -
+      from fin a have "?x = (SUM j:{i}. u j * b j) + 
+          (SUM j:A-{i}. u j * b j)"
+        by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong)
+      hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
+        by auto
+      also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
+                  u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
+        apply (rule cong_add_nat)
+        apply (rule cong_scalar2_nat)
+        using bprop a apply blast
+        apply (rule cong_setsum_nat)
+        apply (rule cong_scalar2_nat)
+        using bprop apply auto
+        apply (rule cong_dvd_modulus_nat)
+        apply (drule (1) bspec)
+        apply (erule conjE)
+        apply assumption
+        apply (rule dvd_setprod)
+        using fin a apply auto
+        done
+      finally show ?thesis
+        by simp
+    qed
+  qed
+qed
+
+lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow> 
+    (ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+      (ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow>
+         [x = y] (mod (PROD i:A. m i))" 
+  apply (induct set: finite)
+  apply auto
+  apply (erule (1) coprime_cong_mult_nat)
+  apply (subst gcd_commute_nat)
+  apply (rule setprod_coprime_nat)
+  apply auto
+done
+
+lemma chinese_remainder_unique_nat:
+  fixes A :: "'a set" and
+        m :: "'a \<Rightarrow> nat" and
+        u :: "'a \<Rightarrow> nat"
+  assumes 
+        fin: "finite A" and
+         nz: "ALL i:A. m i \<noteq> 0" and
+        cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+  shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))"
+proof -
+  from chinese_remainder_nat [OF fin cop] obtain y where
+      one: "(ALL i:A. [y = u i] (mod m i))" 
+    by blast
+  let ?x = "y mod (PROD i:A. m i)"
+  from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0"
+    by auto
+  hence less: "?x < (PROD i:A. m i)"
+    by auto
+  have cong: "ALL i:A. [?x = u i] (mod m i)"
+    apply auto
+    apply (rule cong_trans_nat)
+    prefer 2
+    using one apply auto
+    apply (rule cong_dvd_modulus_nat)
+    apply (rule cong_mod_nat)
+    using prodnz apply auto
+    apply (rule dvd_setprod)
+    apply (rule fin)
+    apply assumption
+    done
+  have unique: "ALL z. z < (PROD i:A. m i) \<and> 
+      (ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
+  proof (clarify)
+    fix z
+    assume zless: "z < (PROD i:A. m i)"
+    assume zcong: "(ALL i:A. [z = u i] (mod m i))"
+    have "ALL i:A. [?x = z] (mod m i)"
+      apply clarify     
+      apply (rule cong_trans_nat)
+      using cong apply (erule bspec)
+      apply (rule cong_sym_nat)
+      using zcong apply auto
+      done
+    with fin cop have "[?x = z] (mod (PROD i:A. m i))"
+      by (intro coprime_cong_prod_nat, auto)
+    with zless less show "z = ?x"
+      apply (intro cong_less_modulus_unique_nat)
+      apply (auto, erule cong_sym_nat)
+      done
+  qed 
+  from less cong unique show ?thesis
+    by blast  
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Fib.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,319 @@
+(*  Title:      Fib.thy
+    Authors:    Lawrence C. Paulson, Jeremy Avigad
+
+
+Defines the fibonacci function.
+
+The original "Fib" is due to Lawrence C. Paulson, and was adapted by
+Jeremy Avigad.
+*)
+
+
+header {* Fib *}
+
+theory Fib
+imports Binomial
+begin
+
+
+subsection {* Main definitions *}
+
+class fib =
+
+fixes 
+  fib :: "'a \<Rightarrow> 'a"
+
+
+(* definition for the natural numbers *)
+
+instantiation nat :: fib
+
+begin 
+
+fun 
+  fib_nat :: "nat \<Rightarrow> nat"
+where
+  "fib_nat n =
+   (if n = 0 then 0 else
+   (if n = 1 then 1 else
+     fib (n - 1) + fib (n - 2)))"
+
+instance proof qed
+
+end
+
+(* definition for the integers *)
+
+instantiation int :: fib
+
+begin 
+
+definition
+  fib_int :: "int \<Rightarrow> int"
+where  
+  "fib_int n = (if n >= 0 then int (fib (nat n)) else 0)"
+
+instance proof qed
+
+end
+
+
+subsection {* Set up Transfer *}
+
+
+lemma transfer_nat_int_fib:
+  "(x::int) >= 0 \<Longrightarrow> fib (nat x) = nat (fib x)"
+  unfolding fib_int_def by auto
+
+lemma transfer_nat_int_fib_closure:
+  "n >= (0::int) \<Longrightarrow> fib n >= 0"
+  by (auto simp add: fib_int_def)
+
+declare TransferMorphism_nat_int[transfer add return: 
+    transfer_nat_int_fib transfer_nat_int_fib_closure]
+
+lemma transfer_int_nat_fib:
+  "fib (int n) = int (fib n)"
+  unfolding fib_int_def by auto
+
+lemma transfer_int_nat_fib_closure:
+  "is_nat n \<Longrightarrow> fib n >= 0"
+  unfolding fib_int_def by auto
+
+declare TransferMorphism_int_nat[transfer add return: 
+    transfer_int_nat_fib transfer_int_nat_fib_closure]
+
+
+subsection {* Fibonacci numbers *}
+
+lemma fib_0_nat [simp]: "fib (0::nat) = 0"
+  by simp
+
+lemma fib_0_int [simp]: "fib (0::int) = 0"
+  unfolding fib_int_def by simp
+
+lemma fib_1_nat [simp]: "fib (1::nat) = 1"
+  by simp
+
+lemma fib_Suc_0_nat [simp]: "fib (Suc 0) = Suc 0"
+  by simp
+
+lemma fib_1_int [simp]: "fib (1::int) = 1"
+  unfolding fib_int_def by simp
+
+lemma fib_reduce_nat: "(n::nat) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)"
+  by simp
+
+declare fib_nat.simps [simp del]
+
+lemma fib_reduce_int: "(n::int) >= 2 \<Longrightarrow> fib n = fib (n - 1) + fib (n - 2)"
+  unfolding fib_int_def
+  by (auto simp add: fib_reduce_nat nat_diff_distrib)
+
+lemma fib_neg_int [simp]: "(n::int) < 0 \<Longrightarrow> fib n = 0"
+  unfolding fib_int_def by auto
+
+lemma fib_2_nat [simp]: "fib (2::nat) = 1"
+  by (subst fib_reduce_nat, auto)
+
+lemma fib_2_int [simp]: "fib (2::int) = 1"
+  by (subst fib_reduce_int, auto)
+
+lemma fib_plus_2_nat: "fib ((n::nat) + 2) = fib (n + 1) + fib n"
+  by (subst fib_reduce_nat, auto simp add: One_nat_def)
+(* the need for One_nat_def is due to the natdiff_cancel_numerals
+   procedure *)
+
+lemma fib_induct_nat: "P (0::nat) \<Longrightarrow> P (1::nat) \<Longrightarrow> 
+    (!!n. P n \<Longrightarrow> P (n + 1) \<Longrightarrow> P (n + 2)) \<Longrightarrow> P n"
+  apply (atomize, induct n rule: nat_less_induct)
+  apply auto
+  apply (case_tac "n = 0", force)
+  apply (case_tac "n = 1", force)
+  apply (subgoal_tac "n >= 2")
+  apply (frule_tac x = "n - 1" in spec)
+  apply (drule_tac x = "n - 2" in spec)
+  apply (drule_tac x = "n - 2" in spec)
+  apply auto
+  apply (auto simp add: One_nat_def) (* again, natdiff_cancel *)
+done
+
+lemma fib_add_nat: "fib ((n::nat) + k + 1) = fib (k + 1) * fib (n + 1) + 
+    fib k * fib n"
+  apply (induct n rule: fib_induct_nat)
+  apply auto
+  apply (subst fib_reduce_nat)
+  apply (auto simp add: ring_simps)
+  apply (subst (1 3 5) fib_reduce_nat)
+  apply (auto simp add: ring_simps Suc_eq_plus1)
+(* hmmm. Why doesn't "n + (1 + (1 + k))" simplify to "n + k + 2"? *)
+  apply (subgoal_tac "n + (k + 2) = n + (1 + (1 + k))")
+  apply (erule ssubst) back back
+  apply (erule ssubst) back 
+  apply auto
+done
+
+lemma fib_add'_nat: "fib (n + Suc k) = fib (Suc k) * fib (Suc n) + 
+    fib k * fib n"
+  using fib_add_nat by (auto simp add: One_nat_def)
+
+
+(* transfer from nats to ints *)
+lemma fib_add_int [rule_format]: "(n::int) >= 0 \<Longrightarrow> k >= 0 \<Longrightarrow>
+    fib (n + k + 1) = fib (k + 1) * fib (n + 1) + 
+    fib k * fib n "
+
+  by (rule fib_add_nat [transferred])
+
+lemma fib_neq_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n ~= 0"
+  apply (induct n rule: fib_induct_nat)
+  apply (auto simp add: fib_plus_2_nat)
+done
+
+lemma fib_gr_0_nat: "(n::nat) > 0 \<Longrightarrow> fib n > 0"
+  by (frule fib_neq_0_nat, simp)
+
+lemma fib_gr_0_int: "(n::int) > 0 \<Longrightarrow> fib n > 0"
+  unfolding fib_int_def by (simp add: fib_gr_0_nat)
+
+text {*
+  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
+  much easier using integers, not natural numbers!
+*}
+
+lemma fib_Cassini_aux_int: "fib (int n + 2) * fib (int n) - 
+    (fib (int n + 1))^2 = (-1)^(n + 1)"
+  apply (induct n)
+  apply (auto simp add: ring_simps power2_eq_square fib_reduce_int
+      power_add)
+done
+
+lemma fib_Cassini_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n - 
+    (fib (n + 1))^2 = (-1)^(nat n + 1)"
+  by (insert fib_Cassini_aux_int [of "nat n"], auto)
+
+(*
+lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib (n + 2) * fib n = 
+    (fib (n + 1))^2 + (-1)^(nat n + 1)"
+  by (frule fib_Cassini_int, simp) 
+*)
+
+lemma fib_Cassini'_int: "n >= 0 \<Longrightarrow> fib ((n::int) + 2) * fib n =
+  (if even n then tsub ((fib (n + 1))^2) 1
+   else (fib (n + 1))^2 + 1)"
+  apply (frule fib_Cassini_int, auto simp add: pos_int_even_equiv_nat_even)
+  apply (subst tsub_eq)
+  apply (insert fib_gr_0_int [of "n + 1"], force)
+  apply auto
+done
+
+lemma fib_Cassini_nat: "fib ((n::nat) + 2) * fib n =
+  (if even n then (fib (n + 1))^2 - 1
+   else (fib (n + 1))^2 + 1)"
+
+  by (rule fib_Cassini'_int [transferred, of n], auto)
+
+
+text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
+
+lemma coprime_fib_plus_1_nat: "coprime (fib (n::nat)) (fib (n + 1))"
+  apply (induct n rule: fib_induct_nat)
+  apply auto
+  apply (subst (2) fib_reduce_nat)
+  apply (auto simp add: Suc_eq_plus1) (* again, natdiff_cancel *)
+  apply (subst add_commute, auto)
+  apply (subst gcd_commute_nat, auto simp add: ring_simps)
+done
+
+lemma coprime_fib_Suc_nat: "coprime (fib n) (fib (Suc n))"
+  using coprime_fib_plus_1_nat by (simp add: One_nat_def)
+
+lemma coprime_fib_plus_1_int: 
+    "n >= 0 \<Longrightarrow> coprime (fib (n::int)) (fib (n + 1))"
+  by (erule coprime_fib_plus_1_nat [transferred])
+
+lemma gcd_fib_add_nat: "gcd (fib (m::nat)) (fib (n + m)) = gcd (fib m) (fib n)"
+  apply (simp add: gcd_commute_nat [of "fib m"])
+  apply (rule cases_nat [of _ m])
+  apply simp
+  apply (subst add_assoc [symmetric])
+  apply (simp add: fib_add_nat)
+  apply (subst gcd_commute_nat)
+  apply (subst mult_commute)
+  apply (subst gcd_add_mult_nat)
+  apply (subst gcd_commute_nat)
+  apply (rule gcd_mult_cancel_nat)
+  apply (rule coprime_fib_plus_1_nat)
+done
+
+lemma gcd_fib_add_int [rule_format]: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow> 
+    gcd (fib (m::int)) (fib (n + m)) = gcd (fib m) (fib n)"
+  by (erule gcd_fib_add_nat [transferred])
+
+lemma gcd_fib_diff_nat: "(m::nat) \<le> n \<Longrightarrow> 
+    gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
+  by (simp add: gcd_fib_add_nat [symmetric, of _ "n-m"])
+
+lemma gcd_fib_diff_int: "0 <= (m::int) \<Longrightarrow> m \<le> n \<Longrightarrow> 
+    gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
+  by (simp add: gcd_fib_add_int [symmetric, of _ "n-m"])
+
+lemma gcd_fib_mod_nat: "0 < (m::nat) \<Longrightarrow> 
+    gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+proof (induct n rule: less_induct)
+  case (less n)
+  from less.prems have pos_m: "0 < m" .
+  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+  proof (cases "m < n")
+    case True note m_n = True
+    then have m_n': "m \<le> n" by auto
+    with pos_m have pos_n: "0 < n" by auto
+    with pos_m m_n have diff: "n - m < n" by auto
+    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
+    by (simp add: mod_if [of n]) (insert m_n, auto)
+    also have "\<dots> = gcd (fib m)  (fib (n - m))" 
+      by (simp add: less.hyps diff pos_m)
+    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff_nat m_n')
+    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
+  next
+    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+    by (cases "m = n") auto
+  qed
+qed
+
+lemma gcd_fib_mod_int: 
+  assumes "0 < (m::int)" and "0 <= n"
+  shows "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+
+  apply (rule gcd_fib_mod_nat [transferred])
+  using prems apply auto
+done
+
+lemma fib_gcd_nat: "fib (gcd (m::nat) n) = gcd (fib m) (fib n)"  
+    -- {* Law 6.111 *}
+  apply (induct m n rule: gcd_nat_induct)
+  apply (simp_all add: gcd_non_0_nat gcd_commute_nat gcd_fib_mod_nat)
+done
+
+lemma fib_gcd_int: "m >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
+    fib (gcd (m::int) n) = gcd (fib m) (fib n)"
+  by (erule fib_gcd_nat [transferred])
+
+lemma atMost_plus_one_nat: "{..(k::nat) + 1} = insert (k + 1) {..k}" 
+  by auto
+
+theorem fib_mult_eq_setsum_nat:
+    "fib ((n::nat) + 1) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
+  apply (induct n)
+  apply (auto simp add: atMost_plus_one_nat fib_plus_2_nat ring_simps)
+done
+
+theorem fib_mult_eq_setsum'_nat:
+    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
+  using fib_mult_eq_setsum_nat by (simp add: One_nat_def)
+
+theorem fib_mult_eq_setsum_int [rule_format]:
+    "n >= 0 \<Longrightarrow> fib ((n::int) + 1) * fib n = (\<Sum>k \<in> {0..n}. fib k * fib k)"
+  by (erule fib_mult_eq_setsum_nat [transferred])
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/MiscAlgebra.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,355 @@
+(*  Title:      MiscAlgebra.thy
+    Author:     Jeremy Avigad
+
+These are things that can be added to the Algebra library.
+*)
+
+theory MiscAlgebra
+imports
+  "~~/src/HOL/Algebra/Ring"
+  "~~/src/HOL/Algebra/FiniteProduct"
+begin;
+
+(* finiteness stuff *)
+
+lemma bounded_set1_int [intro]: "finite {(x::int). a < x & x < b & P x}" 
+  apply (subgoal_tac "{x. a < x & x < b & P x} <= {a<..<b}")
+  apply (erule finite_subset)
+  apply auto
+done
+
+
+(* The rest is for the algebra libraries *)
+
+(* These go in Group.thy. *)
+
+(*
+  Show that the units in any monoid give rise to a group.
+
+  The file Residues.thy provides some infrastructure to use
+  facts about the unit group within the ring locale.
+*)
+
+
+constdefs 
+  units_of :: "('a, 'b) monoid_scheme => 'a monoid"
+  "units_of G == (| carrier = Units G,
+     Group.monoid.mult = Group.monoid.mult G,
+     one  = one G |)";
+
+(*
+
+lemma (in monoid) Units_mult_closed [intro]:
+  "x : Units G ==> y : Units G ==> x \<otimes> y : Units G"
+  apply (unfold Units_def)
+  apply (clarsimp)
+  apply (rule_tac x = "xaa \<otimes> xa" in bexI)
+  apply auto
+  apply (subst m_assoc)
+  apply auto
+  apply (subst (2) m_assoc [symmetric])
+  apply auto
+  apply (subst m_assoc)
+  apply auto
+  apply (subst (2) m_assoc [symmetric])
+  apply auto
+done
+
+*)
+
+lemma (in monoid) units_group: "group(units_of G)"
+  apply (unfold units_of_def)
+  apply (rule groupI)
+  apply auto
+  apply (subst m_assoc)
+  apply auto
+  apply (rule_tac x = "inv x" in bexI)
+  apply auto
+done
+
+lemma (in comm_monoid) units_comm_group: "comm_group(units_of G)"
+  apply (rule group.group_comm_groupI)
+  apply (rule units_group)
+  apply (insert prems)
+  apply (unfold units_of_def Units_def comm_monoid_def comm_monoid_axioms_def)
+  apply auto;
+done;
+
+lemma units_of_carrier: "carrier (units_of G) = Units G"
+  by (unfold units_of_def, auto)
+
+lemma units_of_mult: "mult(units_of G) = mult G"
+  by (unfold units_of_def, auto)
+
+lemma units_of_one: "one(units_of G) = one G"
+  by (unfold units_of_def, auto)
+
+lemma (in monoid) units_of_inv: "x : Units G ==> 
+    m_inv (units_of G) x = m_inv G x"
+  apply (rule sym)
+  apply (subst m_inv_def)
+  apply (rule the1_equality)
+  apply (rule ex_ex1I)
+  apply (subst (asm) Units_def)
+  apply auto
+  apply (erule inv_unique)
+  apply auto
+  apply (rule Units_closed)
+  apply (simp_all only: units_of_carrier [symmetric])
+  apply (insert units_group)
+  apply auto
+  apply (subst units_of_mult [symmetric])
+  apply (subst units_of_one [symmetric])
+  apply (erule group.r_inv, assumption)
+  apply (subst units_of_mult [symmetric])
+  apply (subst units_of_one [symmetric])
+  apply (erule group.l_inv, assumption)
+done
+
+lemma (in group) inj_on_const_mult: "a: (carrier G) ==> 
+    inj_on (%x. a \<otimes> x) (carrier G)"
+  by (unfold inj_on_def, auto)
+
+lemma (in group) surj_const_mult: "a : (carrier G) ==>
+    (%x. a \<otimes> x) ` (carrier G) = (carrier G)" 
+  apply (auto simp add: image_def)
+  apply (rule_tac x = "(m_inv G a) \<otimes> x" in bexI)
+  apply auto
+(* auto should get this. I suppose we need "comm_monoid_simprules"
+   for mult_ac rewriting. *)
+  apply (subst m_assoc [symmetric])
+  apply auto
+done
+
+lemma (in group) l_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+    (x \<otimes> a = x) = (a = one G)"
+  apply auto
+  apply (subst l_cancel [symmetric])
+  prefer 4
+  apply (erule ssubst)
+  apply auto
+done
+
+lemma (in group) r_cancel_one [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+    (a \<otimes> x = x) = (a = one G)"
+  apply auto
+  apply (subst r_cancel [symmetric])
+  prefer 4
+  apply (erule ssubst)
+  apply auto
+done
+
+(* Is there a better way to do this? *)
+
+lemma (in group) l_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+    (x = x \<otimes> a) = (a = one G)"
+  by (subst eq_commute, simp)
+
+lemma (in group) r_cancel_one' [simp]: "x : carrier G \<Longrightarrow> a : carrier G \<Longrightarrow>
+    (x = a \<otimes> x) = (a = one G)"
+  by (subst eq_commute, simp)
+
+(* This should be generalized to arbitrary groups, not just commutative
+   ones, using Lagrange's theorem. *)
+
+lemma (in comm_group) power_order_eq_one:
+    assumes fin [simp]: "finite (carrier G)"
+        and a [simp]: "a : carrier G" 
+      shows "a (^) card(carrier G) = one G" 
+proof -
+  have "(\<Otimes>x:carrier G. x) = (\<Otimes>x:carrier G. a \<otimes> x)"
+    by (subst (2) finprod_reindex [symmetric], 
+      auto simp add: Pi_def inj_on_const_mult surj_const_mult)
+  also have "\<dots> = (\<Otimes>x:carrier G. a) \<otimes> (\<Otimes>x:carrier G. x)"
+    by (auto simp add: finprod_multf Pi_def)
+  also have "(\<Otimes>x:carrier G. a) = a (^) card(carrier G)"
+    by (auto simp add: finprod_const)
+  finally show ?thesis
+(* uses the preceeding lemma *)
+    by auto
+qed
+
+
+(* Miscellaneous *)
+
+lemma (in cring) field_intro2: "\<zero>\<^bsub>R\<^esub> ~= \<one>\<^bsub>R\<^esub> \<Longrightarrow> ALL x : carrier R - {\<zero>\<^bsub>R\<^esub>}.
+    x : Units R \<Longrightarrow> field R"
+  apply (unfold_locales)
+  apply (insert prems, auto)
+  apply (rule trans)
+  apply (subgoal_tac "a = (a \<otimes> b) \<otimes> inv b")
+  apply assumption
+  apply (subst m_assoc) 
+  apply (auto simp add: Units_r_inv)
+  apply (unfold Units_def)
+  apply auto
+done
+
+lemma (in monoid) inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
+  x \<otimes> y = \<one> \<Longrightarrow> y \<otimes> x = \<one> \<Longrightarrow> inv x = y"
+  apply (subgoal_tac "x : Units G")
+  apply (subgoal_tac "y = inv x \<otimes> \<one>")
+  apply simp
+  apply (erule subst)
+  apply (subst m_assoc [symmetric])
+  apply auto
+  apply (unfold Units_def)
+  apply auto
+done
+
+lemma (in comm_monoid) comm_inv_char: "x : carrier G \<Longrightarrow> y : carrier G \<Longrightarrow>
+  x \<otimes> y = \<one> \<Longrightarrow> inv x = y"
+  apply (rule inv_char)
+  apply auto
+  apply (subst m_comm, auto) 
+done
+
+lemma (in ring) inv_neg_one [simp]: "inv (\<ominus> \<one>) = \<ominus> \<one>"  
+  apply (rule inv_char)
+  apply (auto simp add: l_minus r_minus)
+done
+
+lemma (in monoid) inv_eq_imp_eq: "x : Units G \<Longrightarrow> y : Units G \<Longrightarrow> 
+    inv x = inv y \<Longrightarrow> x = y"
+  apply (subgoal_tac "inv(inv x) = inv(inv y)")
+  apply (subst (asm) Units_inv_inv)+
+  apply auto
+done
+
+lemma (in ring) Units_minus_one_closed [intro]: "\<ominus> \<one> : Units R"
+  apply (unfold Units_def)
+  apply auto
+  apply (rule_tac x = "\<ominus> \<one>" in bexI)
+  apply auto
+  apply (simp add: l_minus r_minus)
+done
+
+lemma (in monoid) inv_one [simp]: "inv \<one> = \<one>"
+  apply (rule inv_char)
+  apply auto
+done
+
+lemma (in ring) inv_eq_neg_one_eq: "x : Units R \<Longrightarrow> (inv x = \<ominus> \<one>) = (x = \<ominus> \<one>)"
+  apply auto
+  apply (subst Units_inv_inv [symmetric])
+  apply auto
+done
+
+lemma (in monoid) inv_eq_one_eq: "x : Units G \<Longrightarrow> (inv x = \<one>) = (x = \<one>)"
+  apply auto
+  apply (subst Units_inv_inv [symmetric])
+  apply auto
+done
+
+
+(* This goes in FiniteProduct *)
+
+lemma (in comm_monoid) finprod_UN_disjoint:
+  "finite I \<Longrightarrow> (ALL i:I. finite (A i)) \<longrightarrow> (ALL i:I. ALL j:I. i ~= j \<longrightarrow>
+     (A i) Int (A j) = {}) \<longrightarrow>
+      (ALL i:I. ALL x: (A i). g x : carrier G) \<longrightarrow>
+        finprod G g (UNION I A) = finprod G (%i. finprod G g (A i)) I"
+  apply (induct set: finite)
+  apply force
+  apply clarsimp
+  apply (subst finprod_Un_disjoint)
+  apply blast
+  apply (erule finite_UN_I)
+  apply blast
+  apply (fastsimp)
+  apply (auto intro!: funcsetI finprod_closed) 
+done
+
+lemma (in comm_monoid) finprod_Union_disjoint:
+  "[| finite C; (ALL A:C. finite A & (ALL x:A. f x : carrier G));
+      (ALL A:C. ALL B:C. A ~= B --> A Int B = {}) |] 
+   ==> finprod G f (Union C) = finprod G (finprod G f) C" 
+  apply (frule finprod_UN_disjoint [of C id f])
+  apply (unfold Union_def id_def, auto)
+done
+
+lemma (in comm_monoid) finprod_one [rule_format]: 
+  "finite A \<Longrightarrow> (ALL x:A. f x = \<one>) \<longrightarrow>
+     finprod G f A = \<one>"
+by (induct set: finite) auto
+
+
+(* need better simplification rules for rings *)
+(* the next one holds more generally for abelian groups *)
+
+lemma (in cring) sum_zero_eq_neg:
+  "x : carrier R \<Longrightarrow> y : carrier R \<Longrightarrow> x \<oplus> y = \<zero> \<Longrightarrow> x = \<ominus> y"
+  apply (subgoal_tac "\<ominus> y = \<zero> \<oplus> \<ominus> y") 
+  apply (erule ssubst)back
+  apply (erule subst)
+  apply (simp add: ring_simprules)+
+done
+
+(* there's a name conflict -- maybe "domain" should be
+   "integral_domain" *)
+
+lemma (in Ring.domain) square_eq_one: 
+  fixes x
+  assumes [simp]: "x : carrier R" and
+    "x \<otimes> x = \<one>"
+  shows "x = \<one> | x = \<ominus>\<one>"
+proof -
+  have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = x \<otimes> x \<oplus> \<ominus> \<one>"
+    by (simp add: ring_simprules)
+  also with `x \<otimes> x = \<one>` have "\<dots> = \<zero>"
+    by (simp add: ring_simprules)
+  finally have "(x \<oplus> \<one>) \<otimes> (x \<oplus> \<ominus> \<one>) = \<zero>" .
+  hence "(x \<oplus> \<one>) = \<zero> | (x \<oplus> \<ominus> \<one>) = \<zero>"
+    by (intro integral, auto)
+  thus ?thesis
+    apply auto
+    apply (erule notE)
+    apply (rule sum_zero_eq_neg)
+    apply auto
+    apply (subgoal_tac "x = \<ominus> (\<ominus> \<one>)")
+    apply (simp add: ring_simprules) 
+    apply (rule sum_zero_eq_neg)
+    apply auto
+    done
+qed
+
+lemma (in Ring.domain) inv_eq_self: "x : Units R \<Longrightarrow>
+    x = inv x \<Longrightarrow> x = \<one> | x = \<ominus> \<one>"
+  apply (rule square_eq_one)
+  apply auto
+  apply (erule ssubst)back
+  apply (erule Units_r_inv)
+done
+
+
+(*
+  The following translates theorems about groups to the facts about
+  the units of a ring. (The list should be expanded as more things are
+  needed.)
+*)
+
+lemma (in ring) finite_ring_finite_units [intro]: "finite (carrier R) \<Longrightarrow> 
+    finite (Units R)"
+  by (rule finite_subset, auto)
+
+(* this belongs with MiscAlgebra.thy *)
+lemma (in monoid) units_of_pow: 
+    "x : Units G \<Longrightarrow> x (^)\<^bsub>units_of G\<^esub> (n::nat) = x (^)\<^bsub>G\<^esub> n"
+  apply (induct n)
+  apply (auto simp add: units_group group.is_monoid  
+    monoid.nat_pow_0 monoid.nat_pow_Suc units_of_one units_of_mult
+    One_nat_def)
+done
+
+lemma (in cring) units_power_order_eq_one: "finite (Units R) \<Longrightarrow> a : Units R
+    \<Longrightarrow> a (^) card(Units R) = \<one>"
+  apply (subst units_of_carrier [symmetric])
+  apply (subst units_of_one [symmetric])
+  apply (subst units_of_pow [symmetric])
+  apply assumption
+  apply (rule comm_group.power_order_eq_one)
+  apply (rule units_comm_group)
+  apply (unfold units_of_def, auto)
+done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Number_Theory.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,8 @@
+
+header {* Comprehensive number theory *}
+
+theory Number_Theory
+imports Fib Residues
+begin
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Primes.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,423 @@
+(*  Authors:    Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
+                Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow
+
+
+This file deals with properties of primes. Definitions and lemmas are
+proved uniformly for the natural numbers and integers.
+
+This file combines and revises a number of prior developments.
+
+The original theories "GCD" and "Primes" were by Christophe Tabacznyj
+and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
+gcd, lcm, and prime for the natural numbers.
+
+The original theory "IntPrimes" was by Thomas M. Rasmussen, and
+extended gcd, lcm, primes to the integers. Amine Chaieb provided
+another extension of the notions to the integers, and added a number
+of results to "Primes" and "GCD". IntPrimes also defined and developed
+the congruence relations on the integers. The notion was extended to
+the natural numbers by Chiaeb.
+
+Jeremy Avigad combined all of these, made everything uniform for the
+natural numbers and the integers, and added a number of new theorems.
+
+Tobias Nipkow cleaned up a lot.
+*)
+
+
+header {* Primes *}
+
+theory Primes
+imports GCD
+begin
+
+declare One_nat_def [simp del]
+
+class prime = one +
+
+fixes
+  prime :: "'a \<Rightarrow> bool"
+
+instantiation nat :: prime
+
+begin
+
+definition
+  prime_nat :: "nat \<Rightarrow> bool"
+where
+  [code del]: "prime_nat p = (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
+
+instance proof qed
+
+end
+
+instantiation int :: prime
+
+begin
+
+definition
+  prime_int :: "int \<Rightarrow> bool"
+where
+  [code del]: "prime_int p = prime (nat p)"
+
+instance proof qed
+
+end
+
+
+subsection {* Set up Transfer *}
+
+
+lemma transfer_nat_int_prime:
+  "(x::int) >= 0 \<Longrightarrow> prime (nat x) = prime x"
+  unfolding gcd_int_def lcm_int_def prime_int_def
+  by auto
+
+declare TransferMorphism_nat_int[transfer add return:
+    transfer_nat_int_prime]
+
+lemma transfer_int_nat_prime:
+  "prime (int x) = prime x"
+  by (unfold gcd_int_def lcm_int_def prime_int_def, auto)
+
+declare TransferMorphism_int_nat[transfer add return:
+    transfer_int_nat_prime]
+
+
+subsection {* Primes *}
+
+lemma prime_odd_nat: "prime (p::nat) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
+  unfolding prime_nat_def
+  apply (subst even_mult_two_ex)
+  apply clarify
+  apply (drule_tac x = 2 in spec)
+  apply auto
+done
+
+lemma prime_odd_int: "prime (p::int) \<Longrightarrow> p > 2 \<Longrightarrow> odd p"
+  unfolding prime_int_def
+  apply (frule prime_odd_nat)
+  apply (auto simp add: even_nat_def)
+done
+
+(* FIXME Is there a better way to handle these, rather than making them elim rules? *)
+
+lemma prime_ge_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 0"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_gt_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 0"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_ge_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 1"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_gt_1_nat [elim]: "prime (p::nat) \<Longrightarrow> p > 1"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_ge_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= Suc 0"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_gt_Suc_0_nat [elim]: "prime (p::nat) \<Longrightarrow> p > Suc 0"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_ge_2_nat [elim]: "prime (p::nat) \<Longrightarrow> p >= 2"
+  by (unfold prime_nat_def, auto)
+
+lemma prime_ge_0_int [elim]: "prime (p::int) \<Longrightarrow> p >= 0"
+  by (unfold prime_int_def prime_nat_def) auto
+
+lemma prime_gt_0_int [elim]: "prime (p::int) \<Longrightarrow> p > 0"
+  by (unfold prime_int_def prime_nat_def, auto)
+
+lemma prime_ge_1_int [elim]: "prime (p::int) \<Longrightarrow> p >= 1"
+  by (unfold prime_int_def prime_nat_def, auto)
+
+lemma prime_gt_1_int [elim]: "prime (p::int) \<Longrightarrow> p > 1"
+  by (unfold prime_int_def prime_nat_def, auto)
+
+lemma prime_ge_2_int [elim]: "prime (p::int) \<Longrightarrow> p >= 2"
+  by (unfold prime_int_def prime_nat_def, auto)
+
+
+lemma prime_int_altdef: "prime (p::int) = (1 < p \<and> (\<forall>m \<ge> 0. m dvd p \<longrightarrow>
+    m = 1 \<or> m = p))"
+  using prime_nat_def [transferred]
+    apply (case_tac "p >= 0")
+    by (blast, auto simp add: prime_ge_0_int)
+
+lemma prime_imp_coprime_nat: "prime (p::nat) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
+  apply (unfold prime_nat_def)
+  apply (metis gcd_dvd1_nat gcd_dvd2_nat)
+  done
+
+lemma prime_imp_coprime_int: "prime (p::int) \<Longrightarrow> \<not> p dvd n \<Longrightarrow> coprime p n"
+  apply (unfold prime_int_altdef)
+  apply (metis gcd_dvd1_int gcd_dvd2_int gcd_ge_0_int)
+  done
+
+lemma prime_dvd_mult_nat: "prime (p::nat) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
+  by (blast intro: coprime_dvd_mult_nat prime_imp_coprime_nat)
+
+lemma prime_dvd_mult_int: "prime (p::int) \<Longrightarrow> p dvd m * n \<Longrightarrow> p dvd m \<or> p dvd n"
+  by (blast intro: coprime_dvd_mult_int prime_imp_coprime_int)
+
+lemma prime_dvd_mult_eq_nat [simp]: "prime (p::nat) \<Longrightarrow>
+    p dvd m * n = (p dvd m \<or> p dvd n)"
+  by (rule iffI, rule prime_dvd_mult_nat, auto)
+
+lemma prime_dvd_mult_eq_int [simp]: "prime (p::int) \<Longrightarrow>
+    p dvd m * n = (p dvd m \<or> p dvd n)"
+  by (rule iffI, rule prime_dvd_mult_int, auto)
+
+lemma not_prime_eq_prod_nat: "(n::nat) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
+    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
+  unfolding prime_nat_def dvd_def apply auto
+  by(metis mult_commute linorder_neq_iff linorder_not_le mult_1 n_less_n_mult_m one_le_mult_iff less_imp_le_nat)
+
+lemma not_prime_eq_prod_int: "(n::int) > 1 \<Longrightarrow> ~ prime n \<Longrightarrow>
+    EX m k. n = m * k & 1 < m & m < n & 1 < k & k < n"
+  unfolding prime_int_altdef dvd_def
+  apply auto
+  by(metis div_mult_self1_is_id div_mult_self2_is_id int_div_less_self int_one_le_iff_zero_less zero_less_mult_pos zless_le)
+
+lemma prime_dvd_power_nat [rule_format]: "prime (p::nat) -->
+    n > 0 --> (p dvd x^n --> p dvd x)"
+  by (induct n rule: nat_induct, auto)
+
+lemma prime_dvd_power_int [rule_format]: "prime (p::int) -->
+    n > 0 --> (p dvd x^n --> p dvd x)"
+  apply (induct n rule: nat_induct, auto)
+  apply (frule prime_ge_0_int)
+  apply auto
+done
+
+subsubsection{* Make prime naively executable *}
+
+lemma zero_not_prime_nat [simp]: "~prime (0::nat)"
+  by (simp add: prime_nat_def)
+
+lemma zero_not_prime_int [simp]: "~prime (0::int)"
+  by (simp add: prime_int_def)
+
+lemma one_not_prime_nat [simp]: "~prime (1::nat)"
+  by (simp add: prime_nat_def)
+
+lemma Suc_0_not_prime_nat [simp]: "~prime (Suc 0)"
+  by (simp add: prime_nat_def One_nat_def)
+
+lemma one_not_prime_int [simp]: "~prime (1::int)"
+  by (simp add: prime_int_def)
+
+lemma prime_nat_code[code]:
+ "prime(p::nat) = (p > 1 & (ALL n : {1<..<p}. ~(n dvd p)))"
+apply(simp add: Ball_def)
+apply (metis less_not_refl prime_nat_def dvd_triv_right not_prime_eq_prod_nat)
+done
+
+lemma prime_nat_simp:
+ "prime(p::nat) = (p > 1 & (list_all (%n. ~ n dvd p) [2..<p]))"
+apply(simp only:prime_nat_code list_ball_code greaterThanLessThan_upt)
+apply(simp add:nat_number One_nat_def)
+done
+
+lemmas prime_nat_simp_number_of[simp] = prime_nat_simp[of "number_of m", standard]
+
+lemma prime_int_code[code]:
+  "prime(p::int) = (p > 1 & (ALL n : {1<..<p}. ~(n dvd p)))" (is "?L = ?R")
+proof
+  assume "?L" thus "?R"
+    by (clarsimp simp: prime_gt_1_int) (metis int_one_le_iff_zero_less prime_int_altdef zless_le)
+next
+    assume "?R" thus "?L" by (clarsimp simp:Ball_def) (metis dvdI not_prime_eq_prod_int)
+qed
+
+lemma prime_int_simp:
+  "prime(p::int) = (p > 1 & (list_all (%n. ~ n dvd p) [2..p - 1]))"
+apply(simp only:prime_int_code list_ball_code greaterThanLessThan_upto)
+apply simp
+done
+
+lemmas prime_int_simp_number_of[simp] = prime_int_simp[of "number_of m", standard]
+
+lemma two_is_prime_nat [simp]: "prime (2::nat)"
+by simp
+
+lemma two_is_prime_int [simp]: "prime (2::int)"
+by simp
+
+text{* A bit of regression testing: *}
+
+lemma "prime(97::nat)"
+by simp
+
+lemma "prime(97::int)"
+by simp
+
+lemma "prime(997::nat)"
+by eval
+
+lemma "prime(997::int)"
+by eval
+
+
+lemma prime_imp_power_coprime_nat: "prime (p::nat) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
+  apply (rule coprime_exp_nat)
+  apply (subst gcd_commute_nat)
+  apply (erule (1) prime_imp_coprime_nat)
+done
+
+lemma prime_imp_power_coprime_int: "prime (p::int) \<Longrightarrow> ~ p dvd a \<Longrightarrow> coprime a (p^m)"
+  apply (rule coprime_exp_int)
+  apply (subst gcd_commute_int)
+  apply (erule (1) prime_imp_coprime_int)
+done
+
+lemma primes_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
+  apply (rule prime_imp_coprime_nat, assumption)
+  apply (unfold prime_nat_def, auto)
+done
+
+lemma primes_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
+  apply (rule prime_imp_coprime_int, assumption)
+  apply (unfold prime_int_altdef, clarify)
+  apply (drule_tac x = q in spec)
+  apply (drule_tac x = p in spec)
+  apply auto
+done
+
+lemma primes_imp_powers_coprime_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
+  by (rule coprime_exp2_nat, rule primes_coprime_nat)
+
+lemma primes_imp_powers_coprime_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow> p ~= q \<Longrightarrow> coprime (p^m) (q^n)"
+  by (rule coprime_exp2_int, rule primes_coprime_int)
+
+lemma prime_factor_nat: "n \<noteq> (1::nat) \<Longrightarrow> \<exists> p. prime p \<and> p dvd n"
+  apply (induct n rule: nat_less_induct)
+  apply (case_tac "n = 0")
+  using two_is_prime_nat apply blast
+  apply (case_tac "prime n")
+  apply blast
+  apply (subgoal_tac "n > 1")
+  apply (frule (1) not_prime_eq_prod_nat)
+  apply (auto intro: dvd_mult dvd_mult2)
+done
+
+(* An Isar version:
+
+lemma prime_factor_b_nat:
+  fixes n :: nat
+  assumes "n \<noteq> 1"
+  shows "\<exists>p. prime p \<and> p dvd n"
+
+using `n ~= 1`
+proof (induct n rule: less_induct_nat)
+  fix n :: nat
+  assume "n ~= 1" and
+    ih: "\<forall>m<n. m \<noteq> 1 \<longrightarrow> (\<exists>p. prime p \<and> p dvd m)"
+  thus "\<exists>p. prime p \<and> p dvd n"
+  proof -
+  {
+    assume "n = 0"
+    moreover note two_is_prime_nat
+    ultimately have ?thesis
+      by (auto simp del: two_is_prime_nat)
+  }
+  moreover
+  {
+    assume "prime n"
+    hence ?thesis by auto
+  }
+  moreover
+  {
+    assume "n ~= 0" and "~ prime n"
+    with `n ~= 1` have "n > 1" by auto
+    with `~ prime n` and not_prime_eq_prod_nat obtain m k where
+      "n = m * k" and "1 < m" and "m < n" by blast
+    with ih obtain p where "prime p" and "p dvd m" by blast
+    with `n = m * k` have ?thesis by auto
+  }
+  ultimately show ?thesis by blast
+  qed
+qed
+
+*)
+
+text {* One property of coprimality is easier to prove via prime factors. *}
+
+lemma prime_divprod_pow_nat:
+  assumes p: "prime (p::nat)" and ab: "coprime a b" and pab: "p^n dvd a * b"
+  shows "p^n dvd a \<or> p^n dvd b"
+proof-
+  {assume "n = 0 \<or> a = 1 \<or> b = 1" with pab have ?thesis
+      apply (cases "n=0", simp_all)
+      apply (cases "a=1", simp_all) done}
+  moreover
+  {assume n: "n \<noteq> 0" and a: "a\<noteq>1" and b: "b\<noteq>1"
+    then obtain m where m: "n = Suc m" by (cases n, auto)
+    from n have "p dvd p^n" by (intro dvd_power, auto)
+    also note pab
+    finally have pab': "p dvd a * b".
+    from prime_dvd_mult_nat[OF p pab']
+    have "p dvd a \<or> p dvd b" .
+    moreover
+    {assume pa: "p dvd a"
+      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
+      from coprime_common_divisor_nat [OF ab, OF pa] p have "\<not> p dvd b" by auto
+      with p have "coprime b p"
+        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
+      hence pnb: "coprime (p^n) b"
+        by (subst gcd_commute_nat, rule coprime_exp_nat)
+      from coprime_divprod_nat[OF pnba pnb] have ?thesis by blast }
+    moreover
+    {assume pb: "p dvd b"
+      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
+      from coprime_common_divisor_nat [OF ab, of p] pb p have "\<not> p dvd a"
+        by auto
+      with p have "coprime a p"
+        by (subst gcd_commute_nat, intro prime_imp_coprime_nat)
+      hence pna: "coprime (p^n) a"
+        by (subst gcd_commute_nat, rule coprime_exp_nat)
+      from coprime_divprod_nat[OF pab pna] have ?thesis by blast }
+    ultimately have ?thesis by blast}
+  ultimately show ?thesis by blast
+qed
+
+subsection {* Infinitely many primes *}
+
+lemma next_prime_bound: "\<exists>(p::nat). prime p \<and> n < p \<and> p <= fact n + 1"
+proof-
+  have f1: "fact n + 1 \<noteq> 1" using fact_ge_one_nat [of n] by arith 
+  from prime_factor_nat [OF f1]
+      obtain p where "prime p" and "p dvd fact n + 1" by auto
+  hence "p \<le> fact n + 1" 
+    by (intro dvd_imp_le, auto)
+  {assume "p \<le> n"
+    from `prime p` have "p \<ge> 1" 
+      by (cases p, simp_all)
+    with `p <= n` have "p dvd fact n" 
+      by (intro dvd_fact_nat)
+    with `p dvd fact n + 1` have "p dvd fact n + 1 - fact n"
+      by (rule dvd_diff_nat)
+    hence "p dvd 1" by simp
+    hence "p <= 1" by auto
+    moreover from `prime p` have "p > 1" by auto
+    ultimately have False by auto}
+  hence "n < p" by arith
+  with `prime p` and `p <= fact n + 1` show ?thesis by auto
+qed
+
+lemma bigger_prime: "\<exists>p. prime p \<and> p > (n::nat)" 
+using next_prime_bound by auto
+
+lemma primes_infinite: "\<not> (finite {(p::nat). prime p})"
+proof
+  assume "finite {(p::nat). prime p}"
+  with Max_ge have "(EX b. (ALL x : {(p::nat). prime p}. x <= b))"
+    by auto
+  then obtain b where "ALL (x::nat). prime x \<longrightarrow> x <= b"
+    by auto
+  with bigger_prime [of b] show False by auto
+qed
+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/ROOT.ML	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,2 @@
+
+use_thy "Number_Theory";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Residues.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,466 @@
+(*  Title:      HOL/Library/Residues.thy
+    ID:         
+    Author:     Jeremy Avigad
+
+    An algebraic treatment of residue rings, and resulting proofs of
+    Euler's theorem and Wilson's theorem. 
+*)
+
+header {* Residue rings *}
+
+theory Residues
+imports
+   UniqueFactorization
+   Binomial
+   MiscAlgebra
+begin
+
+
+(*
+ 
+  A locale for residue rings
+
+*)
+
+constdefs 
+  residue_ring :: "int => int ring"
+  "residue_ring m == (| 
+    carrier =       {0..m - 1}, 
+    mult =          (%x y. (x * y) mod m),
+    one =           1,
+    zero =          0,
+    add =           (%x y. (x + y) mod m) |)"
+
+locale residues =
+  fixes m :: int and R (structure)
+  assumes m_gt_one: "m > 1"
+  defines "R == residue_ring m"
+
+context residues begin
+
+lemma abelian_group: "abelian_group R"
+  apply (insert m_gt_one)
+  apply (rule abelian_groupI)
+  apply (unfold R_def residue_ring_def)
+  apply (auto simp add: mod_pos_pos_trivial mod_add_right_eq [symmetric]
+    add_ac)
+  apply (case_tac "x = 0")
+  apply force
+  apply (subgoal_tac "(x + (m - x)) mod m = 0")
+  apply (erule bexI)
+  apply auto
+done
+
+lemma comm_monoid: "comm_monoid R"
+  apply (insert m_gt_one)
+  apply (unfold R_def residue_ring_def)
+  apply (rule comm_monoidI)
+  apply auto
+  apply (subgoal_tac "x * y mod m * z mod m = z * (x * y mod m) mod m")
+  apply (erule ssubst)
+  apply (subst zmod_zmult1_eq [symmetric])+
+  apply (simp_all only: mult_ac)
+done
+
+lemma cring: "cring R"
+  apply (rule cringI)
+  apply (rule abelian_group)
+  apply (rule comm_monoid)
+  apply (unfold R_def residue_ring_def, auto)
+  apply (subst mod_add_eq [symmetric])
+  apply (subst mult_commute)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (simp add: ring_simps)
+done
+
+end
+
+sublocale residues < cring
+  by (rule cring)
+
+
+context residues begin
+
+(* These lemmas translate back and forth between internal and 
+   external concepts *)
+
+lemma res_carrier_eq: "carrier R = {0..m - 1}"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_zero_eq: "\<zero> = 0"
+  by (unfold R_def residue_ring_def, auto)
+
+lemma res_one_eq: "\<one> = 1"
+  by (unfold R_def residue_ring_def units_of_def residue_ring_def, auto)
+
+lemma res_units_eq: "Units R = { x. 0 < x & x < m & coprime x m}"
+  apply (insert m_gt_one)
+  apply (unfold Units_def R_def residue_ring_def)
+  apply auto
+  apply (subgoal_tac "x ~= 0")
+  apply auto
+  apply (rule invertible_coprime_int)
+  apply (subgoal_tac "x ~= 0")
+  apply auto
+  apply (subst (asm) coprime_iff_invertible'_int)
+  apply (rule m_gt_one)
+  apply (auto simp add: cong_int_def mult_commute)
+done
+
+lemma res_neg_eq: "\<ominus> x = (- x) mod m"
+  apply (insert m_gt_one)
+  apply (unfold R_def a_inv_def m_inv_def residue_ring_def)
+  apply auto
+  apply (rule the_equality)
+  apply auto
+  apply (subst mod_add_right_eq [symmetric])
+  apply auto
+  apply (subst mod_add_left_eq [symmetric])
+  apply auto
+  apply (subgoal_tac "y mod m = - x mod m")
+  apply simp
+  apply (subst zmod_eq_dvd_iff)
+  apply auto
+done
+
+lemma finite [iff]: "finite(carrier R)"
+  by (subst res_carrier_eq, auto)
+
+lemma finite_Units [iff]: "finite(Units R)"
+  by (subst res_units_eq, auto)
+
+(* The function a -> a mod m maps the integers to the 
+   residue classes. The following lemmas show that this mapping 
+   respects addition and multiplication on the integers. *)
+
+lemma mod_in_carrier [iff]: "a mod m : carrier R"
+  apply (unfold res_carrier_eq)
+  apply (insert m_gt_one, auto)
+done
+
+lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
+  by (unfold R_def residue_ring_def, auto, arith)
+
+lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
+  apply (unfold R_def residue_ring_def, auto)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (subst mult_commute)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (subst mult_commute)
+  apply auto
+done  
+
+lemma zero_cong: "\<zero> = 0"
+  apply (unfold R_def residue_ring_def, auto)
+done
+
+lemma one_cong: "\<one> = 1 mod m"
+  apply (insert m_gt_one)
+  apply (unfold R_def residue_ring_def, auto)
+done
+
+(* revise algebra library to use 1? *)
+lemma pow_cong: "(x mod m) (^) n = x^n mod m"
+  apply (insert m_gt_one)
+  apply (induct n)
+  apply (auto simp add: nat_pow_def one_cong One_nat_def)
+  apply (subst mult_commute)
+  apply (rule mult_cong)
+done
+
+lemma neg_cong: "\<ominus> (x mod m) = (- x) mod m"
+  apply (rule sym)
+  apply (rule sum_zero_eq_neg)
+  apply auto
+  apply (subst add_cong)
+  apply (subst zero_cong)
+  apply auto
+done
+
+lemma (in residues) prod_cong: 
+  "finite A \<Longrightarrow> (\<Otimes> i:A. (f i) mod m) = (PROD i:A. f i) mod m"
+  apply (induct set: finite)
+  apply (auto simp: one_cong mult_cong)
+done
+
+lemma (in residues) sum_cong:
+  "finite A \<Longrightarrow> (\<Oplus> i:A. (f i) mod m) = (SUM i: A. f i) mod m"
+  apply (induct set: finite)
+  apply (auto simp: zero_cong add_cong)
+done
+
+lemma mod_in_res_units [simp]: "1 < m \<Longrightarrow> coprime a m \<Longrightarrow> 
+    a mod m : Units R"
+  apply (subst res_units_eq, auto)
+  apply (insert pos_mod_sign [of m a])
+  apply (subgoal_tac "a mod m ~= 0")
+  apply arith
+  apply auto
+  apply (subst (asm) gcd_red_int)
+  apply (subst gcd_commute_int, assumption)
+done
+
+lemma res_eq_to_cong: "((a mod m) = (b mod m)) = [a = b] (mod (m::int))" 
+  unfolding cong_int_def by auto
+
+(* Simplifying with these will translate a ring equation in R to a 
+   congruence. *)
+
+lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
+    prod_cong sum_cong neg_cong res_eq_to_cong
+
+(* Other useful facts about the residue ring *)
+
+lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
+  apply (simp add: res_one_eq res_neg_eq)
+  apply (insert m_gt_one)
+  apply (subgoal_tac "~(m > 2)")
+  apply arith
+  apply (rule notI)
+  apply (subgoal_tac "-1 mod m = m - 1")
+  apply force
+  apply (subst mod_add_self2 [symmetric])
+  apply (subst mod_pos_pos_trivial)
+  apply auto
+done
+
+end
+
+
+(* prime residues *)
+
+locale residues_prime =
+  fixes p :: int and R (structure)
+  assumes p_prime [intro]: "prime p"
+  defines "R == residue_ring p"
+
+sublocale residues_prime < residues p
+  apply (unfold R_def residues_def)
+  using p_prime apply auto
+done
+
+context residues_prime begin
+
+lemma is_field: "field R"
+  apply (rule cring.field_intro2)
+  apply (rule cring)
+  apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq
+    res_units_eq)
+  apply (rule classical)
+  apply (erule notE)
+  apply (subst gcd_commute_int)
+  apply (rule prime_imp_coprime_int)
+  apply (rule p_prime)
+  apply (rule notI)
+  apply (frule zdvd_imp_le)
+  apply auto
+done
+
+lemma res_prime_units_eq: "Units R = {1..p - 1}"
+  apply (subst res_units_eq)
+  apply auto
+  apply (subst gcd_commute_int)
+  apply (rule prime_imp_coprime_int)
+  apply (rule p_prime)
+  apply (rule zdvd_not_zless)
+  apply auto
+done
+
+end
+
+sublocale residues_prime < field
+  by (rule is_field)
+
+
+(*
+  Test cases: Euler's theorem and Wilson's theorem.
+*)
+
+
+subsection{* Euler's theorem *}
+
+(* the definition of the phi function *)
+
+constdefs
+  phi :: "int => nat"
+  "phi m == card({ x. 0 < x & x < m & gcd x m = 1})" 
+
+lemma phi_zero [simp]: "phi 0 = 0"
+  apply (subst phi_def)
+(* Auto hangs here. Once again, where is the simplification rule 
+   1 == Suc 0 coming from? *)
+  apply (auto simp add: card_eq_0_iff)
+(* Add card_eq_0_iff as a simp rule? delete card_empty_imp? *)
+done
+
+lemma phi_one [simp]: "phi 1 = 0"
+  apply (auto simp add: phi_def card_eq_0_iff)
+done
+
+lemma (in residues) phi_eq: "phi m = card(Units R)"
+  by (simp add: phi_def res_units_eq)
+
+lemma (in residues) euler_theorem1: 
+  assumes a: "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof -
+  from a m_gt_one have [simp]: "a mod m : Units R"
+    by (intro mod_in_res_units)
+  from phi_eq have "(a mod m) (^) (phi m) = (a mod m) (^) (card (Units R))"
+    by simp
+  also have "\<dots> = \<one>" 
+    by (intro units_power_order_eq_one, auto)
+  finally show ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+(* In fact, there is a two line proof!
+
+lemma (in residues) euler_theorem1: 
+  assumes a: "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof -
+  have "(a mod m) (^) (phi m) = \<one>"
+    by (simp add: phi_eq units_power_order_eq_one a m_gt_one)
+  thus ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+*)
+
+(* outside the locale, we can relax the restriction m > 1 *)
+
+lemma euler_theorem:
+  assumes "m >= 0" and "gcd a m = 1"
+  shows "[a^phi m = 1] (mod m)"
+proof (cases)
+  assume "m = 0 | m = 1"
+  thus ?thesis by auto
+next
+  assume "~(m = 0 | m = 1)"
+  with prems show ?thesis
+    by (intro residues.euler_theorem1, unfold residues_def, auto)
+qed
+
+lemma (in residues_prime) phi_prime: "phi p = (nat p - 1)"
+  apply (subst phi_eq)
+  apply (subst res_prime_units_eq)
+  apply auto
+done
+
+lemma phi_prime: "prime p \<Longrightarrow> phi p = (nat p - 1)"
+  apply (rule residues_prime.phi_prime)
+  apply (erule residues_prime.intro)
+done
+
+lemma fermat_theorem:
+  assumes "prime p" and "~ (p dvd a)"
+  shows "[a^(nat p - 1) = 1] (mod p)"
+proof -
+  from prems have "[a^phi p = 1] (mod p)"
+    apply (intro euler_theorem)
+    (* auto should get this next part. matching across
+       substitutions is needed. *)
+    apply (frule prime_gt_1_int, arith)
+    apply (subst gcd_commute_int, erule prime_imp_coprime_int, assumption)
+    done
+  also have "phi p = nat p - 1"
+    by (rule phi_prime, rule prems)
+  finally show ?thesis .
+qed
+
+
+subsection {* Wilson's theorem *}
+
+lemma (in field) inv_pair_lemma: "x : Units R \<Longrightarrow> y : Units R \<Longrightarrow> 
+  {x, inv x} ~= {y, inv y} \<Longrightarrow> {x, inv x} Int {y, inv y} = {}" 
+  apply auto
+  apply (erule notE)
+  apply (erule inv_eq_imp_eq)
+  apply auto
+  apply (erule notE)
+  apply (erule inv_eq_imp_eq)
+  apply auto
+done
+
+lemma (in residues_prime) wilson_theorem1:
+  assumes a: "p > 2"
+  shows "[fact (p - 1) = - 1] (mod p)"
+proof -
+  let ?InversePairs = "{ {x, inv x} | x. x : Units R - {\<one>, \<ominus> \<one>}}" 
+  have UR: "Units R = {\<one>, \<ominus> \<one>} Un (Union ?InversePairs)"
+    by auto
+  have "(\<Otimes>i: Units R. i) = 
+    (\<Otimes>i: {\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i: Union ?InversePairs. i)"
+    apply (subst UR)
+    apply (subst finprod_Un_disjoint)
+    apply (auto intro:funcsetI)
+    apply (drule sym, subst (asm) inv_eq_one_eq)
+    apply auto
+    apply (drule sym, subst (asm) inv_eq_neg_one_eq)
+    apply auto
+    done
+  also have "(\<Otimes>i: {\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
+    apply (subst finprod_insert)
+    apply auto
+    apply (frule one_eq_neg_one)
+    apply (insert a, force)
+    done
+  also have "(\<Otimes>i:(Union ?InversePairs). i) = 
+      (\<Otimes> A: ?InversePairs. (\<Otimes> y:A. y))"
+    apply (subst finprod_Union_disjoint)
+    apply force
+    apply force
+    apply clarify
+    apply (rule inv_pair_lemma)
+    apply auto
+    done
+  also have "\<dots> = \<one>"
+    apply (rule finprod_one)
+    apply auto
+    apply (subst finprod_insert)
+    apply auto
+    apply (frule inv_eq_self)
+    apply (auto)
+    done
+  finally have "(\<Otimes>i: Units R. i) = \<ominus> \<one>"
+    by simp
+  also have "(\<Otimes>i: Units R. i) = (\<Otimes>i: Units R. i mod p)"
+    apply (rule finprod_cong')
+    apply (auto)
+    apply (subst (asm) res_prime_units_eq)
+    apply auto
+    done
+  also have "\<dots> = (PROD i: Units R. i) mod p"
+    apply (rule prod_cong)
+    apply auto
+    done
+  also have "\<dots> = fact (p - 1) mod p"
+    apply (subst fact_altdef_int)
+    apply (insert prems, force)
+    apply (subst res_prime_units_eq, rule refl)
+    done
+  finally have "fact (p - 1) mod p = \<ominus> \<one>".
+  thus ?thesis
+    by (simp add: res_to_cong_simps)
+qed
+
+lemma wilson_theorem: "prime (p::int) \<Longrightarrow> [fact (p - 1) = - 1] (mod p)"
+  apply (frule prime_gt_1_int)
+  apply (case_tac "p = 2")
+  apply (subst fact_altdef_int, simp)
+  apply (subst cong_int_def)
+  apply simp
+  apply (rule residues_prime.wilson_theorem1)
+  apply (rule residues_prime.intro)
+  apply auto
+done
+
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/UniqueFactorization.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,967 @@
+(*  Title:      UniqueFactorization.thy
+    ID:         
+    Author:     Jeremy Avigad
+
+    
+    Unique factorization for the natural numbers and the integers.
+
+    Note: there were previous Isabelle formalizations of unique
+    factorization due to Thomas Marthedal Rasmussen, and, building on
+    that, by Jeremy Avigad and David Gray.  
+*)
+
+header {* UniqueFactorization *}
+
+theory UniqueFactorization
+imports Cong Multiset
+begin
+
+(* inherited from Multiset *)
+declare One_nat_def [simp del] 
+
+(* As a simp or intro rule,
+
+     prime p \<Longrightarrow> p > 0
+
+   wreaks havoc here. When the premise includes ALL x :# M. prime x, it 
+   leads to the backchaining
+
+     x > 0  
+     prime x 
+     x :# M   which is, unfortunately,
+     count M x > 0
+*)
+
+
+(* useful facts *)
+
+lemma setsum_Un2: "finite (A Un B) \<Longrightarrow> 
+    setsum f (A Un B) = setsum f (A - B) + setsum f (B - A) + 
+      setsum f (A Int B)"
+  apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
+  apply (erule ssubst)
+  apply (subst setsum_Un_disjoint)
+  apply auto
+  apply (subst setsum_Un_disjoint)
+  apply auto
+done
+
+lemma setprod_Un2: "finite (A Un B) \<Longrightarrow> 
+    setprod f (A Un B) = setprod f (A - B) * setprod f (B - A) * 
+      setprod f (A Int B)"
+  apply (subgoal_tac "A Un B = (A - B) Un (B - A) Un (A Int B)")
+  apply (erule ssubst)
+  apply (subst setprod_Un_disjoint)
+  apply auto
+  apply (subst setprod_Un_disjoint)
+  apply auto
+done
+ 
+(* Should this go in Multiset.thy? *)
+(* TN: No longer an intro-rule; needed only once and might get in the way *)
+lemma multiset_eqI: "[| !!x. count M x = count N x |] ==> M = N"
+  by (subst multiset_eq_conv_count_eq, blast)
+
+(* Here is a version of set product for multisets. Is it worth moving
+   to multiset.thy? If so, one should similarly define msetsum for abelian 
+   semirings, using of_nat. Also, is it worth developing bounded quantifiers 
+   "ALL i :# M. P i"? 
+*)
+
+constdefs
+  msetprod :: "('a => ('b::{power,comm_monoid_mult})) => 'a multiset => 'b"
+  "msetprod f M == setprod (%x. (f x)^(count M x)) (set_of M)"
+
+syntax
+  "_msetprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" 
+      ("(3PROD _:#_. _)" [0, 51, 10] 10)
+
+translations
+  "PROD i :# A. b" == "msetprod (%i. b) A"
+
+lemma msetprod_Un: "msetprod f (A+B) = msetprod f A * msetprod f B" 
+  apply (simp add: msetprod_def power_add)
+  apply (subst setprod_Un2)
+  apply auto
+  apply (subgoal_tac 
+      "(PROD x:set_of A - set_of B. f x ^ count A x * f x ^ count B x) =
+       (PROD x:set_of A - set_of B. f x ^ count A x)")
+  apply (erule ssubst)
+  apply (subgoal_tac 
+      "(PROD x:set_of B - set_of A. f x ^ count A x * f x ^ count B x) =
+       (PROD x:set_of B - set_of A. f x ^ count B x)")
+  apply (erule ssubst)
+  apply (subgoal_tac "(PROD x:set_of A. f x ^ count A x) = 
+    (PROD x:set_of A - set_of B. f x ^ count A x) *
+    (PROD x:set_of A Int set_of B. f x ^ count A x)")
+  apply (erule ssubst)
+  apply (subgoal_tac "(PROD x:set_of B. f x ^ count B x) = 
+    (PROD x:set_of B - set_of A. f x ^ count B x) *
+    (PROD x:set_of A Int set_of B. f x ^ count B x)")
+  apply (erule ssubst)
+  apply (subst setprod_timesf)
+  apply (force simp add: mult_ac)
+  apply (subst setprod_Un_disjoint [symmetric])
+  apply (auto intro: setprod_cong)
+  apply (subst setprod_Un_disjoint [symmetric])
+  apply (auto intro: setprod_cong)
+done
+
+
+subsection {* unique factorization: multiset version *}
+
+lemma multiset_prime_factorization_exists [rule_format]: "n > 0 --> 
+    (EX M. (ALL (p::nat) : set_of M. prime p) & n = (PROD i :# M. i))"
+proof (rule nat_less_induct, clarify)
+  fix n :: nat
+  assume ih: "ALL m < n. 0 < m --> (EX M. (ALL p : set_of M. prime p) & m = 
+      (PROD i :# M. i))"
+  assume "(n::nat) > 0"
+  then have "n = 1 | (n > 1 & prime n) | (n > 1 & ~ prime n)"
+    by arith
+  moreover 
+  {
+    assume "n = 1"
+    then have "(ALL p : set_of {#}. prime p) & n = (PROD i :# {#}. i)"
+        by (auto simp add: msetprod_def)
+  } 
+  moreover 
+  {
+    assume "n > 1" and "prime n"
+    then have "(ALL p : set_of {# n #}. prime p) & n = (PROD i :# {# n #}. i)"
+      by (auto simp add: msetprod_def)
+  } 
+  moreover 
+  {
+    assume "n > 1" and "~ prime n"
+    from prems not_prime_eq_prod_nat
+      obtain m k where "n = m * k & 1 < m & m < n & 1 < k & k < n"
+        by blast
+    with ih obtain Q R where "(ALL p : set_of Q. prime p) & m = (PROD i:#Q. i)"
+        and "(ALL p: set_of R. prime p) & k = (PROD i:#R. i)"
+      by blast
+    hence "(ALL p: set_of (Q + R). prime p) & n = (PROD i :# Q + R. i)"
+      by (auto simp add: prems msetprod_Un set_of_union)
+    then have "EX M. (ALL p : set_of M. prime p) & n = (PROD i :# M. i)"..
+  }
+  ultimately show "EX M. (ALL p : set_of M. prime p) & n = (PROD i::nat:#M. i)"
+    by blast
+qed
+
+lemma multiset_prime_factorization_unique_aux:
+  fixes a :: nat
+  assumes "(ALL p : set_of M. prime p)" and
+    "(ALL p : set_of N. prime p)" and
+    "(PROD i :# M. i) dvd (PROD i:# N. i)"
+  shows
+    "count M a <= count N a"
+proof cases
+  assume "a : set_of M"
+  with prems have a: "prime a"
+    by auto
+  with prems have "a ^ count M a dvd (PROD i :# M. i)"
+    by (auto intro: dvd_setprod simp add: msetprod_def)
+  also have "... dvd (PROD i :# N. i)"
+    by (rule prems)
+  also have "... = (PROD i : (set_of N). i ^ (count N i))"
+    by (simp add: msetprod_def)
+  also have "... = 
+      a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))"
+    proof (cases)
+      assume "a : set_of N"
+      hence b: "set_of N = {a} Un (set_of N - {a})"
+        by auto
+      thus ?thesis
+        by (subst (1) b, subst setprod_Un_disjoint, auto)
+    next
+      assume "a ~: set_of N" 
+      thus ?thesis
+        by auto
+    qed
+  finally have "a ^ count M a dvd 
+      a^(count N a) * (PROD i : (set_of N - {a}). i ^ (count N i))".
+  moreover have "coprime (a ^ count M a)
+      (PROD i : (set_of N - {a}). i ^ (count N i))"
+    apply (subst gcd_commute_nat)
+    apply (rule setprod_coprime_nat)
+    apply (rule primes_imp_powers_coprime_nat)
+    apply (insert prems, auto) 
+    done
+  ultimately have "a ^ count M a dvd a^(count N a)"
+    by (elim coprime_dvd_mult_nat)
+  with a show ?thesis 
+    by (intro power_dvd_imp_le, auto)
+next
+  assume "a ~: set_of M"
+  thus ?thesis by auto
+qed
+
+lemma multiset_prime_factorization_unique:
+  assumes "(ALL (p::nat) : set_of M. prime p)" and
+    "(ALL p : set_of N. prime p)" and
+    "(PROD i :# M. i) = (PROD i:# N. i)"
+  shows
+    "M = N"
+proof -
+  {
+    fix a
+    from prems have "count M a <= count N a"
+      by (intro multiset_prime_factorization_unique_aux, auto) 
+    moreover from prems have "count N a <= count M a"
+      by (intro multiset_prime_factorization_unique_aux, auto) 
+    ultimately have "count M a = count N a"
+      by auto
+  }
+  thus ?thesis by (simp add:multiset_eq_conv_count_eq)
+qed
+
+constdefs
+  multiset_prime_factorization :: "nat => nat multiset"
+  "multiset_prime_factorization n ==
+     if n > 0 then (THE M. ((ALL p : set_of M. prime p) & 
+       n = (PROD i :# M. i)))
+     else {#}"
+
+lemma multiset_prime_factorization: "n > 0 ==>
+    (ALL p : set_of (multiset_prime_factorization n). prime p) &
+       n = (PROD i :# (multiset_prime_factorization n). i)"
+  apply (unfold multiset_prime_factorization_def)
+  apply clarsimp
+  apply (frule multiset_prime_factorization_exists)
+  apply clarify
+  apply (rule theI)
+  apply (insert multiset_prime_factorization_unique, blast)+
+done
+
+
+subsection {* Prime factors and multiplicity for nats and ints *}
+
+class unique_factorization =
+
+fixes
+  multiplicity :: "'a \<Rightarrow> 'a \<Rightarrow> nat" and
+  prime_factors :: "'a \<Rightarrow> 'a set"
+
+(* definitions for the natural numbers *)
+
+instantiation nat :: unique_factorization
+
+begin
+
+definition
+  multiplicity_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  "multiplicity_nat p n = count (multiset_prime_factorization n) p"
+
+definition
+  prime_factors_nat :: "nat \<Rightarrow> nat set"
+where
+  "prime_factors_nat n = set_of (multiset_prime_factorization n)"
+
+instance proof qed
+
+end
+
+(* definitions for the integers *)
+
+instantiation int :: unique_factorization
+
+begin
+
+definition
+  multiplicity_int :: "int \<Rightarrow> int \<Rightarrow> nat"
+where
+  "multiplicity_int p n = multiplicity (nat p) (nat n)"
+
+definition
+  prime_factors_int :: "int \<Rightarrow> int set"
+where
+  "prime_factors_int n = int ` (prime_factors (nat n))"
+
+instance proof qed
+
+end
+
+
+subsection {* Set up transfer *}
+
+lemma transfer_nat_int_prime_factors: 
+  "prime_factors (nat n) = nat ` prime_factors n"
+  unfolding prime_factors_int_def apply auto
+  by (subst transfer_int_nat_set_return_embed, assumption)
+
+lemma transfer_nat_int_prime_factors_closure: "n >= 0 \<Longrightarrow> 
+    nat_set (prime_factors n)"
+  by (auto simp add: nat_set_def prime_factors_int_def)
+
+lemma transfer_nat_int_multiplicity: "p >= 0 \<Longrightarrow> n >= 0 \<Longrightarrow>
+  multiplicity (nat p) (nat n) = multiplicity p n"
+  by (auto simp add: multiplicity_int_def)
+
+declare TransferMorphism_nat_int[transfer add return: 
+  transfer_nat_int_prime_factors transfer_nat_int_prime_factors_closure
+  transfer_nat_int_multiplicity]
+
+
+lemma transfer_int_nat_prime_factors:
+    "prime_factors (int n) = int ` prime_factors n"
+  unfolding prime_factors_int_def by auto
+
+lemma transfer_int_nat_prime_factors_closure: "is_nat n \<Longrightarrow> 
+    nat_set (prime_factors n)"
+  by (simp only: transfer_nat_int_prime_factors_closure is_nat_def)
+
+lemma transfer_int_nat_multiplicity: 
+    "multiplicity (int p) (int n) = multiplicity p n"
+  by (auto simp add: multiplicity_int_def)
+
+declare TransferMorphism_int_nat[transfer add return: 
+  transfer_int_nat_prime_factors transfer_int_nat_prime_factors_closure
+  transfer_int_nat_multiplicity]
+
+
+subsection {* Properties of prime factors and multiplicity for nats and ints *}
+
+lemma prime_factors_ge_0_int [elim]: "p : prime_factors (n::int) \<Longrightarrow> p >= 0"
+  by (unfold prime_factors_int_def, auto)
+
+lemma prime_factors_prime_nat [intro]: "p : prime_factors (n::nat) \<Longrightarrow> prime p"
+  apply (case_tac "n = 0")
+  apply (simp add: prime_factors_nat_def multiset_prime_factorization_def)
+  apply (auto simp add: prime_factors_nat_def multiset_prime_factorization)
+done
+
+lemma prime_factors_prime_int [intro]:
+  assumes "n >= 0" and "p : prime_factors (n::int)"
+  shows "prime p"
+
+  apply (rule prime_factors_prime_nat [transferred, of n p])
+  using prems apply auto
+done
+
+lemma prime_factors_gt_0_nat [elim]: "p : prime_factors x \<Longrightarrow> p > (0::nat)"
+  by (frule prime_factors_prime_nat, auto)
+
+lemma prime_factors_gt_0_int [elim]: "x >= 0 \<Longrightarrow> p : prime_factors x \<Longrightarrow> 
+    p > (0::int)"
+  by (frule (1) prime_factors_prime_int, auto)
+
+lemma prime_factors_finite_nat [iff]: "finite (prime_factors (n::nat))"
+  by (unfold prime_factors_nat_def, auto)
+
+lemma prime_factors_finite_int [iff]: "finite (prime_factors (n::int))"
+  by (unfold prime_factors_int_def, auto)
+
+lemma prime_factors_altdef_nat: "prime_factors (n::nat) = 
+    {p. multiplicity p n > 0}"
+  by (force simp add: prime_factors_nat_def multiplicity_nat_def)
+
+lemma prime_factors_altdef_int: "prime_factors (n::int) = 
+    {p. p >= 0 & multiplicity p n > 0}"
+  apply (unfold prime_factors_int_def multiplicity_int_def)
+  apply (subst prime_factors_altdef_nat)
+  apply (auto simp add: image_def)
+done
+
+lemma prime_factorization_nat: "(n::nat) > 0 \<Longrightarrow> 
+    n = (PROD p : prime_factors n. p^(multiplicity p n))"
+  by (frule multiset_prime_factorization, 
+    simp add: prime_factors_nat_def multiplicity_nat_def msetprod_def)
+
+thm prime_factorization_nat [transferred] 
+
+lemma prime_factorization_int: 
+  assumes "(n::int) > 0"
+  shows "n = (PROD p : prime_factors n. p^(multiplicity p n))"
+
+  apply (rule prime_factorization_nat [transferred, of n])
+  using prems apply auto
+done
+
+lemma neq_zero_eq_gt_zero_nat: "((x::nat) ~= 0) = (x > 0)"
+  by auto
+
+lemma prime_factorization_unique_nat: 
+    "S = { (p::nat) . f p > 0} \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
+      n = (PROD p : S. p^(f p)) \<Longrightarrow>
+        S = prime_factors n & (ALL p. f p = multiplicity p n)"
+  apply (subgoal_tac "multiset_prime_factorization n = Abs_multiset
+      f")
+  apply (unfold prime_factors_nat_def multiplicity_nat_def)
+  apply (simp add: set_of_def count_def Abs_multiset_inverse multiset_def)
+  apply (unfold multiset_prime_factorization_def)
+  apply (subgoal_tac "n > 0")
+  prefer 2
+  apply force
+  apply (subst if_P, assumption)
+  apply (rule the1_equality)
+  apply (rule ex_ex1I)
+  apply (rule multiset_prime_factorization_exists, assumption)
+  apply (rule multiset_prime_factorization_unique)
+  apply force
+  apply force
+  apply force
+  unfolding set_of_def count_def msetprod_def
+  apply (subgoal_tac "f : multiset")
+  apply (auto simp only: Abs_multiset_inverse)
+  unfolding multiset_def apply force 
+done
+
+lemma prime_factors_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow> 
+    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
+      prime_factors n = S"
+  by (rule prime_factorization_unique_nat [THEN conjunct1, symmetric],
+    assumption+)
+
+lemma prime_factors_characterization'_nat: 
+  "finite {p. 0 < f (p::nat)} \<Longrightarrow>
+    (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
+      prime_factors (PROD p | 0 < f p . p ^ f p) = {p. 0 < f p}"
+  apply (rule prime_factors_characterization_nat)
+  apply auto
+done
+
+(* A minor glitch:*)
+
+thm prime_factors_characterization'_nat 
+    [where f = "%x. f (int (x::nat))", 
+      transferred direction: nat "op <= (0::int)", rule_format]
+
+(*
+  Transfer isn't smart enough to know that the "0 < f p" should 
+  remain a comparison between nats. But the transfer still works. 
+*)
+
+lemma primes_characterization'_int [rule_format]: 
+    "finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
+      (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow>
+        prime_factors (PROD p | p >=0 & 0 < f p . p ^ f p) = 
+          {p. p >= 0 & 0 < f p}"
+
+  apply (insert prime_factors_characterization'_nat 
+    [where f = "%x. f (int (x::nat))", 
+    transferred direction: nat "op <= (0::int)"])
+  apply auto
+done
+
+lemma prime_factors_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow> 
+    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
+      prime_factors n = S"
+  apply simp
+  apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
+  apply (simp only:)
+  apply (subst primes_characterization'_int)
+  apply auto
+  apply (auto simp add: prime_ge_0_int)
+done
+
+lemma multiplicity_characterization_nat: "S = {p. 0 < f (p::nat)} \<Longrightarrow> 
+    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
+      multiplicity p n = f p"
+  by (frule prime_factorization_unique_nat [THEN conjunct2, rule_format, 
+    symmetric], auto)
+
+lemma multiplicity_characterization'_nat: "finite {p. 0 < f (p::nat)} \<longrightarrow>
+    (ALL p. 0 < f p \<longrightarrow> prime p) \<longrightarrow>
+      multiplicity p (PROD p | 0 < f p . p ^ f p) = f p"
+  apply (rule impI)+
+  apply (rule multiplicity_characterization_nat)
+  apply auto
+done
+
+lemma multiplicity_characterization'_int [rule_format]: 
+  "finite {p. p >= 0 & 0 < f (p::int)} \<Longrightarrow>
+    (ALL p. 0 < f p \<longrightarrow> prime p) \<Longrightarrow> p >= 0 \<Longrightarrow>
+      multiplicity p (PROD p | p >= 0 & 0 < f p . p ^ f p) = f p"
+
+  apply (insert multiplicity_characterization'_nat 
+    [where f = "%x. f (int (x::nat))", 
+      transferred direction: nat "op <= (0::int)", rule_format])
+  apply auto
+done
+
+lemma multiplicity_characterization_int: "S = {p. 0 < f (p::int)} \<Longrightarrow> 
+    finite S \<Longrightarrow> (ALL p:S. prime p) \<Longrightarrow> n = (PROD p:S. p ^ f p) \<Longrightarrow>
+      p >= 0 \<Longrightarrow> multiplicity p n = f p"
+  apply simp
+  apply (subgoal_tac "{p. 0 < f p} = {p. 0 <= p & 0 < f p}")
+  apply (simp only:)
+  apply (subst multiplicity_characterization'_int)
+  apply auto
+  apply (auto simp add: prime_ge_0_int)
+done
+
+lemma multiplicity_zero_nat [simp]: "multiplicity (p::nat) 0 = 0"
+  by (simp add: multiplicity_nat_def multiset_prime_factorization_def)
+
+lemma multiplicity_zero_int [simp]: "multiplicity (p::int) 0 = 0"
+  by (simp add: multiplicity_int_def) 
+
+lemma multiplicity_one_nat [simp]: "multiplicity p (1::nat) = 0"
+  by (subst multiplicity_characterization_nat [where f = "%x. 0"], auto)
+
+lemma multiplicity_one_int [simp]: "multiplicity p (1::int) = 0"
+  by (simp add: multiplicity_int_def)
+
+lemma multiplicity_prime_nat [simp]: "prime (p::nat) \<Longrightarrow> multiplicity p p = 1"
+  apply (subst multiplicity_characterization_nat
+      [where f = "(%q. if q = p then 1 else 0)"])
+  apply auto
+  apply (case_tac "x = p")
+  apply auto
+done
+
+lemma multiplicity_prime_int [simp]: "prime (p::int) \<Longrightarrow> multiplicity p p = 1"
+  unfolding prime_int_def multiplicity_int_def by auto
+
+lemma multiplicity_prime_power_nat [simp]: "prime (p::nat) \<Longrightarrow> 
+    multiplicity p (p^n) = n"
+  apply (case_tac "n = 0")
+  apply auto
+  apply (subst multiplicity_characterization_nat
+      [where f = "(%q. if q = p then n else 0)"])
+  apply auto
+  apply (case_tac "x = p")
+  apply auto
+done
+
+lemma multiplicity_prime_power_int [simp]: "prime (p::int) \<Longrightarrow> 
+    multiplicity p (p^n) = n"
+  apply (frule prime_ge_0_int)
+  apply (auto simp add: prime_int_def multiplicity_int_def nat_power_eq)
+done
+
+lemma multiplicity_nonprime_nat [simp]: "~ prime (p::nat) \<Longrightarrow> 
+    multiplicity p n = 0"
+  apply (case_tac "n = 0")
+  apply auto
+  apply (frule multiset_prime_factorization)
+  apply (auto simp add: set_of_def multiplicity_nat_def)
+done
+
+lemma multiplicity_nonprime_int [simp]: "~ prime (p::int) \<Longrightarrow> multiplicity p n = 0"
+  by (unfold multiplicity_int_def prime_int_def, auto)
+
+lemma multiplicity_not_factor_nat [simp]: 
+    "p ~: prime_factors (n::nat) \<Longrightarrow> multiplicity p n = 0"
+  by (subst (asm) prime_factors_altdef_nat, auto)
+
+lemma multiplicity_not_factor_int [simp]: 
+    "p >= 0 \<Longrightarrow> p ~: prime_factors (n::int) \<Longrightarrow> multiplicity p n = 0"
+  by (subst (asm) prime_factors_altdef_int, auto)
+
+lemma multiplicity_product_aux_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow>
+    (prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
+    (ALL p. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
+  apply (rule prime_factorization_unique_nat)
+  apply (simp only: prime_factors_altdef_nat)
+  apply auto
+  apply (subst power_add)
+  apply (subst setprod_timesf)
+  apply (rule arg_cong2)back back
+  apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors k Un 
+      (prime_factors l - prime_factors k)")
+  apply (erule ssubst)
+  apply (subst setprod_Un_disjoint)
+  apply auto
+  apply (subgoal_tac "(\<Prod>p\<in>prime_factors l - prime_factors k. p ^ multiplicity p k) = 
+      (\<Prod>p\<in>prime_factors l - prime_factors k. 1)")
+  apply (erule ssubst)
+  apply (simp add: setprod_1)
+  apply (erule prime_factorization_nat)
+  apply (rule setprod_cong, auto)
+  apply (subgoal_tac "prime_factors k Un prime_factors l = prime_factors l Un 
+      (prime_factors k - prime_factors l)")
+  apply (erule ssubst)
+  apply (subst setprod_Un_disjoint)
+  apply auto
+  apply (subgoal_tac "(\<Prod>p\<in>prime_factors k - prime_factors l. p ^ multiplicity p l) = 
+      (\<Prod>p\<in>prime_factors k - prime_factors l. 1)")
+  apply (erule ssubst)
+  apply (simp add: setprod_1)
+  apply (erule prime_factorization_nat)
+  apply (rule setprod_cong, auto)
+done
+
+(* transfer doesn't have the same problem here with the right 
+   choice of rules. *)
+
+lemma multiplicity_product_aux_int: 
+  assumes "(k::int) > 0" and "l > 0"
+  shows 
+    "(prime_factors k) Un (prime_factors l) = prime_factors (k * l) &
+    (ALL p >= 0. multiplicity p k + multiplicity p l = multiplicity p (k * l))"
+
+  apply (rule multiplicity_product_aux_nat [transferred, of l k])
+  using prems apply auto
+done
+
+lemma prime_factors_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) = 
+    prime_factors k Un prime_factors l"
+  by (rule multiplicity_product_aux_nat [THEN conjunct1, symmetric])
+
+lemma prime_factors_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> prime_factors (k * l) = 
+    prime_factors k Un prime_factors l"
+  by (rule multiplicity_product_aux_int [THEN conjunct1, symmetric])
+
+lemma multiplicity_product_nat: "(k::nat) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> multiplicity p (k * l) = 
+    multiplicity p k + multiplicity p l"
+  by (rule multiplicity_product_aux_nat [THEN conjunct2, rule_format, 
+      symmetric])
+
+lemma multiplicity_product_int: "(k::int) > 0 \<Longrightarrow> l > 0 \<Longrightarrow> p >= 0 \<Longrightarrow> 
+    multiplicity p (k * l) = multiplicity p k + multiplicity p l"
+  by (rule multiplicity_product_aux_int [THEN conjunct2, rule_format, 
+      symmetric])
+
+lemma multiplicity_setprod_nat: "finite S \<Longrightarrow> (ALL x : S. f x > 0) \<Longrightarrow> 
+    multiplicity (p::nat) (PROD x : S. f x) = 
+      (SUM x : S. multiplicity p (f x))"
+  apply (induct set: finite)
+  apply auto
+  apply (subst multiplicity_product_nat)
+  apply auto
+done
+
+(* Transfer is delicate here for two reasons: first, because there is
+   an implicit quantifier over functions (f), and, second, because the 
+   product over the multiplicity should not be translated to an integer 
+   product.
+
+   The way to handle the first is to use quantifier rules for functions.
+   The way to handle the second is to turn off the offending rule.
+*)
+
+lemma transfer_nat_int_sum_prod_closure3:
+  "(SUM x : A. int (f x)) >= 0"
+  "(PROD x : A. int (f x)) >= 0"
+  apply (rule setsum_nonneg, auto)
+  apply (rule setprod_nonneg, auto)
+done
+
+declare TransferMorphism_nat_int[transfer 
+  add return: transfer_nat_int_sum_prod_closure3
+  del: transfer_nat_int_sum_prod2 (1)]
+
+lemma multiplicity_setprod_int: "p >= 0 \<Longrightarrow> finite S \<Longrightarrow> 
+  (ALL x : S. f x > 0) \<Longrightarrow> 
+    multiplicity (p::int) (PROD x : S. f x) = 
+      (SUM x : S. multiplicity p (f x))"
+
+  apply (frule multiplicity_setprod_nat
+    [where f = "%x. nat(int(nat(f x)))", 
+      transferred direction: nat "op <= (0::int)"])
+  apply auto
+  apply (subst (asm) setprod_cong)
+  apply (rule refl)
+  apply (rule if_P)
+  apply auto
+  apply (rule setsum_cong)
+  apply auto
+done
+
+declare TransferMorphism_nat_int[transfer 
+  add return: transfer_nat_int_sum_prod2 (1)]
+
+lemma multiplicity_prod_prime_powers_nat:
+    "finite S \<Longrightarrow> (ALL p : S. prime (p::nat)) \<Longrightarrow>
+       multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
+  apply (subgoal_tac "(PROD p : S. p ^ f p) = 
+      (PROD p : S. p ^ (%x. if x : S then f x else 0) p)")
+  apply (erule ssubst)
+  apply (subst multiplicity_characterization_nat)
+  prefer 5 apply (rule refl)
+  apply (rule refl)
+  apply auto
+  apply (subst setprod_mono_one_right)
+  apply assumption
+  prefer 3
+  apply (rule setprod_cong)
+  apply (rule refl)
+  apply auto
+done
+
+(* Here the issue with transfer is the implicit quantifier over S *)
+
+lemma multiplicity_prod_prime_powers_int:
+    "(p::int) >= 0 \<Longrightarrow> finite S \<Longrightarrow> (ALL p : S. prime p) \<Longrightarrow>
+       multiplicity p (PROD p : S. p ^ f p) = (if p : S then f p else 0)"
+
+  apply (subgoal_tac "int ` nat ` S = S")
+  apply (frule multiplicity_prod_prime_powers_nat [where f = "%x. f(int x)" 
+    and S = "nat ` S", transferred])
+  apply auto
+  apply (subst prime_int_def [symmetric])
+  apply auto
+  apply (subgoal_tac "xb >= 0")
+  apply force
+  apply (rule prime_ge_0_int)
+  apply force
+  apply (subst transfer_nat_int_set_return_embed)
+  apply (unfold nat_set_def, auto)
+done
+
+lemma multiplicity_distinct_prime_power_nat: "prime (p::nat) \<Longrightarrow> prime q \<Longrightarrow>
+    p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
+  apply (subgoal_tac "q^n = setprod (%x. x^n) {q}")
+  apply (erule ssubst)
+  apply (subst multiplicity_prod_prime_powers_nat)
+  apply auto
+done
+
+lemma multiplicity_distinct_prime_power_int: "prime (p::int) \<Longrightarrow> prime q \<Longrightarrow>
+    p ~= q \<Longrightarrow> multiplicity p (q^n) = 0"
+  apply (frule prime_ge_0_int [of q])
+  apply (frule multiplicity_distinct_prime_power_nat [transferred leaving: n]) 
+  prefer 4
+  apply assumption
+  apply auto
+done
+
+lemma dvd_multiplicity_nat: 
+    "(0::nat) < y \<Longrightarrow> x dvd y \<Longrightarrow> multiplicity p x <= multiplicity p y"
+  apply (case_tac "x = 0")
+  apply (auto simp add: dvd_def multiplicity_product_nat)
+done
+
+lemma dvd_multiplicity_int: 
+    "(0::int) < y \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> p >= 0 \<Longrightarrow> 
+      multiplicity p x <= multiplicity p y"
+  apply (case_tac "x = 0")
+  apply (auto simp add: dvd_def)
+  apply (subgoal_tac "0 < k")
+  apply (auto simp add: multiplicity_product_int)
+  apply (erule zero_less_mult_pos)
+  apply arith
+done
+
+lemma dvd_prime_factors_nat [intro]:
+    "0 < (y::nat) \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
+  apply (simp only: prime_factors_altdef_nat)
+  apply auto
+  apply (frule dvd_multiplicity_nat)
+  apply auto
+(* It is a shame that auto and arith don't get this. *)
+  apply (erule order_less_le_trans)back
+  apply assumption
+done
+
+lemma dvd_prime_factors_int [intro]:
+    "0 < (y::int) \<Longrightarrow> 0 <= x \<Longrightarrow> x dvd y \<Longrightarrow> prime_factors x <= prime_factors y"
+  apply (auto simp add: prime_factors_altdef_int)
+  apply (erule order_less_le_trans)
+  apply (rule dvd_multiplicity_int)
+  apply auto
+done
+
+lemma multiplicity_dvd_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow> 
+    ALL p. multiplicity p x <= multiplicity p y \<Longrightarrow>
+      x dvd y"
+  apply (subst prime_factorization_nat [of x], assumption)
+  apply (subst prime_factorization_nat [of y], assumption)
+  apply (rule setprod_dvd_setprod_subset2)
+  apply force
+  apply (subst prime_factors_altdef_nat)+
+  apply auto
+(* Again, a shame that auto and arith don't get this. *)
+  apply (drule_tac x = xa in spec, auto)
+  apply (rule le_imp_power_dvd)
+  apply blast
+done
+
+lemma multiplicity_dvd_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow> 
+    ALL p >= 0. multiplicity p x <= multiplicity p y \<Longrightarrow>
+      x dvd y"
+  apply (subst prime_factorization_int [of x], assumption)
+  apply (subst prime_factorization_int [of y], assumption)
+  apply (rule setprod_dvd_setprod_subset2)
+  apply force
+  apply (subst prime_factors_altdef_int)+
+  apply auto
+  apply (rule dvd_power_le)
+  apply auto
+  apply (drule_tac x = xa in spec)
+  apply (erule impE)
+  apply auto
+done
+
+lemma multiplicity_dvd'_nat: "(0::nat) < x \<Longrightarrow> 
+    \<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
+  apply (cases "y = 0")
+  apply auto
+  apply (rule multiplicity_dvd_nat, auto)
+  apply (case_tac "prime p")
+  apply auto
+done
+
+lemma multiplicity_dvd'_int: "(0::int) < x \<Longrightarrow> 0 <= y \<Longrightarrow>
+    \<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y \<Longrightarrow> x dvd y"
+  apply (cases "y = 0")
+  apply auto
+  apply (rule multiplicity_dvd_int, auto)
+  apply (case_tac "prime p")
+  apply auto
+done
+
+lemma dvd_multiplicity_eq_nat: "0 < (x::nat) \<Longrightarrow> 0 < y \<Longrightarrow>
+    (x dvd y) = (ALL p. multiplicity p x <= multiplicity p y)"
+  by (auto intro: dvd_multiplicity_nat multiplicity_dvd_nat)
+
+lemma dvd_multiplicity_eq_int: "0 < (x::int) \<Longrightarrow> 0 < y \<Longrightarrow>
+    (x dvd y) = (ALL p >= 0. multiplicity p x <= multiplicity p y)"
+  by (auto intro: dvd_multiplicity_int multiplicity_dvd_int)
+
+lemma prime_factors_altdef2_nat: "(n::nat) > 0 \<Longrightarrow> 
+    (p : prime_factors n) = (prime p & p dvd n)"
+  apply (case_tac "prime p")
+  apply auto
+  apply (subst prime_factorization_nat [where n = n], assumption)
+  apply (rule dvd_trans) 
+  apply (rule dvd_power [where x = p and n = "multiplicity p n"])
+  apply (subst (asm) prime_factors_altdef_nat, force)
+  apply (rule dvd_setprod)
+  apply auto  
+  apply (subst prime_factors_altdef_nat)
+  apply (subst (asm) dvd_multiplicity_eq_nat)
+  apply auto
+  apply (drule spec [where x = p])
+  apply auto
+done
+
+lemma prime_factors_altdef2_int: 
+  assumes "(n::int) > 0" 
+  shows "(p : prime_factors n) = (prime p & p dvd n)"
+
+  apply (case_tac "p >= 0")
+  apply (rule prime_factors_altdef2_nat [transferred])
+  using prems apply auto
+  apply (auto simp add: prime_ge_0_int prime_factors_ge_0_int)
+done
+
+lemma multiplicity_eq_nat:
+  fixes x and y::nat 
+  assumes [arith]: "x > 0" "y > 0" and
+    mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
+  shows "x = y"
+
+  apply (rule dvd_anti_sym)
+  apply (auto intro: multiplicity_dvd'_nat) 
+done
+
+lemma multiplicity_eq_int:
+  fixes x and y::int 
+  assumes [arith]: "x > 0" "y > 0" and
+    mult_eq [simp]: "!!p. prime p \<Longrightarrow> multiplicity p x = multiplicity p y"
+  shows "x = y"
+
+  apply (rule dvd_anti_sym [transferred])
+  apply (auto intro: multiplicity_dvd'_int) 
+done
+
+
+subsection {* An application *}
+
+lemma gcd_eq_nat: 
+  assumes pos [arith]: "x > 0" "y > 0"
+  shows "gcd (x::nat) y = 
+    (PROD p: prime_factors x Un prime_factors y. 
+      p ^ (min (multiplicity p x) (multiplicity p y)))"
+proof -
+  def z == "(PROD p: prime_factors (x::nat) Un prime_factors y. 
+      p ^ (min (multiplicity p x) (multiplicity p y)))"
+  have [arith]: "z > 0"
+    unfolding z_def by (rule setprod_pos_nat, auto)
+  have aux: "!!p. prime p \<Longrightarrow> multiplicity p z = 
+      min (multiplicity p x) (multiplicity p y)"
+    unfolding z_def
+    apply (subst multiplicity_prod_prime_powers_nat)
+    apply (auto simp add: multiplicity_not_factor_nat)
+    done
+  have "z dvd x" 
+    by (intro multiplicity_dvd'_nat, auto simp add: aux)
+  moreover have "z dvd y" 
+    by (intro multiplicity_dvd'_nat, auto simp add: aux)
+  moreover have "ALL w. w dvd x & w dvd y \<longrightarrow> w dvd z"
+    apply auto
+    apply (case_tac "w = 0", auto)
+    apply (erule multiplicity_dvd'_nat)
+    apply (auto intro: dvd_multiplicity_nat simp add: aux)
+    done
+  ultimately have "z = gcd x y"
+    by (subst gcd_unique_nat [symmetric], blast)
+  thus ?thesis
+    unfolding z_def by auto
+qed
+
+lemma lcm_eq_nat: 
+  assumes pos [arith]: "x > 0" "y > 0"
+  shows "lcm (x::nat) y = 
+    (PROD p: prime_factors x Un prime_factors y. 
+      p ^ (max (multiplicity p x) (multiplicity p y)))"
+proof -
+  def z == "(PROD p: prime_factors (x::nat) Un prime_factors y. 
+      p ^ (max (multiplicity p x) (multiplicity p y)))"
+  have [arith]: "z > 0"
+    unfolding z_def by (rule setprod_pos_nat, auto)
+  have aux: "!!p. prime p \<Longrightarrow> multiplicity p z = 
+      max (multiplicity p x) (multiplicity p y)"
+    unfolding z_def
+    apply (subst multiplicity_prod_prime_powers_nat)
+    apply (auto simp add: multiplicity_not_factor_nat)
+    done
+  have "x dvd z" 
+    by (intro multiplicity_dvd'_nat, auto simp add: aux)
+  moreover have "y dvd z" 
+    by (intro multiplicity_dvd'_nat, auto simp add: aux)
+  moreover have "ALL w. x dvd w & y dvd w \<longrightarrow> z dvd w"
+    apply auto
+    apply (case_tac "w = 0", auto)
+    apply (rule multiplicity_dvd'_nat)
+    apply (auto intro: dvd_multiplicity_nat simp add: aux)
+    done
+  ultimately have "z = lcm x y"
+    by (subst lcm_unique_nat [symmetric], blast)
+  thus ?thesis
+    unfolding z_def by auto
+qed
+
+lemma multiplicity_gcd_nat: 
+  assumes [arith]: "x > 0" "y > 0"
+  shows "multiplicity (p::nat) (gcd x y) = 
+    min (multiplicity p x) (multiplicity p y)"
+
+  apply (subst gcd_eq_nat)
+  apply auto
+  apply (subst multiplicity_prod_prime_powers_nat)
+  apply auto
+done
+
+lemma multiplicity_lcm_nat: 
+  assumes [arith]: "x > 0" "y > 0"
+  shows "multiplicity (p::nat) (lcm x y) = 
+    max (multiplicity p x) (multiplicity p y)"
+
+  apply (subst lcm_eq_nat)
+  apply auto
+  apply (subst multiplicity_prod_prime_powers_nat)
+  apply auto
+done
+
+lemma gcd_lcm_distrib_nat: "gcd (x::nat) (lcm y z) = lcm (gcd x y) (gcd x z)"
+  apply (case_tac "x = 0 | y = 0 | z = 0") 
+  apply auto
+  apply (rule multiplicity_eq_nat)
+  apply (auto simp add: multiplicity_gcd_nat multiplicity_lcm_nat 
+      lcm_pos_nat)
+done
+
+lemma gcd_lcm_distrib_int: "gcd (x::int) (lcm y z) = lcm (gcd x y) (gcd x z)"
+  apply (subst (1 2 3) gcd_abs_int)
+  apply (subst lcm_abs_int)
+  apply (subst (2) abs_of_nonneg)
+  apply force
+  apply (rule gcd_lcm_distrib_nat [transferred])
+  apply auto
+done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/BijectionRel.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,229 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Bijections between sets *}
+
+theory BijectionRel imports Main begin
+
+text {*
+  Inductive definitions of bijections between two different sets and
+  between the same set.  Theorem for relating the two definitions.
+
+  \bigskip
+*}
+
+inductive_set
+  bijR :: "('a => 'b => bool) => ('a set * 'b set) set"
+  for P :: "'a => 'b => bool"
+where
+  empty [simp]: "({}, {}) \<in> bijR P"
+| insert: "P a b ==> a \<notin> A ==> b \<notin> B ==> (A, B) \<in> bijR P
+    ==> (insert a A, insert b B) \<in> bijR P"
+
+text {*
+  Add extra condition to @{term insert}: @{term "\<forall>b \<in> B. \<not> P a b"}
+  (and similar for @{term A}).
+*}
+
+definition
+  bijP :: "('a => 'a => bool) => 'a set => bool" where
+  "bijP P F = (\<forall>a b. a \<in> F \<and> P a b --> b \<in> F)"
+
+definition
+  uniqP :: "('a => 'a => bool) => bool" where
+  "uniqP P = (\<forall>a b c d. P a b \<and> P c d --> (a = c) = (b = d))"
+
+definition
+  symP :: "('a => 'a => bool) => bool" where
+  "symP P = (\<forall>a b. P a b = P b a)"
+
+inductive_set
+  bijER :: "('a => 'a => bool) => 'a set set"
+  for P :: "'a => 'a => bool"
+where
+  empty [simp]: "{} \<in> bijER P"
+| insert1: "P a a ==> a \<notin> A ==> A \<in> bijER P ==> insert a A \<in> bijER P"
+| insert2: "P a b ==> a \<noteq> b ==> a \<notin> A ==> b \<notin> A ==> A \<in> bijER P
+    ==> insert a (insert b A) \<in> bijER P"
+
+
+text {* \medskip @{term bijR} *}
+
+lemma fin_bijRl: "(A, B) \<in> bijR P ==> finite A"
+  apply (erule bijR.induct)
+  apply auto
+  done
+
+lemma fin_bijRr: "(A, B) \<in> bijR P ==> finite B"
+  apply (erule bijR.induct)
+  apply auto
+  done
+
+lemma aux_induct:
+  assumes major: "finite F"
+    and subs: "F \<subseteq> A"
+    and cases: "P {}"
+      "!!F a. F \<subseteq> A ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)"
+  shows "P F"
+  using major subs
+  apply (induct set: finite)
+   apply (blast intro: cases)+
+  done
+
+
+lemma inj_func_bijR_aux1:
+    "A \<subseteq> B ==> a \<notin> A ==> a \<in> B ==> inj_on f B ==> f a \<notin> f ` A"
+  apply (unfold inj_on_def)
+  apply auto
+  done
+
+lemma inj_func_bijR_aux2:
+  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A ==> F <= A
+    ==> (F, f ` F) \<in> bijR P"
+  apply (rule_tac F = F and A = A in aux_induct)
+     apply (rule finite_subset)
+      apply auto
+  apply (rule bijR.insert)
+     apply (rule_tac [3] inj_func_bijR_aux1)
+        apply auto
+  done
+
+lemma inj_func_bijR:
+  "\<forall>a. a \<in> A --> P a (f a) ==> inj_on f A ==> finite A
+    ==> (A, f ` A) \<in> bijR P"
+  apply (rule inj_func_bijR_aux2)
+     apply auto
+  done
+
+
+text {* \medskip @{term bijER} *}
+
+lemma fin_bijER: "A \<in> bijER P ==> finite A"
+  apply (erule bijER.induct)
+    apply auto
+  done
+
+lemma aux1:
+  "a \<notin> A ==> a \<notin> B ==> F \<subseteq> insert a A ==> F \<subseteq> insert a B ==> a \<in> F
+    ==> \<exists>C. F = insert a C \<and> a \<notin> C \<and> C <= A \<and> C <= B"
+  apply (rule_tac x = "F - {a}" in exI)
+  apply auto
+  done
+
+lemma aux2: "a \<noteq> b ==> a \<notin> A ==> b \<notin> B ==> a \<in> F ==> b \<in> F
+    ==> F \<subseteq> insert a A ==> F \<subseteq> insert b B
+    ==> \<exists>C. F = insert a (insert b C) \<and> a \<notin> C \<and> b \<notin> C \<and> C \<subseteq> A \<and> C \<subseteq> B"
+  apply (rule_tac x = "F - {a, b}" in exI)
+  apply auto
+  done
+
+lemma aux_uniq: "uniqP P ==> P a b ==> P c d ==> (a = c) = (b = d)"
+  apply (unfold uniqP_def)
+  apply auto
+  done
+
+lemma aux_sym: "symP P ==> P a b = P b a"
+  apply (unfold symP_def)
+  apply auto
+  done
+
+lemma aux_in1:
+    "uniqP P ==> b \<notin> C ==> P b b ==> bijP P (insert b C) ==> bijP P C"
+  apply (unfold bijP_def)
+  apply auto
+  apply (subgoal_tac "b \<noteq> a")
+   prefer 2
+   apply clarify
+  apply (simp add: aux_uniq)
+  apply auto
+  done
+
+lemma aux_in2:
+  "symP P ==> uniqP P ==> a \<notin> C ==> b \<notin> C ==> a \<noteq> b ==> P a b
+    ==> bijP P (insert a (insert b C)) ==> bijP P C"
+  apply (unfold bijP_def)
+  apply auto
+  apply (subgoal_tac "aa \<noteq> a")
+   prefer 2
+   apply clarify
+  apply (subgoal_tac "aa \<noteq> b")
+   prefer 2
+   apply clarify
+  apply (simp add: aux_uniq)
+  apply (subgoal_tac "ba \<noteq> a")
+   apply auto
+  apply (subgoal_tac "P a aa")
+   prefer 2
+   apply (simp add: aux_sym)
+  apply (subgoal_tac "b = aa")
+   apply (rule_tac [2] iffD1)
+    apply (rule_tac [2] a = a and c = a and P = P in aux_uniq)
+      apply auto
+  done
+
+lemma aux_foo: "\<forall>a b. Q a \<and> P a b --> R b ==> P a b ==> Q a ==> R b"
+  apply auto
+  done
+
+lemma aux_bij: "bijP P F ==> symP P ==> P a b ==> (a \<in> F) = (b \<in> F)"
+  apply (unfold bijP_def)
+  apply (rule iffI)
+  apply (erule_tac [!] aux_foo)
+      apply simp_all
+  apply (rule iffD2)
+   apply (rule_tac P = P in aux_sym)
+   apply simp_all
+  done
+
+
+lemma aux_bijRER:
+  "(A, B) \<in> bijR P ==> uniqP P ==> symP P
+    ==> \<forall>F. bijP P F \<and> F \<subseteq> A \<and> F \<subseteq> B --> F \<in> bijER P"
+  apply (erule bijR.induct)
+   apply simp
+  apply (case_tac "a = b")
+   apply clarify
+   apply (case_tac "b \<in> F")
+    prefer 2
+    apply (simp add: subset_insert)
+   apply (cut_tac F = F and a = b and A = A and B = B in aux1)
+        prefer 6
+        apply clarify
+        apply (rule bijER.insert1)
+          apply simp_all
+   apply (subgoal_tac "bijP P C")
+    apply simp
+   apply (rule aux_in1)
+      apply simp_all
+  apply clarify
+  apply (case_tac "a \<in> F")
+   apply (case_tac [!] "b \<in> F")
+     apply (cut_tac F = F and a = a and b = b and A = A and B = B
+       in aux2)
+            apply (simp_all add: subset_insert)
+    apply clarify
+    apply (rule bijER.insert2)
+        apply simp_all
+    apply (subgoal_tac "bijP P C")
+     apply simp
+    apply (rule aux_in2)
+          apply simp_all
+   apply (subgoal_tac "b \<in> F")
+    apply (rule_tac [2] iffD1)
+     apply (rule_tac [2] a = a and F = F and P = P in aux_bij)
+       apply (simp_all (no_asm_simp))
+   apply (subgoal_tac [2] "a \<in> F")
+    apply (rule_tac [3] iffD2)
+     apply (rule_tac [3] b = b and F = F and P = P in aux_bij)
+       apply auto
+  done
+
+lemma bijR_bijER:
+  "(A, A) \<in> bijR P ==>
+    bijP P A ==> uniqP P ==> symP P ==> A \<in> bijER P"
+  apply (cut_tac A = A and B = A and P = P in aux_bijRER)
+     apply auto
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Chinese.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,257 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* The Chinese Remainder Theorem *}
+
+theory Chinese 
+imports IntPrimes
+begin
+
+text {*
+  The Chinese Remainder Theorem for an arbitrary finite number of
+  equations.  (The one-equation case is included in theory @{text
+  IntPrimes}.  Uses functions for indexing.\footnote{Maybe @{term
+  funprod} and @{term funsum} should be based on general @{term fold}
+  on indices?}
+*}
+
+
+subsection {* Definitions *}
+
+consts
+  funprod :: "(nat => int) => nat => nat => int"
+  funsum :: "(nat => int) => nat => nat => int"
+
+primrec
+  "funprod f i 0 = f i"
+  "funprod f i (Suc n) = f (Suc (i + n)) * funprod f i n"
+
+primrec
+  "funsum f i 0 = f i"
+  "funsum f i (Suc n) = f (Suc (i + n)) + funsum f i n"
+
+definition
+  m_cond :: "nat => (nat => int) => bool" where
+  "m_cond n mf =
+    ((\<forall>i. i \<le> n --> 0 < mf i) \<and>
+      (\<forall>i j. i \<le> n \<and> j \<le> n \<and> i \<noteq> j --> zgcd (mf i) (mf j) = 1))"
+
+definition
+  km_cond :: "nat => (nat => int) => (nat => int) => bool" where
+  "km_cond n kf mf = (\<forall>i. i \<le> n --> zgcd (kf i) (mf i) = 1)"
+
+definition
+  lincong_sol ::
+    "nat => (nat => int) => (nat => int) => (nat => int) => int => bool" where
+  "lincong_sol n kf bf mf x = (\<forall>i. i \<le> n --> zcong (kf i * x) (bf i) (mf i))"
+
+definition
+  mhf :: "(nat => int) => nat => nat => int" where
+  "mhf mf n i =
+    (if i = 0 then funprod mf (Suc 0) (n - Suc 0)
+     else if i = n then funprod mf 0 (n - Suc 0)
+     else funprod mf 0 (i - Suc 0) * funprod mf (Suc i) (n - Suc 0 - i))"
+
+definition
+  xilin_sol ::
+    "nat => nat => (nat => int) => (nat => int) => (nat => int) => int" where
+  "xilin_sol i n kf bf mf =
+    (if 0 < n \<and> i \<le> n \<and> m_cond n mf \<and> km_cond n kf mf then
+        (SOME x. 0 \<le> x \<and> x < mf i \<and> zcong (kf i * mhf mf n i * x) (bf i) (mf i))
+     else 0)"
+
+definition
+  x_sol :: "nat => (nat => int) => (nat => int) => (nat => int) => int" where
+  "x_sol n kf bf mf = funsum (\<lambda>i. xilin_sol i n kf bf mf * mhf mf n i) 0 n"
+
+
+text {* \medskip @{term funprod} and @{term funsum} *}
+
+lemma funprod_pos: "(\<forall>i. i \<le> n --> 0 < mf i) ==> 0 < funprod mf 0 n"
+  apply (induct n)
+   apply auto
+  apply (simp add: zero_less_mult_iff)
+  done
+
+lemma funprod_zgcd [rule_format (no_asm)]:
+  "(\<forall>i. k \<le> i \<and> i \<le> k + l --> zgcd (mf i) (mf m) = 1) -->
+    zgcd (funprod mf k l) (mf m) = 1"
+  apply (induct l)
+   apply simp_all
+  apply (rule impI)+
+  apply (subst zgcd_zmult_cancel)
+  apply auto
+  done
+
+lemma funprod_zdvd [rule_format]:
+    "k \<le> i --> i \<le> k + l --> mf i dvd funprod mf k l"
+  apply (induct l)
+   apply auto
+  apply (subgoal_tac "i = Suc (k + l)")
+   apply (simp_all (no_asm_simp))
+  done
+
+lemma funsum_mod:
+    "funsum f k l mod m = funsum (\<lambda>i. (f i) mod m) k l mod m"
+  apply (induct l)
+   apply auto
+  apply (rule trans)
+   apply (rule mod_add_eq)
+  apply simp
+  apply (rule mod_add_right_eq [symmetric])
+  done
+
+lemma funsum_zero [rule_format (no_asm)]:
+    "(\<forall>i. k \<le> i \<and> i \<le> k + l --> f i = 0) --> (funsum f k l) = 0"
+  apply (induct l)
+   apply auto
+  done
+
+lemma funsum_oneelem [rule_format (no_asm)]:
+  "k \<le> j --> j \<le> k + l -->
+    (\<forall>i. k \<le> i \<and> i \<le> k + l \<and> i \<noteq> j --> f i = 0) -->
+    funsum f k l = f j"
+  apply (induct l)
+   prefer 2
+   apply clarify
+   defer
+   apply clarify
+   apply (subgoal_tac "k = j")
+    apply (simp_all (no_asm_simp))
+  apply (case_tac "Suc (k + l) = j")
+   apply (subgoal_tac "funsum f k l = 0")
+    apply (rule_tac [2] funsum_zero)
+    apply (subgoal_tac [3] "f (Suc (k + l)) = 0")
+     apply (subgoal_tac [3] "j \<le> k + l")
+      prefer 4
+      apply arith
+     apply auto
+  done
+
+
+subsection {* Chinese: uniqueness *}
+
+lemma zcong_funprod_aux:
+  "m_cond n mf ==> km_cond n kf mf
+    ==> lincong_sol n kf bf mf x ==> lincong_sol n kf bf mf y
+    ==> [x = y] (mod mf n)"
+  apply (unfold m_cond_def km_cond_def lincong_sol_def)
+  apply (rule iffD1)
+   apply (rule_tac k = "kf n" in zcong_cancel2)
+    apply (rule_tac [3] b = "bf n" in zcong_trans)
+     prefer 4
+     apply (subst zcong_sym)
+     defer
+     apply (rule order_less_imp_le)
+     apply simp_all
+  done
+
+lemma zcong_funprod [rule_format]:
+  "m_cond n mf --> km_cond n kf mf -->
+    lincong_sol n kf bf mf x --> lincong_sol n kf bf mf y -->
+    [x = y] (mod funprod mf 0 n)"
+  apply (induct n)
+   apply (simp_all (no_asm))
+   apply (blast intro: zcong_funprod_aux)
+  apply (rule impI)+
+  apply (rule zcong_zgcd_zmult_zmod)
+    apply (blast intro: zcong_funprod_aux)
+    prefer 2
+    apply (subst zgcd_commute)
+    apply (rule funprod_zgcd)
+   apply (auto simp add: m_cond_def km_cond_def lincong_sol_def)
+  done
+
+
+subsection {* Chinese: existence *}
+
+lemma unique_xi_sol:
+  "0 < n ==> i \<le> n ==> m_cond n mf ==> km_cond n kf mf
+    ==> \<exists>!x. 0 \<le> x \<and> x < mf i \<and> [kf i * mhf mf n i * x = bf i] (mod mf i)"
+  apply (rule zcong_lineq_unique)
+   apply (tactic {* stac (thm "zgcd_zmult_cancel") 2 *})
+    apply (unfold m_cond_def km_cond_def mhf_def)
+    apply (simp_all (no_asm_simp))
+  apply safe
+    apply (tactic {* stac (thm "zgcd_zmult_cancel") 3 *})
+     apply (rule_tac [!] funprod_zgcd)
+     apply safe
+     apply simp_all
+   apply (subgoal_tac "i<n")
+    prefer 2
+    apply arith
+   apply (case_tac [2] i)
+    apply simp_all
+  done
+
+lemma x_sol_lin_aux:
+    "0 < n ==> i \<le> n ==> j \<le> n ==> j \<noteq> i ==> mf j dvd mhf mf n i"
+  apply (unfold mhf_def)
+  apply (case_tac "i = 0")
+   apply (case_tac [2] "i = n")
+    apply (simp_all (no_asm_simp))
+    apply (case_tac [3] "j < i")
+     apply (rule_tac [3] dvd_mult2)
+     apply (rule_tac [4] dvd_mult)
+     apply (rule_tac [!] funprod_zdvd)
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+     apply arith
+  done
+
+lemma x_sol_lin:
+  "0 < n ==> i \<le> n
+    ==> x_sol n kf bf mf mod mf i =
+      xilin_sol i n kf bf mf * mhf mf n i mod mf i"
+  apply (unfold x_sol_def)
+  apply (subst funsum_mod)
+  apply (subst funsum_oneelem)
+     apply auto
+  apply (subst dvd_eq_mod_eq_0 [symmetric])
+  apply (rule dvd_mult)
+  apply (rule x_sol_lin_aux)
+  apply auto
+  done
+
+
+subsection {* Chinese *}
+
+lemma chinese_remainder:
+  "0 < n ==> m_cond n mf ==> km_cond n kf mf
+    ==> \<exists>!x. 0 \<le> x \<and> x < funprod mf 0 n \<and> lincong_sol n kf bf mf x"
+  apply safe
+   apply (rule_tac [2] m = "funprod mf 0 n" in zcong_zless_imp_eq)
+       apply (rule_tac [6] zcong_funprod)
+          apply auto
+  apply (rule_tac x = "x_sol n kf bf mf mod funprod mf 0 n" in exI)
+  apply (unfold lincong_sol_def)
+  apply safe
+    apply (tactic {* stac (thm "zcong_zmod") 3 *})
+    apply (tactic {* stac (thm "mod_mult_eq") 3 *})
+    apply (tactic {* stac (thm "mod_mod_cancel") 3 *})
+      apply (tactic {* stac (thm "x_sol_lin") 4 *})
+        apply (tactic {* stac (thm "mod_mult_eq" RS sym) 6 *})
+        apply (tactic {* stac (thm "zcong_zmod" RS sym) 6 *})
+        apply (subgoal_tac [6]
+          "0 \<le> xilin_sol i n kf bf mf \<and> xilin_sol i n kf bf mf < mf i
+          \<and> [kf i * mhf mf n i * xilin_sol i n kf bf mf = bf i] (mod mf i)")
+         prefer 6
+         apply (simp add: zmult_ac)
+        apply (unfold xilin_sol_def)
+        apply (tactic {* asm_simp_tac @{simpset} 6 *})
+        apply (rule_tac [6] ex1_implies_ex [THEN someI_ex])
+        apply (rule_tac [6] unique_xi_sol)
+           apply (rule_tac [3] funprod_zdvd)
+            apply (unfold m_cond_def)
+            apply (rule funprod_pos [THEN pos_mod_sign])
+            apply (rule_tac [2] funprod_pos [THEN pos_mod_bound])
+            apply auto
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Euler.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,304 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Euler.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {* Euler's criterion *}
+
+theory Euler imports Residues EvenOdd begin
+
+definition
+  MultInvPair :: "int => int => int => int set" where
+  "MultInvPair a p j = {StandardRes p j, StandardRes p (a * (MultInv p j))}"
+
+definition
+  SetS        :: "int => int => int set set" where
+  "SetS        a p   =  (MultInvPair a p ` SRStar p)"
+
+
+subsection {* Property for MultInvPair *}
+
+lemma MultInvPair_prop1a:
+  "[| zprime p; 2 < p; ~([a = 0](mod p));
+      X \<in> (SetS a p); Y \<in> (SetS a p);
+      ~((X \<inter> Y) = {}) |] ==> X = Y"
+  apply (auto simp add: SetS_def)
+  apply (drule StandardRes_SRStar_prop1a)+ defer 1
+  apply (drule StandardRes_SRStar_prop1a)+
+  apply (auto simp add: MultInvPair_def StandardRes_prop2 zcong_sym)
+  apply (drule notE, rule MultInv_zcong_prop1, auto)[]
+  apply (drule notE, rule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
+  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
+  apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
+  apply (drule MultInv_zcong_prop1, auto)[]
+  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
+  apply (drule MultInv_zcong_prop2, auto simp add: zcong_sym)[]
+  apply (drule MultInv_zcong_prop3, auto simp add: zcong_sym)[]
+  done
+
+lemma MultInvPair_prop1b:
+  "[| zprime p; 2 < p; ~([a = 0](mod p));
+      X \<in> (SetS a p); Y \<in> (SetS a p);
+      X \<noteq> Y |] ==> X \<inter> Y = {}"
+  apply (rule notnotD)
+  apply (rule notI)
+  apply (drule MultInvPair_prop1a, auto)
+  done
+
+lemma MultInvPair_prop1c: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==>  
+    \<forall>X \<in> SetS a p. \<forall>Y \<in> SetS a p. X \<noteq> Y --> X\<inter>Y = {}"
+  by (auto simp add: MultInvPair_prop1b)
+
+lemma MultInvPair_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
+                          Union ( SetS a p) = SRStar p"
+  apply (auto simp add: SetS_def MultInvPair_def StandardRes_SRStar_prop4 
+    SRStar_mult_prop2)
+  apply (frule StandardRes_SRStar_prop3)
+  apply (rule bexI, auto)
+  done
+
+lemma MultInvPair_distinct: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
+                                ~([j = 0] (mod p)); 
+                                ~(QuadRes p a) |]  ==> 
+                             ~([j = a * MultInv p j] (mod p))"
+proof
+  assume "zprime p" and "2 < p" and "~([a = 0] (mod p))" and 
+    "~([j = 0] (mod p))" and "~(QuadRes p a)"
+  assume "[j = a * MultInv p j] (mod p)"
+  then have "[j * j = (a * MultInv p j) * j] (mod p)"
+    by (auto simp add: zcong_scalar)
+  then have a:"[j * j = a * (MultInv p j * j)] (mod p)"
+    by (auto simp add: zmult_ac)
+  have "[j * j = a] (mod p)"
+    proof -
+      from prems have b: "[MultInv p j * j = 1] (mod p)"
+        by (simp add: MultInv_prop2a)
+      from b a show ?thesis
+        by (auto simp add: zcong_zmult_prop2)
+    qed
+  then have "[j^2 = a] (mod p)"
+    by (metis  number_of_is_id power2_eq_square succ_bin_simps)
+  with prems show False
+    by (simp add: QuadRes_def)
+qed
+
+lemma MultInvPair_card_two: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
+                                ~(QuadRes p a); ~([j = 0] (mod p)) |]  ==> 
+                             card (MultInvPair a p j) = 2"
+  apply (auto simp add: MultInvPair_def)
+  apply (subgoal_tac "~ (StandardRes p j = StandardRes p (a * MultInv p j))")
+  apply auto
+  apply (metis MultInvPair_distinct Pls_def StandardRes_def aux number_of_is_id one_is_num_one)
+  done
+
+
+subsection {* Properties of SetS *}
+
+lemma SetS_finite: "2 < p ==> finite (SetS a p)"
+  by (auto simp add: SetS_def SRStar_finite [of p] finite_imageI)
+
+lemma SetS_elems_finite: "\<forall>X \<in> SetS a p. finite X"
+  by (auto simp add: SetS_def MultInvPair_def)
+
+lemma SetS_elems_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); 
+                        ~(QuadRes p a) |]  ==>
+                        \<forall>X \<in> SetS a p. card X = 2"
+  apply (auto simp add: SetS_def)
+  apply (frule StandardRes_SRStar_prop1a)
+  apply (rule MultInvPair_card_two, auto)
+  done
+
+lemma Union_SetS_finite: "2 < p ==> finite (Union (SetS a p))"
+  by (auto simp add: SetS_finite SetS_elems_finite finite_Union)
+
+lemma card_setsum_aux: "[| finite S; \<forall>X \<in> S. finite (X::int set); 
+    \<forall>X \<in> S. card X = n |] ==> setsum card S = setsum (%x. n) S"
+  by (induct set: finite) auto
+
+lemma SetS_card: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==> 
+                  int(card(SetS a p)) = (p - 1) div 2"
+proof -
+  assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
+  then have "(p - 1) = 2 * int(card(SetS a p))"
+  proof -
+    have "p - 1 = int(card(Union (SetS a p)))"
+      by (auto simp add: prems MultInvPair_prop2 SRStar_card)
+    also have "... = int (setsum card (SetS a p))"
+      by (auto simp add: prems SetS_finite SetS_elems_finite
+                         MultInvPair_prop1c [of p a] card_Union_disjoint)
+    also have "... = int(setsum (%x.2) (SetS a p))"
+      using prems
+      by (auto simp add: SetS_elems_card SetS_finite SetS_elems_finite 
+        card_setsum_aux simp del: setsum_constant)
+    also have "... = 2 * int(card( SetS a p))"
+      by (auto simp add: prems SetS_finite setsum_const2)
+    finally show ?thesis .
+  qed
+  from this show ?thesis
+    by auto
+qed
+
+lemma SetS_setprod_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p));
+                              ~(QuadRes p a); x \<in> (SetS a p) |] ==> 
+                          [\<Prod>x = a] (mod p)"
+  apply (auto simp add: SetS_def MultInvPair_def)
+  apply (frule StandardRes_SRStar_prop1a)
+  apply (subgoal_tac "StandardRes p x \<noteq> StandardRes p (a * MultInv p x)")
+  apply (auto simp add: StandardRes_prop2 MultInvPair_distinct)
+  apply (frule_tac m = p and x = x and y = "(a * MultInv p x)" in 
+    StandardRes_prop4)
+  apply (subgoal_tac "[x * (a * MultInv p x) = a * (x * MultInv p x)] (mod p)")
+  apply (drule_tac a = "StandardRes p x * StandardRes p (a * MultInv p x)" and
+                   b = "x * (a * MultInv p x)" and
+                   c = "a * (x * MultInv p x)" in  zcong_trans, force)
+  apply (frule_tac p = p and x = x in MultInv_prop2, auto)
+apply (metis StandardRes_SRStar_prop3 mult_1_right mult_commute zcong_sym zcong_zmult_prop1)
+  apply (auto simp add: zmult_ac)
+  done
+
+lemma aux1: "[| 0 < x; (x::int) < a; x \<noteq> (a - 1) |] ==> x < a - 1"
+  by arith
+
+lemma aux2: "[| (a::int) < c; b < c |] ==> (a \<le> b | b \<le> a)"
+  by auto
+
+lemma SRStar_d22set_prop: "2 < p \<Longrightarrow> (SRStar p) = {1} \<union> (d22set (p - 1))"
+  apply (induct p rule: d22set.induct)
+  apply auto
+  apply (simp add: SRStar_def d22set.simps)
+  apply (simp add: SRStar_def d22set.simps, clarify)
+  apply (frule aux1)
+  apply (frule aux2, auto)
+  apply (simp_all add: SRStar_def)
+  apply (simp add: d22set.simps)
+  apply (frule d22set_le)
+  apply (frule d22set_g_1, auto)
+  done
+
+lemma Union_SetS_setprod_prop1: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
+                                 [\<Prod>(Union (SetS a p)) = a ^ nat ((p - 1) div 2)] (mod p)"
+proof -
+  assume "zprime p" and "2 < p" and  "~([a = 0] (mod p))" and "~(QuadRes p a)"
+  then have "[\<Prod>(Union (SetS a p)) = 
+      setprod (setprod (%x. x)) (SetS a p)] (mod p)"
+    by (auto simp add: SetS_finite SetS_elems_finite
+                       MultInvPair_prop1c setprod_Union_disjoint)
+  also have "[setprod (setprod (%x. x)) (SetS a p) = 
+      setprod (%x. a) (SetS a p)] (mod p)"
+    by (rule setprod_same_function_zcong)
+      (auto simp add: prems SetS_setprod_prop SetS_finite)
+  also (zcong_trans) have "[setprod (%x. a) (SetS a p) = 
+      a^(card (SetS a p))] (mod p)"
+    by (auto simp add: prems SetS_finite setprod_constant)
+  finally (zcong_trans) show ?thesis
+    apply (rule zcong_trans)
+    apply (subgoal_tac "card(SetS a p) = nat((p - 1) div 2)", auto)
+    apply (subgoal_tac "nat(int(card(SetS a p))) = nat((p - 1) div 2)", force)
+    apply (auto simp add: prems SetS_card)
+    done
+qed
+
+lemma Union_SetS_setprod_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)) |] ==> 
+                                    \<Prod>(Union (SetS a p)) = zfact (p - 1)"
+proof -
+  assume "zprime p" and "2 < p" and "~([a = 0](mod p))"
+  then have "\<Prod>(Union (SetS a p)) = \<Prod>(SRStar p)"
+    by (auto simp add: MultInvPair_prop2)
+  also have "... = \<Prod>({1} \<union> (d22set (p - 1)))"
+    by (auto simp add: prems SRStar_d22set_prop)
+  also have "... = zfact(p - 1)"
+  proof -
+    have "~(1 \<in> d22set (p - 1)) & finite( d22set (p - 1))"
+      by (metis d22set_fin d22set_g_1 linorder_neq_iff)
+    then have "\<Prod>({1} \<union> (d22set (p - 1))) = \<Prod>(d22set (p - 1))"
+      by auto
+    then show ?thesis
+      by (auto simp add: d22set_prod_zfact)
+  qed
+  finally show ?thesis .
+qed
+
+lemma zfact_prop: "[| zprime p; 2 < p; ~([a = 0] (mod p)); ~(QuadRes p a) |] ==>
+                   [zfact (p - 1) = a ^ nat ((p - 1) div 2)] (mod p)"
+  apply (frule Union_SetS_setprod_prop1) 
+  apply (auto simp add: Union_SetS_setprod_prop2)
+  done
+
+text {* \medskip Prove the first part of Euler's Criterion: *}
+
+lemma Euler_part1: "[| 2 < p; zprime p; ~([x = 0](mod p)); 
+    ~(QuadRes p x) |] ==> 
+      [x^(nat (((p) - 1) div 2)) = -1](mod p)"
+  by (metis Wilson_Russ number_of_is_id zcong_sym zcong_trans zfact_prop)
+
+text {* \medskip Prove another part of Euler Criterion: *}
+
+lemma aux_1: "0 < p ==> (a::int) ^ nat (p) = a * a ^ (nat (p) - 1)"
+proof -
+  assume "0 < p"
+  then have "a ^ (nat p) =  a ^ (1 + (nat p - 1))"
+    by (auto simp add: diff_add_assoc)
+  also have "... = (a ^ 1) * a ^ (nat(p) - 1)"
+    by (simp only: zpower_zadd_distrib)
+  also have "... = a * a ^ (nat(p) - 1)"
+    by auto
+  finally show ?thesis .
+qed
+
+lemma aux_2: "[| (2::int) < p; p \<in> zOdd |] ==> 0 < ((p - 1) div 2)"
+proof -
+  assume "2 < p" and "p \<in> zOdd"
+  then have "(p - 1):zEven"
+    by (auto simp add: zEven_def zOdd_def)
+  then have aux_1: "2 * ((p - 1) div 2) = (p - 1)"
+    by (auto simp add: even_div_2_prop2)
+  with `2 < p` have "1 < (p - 1)"
+    by auto
+  then have " 1 < (2 * ((p - 1) div 2))"
+    by (auto simp add: aux_1)
+  then have "0 < (2 * ((p - 1) div 2)) div 2"
+    by auto
+  then show ?thesis by auto
+qed
+
+lemma Euler_part2:
+    "[| 2 < p; zprime p; [a = 0] (mod p) |] ==> [0 = a ^ nat ((p - 1) div 2)] (mod p)"
+  apply (frule zprime_zOdd_eq_grt_2)
+  apply (frule aux_2, auto)
+  apply (frule_tac a = a in aux_1, auto)
+  apply (frule zcong_zmult_prop1, auto)
+  done
+
+text {* \medskip Prove the final part of Euler's Criterion: *}
+
+lemma aux__1: "[| ~([x = 0] (mod p)); [y ^ 2 = x] (mod p)|] ==> ~(p dvd y)"
+  by (metis dvdI power2_eq_square zcong_sym zcong_trans zcong_zero_equiv_div dvd_trans)
+
+lemma aux__2: "2 * nat((p - 1) div 2) =  nat (2 * ((p - 1) div 2))"
+  by (auto simp add: nat_mult_distrib)
+
+lemma Euler_part3: "[| 2 < p; zprime p; ~([x = 0](mod p)); QuadRes p x |] ==> 
+                      [x^(nat (((p) - 1) div 2)) = 1](mod p)"
+  apply (subgoal_tac "p \<in> zOdd")
+  apply (auto simp add: QuadRes_def)
+   prefer 2 
+   apply (metis number_of_is_id numeral_1_eq_1 zprime_zOdd_eq_grt_2)
+  apply (frule aux__1, auto)
+  apply (drule_tac z = "nat ((p - 1) div 2)" in zcong_zpower)
+  apply (auto simp add: zpower_zpower) 
+  apply (rule zcong_trans)
+  apply (auto simp add: zcong_sym [of "x ^ nat ((p - 1) div 2)"])
+  apply (metis Little_Fermat even_div_2_prop2 mult_Bit0 number_of_is_id odd_minus_one_even one_is_num_one zmult_1 aux__2)
+  done
+
+
+text {* \medskip Finally show Euler's Criterion: *}
+
+theorem Euler_Criterion: "[| 2 < p; zprime p |] ==> [(Legendre a p) =
+    a^(nat (((p) - 1) div 2))] (mod p)"
+  apply (auto simp add: Legendre_def Euler_part2)
+  apply (frule Euler_part3, auto simp add: zcong_sym)[]
+  apply (frule Euler_part1, auto simp add: zcong_sym)[]
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/EulerFermat.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,346 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Fermat's Little Theorem extended to Euler's Totient function *}
+
+theory EulerFermat
+imports BijectionRel IntFact
+begin
+
+text {*
+  Fermat's Little Theorem extended to Euler's Totient function. More
+  abstract approach than Boyer-Moore (which seems necessary to achieve
+  the extended version).
+*}
+
+
+subsection {* Definitions and lemmas *}
+
+inductive_set
+  RsetR :: "int => int set set"
+  for m :: int
+  where
+    empty [simp]: "{} \<in> RsetR m"
+  | insert: "A \<in> RsetR m ==> zgcd a m = 1 ==>
+      \<forall>a'. a' \<in> A --> \<not> zcong a a' m ==> insert a A \<in> RsetR m"
+
+consts
+  BnorRset :: "int * int => int set"
+
+recdef BnorRset
+  "measure ((\<lambda>(a, m). nat a) :: int * int => nat)"
+  "BnorRset (a, m) =
+   (if 0 < a then
+    let na = BnorRset (a - 1, m)
+    in (if zgcd a m = 1 then insert a na else na)
+    else {})"
+
+definition
+  norRRset :: "int => int set" where
+  "norRRset m = BnorRset (m - 1, m)"
+
+definition
+  noXRRset :: "int => int => int set" where
+  "noXRRset m x = (\<lambda>a. a * x) ` norRRset m"
+
+definition
+  phi :: "int => nat" where
+  "phi m = card (norRRset m)"
+
+definition
+  is_RRset :: "int set => int => bool" where
+  "is_RRset A m = (A \<in> RsetR m \<and> card A = phi m)"
+
+definition
+  RRset2norRR :: "int set => int => int => int" where
+  "RRset2norRR A m a =
+     (if 1 < m \<and> is_RRset A m \<and> a \<in> A then
+        SOME b. zcong a b m \<and> b \<in> norRRset m
+      else 0)"
+
+definition
+  zcongm :: "int => int => int => bool" where
+  "zcongm m = (\<lambda>a b. zcong a b m)"
+
+lemma abs_eq_1_iff [iff]: "(abs z = (1::int)) = (z = 1 \<or> z = -1)"
+  -- {* LCP: not sure why this lemma is needed now *}
+  by (auto simp add: abs_if)
+
+
+text {* \medskip @{text norRRset} *}
+
+declare BnorRset.simps [simp del]
+
+lemma BnorRset_induct:
+  assumes "!!a m. P {} a m"
+    and "!!a m. 0 < (a::int) ==> P (BnorRset (a - 1, m::int)) (a - 1) m
+      ==> P (BnorRset(a,m)) a m"
+  shows "P (BnorRset(u,v)) u v"
+  apply (rule BnorRset.induct)
+  apply safe
+   apply (case_tac [2] "0 < a")
+    apply (rule_tac [2] prems)
+     apply simp_all
+   apply (simp_all add: BnorRset.simps prems)
+  done
+
+lemma Bnor_mem_zle [rule_format]: "b \<in> BnorRset (a, m) \<longrightarrow> b \<le> a"
+  apply (induct a m rule: BnorRset_induct)
+   apply simp
+  apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_mem_zle_swap: "a < b ==> b \<notin> BnorRset (a, m)"
+  by (auto dest: Bnor_mem_zle)
+
+lemma Bnor_mem_zg [rule_format]: "b \<in> BnorRset (a, m) --> 0 < b"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_mem_if [rule_format]:
+    "zgcd b m = 1 --> 0 < b --> b \<le> a --> b \<in> BnorRset (a, m)"
+  apply (induct a m rule: BnorRset.induct, auto)
+   apply (subst BnorRset.simps)
+   defer
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma Bnor_in_RsetR [rule_format]: "a < m --> BnorRset (a, m) \<in> RsetR m"
+  apply (induct a m rule: BnorRset_induct, simp)
+  apply (subst BnorRset.simps)
+  apply (unfold Let_def, auto)
+  apply (rule RsetR.insert)
+    apply (rule_tac [3] allI)
+    apply (rule_tac [3] impI)
+    apply (rule_tac [3] zcong_not)
+       apply (subgoal_tac [6] "a' \<le> a - 1")
+        apply (rule_tac [7] Bnor_mem_zle)
+        apply (rule_tac [5] Bnor_mem_zg, auto)
+  done
+
+lemma Bnor_fin: "finite (BnorRset (a, m))"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma norR_mem_unique_aux: "a \<le> b - 1 ==> a < (b::int)"
+  apply auto
+  done
+
+lemma norR_mem_unique:
+  "1 < m ==>
+    zgcd a m = 1 ==> \<exists>!b. [a = b] (mod m) \<and> b \<in> norRRset m"
+  apply (unfold norRRset_def)
+  apply (cut_tac a = a and m = m in zcong_zless_unique, auto)
+   apply (rule_tac [2] m = m in zcong_zless_imp_eq)
+       apply (auto intro: Bnor_mem_zle Bnor_mem_zg zcong_trans
+	 order_less_imp_le norR_mem_unique_aux simp add: zcong_sym)
+  apply (rule_tac x = b in exI, safe)
+  apply (rule Bnor_mem_if)
+    apply (case_tac [2] "b = 0")
+     apply (auto intro: order_less_le [THEN iffD2])
+   prefer 2
+   apply (simp only: zcong_def)
+   apply (subgoal_tac "zgcd a m = m")
+    prefer 2
+    apply (subst zdvd_iff_zgcd [symmetric])
+     apply (rule_tac [4] zgcd_zcong_zgcd)
+       apply (simp_all add: zcong_sym)
+  done
+
+
+text {* \medskip @{term noXRRset} *}
+
+lemma RRset_gcd [rule_format]:
+    "is_RRset A m ==> a \<in> A --> zgcd a m = 1"
+  apply (unfold is_RRset_def)
+  apply (rule RsetR.induct [where P="%A. a \<in> A --> zgcd a m = 1"], auto)
+  done
+
+lemma RsetR_zmult_mono:
+  "A \<in> RsetR m ==>
+    0 < m ==> zgcd x m = 1 ==> (\<lambda>a. a * x) ` A \<in> RsetR m"
+  apply (erule RsetR.induct, simp_all)
+  apply (rule RsetR.insert, auto)
+   apply (blast intro: zgcd_zgcd_zmult)
+  apply (simp add: zcong_cancel)
+  done
+
+lemma card_nor_eq_noX:
+  "0 < m ==>
+    zgcd x m = 1 ==> card (noXRRset m x) = card (norRRset m)"
+  apply (unfold norRRset_def noXRRset_def)
+  apply (rule card_image)
+   apply (auto simp add: inj_on_def Bnor_fin)
+  apply (simp add: BnorRset.simps)
+  done
+
+lemma noX_is_RRset:
+    "0 < m ==> zgcd x m = 1 ==> is_RRset (noXRRset m x) m"
+  apply (unfold is_RRset_def phi_def)
+  apply (auto simp add: card_nor_eq_noX)
+  apply (unfold noXRRset_def norRRset_def)
+  apply (rule RsetR_zmult_mono)
+    apply (rule Bnor_in_RsetR, simp_all)
+  done
+
+lemma aux_some:
+  "1 < m ==> is_RRset A m ==> a \<in> A
+    ==> zcong a (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) m \<and>
+      (SOME b. [a = b] (mod m) \<and> b \<in> norRRset m) \<in> norRRset m"
+  apply (rule norR_mem_unique [THEN ex1_implies_ex, THEN someI_ex])
+   apply (rule_tac [2] RRset_gcd, simp_all)
+  done
+
+lemma RRset2norRR_correct:
+  "1 < m ==> is_RRset A m ==> a \<in> A ==>
+    [a = RRset2norRR A m a] (mod m) \<and> RRset2norRR A m a \<in> norRRset m"
+  apply (unfold RRset2norRR_def, simp)
+  apply (rule aux_some, simp_all)
+  done
+
+lemmas RRset2norRR_correct1 =
+  RRset2norRR_correct [THEN conjunct1, standard]
+lemmas RRset2norRR_correct2 =
+  RRset2norRR_correct [THEN conjunct2, standard]
+
+lemma RsetR_fin: "A \<in> RsetR m ==> finite A"
+  by (induct set: RsetR) auto
+
+lemma RRset_zcong_eq [rule_format]:
+  "1 < m ==>
+    is_RRset A m ==> [a = b] (mod m) ==> a \<in> A --> b \<in> A --> a = b"
+  apply (unfold is_RRset_def)
+  apply (rule RsetR.induct [where P="%A. a \<in> A --> b \<in> A --> a = b"])
+    apply (auto simp add: zcong_sym)
+  done
+
+lemma aux:
+  "P (SOME a. P a) ==> Q (SOME a. Q a) ==>
+    (SOME a. P a) = (SOME a. Q a) ==> \<exists>a. P a \<and> Q a"
+  apply auto
+  done
+
+lemma RRset2norRR_inj:
+    "1 < m ==> is_RRset A m ==> inj_on (RRset2norRR A m) A"
+  apply (unfold RRset2norRR_def inj_on_def, auto)
+  apply (subgoal_tac "\<exists>b. ([x = b] (mod m) \<and> b \<in> norRRset m) \<and>
+      ([y = b] (mod m) \<and> b \<in> norRRset m)")
+   apply (rule_tac [2] aux)
+     apply (rule_tac [3] aux_some)
+       apply (rule_tac [2] aux_some)
+         apply (rule RRset_zcong_eq, auto)
+  apply (rule_tac b = b in zcong_trans)
+   apply (simp_all add: zcong_sym)
+  done
+
+lemma RRset2norRR_eq_norR:
+    "1 < m ==> is_RRset A m ==> RRset2norRR A m ` A = norRRset m"
+  apply (rule card_seteq)
+    prefer 3
+    apply (subst card_image)
+      apply (rule_tac RRset2norRR_inj, auto)
+     apply (rule_tac [3] RRset2norRR_correct2, auto)
+    apply (unfold is_RRset_def phi_def norRRset_def)
+    apply (auto simp add: Bnor_fin)
+  done
+
+
+lemma Bnor_prod_power_aux: "a \<notin> A ==> inj f ==> f a \<notin> f ` A"
+by (unfold inj_on_def, auto)
+
+lemma Bnor_prod_power [rule_format]:
+  "x \<noteq> 0 ==> a < m --> \<Prod>((\<lambda>a. a * x) ` BnorRset (a, m)) =
+      \<Prod>(BnorRset(a, m)) * x^card (BnorRset (a, m))"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (simplesubst BnorRset.simps)  --{*multiple redexes*}
+   apply (unfold Let_def, auto)
+  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
+  apply (subst setprod_insert)
+    apply (rule_tac [2] Bnor_prod_power_aux)
+     apply (unfold inj_on_def)
+     apply (simp_all add: zmult_ac Bnor_fin finite_imageI
+       Bnor_mem_zle_swap)
+  done
+
+
+subsection {* Fermat *}
+
+lemma bijzcong_zcong_prod:
+    "(A, B) \<in> bijR (zcongm m) ==> [\<Prod>A = \<Prod>B] (mod m)"
+  apply (unfold zcongm_def)
+  apply (erule bijR.induct)
+   apply (subgoal_tac [2] "a \<notin> A \<and> b \<notin> B \<and> finite A \<and> finite B")
+    apply (auto intro: fin_bijRl fin_bijRr zcong_zmult)
+  done
+
+lemma Bnor_prod_zgcd [rule_format]:
+    "a < m --> zgcd (\<Prod>(BnorRset(a, m))) m = 1"
+  apply (induct a m rule: BnorRset_induct)
+   prefer 2
+   apply (subst BnorRset.simps)
+   apply (unfold Let_def, auto)
+  apply (simp add: Bnor_fin Bnor_mem_zle_swap)
+  apply (blast intro: zgcd_zgcd_zmult)
+  done
+
+theorem Euler_Fermat:
+    "0 < m ==> zgcd x m = 1 ==> [x^(phi m) = 1] (mod m)"
+  apply (unfold norRRset_def phi_def)
+  apply (case_tac "x = 0")
+   apply (case_tac [2] "m = 1")
+    apply (rule_tac [3] iffD1)
+     apply (rule_tac [3] k = "\<Prod>(BnorRset(m - 1, m))"
+       in zcong_cancel2)
+      prefer 5
+      apply (subst Bnor_prod_power [symmetric])
+        apply (rule_tac [7] Bnor_prod_zgcd, simp_all)
+  apply (rule bijzcong_zcong_prod)
+  apply (fold norRRset_def noXRRset_def)
+  apply (subst RRset2norRR_eq_norR [symmetric])
+    apply (rule_tac [3] inj_func_bijR, auto)
+     apply (unfold zcongm_def)
+     apply (rule_tac [2] RRset2norRR_correct1)
+       apply (rule_tac [5] RRset2norRR_inj)
+        apply (auto intro: order_less_le [THEN iffD2]
+	   simp add: noX_is_RRset)
+  apply (unfold noXRRset_def norRRset_def)
+  apply (rule finite_imageI)
+  apply (rule Bnor_fin)
+  done
+
+lemma Bnor_prime:
+  "\<lbrakk> zprime p; a < p \<rbrakk> \<Longrightarrow> card (BnorRset (a, p)) = nat a"
+  apply (induct a p rule: BnorRset.induct)
+  apply (subst BnorRset.simps)
+  apply (unfold Let_def, auto simp add:zless_zprime_imp_zrelprime)
+  apply (subgoal_tac "finite (BnorRset (a - 1,m))")
+   apply (subgoal_tac "a ~: BnorRset (a - 1,m)")
+    apply (auto simp add: card_insert_disjoint Suc_nat_eq_nat_zadd1)
+   apply (frule Bnor_mem_zle, arith)
+  apply (frule Bnor_fin)
+  done
+
+lemma phi_prime: "zprime p ==> phi p = nat (p - 1)"
+  apply (unfold phi_def norRRset_def)
+  apply (rule Bnor_prime, auto)
+  done
+
+theorem Little_Fermat:
+    "zprime p ==> \<not> p dvd x ==> [x^(nat (p - 1)) = 1] (mod p)"
+  apply (subst phi_prime [symmetric])
+   apply (rule_tac [2] Euler_Fermat)
+    apply (erule_tac [3] zprime_imp_zrelprime)
+    apply (unfold zprime_def, auto)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/EvenOdd.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,256 @@
+(*  Title:      HOL/Quadratic_Reciprocity/EvenOdd.thy
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {*Parity: Even and Odd Integers*}
+
+theory EvenOdd
+imports Int2
+begin
+
+definition
+  zOdd    :: "int set" where
+  "zOdd = {x. \<exists>k. x = 2 * k + 1}"
+
+definition
+  zEven   :: "int set" where
+  "zEven = {x. \<exists>k. x = 2 * k}"
+
+subsection {* Some useful properties about even and odd *}
+
+lemma zOddI [intro?]: "x = 2 * k + 1 \<Longrightarrow> x \<in> zOdd"
+  and zOddE [elim?]: "x \<in> zOdd \<Longrightarrow> (!!k. x = 2 * k + 1 \<Longrightarrow> C) \<Longrightarrow> C"
+  by (auto simp add: zOdd_def)
+
+lemma zEvenI [intro?]: "x = 2 * k \<Longrightarrow> x \<in> zEven"
+  and zEvenE [elim?]: "x \<in> zEven \<Longrightarrow> (!!k. x = 2 * k \<Longrightarrow> C) \<Longrightarrow> C"
+  by (auto simp add: zEven_def)
+
+lemma one_not_even: "~(1 \<in> zEven)"
+proof
+  assume "1 \<in> zEven"
+  then obtain k :: int where "1 = 2 * k" ..
+  then show False by arith
+qed
+
+lemma even_odd_conj: "~(x \<in> zOdd & x \<in> zEven)"
+proof -
+  {
+    fix a b
+    assume "2 * (a::int) = 2 * (b::int) + 1"
+    then have "2 * (a::int) - 2 * (b :: int) = 1"
+      by arith
+    then have "2 * (a - b) = 1"
+      by (auto simp add: zdiff_zmult_distrib)
+    moreover have "(2 * (a - b)):zEven"
+      by (auto simp only: zEven_def)
+    ultimately have False
+      by (auto simp add: one_not_even)
+  }
+  then show ?thesis
+    by (auto simp add: zOdd_def zEven_def)
+qed
+
+lemma even_odd_disj: "(x \<in> zOdd | x \<in> zEven)"
+  by (simp add: zOdd_def zEven_def) arith
+
+lemma not_odd_impl_even: "~(x \<in> zOdd) ==> x \<in> zEven"
+  using even_odd_disj by auto
+
+lemma odd_mult_odd_prop: "(x*y):zOdd ==> x \<in> zOdd"
+proof (rule classical)
+  assume "\<not> ?thesis"
+  then have "x \<in> zEven" by (rule not_odd_impl_even)
+  then obtain a where a: "x = 2 * a" ..
+  assume "x * y : zOdd"
+  then obtain b where "x * y = 2 * b + 1" ..
+  with a have "2 * a * y = 2 * b + 1" by simp
+  then have "2 * a * y - 2 * b = 1"
+    by arith
+  then have "2 * (a * y - b) = 1"
+    by (auto simp add: zdiff_zmult_distrib)
+  moreover have "(2 * (a * y - b)):zEven"
+    by (auto simp only: zEven_def)
+  ultimately have False
+    by (auto simp add: one_not_even)
+  then show ?thesis ..
+qed
+
+lemma odd_minus_one_even: "x \<in> zOdd ==> (x - 1):zEven"
+  by (auto simp add: zOdd_def zEven_def)
+
+lemma even_div_2_prop1: "x \<in> zEven ==> (x mod 2) = 0"
+  by (auto simp add: zEven_def)
+
+lemma even_div_2_prop2: "x \<in> zEven ==> (2 * (x div 2)) = x"
+  by (auto simp add: zEven_def)
+
+lemma even_plus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x + y \<in> zEven"
+  apply (auto simp add: zEven_def)
+  apply (auto simp only: zadd_zmult_distrib2 [symmetric])
+  done
+
+lemma even_times_either: "x \<in> zEven ==> x * y \<in> zEven"
+  by (auto simp add: zEven_def)
+
+lemma even_minus_even: "[| x \<in> zEven; y \<in> zEven |] ==> x - y \<in> zEven"
+  apply (auto simp add: zEven_def)
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
+
+lemma odd_minus_odd: "[| x \<in> zOdd; y \<in> zOdd |] ==> x - y \<in> zEven"
+  apply (auto simp add: zOdd_def zEven_def)
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
+
+lemma even_minus_odd: "[| x \<in> zEven; y \<in> zOdd |] ==> x - y \<in> zOdd"
+  apply (auto simp add: zOdd_def zEven_def)
+  apply (rule_tac x = "k - ka - 1" in exI)
+  apply auto
+  done
+
+lemma odd_minus_even: "[| x \<in> zOdd; y \<in> zEven |] ==> x - y \<in> zOdd"
+  apply (auto simp add: zOdd_def zEven_def)
+  apply (auto simp only: zdiff_zmult_distrib2 [symmetric])
+  done
+
+lemma odd_times_odd: "[| x \<in> zOdd;  y \<in> zOdd |] ==> x * y \<in> zOdd"
+  apply (auto simp add: zOdd_def zadd_zmult_distrib zadd_zmult_distrib2)
+  apply (rule_tac x = "2 * ka * k + ka + k" in exI)
+  apply (auto simp add: zadd_zmult_distrib)
+  done
+
+lemma odd_iff_not_even: "(x \<in> zOdd) = (~ (x \<in> zEven))"
+  using even_odd_conj even_odd_disj by auto
+
+lemma even_product: "x * y \<in> zEven ==> x \<in> zEven | y \<in> zEven"
+  using odd_iff_not_even odd_times_odd by auto
+
+lemma even_diff: "x - y \<in> zEven = ((x \<in> zEven) = (y \<in> zEven))"
+proof
+  assume xy: "x - y \<in> zEven"
+  {
+    assume x: "x \<in> zEven"
+    have "y \<in> zEven"
+    proof (rule classical)
+      assume "\<not> ?thesis"
+      then have "y \<in> zOdd"
+        by (simp add: odd_iff_not_even)
+      with x have "x - y \<in> zOdd"
+        by (simp add: even_minus_odd)
+      with xy have False
+        by (auto simp add: odd_iff_not_even)
+      then show ?thesis ..
+    qed
+  } moreover {
+    assume y: "y \<in> zEven"
+    have "x \<in> zEven"
+    proof (rule classical)
+      assume "\<not> ?thesis"
+      then have "x \<in> zOdd"
+        by (auto simp add: odd_iff_not_even)
+      with y have "x - y \<in> zOdd"
+        by (simp add: odd_minus_even)
+      with xy have False
+        by (auto simp add: odd_iff_not_even)
+      then show ?thesis ..
+    qed
+  }
+  ultimately show "(x \<in> zEven) = (y \<in> zEven)"
+    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
+      even_minus_odd odd_minus_even)
+next
+  assume "(x \<in> zEven) = (y \<in> zEven)"
+  then show "x - y \<in> zEven"
+    by (auto simp add: odd_iff_not_even even_minus_even odd_minus_odd
+      even_minus_odd odd_minus_even)
+qed
+
+lemma neg_one_even_power: "[| x \<in> zEven; 0 \<le> x |] ==> (-1::int)^(nat x) = 1"
+proof -
+  assume "x \<in> zEven" and "0 \<le> x"
+  from `x \<in> zEven` obtain a where "x = 2 * a" ..
+  with `0 \<le> x` have "0 \<le> a" by simp
+  from `0 \<le> x` and `x = 2 * a` have "nat x = nat (2 * a)"
+    by simp
+  also from `x = 2 * a` have "nat (2 * a) = 2 * nat a"
+    by (simp add: nat_mult_distrib)
+  finally have "(-1::int)^nat x = (-1)^(2 * nat a)"
+    by simp
+  also have "... = ((-1::int)^2)^ (nat a)"
+    by (simp add: zpower_zpower [symmetric])
+  also have "(-1::int)^2 = 1"
+    by simp
+  finally show ?thesis
+    by simp
+qed
+
+lemma neg_one_odd_power: "[| x \<in> zOdd; 0 \<le> x |] ==> (-1::int)^(nat x) = -1"
+proof -
+  assume "x \<in> zOdd" and "0 \<le> x"
+  from `x \<in> zOdd` obtain a where "x = 2 * a + 1" ..
+  with `0 \<le> x` have a: "0 \<le> a" by simp
+  with `0 \<le> x` and `x = 2 * a + 1` have "nat x = nat (2 * a + 1)"
+    by simp
+  also from a have "nat (2 * a + 1) = 2 * nat a + 1"
+    by (auto simp add: nat_mult_distrib nat_add_distrib)
+  finally have "(-1::int)^nat x = (-1)^(2 * nat a + 1)"
+    by simp
+  also have "... = ((-1::int)^2)^ (nat a) * (-1)^1"
+    by (auto simp add: zpower_zpower [symmetric] zpower_zadd_distrib)
+  also have "(-1::int)^2 = 1"
+    by simp
+  finally show ?thesis
+    by simp
+qed
+
+lemma neg_one_power_parity: "[| 0 \<le> x; 0 \<le> y; (x \<in> zEven) = (y \<in> zEven) |] ==>
+    (-1::int)^(nat x) = (-1::int)^(nat y)"
+  using even_odd_disj [of x] even_odd_disj [of y]
+  by (auto simp add: neg_one_even_power neg_one_odd_power)
+
+
+lemma one_not_neg_one_mod_m: "2 < m ==> ~([1 = -1] (mod m))"
+  by (auto simp add: zcong_def zdvd_not_zless)
+
+lemma even_div_2_l: "[| y \<in> zEven; x < y |] ==> x div 2 < y div 2"
+proof -
+  assume "y \<in> zEven" and "x < y"
+  from `y \<in> zEven` obtain k where k: "y = 2 * k" ..
+  with `x < y` have "x < 2 * k" by simp
+  then have "x div 2 < k" by (auto simp add: div_prop1)
+  also have "k = (2 * k) div 2" by simp
+  finally have "x div 2 < 2 * k div 2" by simp
+  with k show ?thesis by simp
+qed
+
+lemma even_sum_div_2: "[| x \<in> zEven; y \<in> zEven |] ==> (x + y) div 2 = x div 2 + y div 2"
+  by (auto simp add: zEven_def)
+
+lemma even_prod_div_2: "[| x \<in> zEven |] ==> (x * y) div 2 = (x div 2) * y"
+  by (auto simp add: zEven_def)
+
+(* An odd prime is greater than 2 *)
+
+lemma zprime_zOdd_eq_grt_2: "zprime p ==> (p \<in> zOdd) = (2 < p)"
+  apply (auto simp add: zOdd_def zprime_def)
+  apply (drule_tac x = 2 in allE)
+  using odd_iff_not_even [of p]
+  apply (auto simp add: zOdd_def zEven_def)
+  done
+
+(* Powers of -1 and parity *)
+
+lemma neg_one_special: "finite A ==>
+    ((-1 :: int) ^ card A) * (-1 ^ card A) = 1"
+  by (induct set: finite) auto
+
+lemma neg_one_power: "(-1::int)^n = 1 | (-1::int)^n = -1"
+  by (induct n) auto
+
+lemma neg_one_power_eq_mod_m: "[| 2 < m; [(-1::int)^j = (-1::int)^k] (mod m) |]
+    ==> ((-1::int)^j = (-1::int)^k)"
+  using neg_one_power [of j] and ListMem.insert neg_one_power [of k]
+  by (auto simp add: one_not_neg_one_mod_m zcong_sym)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Factorization.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,339 @@
+(*  Author:     Thomas Marthedal Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Fundamental Theorem of Arithmetic (unique factorization into primes) *}
+
+theory Factorization
+imports Main "~~/src/HOL/Old_Number_Theory/Primes" Permutation
+begin
+
+
+subsection {* Definitions *}
+
+definition
+  primel :: "nat list => bool" where
+  "primel xs = (\<forall>p \<in> set xs. prime p)"
+
+consts
+  nondec :: "nat list => bool "
+  prod :: "nat list => nat"
+  oinsert :: "nat => nat list => nat list"
+  sort :: "nat list => nat list"
+
+primrec
+  "nondec [] = True"
+  "nondec (x # xs) = (case xs of [] => True | y # ys => x \<le> y \<and> nondec xs)"
+
+primrec
+  "prod [] = Suc 0"
+  "prod (x # xs) = x * prod xs"
+
+primrec
+  "oinsert x [] = [x]"
+  "oinsert x (y # ys) = (if x \<le> y then x # y # ys else y # oinsert x ys)"
+
+primrec
+  "sort [] = []"
+  "sort (x # xs) = oinsert x (sort xs)"
+
+
+subsection {* Arithmetic *}
+
+lemma one_less_m: "(m::nat) \<noteq> m * k ==> m \<noteq> Suc 0 ==> Suc 0 < m"
+  apply (cases m)
+   apply auto
+  done
+
+lemma one_less_k: "(m::nat) \<noteq> m * k ==> Suc 0 < m * k ==> Suc 0 < k"
+  apply (cases k)
+   apply auto
+  done
+
+lemma mult_left_cancel: "(0::nat) < k ==> k * n = k * m ==> n = m"
+  apply auto
+  done
+
+lemma mn_eq_m_one: "(0::nat) < m ==> m * n = m ==> n = Suc 0"
+  apply (cases n)
+   apply auto
+  done
+
+lemma prod_mn_less_k:
+    "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k"
+  apply (induct m)
+   apply auto
+  done
+
+
+subsection {* Prime list and product *}
+
+lemma prod_append: "prod (xs @ ys) = prod xs * prod ys"
+  apply (induct xs)
+   apply (simp_all add: mult_assoc)
+  done
+
+lemma prod_xy_prod:
+    "prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys"
+  apply auto
+  done
+
+lemma primel_append: "primel (xs @ ys) = (primel xs \<and> primel ys)"
+  apply (unfold primel_def)
+  apply auto
+  done
+
+lemma prime_primel: "prime n ==> primel [n] \<and> prod [n] = n"
+  apply (unfold primel_def)
+  apply auto
+  done
+
+lemma prime_nd_one: "prime p ==> \<not> p dvd Suc 0"
+  apply (unfold prime_def dvd_def)
+  apply auto
+  done
+
+lemma hd_dvd_prod: "prod (x # xs) = prod ys ==> x dvd (prod ys)" 
+  by (metis dvd_mult_left dvd_refl prod.simps(2))
+
+lemma primel_tl: "primel (x # xs) ==> primel xs"
+  apply (unfold primel_def)
+  apply auto
+  done
+
+lemma primel_hd_tl: "(primel (x # xs)) = (prime x \<and> primel xs)"
+  apply (unfold primel_def)
+  apply auto
+  done
+
+lemma primes_eq: "prime p ==> prime q ==> p dvd q ==> p = q"
+  apply (unfold prime_def)
+  apply auto
+  done
+
+lemma primel_one_empty: "primel xs ==> prod xs = Suc 0 ==> xs = []"
+  apply (cases xs)
+   apply (simp_all add: primel_def prime_def)
+  done
+
+lemma prime_g_one: "prime p ==> Suc 0 < p"
+  apply (unfold prime_def)
+  apply auto
+  done
+
+lemma prime_g_zero: "prime p ==> 0 < p"
+  apply (unfold prime_def)
+  apply auto
+  done
+
+lemma primel_nempty_g_one:
+    "primel xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> Suc 0 < prod xs"
+  apply (induct xs)
+   apply simp
+  apply (fastsimp simp: primel_def prime_def elim: one_less_mult)
+  done
+
+lemma primel_prod_gz: "primel xs ==> 0 < prod xs"
+  apply (induct xs)
+   apply (auto simp: primel_def prime_def)
+  done
+
+
+subsection {* Sorting *}
+
+lemma nondec_oinsert: "nondec xs \<Longrightarrow> nondec (oinsert x xs)"
+  apply (induct xs)
+   apply simp
+   apply (case_tac xs)
+    apply (simp_all cong del: list.weak_case_cong)
+  done
+
+lemma nondec_sort: "nondec (sort xs)"
+  apply (induct xs)
+   apply simp_all
+  apply (erule nondec_oinsert)
+  done
+
+lemma x_less_y_oinsert: "x \<le> y ==> l = y # ys ==> x # l = oinsert x l"
+  apply simp_all
+  done
+
+lemma nondec_sort_eq [rule_format]: "nondec xs \<longrightarrow> xs = sort xs"
+  apply (induct xs)
+   apply safe
+    apply simp_all
+   apply (case_tac xs)
+    apply simp_all
+  apply (case_tac xs)
+   apply simp
+  apply (rule_tac y = aa and ys = list in x_less_y_oinsert)
+   apply simp_all
+  done
+
+lemma oinsert_x_y: "oinsert x (oinsert y l) = oinsert y (oinsert x l)"
+  apply (induct l)
+  apply auto
+  done
+
+
+subsection {* Permutation *}
+
+lemma perm_primel [rule_format]: "xs <~~> ys ==> primel xs --> primel ys"
+  apply (unfold primel_def)
+  apply (induct set: perm)
+     apply simp
+    apply simp
+   apply (simp (no_asm))
+   apply blast
+  apply blast
+  done
+
+lemma perm_prod: "xs <~~> ys ==> prod xs = prod ys"
+  apply (induct set: perm)
+     apply (simp_all add: mult_ac)
+  done
+
+lemma perm_subst_oinsert: "xs <~~> ys ==> oinsert a xs <~~> oinsert a ys"
+  apply (induct set: perm)
+     apply auto
+  done
+
+lemma perm_oinsert: "x # xs <~~> oinsert x xs"
+  apply (induct xs)
+   apply auto
+  done
+
+lemma perm_sort: "xs <~~> sort xs"
+  apply (induct xs)
+  apply (auto intro: perm_oinsert elim: perm_subst_oinsert)
+  done
+
+lemma perm_sort_eq: "xs <~~> ys ==> sort xs = sort ys"
+  apply (induct set: perm)
+     apply (simp_all add: oinsert_x_y)
+  done
+
+
+subsection {* Existence *}
+
+lemma ex_nondec_lemma:
+    "primel xs ==> \<exists>ys. primel ys \<and> nondec ys \<and> prod ys = prod xs"
+  apply (blast intro: nondec_sort perm_prod perm_primel perm_sort perm_sym)
+  done
+
+lemma not_prime_ex_mk:
+  "Suc 0 < n \<and> \<not> prime n ==>
+    \<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k"
+  apply (unfold prime_def dvd_def)
+  apply (auto intro: n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k)
+  done
+
+lemma split_primel:
+  "primel xs \<Longrightarrow> primel ys \<Longrightarrow> \<exists>l. primel l \<and> prod l = prod xs * prod ys"
+  apply (rule exI)
+  apply safe
+   apply (rule_tac [2] prod_append)
+  apply (simp add: primel_append)
+  done
+
+lemma factor_exists [rule_format]: "Suc 0 < n --> (\<exists>l. primel l \<and> prod l = n)"
+  apply (induct n rule: nat_less_induct)
+  apply (rule impI)
+  apply (case_tac "prime n")
+   apply (rule exI)
+   apply (erule prime_primel)
+  apply (cut_tac n = n in not_prime_ex_mk)
+   apply (auto intro!: split_primel)
+  done
+
+lemma nondec_factor_exists: "Suc 0 < n ==> \<exists>l. primel l \<and> nondec l \<and> prod l = n"
+  apply (erule factor_exists [THEN exE])
+  apply (blast intro!: ex_nondec_lemma)
+  done
+
+
+subsection {* Uniqueness *}
+
+lemma prime_dvd_mult_list [rule_format]:
+    "prime p ==> p dvd (prod xs) --> (\<exists>m. m:set xs \<and> p dvd m)"
+  apply (induct xs)
+   apply (force simp add: prime_def)
+   apply (force dest: prime_dvd_mult)
+  done
+
+lemma hd_xs_dvd_prod:
+  "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys
+    ==> \<exists>m. m \<in> set ys \<and> x dvd m"
+  apply (rule prime_dvd_mult_list)
+   apply (simp add: primel_hd_tl)
+  apply (erule hd_dvd_prod)
+  done
+
+lemma prime_dvd_eq: "primel (x # xs) ==> primel ys ==> m \<in> set ys ==> x dvd m ==> x = m"
+  apply (rule primes_eq)
+    apply (auto simp add: primel_def primel_hd_tl)
+  done
+
+lemma hd_xs_eq_prod:
+  "primel (x # xs) ==>
+    primel ys ==> prod (x # xs) = prod ys ==> x \<in> set ys"
+  apply (frule hd_xs_dvd_prod)
+    apply auto
+  apply (drule prime_dvd_eq)
+     apply auto
+  done
+
+lemma perm_primel_ex:
+  "primel (x # xs) ==>
+    primel ys ==> prod (x # xs) = prod ys ==> \<exists>l. ys <~~> (x # l)"
+  apply (rule exI)
+  apply (rule perm_remove)
+  apply (erule hd_xs_eq_prod)
+   apply simp_all
+  done
+
+lemma primel_prod_less:
+  "primel (x # xs) ==>
+    primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys"
+  by (metis less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff
+    nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2))
+
+lemma prod_one_empty:
+    "primel xs ==> p * prod xs = p ==> prime p ==> xs = []"
+  apply (auto intro: primel_one_empty simp add: prime_def)
+  done
+
+lemma uniq_ex_aux:
+  "\<forall>m. m < prod ys --> (\<forall>xs ys. primel xs \<and> primel ys \<and>
+      prod xs = prod ys \<and> prod xs = m --> xs <~~> ys) ==>
+    primel list ==> primel x ==> prod list = prod x ==> prod x < prod ys
+    ==> x <~~> list"
+  apply simp
+  done
+
+lemma factor_unique [rule_format]:
+  "\<forall>xs ys. primel xs \<and> primel ys \<and> prod xs = prod ys \<and> prod xs = n
+    --> xs <~~> ys"
+  apply (induct n rule: nat_less_induct)
+  apply safe
+  apply (case_tac xs)
+   apply (force intro: primel_one_empty)
+  apply (rule perm_primel_ex [THEN exE])
+     apply simp_all
+  apply (rule perm.trans [THEN perm_sym])
+  apply assumption
+  apply (rule perm.Cons)
+  apply (case_tac "x = []")
+   apply (metis perm_prod perm_refl prime_primel primel_hd_tl primel_tl prod_one_empty)
+  apply (metis nat_0_less_mult_iff nat_mult_eq_cancel1 perm_primel perm_prod primel_prod_gz primel_prod_less primel_tl prod.simps(2))
+  done
+
+lemma perm_nondec_unique:
+    "xs <~~> ys ==> nondec xs ==> nondec ys ==> xs = ys"
+  by (metis nondec_sort_eq perm_sort_eq)
+
+theorem unique_prime_factorization [rule_format]:
+    "\<forall>n. Suc 0 < n --> (\<exists>!l. primel l \<and> nondec l \<and> prod l = n)"
+  by (metis factor_unique nondec_factor_exists perm_nondec_unique)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Fib.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,150 @@
+(*  ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+*)
+
+header {* The Fibonacci function *}
+
+theory Fib
+imports Primes
+begin
+
+text {*
+  Fibonacci numbers: proofs of laws taken from:
+  R. L. Graham, D. E. Knuth, O. Patashnik.  Concrete Mathematics.
+  (Addison-Wesley, 1989)
+
+  \bigskip
+*}
+
+fun fib :: "nat \<Rightarrow> nat"
+where
+         "fib 0 = 0"
+|        "fib (Suc 0) = 1"
+| fib_2: "fib (Suc (Suc n)) = fib n + fib (Suc n)"
+
+text {*
+  \medskip The difficulty in these proofs is to ensure that the
+  induction hypotheses are applied before the definition of @{term
+  fib}.  Towards this end, the @{term fib} equations are not declared
+  to the Simplifier and are applied very selectively at first.
+*}
+
+text{*We disable @{text fib.fib_2fib_2} for simplification ...*}
+declare fib_2 [simp del]
+
+text{*...then prove a version that has a more restrictive pattern.*}
+lemma fib_Suc3: "fib (Suc (Suc (Suc n))) = fib (Suc n) + fib (Suc (Suc n))"
+  by (rule fib_2)
+
+text {* \medskip Concrete Mathematics, page 280 *}
+
+lemma fib_add: "fib (Suc (n + k)) = fib (Suc k) * fib (Suc n) + fib k * fib n"
+proof (induct n rule: fib.induct)
+  case 1 show ?case by simp
+next
+  case 2 show ?case  by (simp add: fib_2)
+next
+  case 3 thus ?case by (simp add: fib_2 add_mult_distrib2)
+qed
+
+lemma fib_Suc_neq_0: "fib (Suc n) \<noteq> 0"
+  apply (induct n rule: fib.induct)
+    apply (simp_all add: fib_2)
+  done
+
+lemma fib_Suc_gr_0: "0 < fib (Suc n)"
+  by (insert fib_Suc_neq_0 [of n], simp)  
+
+lemma fib_gr_0: "0 < n ==> 0 < fib n"
+  by (case_tac n, auto simp add: fib_Suc_gr_0) 
+
+
+text {*
+  \medskip Concrete Mathematics, page 278: Cassini's identity.  The proof is
+  much easier using integers, not natural numbers!
+*}
+
+lemma fib_Cassini_int:
+ "int (fib (Suc (Suc n)) * fib n) =
+  (if n mod 2 = 0 then int (fib (Suc n) * fib (Suc n)) - 1
+   else int (fib (Suc n) * fib (Suc n)) + 1)"
+proof(induct n rule: fib.induct)
+  case 1 thus ?case by (simp add: fib_2)
+next
+  case 2 thus ?case by (simp add: fib_2 mod_Suc)
+next 
+  case (3 x) 
+  have "Suc 0 \<noteq> x mod 2 \<longrightarrow> x mod 2 = 0" by presburger
+  with "3.hyps" show ?case by (simp add: fib.simps add_mult_distrib add_mult_distrib2)
+qed
+
+text{*We now obtain a version for the natural numbers via the coercion 
+   function @{term int}.*}
+theorem fib_Cassini:
+ "fib (Suc (Suc n)) * fib n =
+  (if n mod 2 = 0 then fib (Suc n) * fib (Suc n) - 1
+   else fib (Suc n) * fib (Suc n) + 1)"
+  apply (rule int_int_eq [THEN iffD1]) 
+  apply (simp add: fib_Cassini_int)
+  apply (subst zdiff_int [symmetric]) 
+   apply (insert fib_Suc_gr_0 [of n], simp_all)
+  done
+
+
+text {* \medskip Toward Law 6.111 of Concrete Mathematics *}
+
+lemma gcd_fib_Suc_eq_1: "gcd (fib n) (fib (Suc n)) = Suc 0"
+  apply (induct n rule: fib.induct)
+    prefer 3
+    apply (simp add: gcd_commute fib_Suc3)
+   apply (simp_all add: fib_2)
+  done
+
+lemma gcd_fib_add: "gcd (fib m) (fib (n + m)) = gcd (fib m) (fib n)"
+  apply (simp add: gcd_commute [of "fib m"])
+  apply (case_tac m)
+   apply simp 
+  apply (simp add: fib_add)
+  apply (simp add: add_commute gcd_non_0 [OF fib_Suc_gr_0])
+  apply (simp add: gcd_non_0 [OF fib_Suc_gr_0, symmetric])
+  apply (simp add: gcd_fib_Suc_eq_1 gcd_mult_cancel)
+  done
+
+lemma gcd_fib_diff: "m \<le> n ==> gcd (fib m) (fib (n - m)) = gcd (fib m) (fib n)"
+  by (simp add: gcd_fib_add [symmetric, of _ "n-m"]) 
+
+lemma gcd_fib_mod: "0 < m ==> gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+proof (induct n rule: less_induct)
+  case (less n)
+  from less.prems have pos_m: "0 < m" .
+  show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+  proof (cases "m < n")
+    case True note m_n = True
+    then have m_n': "m \<le> n" by auto
+    with pos_m have pos_n: "0 < n" by auto
+    with pos_m m_n have diff: "n - m < n" by auto
+    have "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib ((n - m) mod m))"
+    by (simp add: mod_if [of n]) (insert m_n, auto)
+    also have "\<dots> = gcd (fib m) (fib (n - m))" by (simp add: less.hyps diff pos_m)
+    also have "\<dots> = gcd (fib m) (fib n)" by (simp add: gcd_fib_diff m_n')
+    finally show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)" .
+  next
+    case False then show "gcd (fib m) (fib (n mod m)) = gcd (fib m) (fib n)"
+    by (cases "m = n") auto
+  qed
+qed
+
+lemma fib_gcd: "fib (gcd m n) = gcd (fib m) (fib n)"  -- {* Law 6.111 *}
+  apply (induct m n rule: gcd_induct)
+  apply (simp_all add: gcd_non_0 gcd_commute gcd_fib_mod)
+  done
+
+theorem fib_mult_eq_setsum:
+    "fib (Suc n) * fib n = (\<Sum>k \<in> {..n}. fib k * fib k)"
+  apply (induct n rule: fib.induct)
+    apply (auto simp add: atMost_Suc fib_2)
+  apply (simp add: add_mult_distrib add_mult_distrib2)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Finite2.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,223 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Finite2.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {*Finite Sets and Finite Sums*}
+
+theory Finite2
+imports Main IntFact Infinite_Set
+begin
+
+text{*
+  These are useful for combinatorial and number-theoretic counting
+  arguments.
+*}
+
+
+subsection {* Useful properties of sums and products *}
+
+lemma setsum_same_function_zcong:
+  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
+  shows "[setsum f S = setsum g S] (mod m)"
+proof cases
+  assume "finite S"
+  thus ?thesis using a by induct (simp_all add: zcong_zadd)
+next
+  assume "infinite S" thus ?thesis by(simp add:setsum_def)
+qed
+
+lemma setprod_same_function_zcong:
+  assumes a: "\<forall>x \<in> S. [f x = g x](mod m)"
+  shows "[setprod f S = setprod g S] (mod m)"
+proof cases
+  assume "finite S"
+  thus ?thesis using a by induct (simp_all add: zcong_zmult)
+next
+  assume "infinite S" thus ?thesis by(simp add:setprod_def)
+qed
+
+lemma setsum_const: "finite X ==> setsum (%x. (c :: int)) X = c * int(card X)"
+  apply (induct set: finite)
+  apply (auto simp add: left_distrib right_distrib int_eq_of_nat)
+  done
+
+lemma setsum_const2: "finite X ==> int (setsum (%x. (c :: nat)) X) =
+    int(c) * int(card X)"
+  apply (induct set: finite)
+  apply (auto simp add: zadd_zmult_distrib2)
+  done
+
+lemma setsum_const_mult: "finite A ==> setsum (%x. c * ((f x)::int)) A =
+    c * setsum f A"
+  by (induct set: finite) (auto simp add: zadd_zmult_distrib2)
+
+
+subsection {* Cardinality of explicit finite sets *}
+
+lemma finite_surjI: "[| B \<subseteq> f ` A; finite A |] ==> finite B"
+  by (simp add: finite_subset finite_imageI)
+
+lemma bdd_nat_set_l_finite: "finite {y::nat . y < x}"
+  by (rule bounded_nat_set_is_finite) blast
+
+lemma bdd_nat_set_le_finite: "finite {y::nat . y \<le> x}"
+proof -
+  have "{y::nat . y \<le> x} = {y::nat . y < Suc x}" by auto
+  then show ?thesis by (auto simp add: bdd_nat_set_l_finite)
+qed
+
+lemma  bdd_int_set_l_finite: "finite {x::int. 0 \<le> x & x < n}"
+  apply (subgoal_tac " {(x :: int). 0 \<le> x & x < n} \<subseteq>
+      int ` {(x :: nat). x < nat n}")
+   apply (erule finite_surjI)
+   apply (auto simp add: bdd_nat_set_l_finite image_def)
+  apply (rule_tac x = "nat x" in exI, simp)
+  done
+
+lemma bdd_int_set_le_finite: "finite {x::int. 0 \<le> x & x \<le> n}"
+  apply (subgoal_tac "{x. 0 \<le> x & x \<le> n} = {x. 0 \<le> x & x < n + 1}")
+   apply (erule ssubst)
+   apply (rule bdd_int_set_l_finite)
+  apply auto
+  done
+
+lemma bdd_int_set_l_l_finite: "finite {x::int. 0 < x & x < n}"
+proof -
+  have "{x::int. 0 < x & x < n} \<subseteq> {x::int. 0 \<le> x & x < n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_l_finite finite_subset)
+qed
+
+lemma bdd_int_set_l_le_finite: "finite {x::int. 0 < x & x \<le> n}"
+proof -
+  have "{x::int. 0 < x & x \<le> n} \<subseteq> {x::int. 0 \<le> x & x \<le> n}"
+    by auto
+  then show ?thesis by (auto simp add: bdd_int_set_le_finite finite_subset)
+qed
+
+lemma card_bdd_nat_set_l: "card {y::nat . y < x} = x"
+proof (induct x)
+  case 0
+  show "card {y::nat . y < 0} = 0" by simp
+next
+  case (Suc n)
+  have "{y. y < Suc n} = insert n {y. y < n}"
+    by auto
+  then have "card {y. y < Suc n} = card (insert n {y. y < n})"
+    by auto
+  also have "... = Suc (card {y. y < n})"
+    by (rule card_insert_disjoint) (auto simp add: bdd_nat_set_l_finite)
+  finally show "card {y. y < Suc n} = Suc n"
+    using `card {y. y < n} = n` by simp
+qed
+
+lemma card_bdd_nat_set_le: "card { y::nat. y \<le> x} = Suc x"
+proof -
+  have "{y::nat. y \<le> x} = { y::nat. y < Suc x}"
+    by auto
+  then show ?thesis by (auto simp add: card_bdd_nat_set_l)
+qed
+
+lemma card_bdd_int_set_l: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y < n} = nat n"
+proof -
+  assume "0 \<le> n"
+  have "inj_on (%y. int y) {y. y < nat n}"
+    by (auto simp add: inj_on_def)
+  hence "card (int ` {y. y < nat n}) = card {y. y < nat n}"
+    by (rule card_image)
+  also from `0 \<le> n` have "int ` {y. y < nat n} = {y. 0 \<le> y & y < n}"
+    apply (auto simp add: zless_nat_eq_int_zless image_def)
+    apply (rule_tac x = "nat x" in exI)
+    apply (auto simp add: nat_0_le)
+    done
+  also have "card {y. y < nat n} = nat n"
+    by (rule card_bdd_nat_set_l)
+  finally show "card {y. 0 \<le> y & y < n} = nat n" .
+qed
+
+lemma card_bdd_int_set_le: "0 \<le> (n::int) ==> card {y. 0 \<le> y & y \<le> n} =
+  nat n + 1"
+proof -
+  assume "0 \<le> n"
+  moreover have "{y. 0 \<le> y & y \<le> n} = {y. 0 \<le> y & y < n+1}" by auto
+  ultimately show ?thesis
+    using card_bdd_int_set_l [of "n + 1"]
+    by (auto simp add: nat_add_distrib)
+qed
+
+lemma card_bdd_int_set_l_le: "0 \<le> (n::int) ==>
+    card {x. 0 < x & x \<le> n} = nat n"
+proof -
+  assume "0 \<le> n"
+  have "inj_on (%x. x+1) {x. 0 \<le> x & x < n}"
+    by (auto simp add: inj_on_def)
+  hence "card ((%x. x+1) ` {x. 0 \<le> x & x < n}) =
+     card {x. 0 \<le> x & x < n}"
+    by (rule card_image)
+  also from `0 \<le> n` have "... = nat n"
+    by (rule card_bdd_int_set_l)
+  also have "(%x. x + 1) ` {x. 0 \<le> x & x < n} = {x. 0 < x & x<= n}"
+    apply (auto simp add: image_def)
+    apply (rule_tac x = "x - 1" in exI)
+    apply arith
+    done
+  finally show "card {x. 0 < x & x \<le> n} = nat n" .
+qed
+
+lemma card_bdd_int_set_l_l: "0 < (n::int) ==>
+  card {x. 0 < x & x < n} = nat n - 1"
+proof -
+  assume "0 < n"
+  moreover have "{x. 0 < x & x < n} = {x. 0 < x & x \<le> n - 1}"
+    by simp
+  ultimately show ?thesis
+    using insert card_bdd_int_set_l_le [of "n - 1"]
+    by (auto simp add: nat_diff_distrib)
+qed
+
+lemma int_card_bdd_int_set_l_l: "0 < n ==>
+    int(card {x. 0 < x & x < n}) = n - 1"
+  apply (auto simp add: card_bdd_int_set_l_l)
+  done
+
+lemma int_card_bdd_int_set_l_le: "0 \<le> n ==>
+    int(card {x. 0 < x & x \<le> n}) = n"
+  by (auto simp add: card_bdd_int_set_l_le)
+
+
+subsection {* Cardinality of finite cartesian products *}
+
+(* FIXME could be useful in general but not needed here
+lemma insert_Sigma [simp]: "(insert x A) <*> B = ({ x } <*> B) \<union> (A <*> B)"
+  by blast
+ *)
+
+text {* Lemmas for counting arguments. *}
+
+lemma setsum_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
+    g ` B \<subseteq> A; inj_on g B |] ==> setsum g B = setsum (g \<circ> f) A"
+  apply (frule_tac h = g and f = f in setsum_reindex)
+  apply (subgoal_tac "setsum g B = setsum g (f ` A)")
+   apply (simp add: inj_on_def)
+  apply (subgoal_tac "card A = card B")
+   apply (drule_tac A = "f ` A" and B = B in card_seteq)
+     apply (auto simp add: card_image)
+  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
+  apply (frule_tac A = B and B = A and f = g in card_inj_on_le)
+    apply auto
+  done
+
+lemma setprod_bij_eq: "[| finite A; finite B; f ` A \<subseteq> B; inj_on f A;
+    g ` B \<subseteq> A; inj_on g B |] ==> setprod g B = setprod (g \<circ> f) A"
+  apply (frule_tac h = g and f = f in setprod_reindex)
+  apply (subgoal_tac "setprod g B = setprod g (f ` A)")
+   apply (simp add: inj_on_def)
+  apply (subgoal_tac "card A = card B")
+   apply (drule_tac A = "f ` A" and B = B in card_seteq)
+     apply (auto simp add: card_image)
+  apply (frule_tac A = A and B = B and f = f in card_inj_on_le, auto)
+  apply (frule_tac A = B and B = A and f = g in card_inj_on_le, auto)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Gauss.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,535 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer)
+*)
+
+header {* Gauss' Lemma *}
+
+theory Gauss
+imports Euler
+begin
+
+locale GAUSS =
+  fixes p :: "int"
+  fixes a :: "int"
+
+  assumes p_prime: "zprime p"
+  assumes p_g_2: "2 < p"
+  assumes p_a_relprime: "~[a = 0](mod p)"
+  assumes a_nonzero:    "0 < a"
+begin
+
+definition
+  A :: "int set" where
+  "A = {(x::int). 0 < x & x \<le> ((p - 1) div 2)}"
+
+definition
+  B :: "int set" where
+  "B = (%x. x * a) ` A"
+
+definition
+  C :: "int set" where
+  "C = StandardRes p ` B"
+
+definition
+  D :: "int set" where
+  "D = C \<inter> {x. x \<le> ((p - 1) div 2)}"
+
+definition
+  E :: "int set" where
+  "E = C \<inter> {x. ((p - 1) div 2) < x}"
+
+definition
+  F :: "int set" where
+  "F = (%x. (p - x)) ` E"
+
+
+subsection {* Basic properties of p *}
+
+lemma p_odd: "p \<in> zOdd"
+  by (auto simp add: p_prime p_g_2 zprime_zOdd_eq_grt_2)
+
+lemma p_g_0: "0 < p"
+  using p_g_2 by auto
+
+lemma int_nat: "int (nat ((p - 1) div 2)) = (p - 1) div 2"
+  using ListMem.insert p_g_2 by (auto simp add: pos_imp_zdiv_nonneg_iff)
+
+lemma p_minus_one_l: "(p - 1) div 2 < p"
+proof -
+  have "(p - 1) div 2 \<le> (p - 1) div 1"
+    by (rule zdiv_mono2) (auto simp add: p_g_0)
+  also have "\<dots> = p - 1" by simp
+  finally show ?thesis by simp
+qed
+
+lemma p_eq: "p = (2 * (p - 1) div 2) + 1"
+  using div_mult_self1_is_id [of 2 "p - 1"] by auto
+
+
+lemma (in -) zodd_imp_zdiv_eq: "x \<in> zOdd ==> 2 * (x - 1) div 2 = 2 * ((x - 1) div 2)"
+  apply (frule odd_minus_one_even)
+  apply (simp add: zEven_def)
+  apply (subgoal_tac "2 \<noteq> 0")
+  apply (frule_tac b = "2 :: int" and a = "x - 1" in div_mult_self1_is_id)
+  apply (auto simp add: even_div_2_prop2)
+  done
+
+
+lemma p_eq2: "p = (2 * ((p - 1) div 2)) + 1"
+  apply (insert p_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 [of p], auto)
+  apply (frule zodd_imp_zdiv_eq, auto)
+  done
+
+
+subsection {* Basic Properties of the Gauss Sets *}
+
+lemma finite_A: "finite (A)"
+  apply (auto simp add: A_def)
+  apply (subgoal_tac "{x. 0 < x & x \<le> (p - 1) div 2} \<subseteq> {x. 0 \<le> x & x < 1 + (p - 1) div 2}")
+  apply (auto simp add: bdd_int_set_l_finite finite_subset)
+  done
+
+lemma finite_B: "finite (B)"
+  by (auto simp add: B_def finite_A finite_imageI)
+
+lemma finite_C: "finite (C)"
+  by (auto simp add: C_def finite_B finite_imageI)
+
+lemma finite_D: "finite (D)"
+  by (auto simp add: D_def finite_Int finite_C)
+
+lemma finite_E: "finite (E)"
+  by (auto simp add: E_def finite_Int finite_C)
+
+lemma finite_F: "finite (F)"
+  by (auto simp add: F_def finite_E finite_imageI)
+
+lemma C_eq: "C = D \<union> E"
+  by (auto simp add: C_def D_def E_def)
+
+lemma A_card_eq: "card A = nat ((p - 1) div 2)"
+  apply (auto simp add: A_def)
+  apply (insert int_nat)
+  apply (erule subst)
+  apply (auto simp add: card_bdd_int_set_l_le)
+  done
+
+lemma inj_on_xa_A: "inj_on (%x. x * a) A"
+  using a_nonzero by (simp add: A_def inj_on_def)
+
+lemma A_res: "ResSet p A"
+  apply (auto simp add: A_def ResSet_def)
+  apply (rule_tac m = p in zcong_less_eq)
+  apply (insert p_g_2, auto)
+  done
+
+lemma B_res: "ResSet p B"
+  apply (insert p_g_2 p_a_relprime p_minus_one_l)
+  apply (auto simp add: B_def)
+  apply (rule ResSet_image)
+  apply (auto simp add: A_res)
+  apply (auto simp add: A_def)
+proof -
+  fix x fix y
+  assume a: "[x * a = y * a] (mod p)"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  from a p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+      order_le_less_trans [of x "(p - 1) div 2" p]
+      order_le_less_trans [of y "(p - 1) div 2" p] show "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+qed
+
+lemma SR_B_inj: "inj_on (StandardRes p) B"
+  apply (auto simp add: B_def StandardRes_def inj_on_def A_def prems)
+proof -
+  fix x fix y
+  assume a: "x * a mod p = y * a mod p"
+  assume b: "0 < x"
+  assume c: "x \<le> (p - 1) div 2"
+  assume d: "0 < y"
+  assume e: "y \<le> (p - 1) div 2"
+  assume f: "x \<noteq> y"
+  from a have "[x * a = y * a](mod p)"
+    by (simp add: zcong_zmod_eq p_g_0)
+  with p_a_relprime p_prime a_nonzero zcong_cancel [of p a x y]
+  have "[x = y](mod p)"
+    by (simp add: zprime_imp_zrelprime zcong_def p_g_0 order_le_less)
+  with zcong_less_eq [of x y p] p_minus_one_l
+    order_le_less_trans [of x "(p - 1) div 2" p]
+    order_le_less_trans [of y "(p - 1) div 2" p] have "x = y"
+    by (simp add: prems p_minus_one_l p_g_0)
+  then have False
+    by (simp add: f)
+  then show "a = 0"
+    by simp
+qed
+
+lemma inj_on_pminusx_E: "inj_on (%x. p - x) E"
+  apply (auto simp add: E_def C_def B_def A_def)
+  apply (rule_tac g = "%x. -1 * (x - p)" in inj_on_inverseI)
+  apply auto
+  done
+
+lemma A_ncong_p: "x \<in> A ==> ~[x = 0](mod p)"
+  apply (auto simp add: A_def)
+  apply (frule_tac m = p in zcong_not_zero)
+  apply (insert p_minus_one_l)
+  apply auto
+  done
+
+lemma A_greater_zero: "x \<in> A ==> 0 < x"
+  by (auto simp add: A_def)
+
+lemma B_ncong_p: "x \<in> B ==> ~[x = 0](mod p)"
+  apply (auto simp add: B_def)
+  apply (frule A_ncong_p)
+  apply (insert p_a_relprime p_prime a_nonzero)
+  apply (frule_tac a = x and b = a in zcong_zprime_prod_zero_contra)
+  apply (auto simp add: A_greater_zero)
+  done
+
+lemma B_greater_zero: "x \<in> B ==> 0 < x"
+  using a_nonzero by (auto simp add: B_def mult_pos_pos A_greater_zero)
+
+lemma C_ncong_p: "x \<in> C ==>  ~[x = 0](mod p)"
+  apply (auto simp add: C_def)
+  apply (frule B_ncong_p)
+  apply (subgoal_tac "[x = StandardRes p x](mod p)")
+  defer apply (simp add: StandardRes_prop1)
+  apply (frule_tac a = x and b = "StandardRes p x" and c = 0 in zcong_trans)
+  apply auto
+  done
+
+lemma C_greater_zero: "y \<in> C ==> 0 < y"
+  apply (auto simp add: C_def)
+proof -
+  fix x
+  assume a: "x \<in> B"
+  from p_g_0 have "0 \<le> StandardRes p x"
+    by (simp add: StandardRes_lbound)
+  moreover have "~[x = 0] (mod p)"
+    by (simp add: a B_ncong_p)
+  then have "StandardRes p x \<noteq> 0"
+    by (simp add: StandardRes_prop3)
+  ultimately show "0 < StandardRes p x"
+    by (simp add: order_le_less)
+qed
+
+lemma D_ncong_p: "x \<in> D ==> ~[x = 0](mod p)"
+  by (auto simp add: D_def C_ncong_p)
+
+lemma E_ncong_p: "x \<in> E ==> ~[x = 0](mod p)"
+  by (auto simp add: E_def C_ncong_p)
+
+lemma F_ncong_p: "x \<in> F ==> ~[x = 0](mod p)"
+  apply (auto simp add: F_def)
+proof -
+  fix x assume a: "x \<in> E" assume b: "[p - x = 0] (mod p)"
+  from E_ncong_p have "~[x = 0] (mod p)"
+    by (simp add: a)
+  moreover from a have "0 < x"
+    by (simp add: a E_def C_greater_zero)
+  moreover from a have "x < p"
+    by (auto simp add: E_def C_def p_g_0 StandardRes_ubound)
+  ultimately have "~[p - x = 0] (mod p)"
+    by (simp add: zcong_not_zero)
+  from this show False by (simp add: b)
+qed
+
+lemma F_subset: "F \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
+  apply (auto simp add: F_def E_def)
+  apply (insert p_g_0)
+  apply (frule_tac x = xa in StandardRes_ubound)
+  apply (frule_tac x = x in StandardRes_ubound)
+  apply (subgoal_tac "xa = StandardRes p xa")
+  apply (auto simp add: C_def StandardRes_prop2 StandardRes_prop1)
+proof -
+  from zodd_imp_zdiv_eq p_prime p_g_2 zprime_zOdd_eq_grt_2 have
+    "2 * (p - 1) div 2 = 2 * ((p - 1) div 2)"
+    by simp
+  with p_eq2 show " !!x. [| (p - 1) div 2 < StandardRes p x; x \<in> B |]
+      ==> p - StandardRes p x \<le> (p - 1) div 2"
+    by simp
+qed
+
+lemma D_subset: "D \<subseteq> {x. 0 < x & x \<le> ((p - 1) div 2)}"
+  by (auto simp add: D_def C_greater_zero)
+
+lemma F_eq: "F = {x. \<exists>y \<in> A. ( x = p - (StandardRes p (y*a)) & (p - 1) div 2 < StandardRes p (y*a))}"
+  by (auto simp add: F_def E_def D_def C_def B_def A_def)
+
+lemma D_eq: "D = {x. \<exists>y \<in> A. ( x = StandardRes p (y*a) & StandardRes p (y*a) \<le> (p - 1) div 2)}"
+  by (auto simp add: D_def C_def B_def A_def)
+
+lemma D_leq: "x \<in> D ==> x \<le> (p - 1) div 2"
+  by (auto simp add: D_eq)
+
+lemma F_ge: "x \<in> F ==> x \<le> (p - 1) div 2"
+  apply (auto simp add: F_eq A_def)
+proof -
+  fix y
+  assume "(p - 1) div 2 < StandardRes p (y * a)"
+  then have "p - StandardRes p (y * a) < p - ((p - 1) div 2)"
+    by arith
+  also from p_eq2 have "... = 2 * ((p - 1) div 2) + 1 - ((p - 1) div 2)"
+    by auto
+  also have "2 * ((p - 1) div 2) + 1 - (p - 1) div 2 = (p - 1) div 2 + 1"
+    by arith
+  finally show "p - StandardRes p (y * a) \<le> (p - 1) div 2"
+    using zless_add1_eq [of "p - StandardRes p (y * a)" "(p - 1) div 2"] by auto
+qed
+
+lemma all_A_relprime: "\<forall>x \<in> A. zgcd x p = 1"
+  using p_prime p_minus_one_l by (auto simp add: A_def zless_zprime_imp_zrelprime)
+
+lemma A_prod_relprime: "zgcd (setprod id A) p = 1"
+by(rule all_relprime_prod_relprime[OF finite_A all_A_relprime])
+
+
+subsection {* Relationships Between Gauss Sets *}
+
+lemma B_card_eq_A: "card B = card A"
+  using finite_A by (simp add: finite_A B_def inj_on_xa_A card_image)
+
+lemma B_card_eq: "card B = nat ((p - 1) div 2)"
+  by (simp add: B_card_eq_A A_card_eq)
+
+lemma F_card_eq_E: "card F = card E"
+  using finite_E by (simp add: F_def inj_on_pminusx_E card_image)
+
+lemma C_card_eq_B: "card C = card B"
+  apply (insert finite_B)
+  apply (subgoal_tac "inj_on (StandardRes p) B")
+  apply (simp add: B_def C_def card_image)
+  apply (rule StandardRes_inj_on_ResSet)
+  apply (simp add: B_res)
+  done
+
+lemma D_E_disj: "D \<inter> E = {}"
+  by (auto simp add: D_def E_def)
+
+lemma C_card_eq_D_plus_E: "card C = card D + card E"
+  by (auto simp add: C_eq card_Un_disjoint D_E_disj finite_D finite_E)
+
+lemma C_prod_eq_D_times_E: "setprod id E * setprod id D = setprod id C"
+  apply (insert D_E_disj finite_D finite_E C_eq)
+  apply (frule setprod_Un_disjoint [of D E id])
+  apply auto
+  done
+
+lemma C_B_zcong_prod: "[setprod id C = setprod id B] (mod p)"
+  apply (auto simp add: C_def)
+  apply (insert finite_B SR_B_inj)
+  apply (frule_tac f = "StandardRes p" in setprod_reindex_id [symmetric], auto)
+  apply (rule setprod_same_function_zcong)
+  apply (auto simp add: StandardRes_prop1 zcong_sym p_g_0)
+  done
+
+lemma F_Un_D_subset: "(F \<union> D) \<subseteq> A"
+  apply (rule Un_least)
+  apply (auto simp add: A_def F_subset D_subset)
+  done
+
+lemma F_D_disj: "(F \<inter> D) = {}"
+  apply (simp add: F_eq D_eq)
+  apply (auto simp add: F_eq D_eq)
+proof -
+  fix y fix ya
+  assume "p - StandardRes p (y * a) = StandardRes p (ya * a)"
+  then have "p = StandardRes p (y * a) + StandardRes p (ya * a)"
+    by arith
+  moreover have "p dvd p"
+    by auto
+  ultimately have "p dvd (StandardRes p (y * a) + StandardRes p (ya * a))"
+    by auto
+  then have a: "[StandardRes p (y * a) + StandardRes p (ya * a) = 0] (mod p)"
+    by (auto simp add: zcong_def)
+  have "[y * a = StandardRes p (y * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  moreover have "[ya * a = StandardRes p (ya * a)] (mod p)"
+    by (simp only: zcong_sym StandardRes_prop1)
+  ultimately have "[y * a + ya * a =
+    StandardRes p (y * a) + StandardRes p (ya * a)] (mod p)"
+    by (rule zcong_zadd)
+  with a have "[y * a + ya * a = 0] (mod p)"
+    apply (elim zcong_trans)
+    by (simp only: zcong_refl)
+  also have "y * a + ya * a = a * (y + ya)"
+    by (simp add: zadd_zmult_distrib2 zmult_commute)
+  finally have "[a * (y + ya) = 0] (mod p)" .
+  with p_prime a_nonzero zcong_zprime_prod_zero [of p a "y + ya"]
+    p_a_relprime
+  have a: "[y + ya = 0] (mod p)"
+    by auto
+  assume b: "y \<in> A" and c: "ya: A"
+  with A_def have "0 < y + ya"
+    by auto
+  moreover from b c A_def have "y + ya \<le> (p - 1) div 2 + (p - 1) div 2"
+    by auto
+  moreover from b c p_eq2 A_def have "y + ya < p"
+    by auto
+  ultimately show False
+    apply simp
+    apply (frule_tac m = p in zcong_not_zero)
+    apply (auto simp add: a)
+    done
+qed
+
+lemma F_Un_D_card: "card (F \<union> D) = nat ((p - 1) div 2)"
+proof -
+  have "card (F \<union> D) = card E + card D"
+    by (auto simp add: finite_F finite_D F_D_disj
+      card_Un_disjoint F_card_eq_E)
+  then have "card (F \<union> D) = card C"
+    by (simp add: C_card_eq_D_plus_E)
+  from this show "card (F \<union> D) = nat ((p - 1) div 2)"
+    by (simp add: C_card_eq_B B_card_eq)
+qed
+
+lemma F_Un_D_eq_A: "F \<union> D = A"
+  using finite_A F_Un_D_subset A_card_eq F_Un_D_card by (auto simp add: card_seteq)
+
+lemma prod_D_F_eq_prod_A:
+    "(setprod id D) * (setprod id F) = setprod id A"
+  apply (insert F_D_disj finite_D finite_F)
+  apply (frule setprod_Un_disjoint [of F D id])
+  apply (auto simp add: F_Un_D_eq_A)
+  done
+
+lemma prod_F_zcong:
+  "[setprod id F = ((-1) ^ (card E)) * (setprod id E)] (mod p)"
+proof -
+  have "setprod id F = setprod id (op - p ` E)"
+    by (auto simp add: F_def)
+  then have "setprod id F = setprod (op - p) E"
+    apply simp
+    apply (insert finite_E inj_on_pminusx_E)
+    apply (frule_tac f = "op - p" in setprod_reindex_id, auto)
+    done
+  then have one:
+    "[setprod id F = setprod (StandardRes p o (op - p)) E] (mod p)"
+    apply simp
+    apply (insert p_g_0 finite_E StandardRes_prod)
+    by (auto)
+  moreover have a: "\<forall>x \<in> E. [p - x = 0 - x] (mod p)"
+    apply clarify
+    apply (insert zcong_id [of p])
+    apply (rule_tac a = p and m = p and c = x and d = x in zcong_zdiff, auto)
+    done
+  moreover have b: "\<forall>x \<in> E. [StandardRes p (p - x) = p - x](mod p)"
+    apply clarify
+    apply (simp add: StandardRes_prop1 zcong_sym)
+    done
+  moreover have "\<forall>x \<in> E. [StandardRes p (p - x) = - x](mod p)"
+    apply clarify
+    apply (insert a b)
+    apply (rule_tac b = "p - x" in zcong_trans, auto)
+    done
+  ultimately have c:
+    "[setprod (StandardRes p o (op - p)) E = setprod (uminus) E](mod p)"
+    apply simp
+    using finite_E p_g_0
+      setprod_same_function_zcong [of E "StandardRes p o (op - p)" uminus p]
+    by auto
+  then have two: "[setprod id F = setprod (uminus) E](mod p)"
+    apply (insert one c)
+    apply (rule zcong_trans [of "setprod id F"
+                               "setprod (StandardRes p o op - p) E" p
+                               "setprod uminus E"], auto)
+    done
+  also have "setprod uminus E = (setprod id E) * (-1)^(card E)"
+    using finite_E by (induct set: finite) auto
+  then have "setprod uminus E = (-1) ^ (card E) * (setprod id E)"
+    by (simp add: zmult_commute)
+  with two show ?thesis
+    by simp
+qed
+
+
+subsection {* Gauss' Lemma *}
+
+lemma aux: "setprod id A * -1 ^ card E * a ^ card A * -1 ^ card E = setprod id A * a ^ card A"
+  by (auto simp add: finite_E neg_one_special)
+
+theorem pre_gauss_lemma:
+  "[a ^ nat((p - 1) div 2) = (-1) ^ (card E)] (mod p)"
+proof -
+  have "[setprod id A = setprod id F * setprod id D](mod p)"
+    by (auto simp add: prod_D_F_eq_prod_A zmult_commute cong del:setprod_cong)
+  then have "[setprod id A = ((-1)^(card E) * setprod id E) *
+      setprod id D] (mod p)"
+    apply (rule zcong_trans)
+    apply (auto simp add: prod_F_zcong zcong_scalar cong del: setprod_cong)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id C)] (mod p)"
+    apply (rule zcong_trans)
+    apply (insert C_prod_eq_D_times_E, erule subst)
+    apply (subst zmult_assoc, auto)
+    done
+  then have "[setprod id A = ((-1)^(card E) * setprod id B)] (mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: C_B_zcong_prod zcong_scalar2 cong del:setprod_cong)
+    done
+  then have "[setprod id A = ((-1)^(card E) *
+    (setprod id ((%x. x * a) ` A)))] (mod p)"
+    by (simp add: B_def)
+  then have "[setprod id A = ((-1)^(card E) * (setprod (%x. x * a) A))]
+    (mod p)"
+    by (simp add:finite_A inj_on_xa_A setprod_reindex_id[symmetric] cong del:setprod_cong)
+  moreover have "setprod (%x. x * a) A =
+    setprod (%x. a) A * setprod id A"
+    using finite_A by (induct set: finite) auto
+  ultimately have "[setprod id A = ((-1)^(card E) * (setprod (%x. a) A *
+    setprod id A))] (mod p)"
+    by simp
+  then have "[setprod id A = ((-1)^(card E) * a^(card A) *
+      setprod id A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: zcong_scalar2 zcong_scalar finite_A setprod_constant zmult_assoc)
+    done
+  then have a: "[setprod id A * (-1)^(card E) =
+      ((-1)^(card E) * a^(card A) * setprod id A * (-1)^(card E))](mod p)"
+    by (rule zcong_scalar)
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      (-1)^(card E) * a^(card A) * (-1)^(card E)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: a mult_commute mult_left_commute)
+    done
+  then have "[setprod id A * (-1)^(card E) = setprod id A *
+      a^(card A)](mod p)"
+    apply (rule zcong_trans)
+    apply (simp add: aux cong del:setprod_cong)
+    done
+  with this zcong_cancel2 [of p "setprod id A" "-1 ^ card E" "a ^ card A"]
+      p_g_0 A_prod_relprime have "[-1 ^ card E = a ^ card A](mod p)"
+    by (simp add: order_less_imp_le)
+  from this show ?thesis
+    by (simp add: A_card_eq zcong_sym)
+qed
+
+theorem gauss_lemma: "(Legendre a p) = (-1) ^ (card E)"
+proof -
+  from Euler_Criterion p_prime p_g_2 have
+      "[(Legendre a p) = a^(nat (((p) - 1) div 2))] (mod p)"
+    by auto
+  moreover note pre_gauss_lemma
+  ultimately have "[(Legendre a p) = (-1) ^ (card E)] (mod p)"
+    by (rule zcong_trans)
+  moreover from p_a_relprime have "(Legendre a p) = 1 | (Legendre a p) = (-1)"
+    by (auto simp add: Legendre_def)
+  moreover have "(-1::int) ^ (card E) = 1 | (-1::int) ^ (card E) = -1"
+    by (rule neg_one_power)
+  ultimately show ?thesis
+    by (auto simp add: p_g_2 one_not_neg_one_mod_m zcong_sym)
+qed
+
+end
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Int2.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,299 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Gauss.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {*Integers: Divisibility and Congruences*}
+
+theory Int2
+imports Finite2 WilsonRuss
+begin
+
+definition
+  MultInv :: "int => int => int" where
+  "MultInv p x = x ^ nat (p - 2)"
+
+
+subsection {* Useful lemmas about dvd and powers *}
+
+lemma zpower_zdvd_prop1:
+  "0 < n \<Longrightarrow> p dvd y \<Longrightarrow> p dvd ((y::int) ^ n)"
+  by (induct n) (auto simp add: dvd_mult2 [of p y])
+
+lemma zdvd_bounds: "n dvd m ==> m \<le> (0::int) | n \<le> m"
+proof -
+  assume "n dvd m"
+  then have "~(0 < m & m < n)"
+    using zdvd_not_zless [of m n] by auto
+  then show ?thesis by auto
+qed
+
+lemma zprime_zdvd_zmult_better: "[| zprime p;  p dvd (m * n) |] ==>
+    (p dvd m) | (p dvd n)"
+  apply (cases "0 \<le> m")
+  apply (simp add: zprime_zdvd_zmult)
+  apply (insert zprime_zdvd_zmult [of "-m" p n])
+  apply auto
+  done
+
+lemma zpower_zdvd_prop2:
+    "zprime p \<Longrightarrow> p dvd ((y::int) ^ n) \<Longrightarrow> 0 < n \<Longrightarrow> p dvd y"
+  apply (induct n)
+   apply simp
+  apply (frule zprime_zdvd_zmult_better)
+   apply simp
+  apply (force simp del:dvd_mult)
+  done
+
+lemma div_prop1: "[| 0 < z; (x::int) < y * z |] ==> x div z < y"
+proof -
+  assume "0 < z" then have modth: "x mod z \<ge> 0" by simp
+  have "(x div z) * z \<le> (x div z) * z" by simp
+  then have "(x div z) * z \<le> (x div z) * z + x mod z" using modth by arith 
+  also have "\<dots> = x"
+    by (auto simp add: zmod_zdiv_equality [symmetric] zmult_ac)
+  also assume  "x < y * z"
+  finally show ?thesis
+    by (auto simp add: prems mult_less_cancel_right, insert prems, arith)
+qed
+
+lemma div_prop2: "[| 0 < z; (x::int) < (y * z) + z |] ==> x div z \<le> y"
+proof -
+  assume "0 < z" and "x < (y * z) + z"
+  then have "x < (y + 1) * z" by (auto simp add: int_distrib)
+  then have "x div z < y + 1"
+    apply -
+    apply (rule_tac y = "y + 1" in div_prop1)
+    apply (auto simp add: prems)
+    done
+  then show ?thesis by auto
+qed
+
+lemma zdiv_leq_prop: "[| 0 < y |] ==> y * (x div y) \<le> (x::int)"
+proof-
+  assume "0 < y"
+  from zmod_zdiv_equality have "x = y * (x div y) + x mod y" by auto
+  moreover have "0 \<le> x mod y"
+    by (auto simp add: prems pos_mod_sign)
+  ultimately show ?thesis
+    by arith
+qed
+
+
+subsection {* Useful properties of congruences *}
+
+lemma zcong_eq_zdvd_prop: "[x = 0](mod p) = (p dvd x)"
+  by (auto simp add: zcong_def)
+
+lemma zcong_id: "[m = 0] (mod m)"
+  by (auto simp add: zcong_def)
+
+lemma zcong_shift: "[a = b] (mod m) ==> [a + c = b + c] (mod m)"
+  by (auto simp add: zcong_refl zcong_zadd)
+
+lemma zcong_zpower: "[x = y](mod m) ==> [x^z = y^z](mod m)"
+  by (induct z) (auto simp add: zcong_zmult)
+
+lemma zcong_eq_trans: "[| [a = b](mod m); b = c; [c = d](mod m) |] ==>
+    [a = d](mod m)"
+  apply (erule zcong_trans)
+  apply simp
+  done
+
+lemma aux1: "a - b = (c::int) ==> a = c + b"
+  by auto
+
+lemma zcong_zmult_prop1: "[a = b](mod m) ==> ([c = a * d](mod m) =
+    [c = b * d] (mod m))"
+  apply (auto simp add: zcong_def dvd_def)
+  apply (rule_tac x = "ka + k * d" in exI)
+  apply (drule aux1)+
+  apply (auto simp add: int_distrib)
+  apply (rule_tac x = "ka - k * d" in exI)
+  apply (drule aux1)+
+  apply (auto simp add: int_distrib)
+  done
+
+lemma zcong_zmult_prop2: "[a = b](mod m) ==>
+    ([c = d * a](mod m) = [c = d * b] (mod m))"
+  by (auto simp add: zmult_ac zcong_zmult_prop1)
+
+lemma zcong_zmult_prop3: "[| zprime p; ~[x = 0] (mod p);
+    ~[y = 0] (mod p) |] ==> ~[x * y = 0] (mod p)"
+  apply (auto simp add: zcong_def)
+  apply (drule zprime_zdvd_zmult_better, auto)
+  done
+
+lemma zcong_less_eq: "[| 0 < x; 0 < y; 0 < m; [x = y] (mod m);
+    x < m; y < m |] ==> x = y"
+  by (metis zcong_not zcong_sym zless_linear)
+
+lemma zcong_neg_1_impl_ne_1: "[| 2 < p; [x = -1] (mod p) |] ==>
+    ~([x = 1] (mod p))"
+proof
+  assume "2 < p" and "[x = 1] (mod p)" and "[x = -1] (mod p)"
+  then have "[1 = -1] (mod p)"
+    apply (auto simp add: zcong_sym)
+    apply (drule zcong_trans, auto)
+    done
+  then have "[1 + 1 = -1 + 1] (mod p)"
+    by (simp only: zcong_shift)
+  then have "[2 = 0] (mod p)"
+    by auto
+  then have "p dvd 2"
+    by (auto simp add: dvd_def zcong_def)
+  with prems show False
+    by (auto simp add: zdvd_not_zless)
+qed
+
+lemma zcong_zero_equiv_div: "[a = 0] (mod m) = (m dvd a)"
+  by (auto simp add: zcong_def)
+
+lemma zcong_zprime_prod_zero: "[| zprime p; 0 < a |] ==>
+    [a * b = 0] (mod p) ==> [a = 0] (mod p) | [b = 0] (mod p)"
+  by (auto simp add: zcong_zero_equiv_div zprime_zdvd_zmult)
+
+lemma zcong_zprime_prod_zero_contra: "[| zprime p; 0 < a |] ==>
+  ~[a = 0](mod p) & ~[b = 0](mod p) ==> ~[a * b = 0] (mod p)"
+  apply auto
+  apply (frule_tac a = a and b = b and p = p in zcong_zprime_prod_zero)
+  apply auto
+  done
+
+lemma zcong_not_zero: "[| 0 < x; x < m |] ==> ~[x = 0] (mod m)"
+  by (auto simp add: zcong_zero_equiv_div zdvd_not_zless)
+
+lemma zcong_zero: "[| 0 \<le> x; x < m; [x = 0](mod m) |] ==> x = 0"
+  apply (drule order_le_imp_less_or_eq, auto)
+  apply (frule_tac m = m in zcong_not_zero)
+  apply auto
+  done
+
+lemma all_relprime_prod_relprime: "[| finite A; \<forall>x \<in> A. zgcd x y = 1 |]
+    ==> zgcd (setprod id A) y = 1"
+  by (induct set: finite) (auto simp add: zgcd_zgcd_zmult)
+
+
+subsection {* Some properties of MultInv *}
+
+lemma MultInv_prop1: "[| 2 < p; [x = y] (mod p) |] ==>
+    [(MultInv p x) = (MultInv p y)] (mod p)"
+  by (auto simp add: MultInv_def zcong_zpower)
+
+lemma MultInv_prop2: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
+  [(x * (MultInv p x)) = 1] (mod p)"
+proof (simp add: MultInv_def zcong_eq_zdvd_prop)
+  assume "2 < p" and "zprime p" and "~ p dvd x"
+  have "x * x ^ nat (p - 2) = x ^ (nat (p - 2) + 1)"
+    by auto
+  also from prems have "nat (p - 2) + 1 = nat (p - 2 + 1)"
+    by (simp only: nat_add_distrib)
+  also have "p - 2 + 1 = p - 1" by arith
+  finally have "[x * x ^ nat (p - 2) = x ^ nat (p - 1)] (mod p)"
+    by (rule ssubst, auto)
+  also from prems have "[x ^ nat (p - 1) = 1] (mod p)"
+    by (auto simp add: Little_Fermat)
+  finally (zcong_trans) show "[x * x ^ nat (p - 2) = 1] (mod p)" .
+qed
+
+lemma MultInv_prop2a: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
+    [(MultInv p x) * x = 1] (mod p)"
+  by (auto simp add: MultInv_prop2 zmult_ac)
+
+lemma aux_1: "2 < p ==> ((nat p) - 2) = (nat (p - 2))"
+  by (simp add: nat_diff_distrib)
+
+lemma aux_2: "2 < p ==> 0 < nat (p - 2)"
+  by auto
+
+lemma MultInv_prop3: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
+    ~([MultInv p x = 0](mod p))"
+  apply (auto simp add: MultInv_def zcong_eq_zdvd_prop aux_1)
+  apply (drule aux_2)
+  apply (drule zpower_zdvd_prop2, auto)
+  done
+
+lemma aux__1: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
+    [(MultInv p (MultInv p x)) = (x * (MultInv p x) *
+      (MultInv p (MultInv p x)))] (mod p)"
+  apply (drule MultInv_prop2, auto)
+  apply (drule_tac k = "MultInv p (MultInv p x)" in zcong_scalar, auto)
+  apply (auto simp add: zcong_sym)
+  done
+
+lemma aux__2: "[| 2 < p; zprime p; ~([x = 0](mod p))|] ==>
+    [(x * (MultInv p x) * (MultInv p (MultInv p x))) = x] (mod p)"
+  apply (frule MultInv_prop3, auto)
+  apply (insert MultInv_prop2 [of p "MultInv p x"], auto)
+  apply (drule MultInv_prop2, auto)
+  apply (drule_tac k = x in zcong_scalar2, auto)
+  apply (auto simp add: zmult_ac)
+  done
+
+lemma MultInv_prop4: "[| 2 < p; zprime p; ~([x = 0](mod p)) |] ==>
+    [(MultInv p (MultInv p x)) = x] (mod p)"
+  apply (frule aux__1, auto)
+  apply (drule aux__2, auto)
+  apply (drule zcong_trans, auto)
+  done
+
+lemma MultInv_prop5: "[| 2 < p; zprime p; ~([x = 0](mod p));
+    ~([y = 0](mod p)); [(MultInv p x) = (MultInv p y)] (mod p) |] ==>
+    [x = y] (mod p)"
+  apply (drule_tac a = "MultInv p x" and b = "MultInv p y" and
+    m = p and k = x in zcong_scalar)
+  apply (insert MultInv_prop2 [of p x], simp)
+  apply (auto simp only: zcong_sym [of "MultInv p x * x"])
+  apply (auto simp add:  zmult_ac)
+  apply (drule zcong_trans, auto)
+  apply (drule_tac a = "x * MultInv p y" and k = y in zcong_scalar, auto)
+  apply (insert MultInv_prop2a [of p y], auto simp add: zmult_ac)
+  apply (insert zcong_zmult_prop2 [of "y * MultInv p y" 1 p y x])
+  apply (auto simp add: zcong_sym)
+  done
+
+lemma MultInv_zcong_prop1: "[| 2 < p; [j = k] (mod p) |] ==>
+    [a * MultInv p j = a * MultInv p k] (mod p)"
+  by (drule MultInv_prop1, auto simp add: zcong_scalar2)
+
+lemma aux___1: "[j = a * MultInv p k] (mod p) ==>
+    [j * k = a * MultInv p k * k] (mod p)"
+  by (auto simp add: zcong_scalar)
+
+lemma aux___2: "[|2 < p; zprime p; ~([k = 0](mod p));
+    [j * k = a * MultInv p k * k] (mod p) |] ==> [j * k = a] (mod p)"
+  apply (insert MultInv_prop2a [of p k] zcong_zmult_prop2
+    [of "MultInv p k * k" 1 p "j * k" a])
+  apply (auto simp add: zmult_ac)
+  done
+
+lemma aux___3: "[j * k = a] (mod p) ==> [(MultInv p j) * j * k =
+     (MultInv p j) * a] (mod p)"
+  by (auto simp add: zmult_assoc zcong_scalar2)
+
+lemma aux___4: "[|2 < p; zprime p; ~([j = 0](mod p));
+    [(MultInv p j) * j * k = (MultInv p j) * a] (mod p) |]
+       ==> [k = a * (MultInv p j)] (mod p)"
+  apply (insert MultInv_prop2a [of p j] zcong_zmult_prop1
+    [of "MultInv p j * j" 1 p "MultInv p j * a" k])
+  apply (auto simp add: zmult_ac zcong_sym)
+  done
+
+lemma MultInv_zcong_prop2: "[| 2 < p; zprime p; ~([k = 0](mod p));
+    ~([j = 0](mod p)); [j = a * MultInv p k] (mod p) |] ==>
+    [k = a * MultInv p j] (mod p)"
+  apply (drule aux___1)
+  apply (frule aux___2, auto)
+  by (drule aux___3, drule aux___4, auto)
+
+lemma MultInv_zcong_prop3: "[| 2 < p; zprime p; ~([a = 0](mod p));
+    ~([k = 0](mod p)); ~([j = 0](mod p));
+    [a * MultInv p j = a * MultInv p k] (mod p) |] ==>
+      [j = k] (mod p)"
+  apply (auto simp add: zcong_eq_zdvd_prop [of a p])
+  apply (frule zprime_imp_zrelprime, auto)
+  apply (insert zcong_cancel2 [of p a "MultInv p j" "MultInv p k"], auto)
+  apply (drule MultInv_prop5, auto)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/IntFact.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,94 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Factorial on integers *}
+
+theory IntFact imports IntPrimes begin
+
+text {*
+  Factorial on integers and recursively defined set including all
+  Integers from @{text 2} up to @{text a}.  Plus definition of product
+  of finite set.
+
+  \bigskip
+*}
+
+consts
+  zfact :: "int => int"
+  d22set :: "int => int set"
+
+recdef zfact  "measure ((\<lambda>n. nat n) :: int => nat)"
+  "zfact n = (if n \<le> 0 then 1 else n * zfact (n - 1))"
+
+recdef d22set  "measure ((\<lambda>a. nat a) :: int => nat)"
+  "d22set a = (if 1 < a then insert a (d22set (a - 1)) else {})"
+
+
+text {*
+  \medskip @{term d22set} --- recursively defined set including all
+  integers from @{text 2} up to @{text a}
+*}
+
+declare d22set.simps [simp del]
+
+
+lemma d22set_induct:
+  assumes "!!a. P {} a"
+    and "!!a. 1 < (a::int) ==> P (d22set (a - 1)) (a - 1) ==> P (d22set a) a"
+  shows "P (d22set u) u"
+  apply (rule d22set.induct)
+  apply safe
+   prefer 2
+   apply (case_tac "1 < a")
+    apply (rule_tac prems)
+     apply (simp_all (no_asm_simp))
+   apply (simp_all (no_asm_simp) add: d22set.simps prems)
+  done
+
+lemma d22set_g_1 [rule_format]: "b \<in> d22set a --> 1 < b"
+  apply (induct a rule: d22set_induct)
+   apply simp
+  apply (subst d22set.simps)
+  apply auto
+  done
+
+lemma d22set_le [rule_format]: "b \<in> d22set a --> b \<le> a"
+  apply (induct a rule: d22set_induct)
+  apply simp
+   apply (subst d22set.simps)
+   apply auto
+  done
+
+lemma d22set_le_swap: "a < b ==> b \<notin> d22set a"
+  by (auto dest: d22set_le)
+
+lemma d22set_mem: "1 < b \<Longrightarrow> b \<le> a \<Longrightarrow> b \<in> d22set a"
+  apply (induct a rule: d22set.induct)
+  apply auto
+   apply (simp_all add: d22set.simps)
+  done
+
+lemma d22set_fin: "finite (d22set a)"
+  apply (induct a rule: d22set_induct)
+   prefer 2
+   apply (subst d22set.simps)
+   apply auto
+  done
+
+
+declare zfact.simps [simp del]
+
+lemma d22set_prod_zfact: "\<Prod>(d22set a) = zfact a"
+  apply (induct a rule: d22set.induct)
+  apply safe
+   apply (simp add: d22set.simps zfact.simps)
+  apply (subst d22set.simps)
+  apply (subst zfact.simps)
+  apply (case_tac "1 < a")
+   prefer 2
+   apply (simp add: d22set.simps zfact.simps)
+  apply (simp add: d22set_fin d22set_le_swap)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/IntPrimes.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,421 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Divisibility and prime numbers (on integers) *}
+
+theory IntPrimes
+imports Main Primes
+begin
+
+text {*
+  The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
+  congruences (all on the Integers).  Comparable to theory @{text
+  Primes}, but @{text dvd} is included here as it is not present in
+  main HOL.  Also includes extended GCD and congruences not present in
+  @{text Primes}.
+*}
+
+
+subsection {* Definitions *}
+
+consts
+  xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
+
+recdef xzgcda
+  "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
+    :: int * int * int * int *int * int * int * int => nat)"
+  "xzgcda (m, n, r', r, s', s, t', t) =
+	(if r \<le> 0 then (r', s', t')
+	 else xzgcda (m, n, r, r' mod r, 
+		      s, s' - (r' div r) * s, 
+		      t, t' - (r' div r) * t))"
+
+definition
+  zprime :: "int \<Rightarrow> bool" where
+  "zprime p = (1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p))"
+
+definition
+  xzgcd :: "int => int => int * int * int" where
+  "xzgcd m n = xzgcda (m, n, m, n, 1, 0, 0, 1)"
+
+definition
+  zcong :: "int => int => int => bool"  ("(1[_ = _] '(mod _'))") where
+  "[a = b] (mod m) = (m dvd (a - b))"
+
+subsection {* Euclid's Algorithm and GCD *}
+
+
+lemma zrelprime_zdvd_zmult_aux:
+     "zgcd n k = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"
+    by (metis abs_of_nonneg dvd_triv_right zgcd_greatest_iff zgcd_zmult_distrib2_abs zmult_1_right)
+
+lemma zrelprime_zdvd_zmult: "zgcd n k = 1 ==> k dvd m * n ==> k dvd m"
+  apply (case_tac "0 \<le> m")
+   apply (blast intro: zrelprime_zdvd_zmult_aux)
+  apply (subgoal_tac "k dvd -m")
+   apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
+  done
+
+lemma zgcd_geq_zero: "0 <= zgcd x y"
+  by (auto simp add: zgcd_def)
+
+text{*This is merely a sanity check on zprime, since the previous version
+      denoted the empty set.*}
+lemma "zprime 2"
+  apply (auto simp add: zprime_def) 
+  apply (frule zdvd_imp_le, simp) 
+  apply (auto simp add: order_le_less dvd_def) 
+  done
+
+lemma zprime_imp_zrelprime:
+    "zprime p ==> \<not> p dvd n ==> zgcd n p = 1"
+  apply (auto simp add: zprime_def)
+  apply (metis zgcd_geq_zero zgcd_zdvd1 zgcd_zdvd2)
+  done
+
+lemma zless_zprime_imp_zrelprime:
+    "zprime p ==> 0 < n ==> n < p ==> zgcd n p = 1"
+  apply (erule zprime_imp_zrelprime)
+  apply (erule zdvd_not_zless, assumption)
+  done
+
+lemma zprime_zdvd_zmult:
+    "0 \<le> (m::int) ==> zprime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
+  by (metis zgcd_zdvd1 zgcd_zdvd2 zgcd_pos zprime_def zrelprime_dvd_mult)
+
+lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k) n = zgcd m n"
+  apply (rule zgcd_eq [THEN trans])
+  apply (simp add: mod_add_eq)
+  apply (rule zgcd_eq [symmetric])
+  done
+
+lemma zgcd_zdvd_zgcd_zmult: "zgcd m n dvd zgcd (k * m) n"
+by (simp add: zgcd_greatest_iff)
+
+lemma zgcd_zmult_zdvd_zgcd:
+    "zgcd k n = 1 ==> zgcd (k * m) n dvd zgcd m n"
+  apply (simp add: zgcd_greatest_iff)
+  apply (rule_tac n = k in zrelprime_zdvd_zmult)
+   prefer 2
+   apply (simp add: zmult_commute)
+  apply (metis zgcd_1 zgcd_commute zgcd_left_commute)
+  done
+
+lemma zgcd_zmult_cancel: "zgcd k n = 1 ==> zgcd (k * m) n = zgcd m n"
+  by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
+
+lemma zgcd_zgcd_zmult:
+    "zgcd k m = 1 ==> zgcd n m = 1 ==> zgcd (k * n) m = 1"
+  by (simp add: zgcd_zmult_cancel)
+
+lemma zdvd_iff_zgcd: "0 < m ==> m dvd n \<longleftrightarrow> zgcd n m = m"
+  by (metis abs_of_pos zdvd_mult_div_cancel zgcd_0 zgcd_commute zgcd_geq_zero zgcd_zdvd2 zgcd_zmult_eq_self)
+
+
+
+subsection {* Congruences *}
+
+lemma zcong_1 [simp]: "[a = b] (mod 1)"
+  by (unfold zcong_def, auto)
+
+lemma zcong_refl [simp]: "[k = k] (mod m)"
+  by (unfold zcong_def, auto)
+
+lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
+  unfolding zcong_def minus_diff_eq [of a, symmetric] dvd_minus_iff ..
+
+lemma zcong_zadd:
+    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
+  apply (unfold zcong_def)
+  apply (rule_tac s = "(a - b) + (c - d)" in subst)
+   apply (rule_tac [2] dvd_add, auto)
+  done
+
+lemma zcong_zdiff:
+    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
+  apply (unfold zcong_def)
+  apply (rule_tac s = "(a - b) - (c - d)" in subst)
+   apply (rule_tac [2] dvd_diff, auto)
+  done
+
+lemma zcong_trans:
+  "[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
+unfolding zcong_def by (auto elim!: dvdE simp add: algebra_simps)
+
+lemma zcong_zmult:
+    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
+  apply (rule_tac b = "b * c" in zcong_trans)
+   apply (unfold zcong_def)
+  apply (metis zdiff_zmult_distrib2 dvd_mult zmult_commute)
+  apply (metis zdiff_zmult_distrib2 dvd_mult)
+  done
+
+lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
+  by (rule zcong_zmult, simp_all)
+
+lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
+  by (rule zcong_zmult, simp_all)
+
+lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
+  apply (unfold zcong_def)
+  apply (rule dvd_diff, simp_all)
+  done
+
+lemma zcong_square:
+   "[| zprime p;  0 < a;  [a * a = 1] (mod p)|]
+    ==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"
+  apply (unfold zcong_def)
+  apply (rule zprime_zdvd_zmult)
+    apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
+     prefer 4
+     apply (simp add: zdvd_reduce)
+    apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2)
+  done
+
+lemma zcong_cancel:
+  "0 \<le> m ==>
+    zgcd k m = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
+  apply safe
+   prefer 2
+   apply (blast intro: zcong_scalar)
+  apply (case_tac "b < a")
+   prefer 2
+   apply (subst zcong_sym)
+   apply (unfold zcong_def)
+   apply (rule_tac [!] zrelprime_zdvd_zmult)
+     apply (simp_all add: zdiff_zmult_distrib)
+  apply (subgoal_tac "m dvd (-(a * k - b * k))")
+   apply simp
+  apply (subst dvd_minus_iff, assumption)
+  done
+
+lemma zcong_cancel2:
+  "0 \<le> m ==>
+    zgcd k m = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
+  by (simp add: zmult_commute zcong_cancel)
+
+lemma zcong_zgcd_zmult_zmod:
+  "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd m n = 1
+    ==> [a = b] (mod m * n)"
+  apply (auto simp add: zcong_def dvd_def)
+  apply (subgoal_tac "m dvd n * ka")
+   apply (subgoal_tac "m dvd ka")
+    apply (case_tac [2] "0 \<le> ka")
+  apply (metis zdvd_mult_div_cancel dvd_refl dvd_mult_left zmult_commute zrelprime_zdvd_zmult)
+  apply (metis abs_dvd_iff abs_of_nonneg zadd_0 zgcd_0_left zgcd_commute zgcd_zadd_zmult zgcd_zdvd_zgcd_zmult zgcd_zmult_distrib2_abs zmult_1_right zmult_commute)
+  apply (metis mult_le_0_iff  zdvd_mono zdvd_mult_cancel dvd_triv_left zero_le_mult_iff zle_anti_sym zle_linear zle_refl zmult_commute zrelprime_zdvd_zmult)
+  apply (metis dvd_triv_left)
+  done
+
+lemma zcong_zless_imp_eq:
+  "0 \<le> a ==>
+    a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"
+  apply (unfold zcong_def dvd_def, auto)
+  apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)
+  apply (metis diff_add_cancel mod_pos_pos_trivial zadd_0 zadd_commute zmod_eq_0_iff mod_add_right_eq)
+  done
+
+lemma zcong_square_zless:
+  "zprime p ==> 0 < a ==> a < p ==>
+    [a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"
+  apply (cut_tac p = p and a = a in zcong_square)
+     apply (simp add: zprime_def)
+    apply (auto intro: zcong_zless_imp_eq)
+  done
+
+lemma zcong_not:
+    "0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"
+  apply (unfold zcong_def)
+  apply (rule zdvd_not_zless, auto)
+  done
+
+lemma zcong_zless_0:
+    "0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
+  apply (unfold zcong_def dvd_def, auto)
+  apply (metis div_pos_pos_trivial linorder_not_less div_mult_self1_is_id)
+  done
+
+lemma zcong_zless_unique:
+    "0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
+  apply auto
+   prefer 2 apply (metis zcong_sym zcong_trans zcong_zless_imp_eq)
+  apply (unfold zcong_def dvd_def)
+  apply (rule_tac x = "a mod m" in exI, auto)
+  apply (metis zmult_div_cancel)
+  done
+
+lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"
+  unfolding zcong_def
+  apply (auto elim!: dvdE simp add: algebra_simps)
+  apply (rule_tac x = "-k" in exI) apply simp
+  done
+
+lemma zgcd_zcong_zgcd:
+  "0 < m ==>
+    zgcd a m = 1 ==> [a = b] (mod m) ==> zgcd b m = 1"
+  by (auto simp add: zcong_iff_lin)
+
+lemma zcong_zmod_aux:
+     "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
+  by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac)
+
+lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
+  apply (unfold zcong_def)
+  apply (rule_tac t = "a - b" in ssubst)
+  apply (rule_tac m = m in zcong_zmod_aux)
+  apply (rule trans)
+   apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
+  apply (simp add: zadd_commute)
+  done
+
+lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
+  apply auto
+  apply (metis pos_mod_conj zcong_zless_imp_eq zcong_zmod)
+  apply (metis zcong_refl zcong_zmod)
+  done
+
+lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
+  by (auto simp add: zcong_def)
+
+lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
+  by (auto simp add: zcong_def)
+
+lemma "[a = b] (mod m) = (a mod m = b mod m)"
+  apply (case_tac "m = 0", simp add: DIVISION_BY_ZERO)
+  apply (simp add: linorder_neq_iff)
+  apply (erule disjE)  
+   prefer 2 apply (simp add: zcong_zmod_eq)
+  txt{*Remainding case: @{term "m<0"}*}
+  apply (rule_tac t = m in zminus_zminus [THEN subst])
+  apply (subst zcong_zminus)
+  apply (subst zcong_zmod_eq, arith)
+  apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) 
+  apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
+  done
+
+subsection {* Modulo *}
+
+lemma zmod_zdvd_zmod:
+    "0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
+  by (rule mod_mod_cancel) 
+
+
+subsection {* Extended GCD *}
+
+declare xzgcda.simps [simp del]
+
+lemma xzgcd_correct_aux1:
+  "zgcd r' r = k --> 0 < r -->
+    (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
+  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
+    z = s and aa = t' and ab = t in xzgcda.induct)
+  apply (subst zgcd_eq)
+  apply (subst xzgcda.simps, auto)
+  apply (case_tac "r' mod r = 0")
+   prefer 2
+   apply (frule_tac a = "r'" in pos_mod_sign, auto)
+  apply (rule exI)
+  apply (rule exI)
+  apply (subst xzgcda.simps, auto)
+  done
+
+lemma xzgcd_correct_aux2:
+  "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
+    zgcd r' r = k"
+  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
+    z = s and aa = t' and ab = t in xzgcda.induct)
+  apply (subst zgcd_eq)
+  apply (subst xzgcda.simps)
+  apply (auto simp add: linorder_not_le)
+  apply (case_tac "r' mod r = 0")
+   prefer 2
+   apply (frule_tac a = "r'" in pos_mod_sign, auto)
+  apply (metis Pair_eq simps zle_refl)
+  done
+
+lemma xzgcd_correct:
+    "0 < n ==> (zgcd m n = k) = (\<exists>s t. xzgcd m n = (k, s, t))"
+  apply (unfold xzgcd_def)
+  apply (rule iffI)
+   apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
+    apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
+  done
+
+
+text {* \medskip @{term xzgcd} linear *}
+
+lemma xzgcda_linear_aux1:
+  "(a - r * b) * m + (c - r * d) * (n::int) =
+   (a * m + c * n) - r * (b * m + d * n)"
+  by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc)
+
+lemma xzgcda_linear_aux2:
+  "r' = s' * m + t' * n ==> r = s * m + t * n
+    ==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
+  apply (rule trans)
+   apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
+  apply (simp add: eq_diff_eq mult_commute)
+  done
+
+lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"
+  by (rule iffD2 [OF order_less_le conjI])
+
+lemma xzgcda_linear [rule_format]:
+  "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
+    r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
+  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
+    z = s and aa = t' and ab = t in xzgcda.induct)
+  apply (subst xzgcda.simps)
+  apply (simp (no_asm))
+  apply (rule impI)+
+  apply (case_tac "r' mod r = 0")
+   apply (simp add: xzgcda.simps, clarify)
+  apply (subgoal_tac "0 < r' mod r")
+   apply (rule_tac [2] order_le_neq_implies_less)
+   apply (rule_tac [2] pos_mod_sign)
+    apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
+      s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
+  done
+
+lemma xzgcd_linear:
+    "0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
+  apply (unfold xzgcd_def)
+  apply (erule xzgcda_linear, assumption, auto)
+  done
+
+lemma zgcd_ex_linear:
+    "0 < n ==> zgcd m n = k ==> (\<exists>s t. k = s * m + t * n)"
+  apply (simp add: xzgcd_correct, safe)
+  apply (rule exI)+
+  apply (erule xzgcd_linear, auto)
+  done
+
+lemma zcong_lineq_ex:
+    "0 < n ==> zgcd a n = 1 ==> \<exists>x. [a * x = 1] (mod n)"
+  apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
+  apply (rule_tac x = s in exI)
+  apply (rule_tac b = "s * a + t * n" in zcong_trans)
+   prefer 2
+   apply simp
+  apply (unfold zcong_def)
+  apply (simp (no_asm) add: zmult_commute)
+  done
+
+lemma zcong_lineq_unique:
+  "0 < n ==>
+    zgcd a n = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"
+  apply auto
+   apply (rule_tac [2] zcong_zless_imp_eq)
+       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 6 *})
+         apply (rule_tac [8] zcong_trans)
+          apply (simp_all (no_asm_simp))
+   prefer 2
+   apply (simp add: zcong_sym)
+  apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
+  apply (rule_tac x = "x * b mod n" in exI, safe)
+    apply (simp_all (no_asm_simp))
+  apply (metis zcong_scalar zcong_zmod zmod_zmult1_eq zmult_1 zmult_assoc)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Legacy_GCD.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,787 @@
+(*  Title:      HOL/GCD.thy
+    Author:     Christophe Tabacznyj and Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+*)
+
+header {* The Greatest Common Divisor *}
+
+theory Legacy_GCD
+imports Main
+begin
+
+text {*
+  See \cite{davenport92}. \bigskip
+*}
+
+subsection {* Specification of GCD on nats *}
+
+definition
+  is_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool" where -- {* @{term gcd} as a relation *}
+  [code del]: "is_gcd m n p \<longleftrightarrow> p dvd m \<and> p dvd n \<and>
+    (\<forall>d. d dvd m \<longrightarrow> d dvd n \<longrightarrow> d dvd p)"
+
+text {* Uniqueness *}
+
+lemma is_gcd_unique: "is_gcd a b m \<Longrightarrow> is_gcd a b n \<Longrightarrow> m = n"
+  by (simp add: is_gcd_def) (blast intro: dvd_anti_sym)
+
+text {* Connection to divides relation *}
+
+lemma is_gcd_dvd: "is_gcd a b m \<Longrightarrow> k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd m"
+  by (auto simp add: is_gcd_def)
+
+text {* Commutativity *}
+
+lemma is_gcd_commute: "is_gcd m n k = is_gcd n m k"
+  by (auto simp add: is_gcd_def)
+
+
+subsection {* GCD on nat by Euclid's algorithm *}
+
+fun
+  gcd  :: "nat => nat => nat"
+where
+  "gcd m n = (if n = 0 then m else gcd n (m mod n))"
+lemma gcd_induct [case_names "0" rec]:
+  fixes m n :: nat
+  assumes "\<And>m. P m 0"
+    and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
+  shows "P m n"
+proof (induct m n rule: gcd.induct)
+  case (1 m n) with assms show ?case by (cases "n = 0") simp_all
+qed
+
+lemma gcd_0 [simp, algebra]: "gcd m 0 = m"
+  by simp
+
+lemma gcd_0_left [simp,algebra]: "gcd 0 m = m"
+  by simp
+
+lemma gcd_non_0: "n > 0 \<Longrightarrow> gcd m n = gcd n (m mod n)"
+  by simp
+
+lemma gcd_1 [simp, algebra]: "gcd m (Suc 0) = Suc 0"
+  by simp
+
+lemma nat_gcd_1_right [simp, algebra]: "gcd m 1 = 1"
+  unfolding One_nat_def by (rule gcd_1)
+
+declare gcd.simps [simp del]
+
+text {*
+  \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
+  conjunctions don't seem provable separately.
+*}
+
+lemma gcd_dvd1 [iff, algebra]: "gcd m n dvd m"
+  and gcd_dvd2 [iff, algebra]: "gcd m n dvd n"
+  apply (induct m n rule: gcd_induct)
+     apply (simp_all add: gcd_non_0)
+  apply (blast dest: dvd_mod_imp_dvd)
+  done
+
+text {*
+  \medskip Maximality: for all @{term m}, @{term n}, @{term k}
+  naturals, if @{term k} divides @{term m} and @{term k} divides
+  @{term n} then @{term k} divides @{term "gcd m n"}.
+*}
+
+lemma gcd_greatest: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n"
+  by (induct m n rule: gcd_induct) (simp_all add: gcd_non_0 dvd_mod)
+
+text {*
+  \medskip Function gcd yields the Greatest Common Divisor.
+*}
+
+lemma is_gcd: "is_gcd m n (gcd m n) "
+  by (simp add: is_gcd_def gcd_greatest)
+
+
+subsection {* Derived laws for GCD *}
+
+lemma gcd_greatest_iff [iff, algebra]: "k dvd gcd m n \<longleftrightarrow> k dvd m \<and> k dvd n"
+  by (blast intro!: gcd_greatest intro: dvd_trans)
+
+lemma gcd_zero[algebra]: "gcd m n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"
+  by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff)
+
+lemma gcd_commute: "gcd m n = gcd n m"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (subst is_gcd_commute)
+  apply (simp add: is_gcd)
+  done
+
+lemma gcd_assoc: "gcd (gcd k m) n = gcd k (gcd m n)"
+  apply (rule is_gcd_unique)
+   apply (rule is_gcd)
+  apply (simp add: is_gcd_def)
+  apply (blast intro: dvd_trans)
+  done
+
+lemma gcd_1_left [simp, algebra]: "gcd (Suc 0) m = Suc 0"
+  by (simp add: gcd_commute)
+
+lemma nat_gcd_1_left [simp, algebra]: "gcd 1 m = 1"
+  unfolding One_nat_def by (rule gcd_1_left)
+
+text {*
+  \medskip Multiplication laws
+*}
+
+lemma gcd_mult_distrib2: "k * gcd m n = gcd (k * m) (k * n)"
+    -- {* \cite[page 27]{davenport92} *}
+  apply (induct m n rule: gcd_induct)
+   apply simp
+  apply (case_tac "k = 0")
+   apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
+  done
+
+lemma gcd_mult [simp, algebra]: "gcd k (k * n) = k"
+  apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
+  done
+
+lemma gcd_self [simp, algebra]: "gcd k k = k"
+  apply (rule gcd_mult [of k 1, simplified])
+  done
+
+lemma relprime_dvd_mult: "gcd k n = 1 ==> k dvd m * n ==> k dvd m"
+  apply (insert gcd_mult_distrib2 [of m k n])
+  apply simp
+  apply (erule_tac t = m in ssubst)
+  apply simp
+  done
+
+lemma relprime_dvd_mult_iff: "gcd k n = 1 ==> (k dvd m * n) = (k dvd m)"
+  by (auto intro: relprime_dvd_mult dvd_mult2)
+
+lemma gcd_mult_cancel: "gcd k n = 1 ==> gcd (k * m) n = gcd m n"
+  apply (rule dvd_anti_sym)
+   apply (rule gcd_greatest)
+    apply (rule_tac n = k in relprime_dvd_mult)
+     apply (simp add: gcd_assoc)
+     apply (simp add: gcd_commute)
+    apply (simp_all add: mult_commute)
+  done
+
+
+text {* \medskip Addition laws *}
+
+lemma gcd_add1 [simp, algebra]: "gcd (m + n) n = gcd m n"
+  by (cases "n = 0") (auto simp add: gcd_non_0)
+
+lemma gcd_add2 [simp, algebra]: "gcd m (m + n) = gcd m n"
+proof -
+  have "gcd m (m + n) = gcd (m + n) m" by (rule gcd_commute)
+  also have "... = gcd (n + m) m" by (simp add: add_commute)
+  also have "... = gcd n m" by simp
+  also have  "... = gcd m n" by (rule gcd_commute)
+  finally show ?thesis .
+qed
+
+lemma gcd_add2' [simp, algebra]: "gcd m (n + m) = gcd m n"
+  apply (subst add_commute)
+  apply (rule gcd_add2)
+  done
+
+lemma gcd_add_mult[algebra]: "gcd m (k * m + n) = gcd m n"
+  by (induct k) (simp_all add: add_assoc)
+
+lemma gcd_dvd_prod: "gcd m n dvd m * n" 
+  using mult_dvd_mono [of 1] by auto
+
+text {*
+  \medskip Division by gcd yields rrelatively primes.
+*}
+
+lemma div_gcd_relprime:
+  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
+  shows "gcd (a div gcd a b) (b div gcd a b) = 1"
+proof -
+  let ?g = "gcd a b"
+  let ?a' = "a div ?g"
+  let ?b' = "b div ?g"
+  let ?g' = "gcd ?a' ?b'"
+  have dvdg: "?g dvd a" "?g dvd b" by simp_all
+  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all
+  from dvdg dvdg' obtain ka kb ka' kb' where
+      kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'"
+    unfolding dvd_def by blast
+  then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" by simp_all
+  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
+    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)]
+      dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
+  have "?g \<noteq> 0" using nz by (simp add: gcd_zero)
+  then have gp: "?g > 0" by simp
+  from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
+  with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp
+qed
+
+
+lemma gcd_unique: "d dvd a\<and>d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
+proof(auto)
+  assume H: "d dvd a" "d dvd b" "\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d"
+  from H(3)[rule_format] gcd_dvd1[of a b] gcd_dvd2[of a b] 
+  have th: "gcd a b dvd d" by blast
+  from dvd_anti_sym[OF th gcd_greatest[OF H(1,2)]]  show "d = gcd a b" by blast 
+qed
+
+lemma gcd_eq: assumes H: "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd u \<and> d dvd v"
+  shows "gcd x y = gcd u v"
+proof-
+  from H have "\<forall>d. d dvd x \<and> d dvd y \<longleftrightarrow> d dvd gcd u v" by simp
+  with gcd_unique[of "gcd u v" x y]  show ?thesis by auto
+qed
+
+lemma ind_euclid: 
+  assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" 
+  and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" 
+  shows "P a b"
+proof(induct n\<equiv>"a+b" arbitrary: a b rule: nat_less_induct)
+  fix n a b
+  assume H: "\<forall>m < n. \<forall>a b. m = a + b \<longrightarrow> P a b" "n = a + b"
+  have "a = b \<or> a < b \<or> b < a" by arith
+  moreover {assume eq: "a= b"
+    from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq by simp}
+  moreover
+  {assume lt: "a < b"
+    hence "a + b - a < n \<or> a = 0"  using H(2) by arith
+    moreover
+    {assume "a =0" with z c have "P a b" by blast }
+    moreover
+    {assume ab: "a + b - a < n"
+      have th0: "a + b - a = a + (b - a)" using lt by arith
+      from add[rule_format, OF H(1)[rule_format, OF ab th0]]
+      have "P a b" by (simp add: th0[symmetric])}
+    ultimately have "P a b" by blast}
+  moreover
+  {assume lt: "a > b"
+    hence "b + a - b < n \<or> b = 0"  using H(2) by arith
+    moreover
+    {assume "b =0" with z c have "P a b" by blast }
+    moreover
+    {assume ab: "b + a - b < n"
+      have th0: "b + a - b = b + (a - b)" using lt by arith
+      from add[rule_format, OF H(1)[rule_format, OF ab th0]]
+      have "P b a" by (simp add: th0[symmetric])
+      hence "P a b" using c by blast }
+    ultimately have "P a b" by blast}
+ultimately  show "P a b" by blast
+qed
+
+lemma bezout_lemma: 
+  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
+  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
+using ex
+apply clarsimp
+apply (rule_tac x="d" in exI, simp add: dvd_add)
+apply (case_tac "a * x = b * y + d" , simp_all)
+apply (rule_tac x="x + y" in exI)
+apply (rule_tac x="y" in exI)
+apply algebra
+apply (rule_tac x="x" in exI)
+apply (rule_tac x="x + y" in exI)
+apply algebra
+done
+
+lemma bezout_add: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
+apply(induct a b rule: ind_euclid)
+apply blast
+apply clarify
+apply (rule_tac x="a" in exI, simp add: dvd_add)
+apply clarsimp
+apply (rule_tac x="d" in exI)
+apply (case_tac "a * x = b * y + d", simp_all add: dvd_add)
+apply (rule_tac x="x+y" in exI)
+apply (rule_tac x="y" in exI)
+apply algebra
+apply (rule_tac x="x" in exI)
+apply (rule_tac x="x+y" in exI)
+apply algebra
+done
+
+lemma bezout: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)"
+using bezout_add[of a b]
+apply clarsimp
+apply (rule_tac x="d" in exI, simp)
+apply (rule_tac x="x" in exI)
+apply (rule_tac x="y" in exI)
+apply auto
+done
+
+
+text {* We can get a stronger version with a nonzeroness assumption. *}
+lemma divides_le: "m dvd n ==> m <= n \<or> n = (0::nat)" by (auto simp add: dvd_def)
+
+lemma bezout_add_strong: assumes nz: "a \<noteq> (0::nat)"
+  shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
+proof-
+  from nz have ap: "a > 0" by simp
+ from bezout_add[of a b] 
+ have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast
+ moreover
+ {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
+   from H have ?thesis by blast }
+ moreover
+ {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
+   {assume b0: "b = 0" with H  have ?thesis by simp}
+   moreover 
+   {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
+     from divides_le[OF H(2)] b have "d < b \<or> d = b" using le_less by blast
+     moreover
+     {assume db: "d=b"
+       from prems have ?thesis apply simp
+	 apply (rule exI[where x = b], simp)
+	 apply (rule exI[where x = b])
+	by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)}
+    moreover
+    {assume db: "d < b" 
+	{assume "x=0" hence ?thesis  using prems by simp }
+	moreover
+	{assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
+	  
+	  from db have "d \<le> b - 1" by simp
+	  hence "d*b \<le> b*(b - 1)" by simp
+	  with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"]
+	  have dble: "d*b \<le> x*b*(b - 1)" using bp by simp
+	  from H (3) have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" by algebra
+	  hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp
+	  hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" 
+	    by (simp only: diff_add_assoc[OF dble, of d, symmetric])
+	  hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d"
+	    by (simp only: diff_mult_distrib2 add_commute mult_ac)
+	  hence ?thesis using H(1,2)
+	    apply -
+	    apply (rule exI[where x=d], simp)
+	    apply (rule exI[where x="(b - 1) * y"])
+	    by (rule exI[where x="x*(b - 1) - d"], simp)}
+	ultimately have ?thesis by blast}
+    ultimately have ?thesis by blast}
+  ultimately have ?thesis by blast}
+ ultimately show ?thesis by blast
+qed
+
+
+lemma bezout_gcd: "\<exists>x y. a * x - b * y = gcd a b \<or> b * x - a * y = gcd a b"
+proof-
+  let ?g = "gcd a b"
+  from bezout[of a b] obtain d x y where d: "d dvd a" "d dvd b" "a * x - b * y = d \<or> b * x - a * y = d" by blast
+  from d(1,2) have "d dvd ?g" by simp
+  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
+  from d(3) have "(a * x - b * y)*k = d*k \<or> (b * x - a * y)*k = d*k" by blast 
+  hence "a * x * k - b * y*k = d*k \<or> b * x * k - a * y*k = d*k" 
+    by (algebra add: diff_mult_distrib)
+  hence "a * (x * k) - b * (y*k) = ?g \<or> b * (x * k) - a * (y*k) = ?g" 
+    by (simp add: k mult_assoc)
+  thus ?thesis by blast
+qed
+
+lemma bezout_gcd_strong: assumes a: "a \<noteq> 0" 
+  shows "\<exists>x y. a * x = b * y + gcd a b"
+proof-
+  let ?g = "gcd a b"
+  from bezout_add_strong[OF a, of b]
+  obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast
+  from d(1,2) have "d dvd ?g" by simp
+  then obtain k where k: "?g = d*k" unfolding dvd_def by blast
+  from d(3) have "a * x * k = (b * y + d) *k " by algebra
+  hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k)
+  thus ?thesis by blast
+qed
+
+lemma gcd_mult_distrib: "gcd(a * c) (b * c) = c * gcd a b"
+by(simp add: gcd_mult_distrib2 mult_commute)
+
+lemma gcd_bezout: "(\<exists>x y. a * x - b * y = d \<or> b * x - a * y = d) \<longleftrightarrow> gcd a b dvd d"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  let ?g = "gcd a b"
+  {assume H: ?rhs then obtain k where k: "d = ?g*k" unfolding dvd_def by blast
+    from bezout_gcd[of a b] obtain x y where xy: "a * x - b * y = ?g \<or> b * x - a * y = ?g"
+      by blast
+    hence "(a * x - b * y)*k = ?g*k \<or> (b * x - a * y)*k = ?g*k" by auto
+    hence "a * x*k - b * y*k = ?g*k \<or> b * x * k - a * y*k = ?g*k" 
+      by (simp only: diff_mult_distrib)
+    hence "a * (x*k) - b * (y*k) = d \<or> b * (x * k) - a * (y*k) = d"
+      by (simp add: k[symmetric] mult_assoc)
+    hence ?lhs by blast}
+  moreover
+  {fix x y assume H: "a * x - b * y = d \<or> b * x - a * y = d"
+    have dv: "?g dvd a*x" "?g dvd b * y" "?g dvd b*x" "?g dvd a * y"
+      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
+    from dvd_diff_nat[OF dv(1,2)] dvd_diff_nat[OF dv(3,4)] H
+    have ?rhs by auto}
+  ultimately show ?thesis by blast
+qed
+
+lemma gcd_bezout_sum: assumes H:"a * x + b * y = d" shows "gcd a b dvd d"
+proof-
+  let ?g = "gcd a b"
+    have dv: "?g dvd a*x" "?g dvd b * y" 
+      using dvd_mult2[OF gcd_dvd1[of a b]] dvd_mult2[OF gcd_dvd2[of a b]] by simp_all
+    from dvd_add[OF dv] H
+    show ?thesis by auto
+qed
+
+lemma gcd_mult': "gcd b (a * b) = b"
+by (simp add: gcd_mult mult_commute[of a b]) 
+
+lemma gcd_add: "gcd(a + b) b = gcd a b" 
+  "gcd(b + a) b = gcd a b" "gcd a (a + b) = gcd a b" "gcd a (b + a) = gcd a b"
+apply (simp_all add: gcd_add1)
+by (simp add: gcd_commute gcd_add1)
+
+lemma gcd_sub: "b <= a ==> gcd(a - b) b = gcd a b" "a <= b ==> gcd a (b - a) = gcd a b"
+proof-
+  {fix a b assume H: "b \<le> (a::nat)"
+    hence th: "a - b + b = a" by arith
+    from gcd_add(1)[of "a - b" b] th  have "gcd(a - b) b = gcd a b" by simp}
+  note th = this
+{
+  assume ab: "b \<le> a"
+  from th[OF ab] show "gcd (a - b)  b = gcd a b" by blast
+next
+  assume ab: "a \<le> b"
+  from th[OF ab] show "gcd a (b - a) = gcd a b" 
+    by (simp add: gcd_commute)}
+qed
+
+
+subsection {* LCM defined by GCD *}
+
+
+definition
+  lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+where
+  lcm_def: "lcm m n = m * n div gcd m n"
+
+lemma prod_gcd_lcm:
+  "m * n = gcd m n * lcm m n"
+  unfolding lcm_def by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])
+
+lemma lcm_0 [simp]: "lcm m 0 = 0"
+  unfolding lcm_def by simp
+
+lemma lcm_1 [simp]: "lcm m 1 = m"
+  unfolding lcm_def by simp
+
+lemma lcm_0_left [simp]: "lcm 0 n = 0"
+  unfolding lcm_def by simp
+
+lemma lcm_1_left [simp]: "lcm 1 m = m"
+  unfolding lcm_def by simp
+
+lemma dvd_pos:
+  fixes n m :: nat
+  assumes "n > 0" and "m dvd n"
+  shows "m > 0"
+using assms by (cases m) auto
+
+lemma lcm_least:
+  assumes "m dvd k" and "n dvd k"
+  shows "lcm m n dvd k"
+proof (cases k)
+  case 0 then show ?thesis by auto
+next
+  case (Suc _) then have pos_k: "k > 0" by auto
+  from assms dvd_pos [OF this] have pos_mn: "m > 0" "n > 0" by auto
+  with gcd_zero [of m n] have pos_gcd: "gcd m n > 0" by simp
+  from assms obtain p where k_m: "k = m * p" using dvd_def by blast
+  from assms obtain q where k_n: "k = n * q" using dvd_def by blast
+  from pos_k k_m have pos_p: "p > 0" by auto
+  from pos_k k_n have pos_q: "q > 0" by auto
+  have "k * k * gcd q p = k * gcd (k * q) (k * p)"
+    by (simp add: mult_ac gcd_mult_distrib2)
+  also have "\<dots> = k * gcd (m * p * q) (n * q * p)"
+    by (simp add: k_m [symmetric] k_n [symmetric])
+  also have "\<dots> = k * p * q * gcd m n"
+    by (simp add: mult_ac gcd_mult_distrib2)
+  finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n"
+    by (simp only: k_m [symmetric] k_n [symmetric])
+  then have "p * q * m * n * gcd q p = p * q * k * gcd m n"
+    by (simp add: mult_ac)
+  with pos_p pos_q have "m * n * gcd q p = k * gcd m n"
+    by simp
+  with prod_gcd_lcm [of m n]
+  have "lcm m n * gcd q p * gcd m n = k * gcd m n"
+    by (simp add: mult_ac)
+  with pos_gcd have "lcm m n * gcd q p = k" by simp
+  then show ?thesis using dvd_def by auto
+qed
+
+lemma lcm_dvd1 [iff]:
+  "m dvd lcm m n"
+proof (cases m)
+  case 0 then show ?thesis by simp
+next
+  case (Suc _)
+  then have mpos: "m > 0" by simp
+  show ?thesis
+  proof (cases n)
+    case 0 then show ?thesis by simp
+  next
+    case (Suc _)
+    then have npos: "n > 0" by simp
+    have "gcd m n dvd n" by simp
+    then obtain k where "n = gcd m n * k" using dvd_def by auto
+    then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" by (simp add: mult_ac)
+    also have "\<dots> = m * k" using mpos npos gcd_zero by simp
+    finally show ?thesis by (simp add: lcm_def)
+  qed
+qed
+
+lemma lcm_dvd2 [iff]: 
+  "n dvd lcm m n"
+proof (cases n)
+  case 0 then show ?thesis by simp
+next
+  case (Suc _)
+  then have npos: "n > 0" by simp
+  show ?thesis
+  proof (cases m)
+    case 0 then show ?thesis by simp
+  next
+    case (Suc _)
+    then have mpos: "m > 0" by simp
+    have "gcd m n dvd m" by simp
+    then obtain k where "m = gcd m n * k" using dvd_def by auto
+    then have "m * n div gcd m n = (gcd m n * k) * n div gcd m n" by (simp add: mult_ac)
+    also have "\<dots> = n * k" using mpos npos gcd_zero by simp
+    finally show ?thesis by (simp add: lcm_def)
+  qed
+qed
+
+lemma gcd_add1_eq: "gcd (m + k) k = gcd (m + k) m"
+  by (simp add: gcd_commute)
+
+lemma gcd_diff2: "m \<le> n ==> gcd n (n - m) = gcd n m"
+  apply (subgoal_tac "n = m + (n - m)")
+  apply (erule ssubst, rule gcd_add1_eq, simp)  
+  done
+
+
+subsection {* GCD and LCM on integers *}
+
+definition
+  zgcd :: "int \<Rightarrow> int \<Rightarrow> int" where
+  "zgcd i j = int (gcd (nat (abs i)) (nat (abs j)))"
+
+lemma zgcd_zdvd1 [iff,simp, algebra]: "zgcd i j dvd i"
+by (simp add: zgcd_def int_dvd_iff)
+
+lemma zgcd_zdvd2 [iff,simp, algebra]: "zgcd i j dvd j"
+by (simp add: zgcd_def int_dvd_iff)
+
+lemma zgcd_pos: "zgcd i j \<ge> 0"
+by (simp add: zgcd_def)
+
+lemma zgcd0 [simp,algebra]: "(zgcd i j = 0) = (i = 0 \<and> j = 0)"
+by (simp add: zgcd_def gcd_zero)
+
+lemma zgcd_commute: "zgcd i j = zgcd j i"
+unfolding zgcd_def by (simp add: gcd_commute)
+
+lemma zgcd_zminus [simp, algebra]: "zgcd (- i) j = zgcd i j"
+unfolding zgcd_def by simp
+
+lemma zgcd_zminus2 [simp, algebra]: "zgcd i (- j) = zgcd i j"
+unfolding zgcd_def by simp
+
+  (* should be solved by algebra*)
+lemma zrelprime_dvd_mult: "zgcd i j = 1 \<Longrightarrow> i dvd k * j \<Longrightarrow> i dvd k"
+  unfolding zgcd_def
+proof -
+  assume "int (gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>)) = 1" "i dvd k * j"
+  then have g: "gcd (nat \<bar>i\<bar>) (nat \<bar>j\<bar>) = 1" by simp
+  from `i dvd k * j` obtain h where h: "k*j = i*h" unfolding dvd_def by blast
+  have th: "nat \<bar>i\<bar> dvd nat \<bar>k\<bar> * nat \<bar>j\<bar>"
+    unfolding dvd_def
+    by (rule_tac x= "nat \<bar>h\<bar>" in exI, simp add: h nat_abs_mult_distrib [symmetric])
+  from relprime_dvd_mult [OF g th] obtain h' where h': "nat \<bar>k\<bar> = nat \<bar>i\<bar> * h'"
+    unfolding dvd_def by blast
+  from h' have "int (nat \<bar>k\<bar>) = int (nat \<bar>i\<bar> * h')" by simp
+  then have "\<bar>k\<bar> = \<bar>i\<bar> * int h'" by (simp add: int_mult)
+  then show ?thesis
+    apply (subst abs_dvd_iff [symmetric])
+    apply (subst dvd_abs_iff [symmetric])
+    apply (unfold dvd_def)
+    apply (rule_tac x = "int h'" in exI, simp)
+    done
+qed
+
+lemma int_nat_abs: "int (nat (abs x)) = abs x" by arith
+
+lemma zgcd_greatest:
+  assumes "k dvd m" and "k dvd n"
+  shows "k dvd zgcd m n"
+proof -
+  let ?k' = "nat \<bar>k\<bar>"
+  let ?m' = "nat \<bar>m\<bar>"
+  let ?n' = "nat \<bar>n\<bar>"
+  from `k dvd m` and `k dvd n` have dvd': "?k' dvd ?m'" "?k' dvd ?n'"
+    unfolding zdvd_int by (simp_all only: int_nat_abs abs_dvd_iff dvd_abs_iff)
+  from gcd_greatest [OF dvd'] have "int (nat \<bar>k\<bar>) dvd zgcd m n"
+    unfolding zgcd_def by (simp only: zdvd_int)
+  then have "\<bar>k\<bar> dvd zgcd m n" by (simp only: int_nat_abs)
+  then show "k dvd zgcd m n" by simp
+qed
+
+lemma div_zgcd_relprime:
+  assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0"
+  shows "zgcd (a div (zgcd a b)) (b div (zgcd a b)) = 1"
+proof -
+  from nz have nz': "nat \<bar>a\<bar> \<noteq> 0 \<or> nat \<bar>b\<bar> \<noteq> 0" by arith 
+  let ?g = "zgcd a b"
+  let ?a' = "a div ?g"
+  let ?b' = "b div ?g"
+  let ?g' = "zgcd ?a' ?b'"
+  have dvdg: "?g dvd a" "?g dvd b" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2)
+  have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by (simp_all add: zgcd_zdvd1 zgcd_zdvd2)
+  from dvdg dvdg' obtain ka kb ka' kb' where
+   kab: "a = ?g*ka" "b = ?g*kb" "?a' = ?g'*ka'" "?b' = ?g' * kb'"
+    unfolding dvd_def by blast
+  then have "?g* ?a' = (?g * ?g') * ka'" "?g* ?b' = (?g * ?g') * kb'" by simp_all
+  then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
+    by (auto simp add: zdvd_mult_div_cancel [OF dvdg(1)]
+      zdvd_mult_div_cancel [OF dvdg(2)] dvd_def)
+  have "?g \<noteq> 0" using nz by simp
+  then have gp: "?g \<noteq> 0" using zgcd_pos[where i="a" and j="b"] by arith
+  from zgcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
+  with zdvd_mult_cancel1 [OF gp] have "\<bar>?g'\<bar> = 1" by simp
+  with zgcd_pos show "?g' = 1" by simp
+qed
+
+lemma zgcd_0 [simp, algebra]: "zgcd m 0 = abs m"
+  by (simp add: zgcd_def abs_if)
+
+lemma zgcd_0_left [simp, algebra]: "zgcd 0 m = abs m"
+  by (simp add: zgcd_def abs_if)
+
+lemma zgcd_non_0: "0 < n ==> zgcd m n = zgcd n (m mod n)"
+  apply (frule_tac b = n and a = m in pos_mod_sign)
+  apply (simp del: pos_mod_sign add: zgcd_def abs_if nat_mod_distrib)
+  apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
+  apply (frule_tac a = m in pos_mod_bound)
+  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2 nat_le_eq_zle)
+  done
+
+lemma zgcd_eq: "zgcd m n = zgcd n (m mod n)"
+  apply (case_tac "n = 0", simp add: DIVISION_BY_ZERO)
+  apply (auto simp add: linorder_neq_iff zgcd_non_0)
+  apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto)
+  done
+
+lemma zgcd_1 [simp, algebra]: "zgcd m 1 = 1"
+  by (simp add: zgcd_def abs_if)
+
+lemma zgcd_0_1_iff [simp, algebra]: "zgcd 0 m = 1 \<longleftrightarrow> \<bar>m\<bar> = 1"
+  by (simp add: zgcd_def abs_if)
+
+lemma zgcd_greatest_iff[algebra]: "k dvd zgcd m n = (k dvd m \<and> k dvd n)"
+  by (simp add: zgcd_def abs_if int_dvd_iff dvd_int_iff nat_dvd_iff)
+
+lemma zgcd_1_left [simp, algebra]: "zgcd 1 m = 1"
+  by (simp add: zgcd_def gcd_1_left)
+
+lemma zgcd_assoc: "zgcd (zgcd k m) n = zgcd k (zgcd m n)"
+  by (simp add: zgcd_def gcd_assoc)
+
+lemma zgcd_left_commute: "zgcd k (zgcd m n) = zgcd m (zgcd k n)"
+  apply (rule zgcd_commute [THEN trans])
+  apply (rule zgcd_assoc [THEN trans])
+  apply (rule zgcd_commute [THEN arg_cong])
+  done
+
+lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute
+  -- {* addition is an AC-operator *}
+
+lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd m n = zgcd (k * m) (k * n)"
+  by (simp del: minus_mult_right [symmetric]
+      add: minus_mult_right nat_mult_distrib zgcd_def abs_if
+          mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric])
+
+lemma zgcd_zmult_distrib2_abs: "zgcd (k * m) (k * n) = abs k * zgcd m n"
+  by (simp add: abs_if zgcd_zmult_distrib2)
+
+lemma zgcd_self [simp]: "0 \<le> m ==> zgcd m m = m"
+  by (cut_tac k = m and m = 1 and n = 1 in zgcd_zmult_distrib2, simp_all)
+
+lemma zgcd_zmult_eq_self [simp]: "0 \<le> k ==> zgcd k (k * n) = k"
+  by (cut_tac k = k and m = 1 and n = n in zgcd_zmult_distrib2, simp_all)
+
+lemma zgcd_zmult_eq_self2 [simp]: "0 \<le> k ==> zgcd (k * n) k = k"
+  by (cut_tac k = k and m = n and n = 1 in zgcd_zmult_distrib2, simp_all)
+
+
+definition "zlcm i j = int (lcm(nat(abs i)) (nat(abs j)))"
+
+lemma dvd_zlcm_self1[simp, algebra]: "i dvd zlcm i j"
+by(simp add:zlcm_def dvd_int_iff)
+
+lemma dvd_zlcm_self2[simp, algebra]: "j dvd zlcm i j"
+by(simp add:zlcm_def dvd_int_iff)
+
+
+lemma dvd_imp_dvd_zlcm1:
+  assumes "k dvd i" shows "k dvd (zlcm i j)"
+proof -
+  have "nat(abs k) dvd nat(abs i)" using `k dvd i`
+    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
+  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
+qed
+
+lemma dvd_imp_dvd_zlcm2:
+  assumes "k dvd j" shows "k dvd (zlcm i j)"
+proof -
+  have "nat(abs k) dvd nat(abs j)" using `k dvd j`
+    by(simp add:int_dvd_iff[symmetric] dvd_int_iff[symmetric])
+  thus ?thesis by(simp add:zlcm_def dvd_int_iff)(blast intro: dvd_trans)
+qed
+
+
+lemma zdvd_self_abs1: "(d::int) dvd (abs d)"
+by (case_tac "d <0", simp_all)
+
+lemma zdvd_self_abs2: "(abs (d::int)) dvd d"
+by (case_tac "d<0", simp_all)
+
+(* lcm a b is positive for positive a and b *)
+
+lemma lcm_pos: 
+  assumes mpos: "m > 0"
+  and npos: "n>0"
+  shows "lcm m n > 0"
+proof(rule ccontr, simp add: lcm_def gcd_zero)
+assume h:"m*n div gcd m n = 0"
+from mpos npos have "gcd m n \<noteq> 0" using gcd_zero by simp
+hence gcdp: "gcd m n > 0" by simp
+with h
+have "m*n < gcd m n"
+  by (cases "m * n < gcd m n") (auto simp add: div_if[OF gcdp, where m="m*n"])
+moreover 
+have "gcd m n dvd m" by simp
+ with mpos dvd_imp_le have t1:"gcd m n \<le> m" by simp
+ with npos have t1:"gcd m n *n \<le> m*n" by simp
+ have "gcd m n \<le> gcd m n*n" using npos by simp
+ with t1 have "gcd m n \<le> m*n" by arith
+ultimately show "False" by simp
+qed
+
+lemma zlcm_pos: 
+  assumes anz: "a \<noteq> 0"
+  and bnz: "b \<noteq> 0" 
+  shows "0 < zlcm a b"
+proof-
+  let ?na = "nat (abs a)"
+  let ?nb = "nat (abs b)"
+  have nap: "?na >0" using anz by simp
+  have nbp: "?nb >0" using bnz by simp
+  have "0 < lcm ?na ?nb" by (rule lcm_pos[OF nap nbp])
+  thus ?thesis by (simp add: zlcm_def)
+qed
+
+lemma zgcd_code [code]:
+  "zgcd k l = \<bar>if l = 0 then k else zgcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
+  by (simp add: zgcd_def gcd.simps [of "nat \<bar>k\<bar>"] nat_mod_distrib)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Pocklington.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,1263 @@
+(*  Title:      HOL/Library/Pocklington.thy
+    Author:     Amine Chaieb
+*)
+
+header {* Pocklington's Theorem for Primes *}
+
+theory Pocklington
+imports Main Primes
+begin
+
+definition modeq:: "nat => nat => nat => bool"    ("(1[_ = _] '(mod _'))")
+  where "[a = b] (mod p) == ((a mod p) = (b mod p))"
+
+definition modneq:: "nat => nat => nat => bool"    ("(1[_ \<noteq> _] '(mod _'))")
+  where "[a \<noteq> b] (mod p) == ((a mod p) \<noteq> (b mod p))"
+
+lemma modeq_trans:
+  "\<lbrakk> [a = b] (mod p); [b = c] (mod p) \<rbrakk> \<Longrightarrow> [a = c] (mod p)"
+  by (simp add:modeq_def)
+
+
+lemma nat_mod_lemma: assumes xyn: "[x = y] (mod n)" and xy:"y \<le> x"
+  shows "\<exists>q. x = y + n * q"
+using xyn xy unfolding modeq_def using nat_mod_eq_lemma by blast
+
+lemma nat_mod[algebra]: "[x = y] (mod n) \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)"
+unfolding modeq_def nat_mod_eq_iff ..
+
+(* Lemmas about previously defined terms.                                    *)
+
+lemma prime: "prime p \<longleftrightarrow> p \<noteq> 0 \<and> p\<noteq>1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  {assume "p=0 \<or> p=1" hence ?thesis using prime_0 prime_1 by (cases "p=0", simp_all)}
+  moreover
+  {assume p0: "p\<noteq>0" "p\<noteq>1"
+    {assume H: "?lhs"
+      {fix m assume m: "m > 0" "m < p"
+	{assume "m=1" hence "coprime p m" by simp}
+	moreover
+	{assume "p dvd m" hence "p \<le> m" using dvd_imp_le m by blast with m(2)
+	  have "coprime p m" by simp}
+	ultimately have "coprime p m" using prime_coprime[OF H, of m] by blast}
+      hence ?rhs using p0 by auto}
+    moreover
+    { assume H: "\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m"
+      from prime_factor[OF p0(2)] obtain q where q: "prime q" "q dvd p" by blast
+      from prime_ge_2[OF q(1)] have q0: "q > 0" by arith
+      from dvd_imp_le[OF q(2)] p0 have qp: "q \<le> p" by arith
+      {assume "q = p" hence ?lhs using q(1) by blast}
+      moreover
+      {assume "q\<noteq>p" with qp have qplt: "q < p" by arith
+	from H[rule_format, of q] qplt q0 have "coprime p q" by arith
+	with coprime_prime[of p q q] q have False by simp hence ?lhs by blast}
+      ultimately have ?lhs by blast}
+    ultimately have ?thesis by blast}
+  ultimately show ?thesis  by (cases"p=0 \<or> p=1", auto)
+qed
+
+lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
+proof-
+  have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
+  thus ?thesis by simp
+qed
+
+lemma coprime_mod: assumes n: "n \<noteq> 0" shows "coprime (a mod n) n \<longleftrightarrow> coprime a n"
+  using n dvd_mod_iff[of _ n a] by (auto simp add: coprime)
+
+(* Congruences.                                                              *)
+
+lemma cong_mod_01[simp,presburger]:
+  "[x = y] (mod 0) \<longleftrightarrow> x = y" "[x = y] (mod 1)" "[x = 0] (mod n) \<longleftrightarrow> n dvd x"
+  by (simp_all add: modeq_def, presburger)
+
+lemma cong_sub_cases:
+  "[x = y] (mod n) \<longleftrightarrow> (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
+apply (auto simp add: nat_mod)
+apply (rule_tac x="q2" in exI)
+apply (rule_tac x="q1" in exI, simp)
+apply (rule_tac x="q2" in exI)
+apply (rule_tac x="q1" in exI, simp)
+apply (rule_tac x="q1" in exI)
+apply (rule_tac x="q2" in exI, simp)
+apply (rule_tac x="q1" in exI)
+apply (rule_tac x="q2" in exI, simp)
+done
+
+lemma cong_mult_lcancel: assumes an: "coprime a n" and axy:"[a * x = a * y] (mod n)"
+  shows "[x = y] (mod n)"
+proof-
+  {assume "a = 0" with an axy coprime_0'[of n] have ?thesis by (simp add: modeq_def) }
+  moreover
+  {assume az: "a\<noteq>0"
+    {assume xy: "x \<le> y" hence axy': "a*x \<le> a*y" by simp
+      with axy cong_sub_cases[of "a*x" "a*y" n]  have "[a*(y - x) = 0] (mod n)"
+	by (simp only: if_True diff_mult_distrib2)
+      hence th: "n dvd a*(y -x)" by simp
+      from coprime_divprod[OF th] an have "n dvd y - x"
+	by (simp add: coprime_commute)
+      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
+    moreover
+    {assume H: "\<not>x \<le> y" hence xy: "y \<le> x"  by arith
+      from H az have axy': "\<not> a*x \<le> a*y" by auto
+      with axy H cong_sub_cases[of "a*x" "a*y" n]  have "[a*(x - y) = 0] (mod n)"
+	by (simp only: if_False diff_mult_distrib2)
+      hence th: "n dvd a*(x - y)" by simp
+      from coprime_divprod[OF th] an have "n dvd x - y"
+	by (simp add: coprime_commute)
+      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
+    ultimately have ?thesis by blast}
+  ultimately show ?thesis by blast
+qed
+
+lemma cong_mult_rcancel: assumes an: "coprime a n" and axy:"[x*a = y*a] (mod n)"
+  shows "[x = y] (mod n)"
+  using cong_mult_lcancel[OF an axy[unfolded mult_commute[of _a]]] .
+
+lemma cong_refl: "[x = x] (mod n)" by (simp add: modeq_def)
+
+lemma eq_imp_cong: "a = b \<Longrightarrow> [a = b] (mod n)" by (simp add: cong_refl)
+
+lemma cong_commute: "[x = y] (mod n) \<longleftrightarrow> [y = x] (mod n)"
+  by (auto simp add: modeq_def)
+
+lemma cong_trans[trans]: "[x = y] (mod n) \<Longrightarrow> [y = z] (mod n) \<Longrightarrow> [x = z] (mod n)"
+  by (simp add: modeq_def)
+
+lemma cong_add: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
+  shows "[x + y = x' + y'] (mod n)"
+proof-
+  have "(x + y) mod n = (x mod n + y mod n) mod n"
+    by (simp add: mod_add_left_eq[of x y n] mod_add_right_eq[of "x mod n" y n])
+  also have "\<dots> = (x' mod n + y' mod n) mod n" using xx' yy' modeq_def by simp
+  also have "\<dots> = (x' + y') mod n"
+    by (simp add: mod_add_left_eq[of x' y' n] mod_add_right_eq[of "x' mod n" y' n])
+  finally show ?thesis unfolding modeq_def .
+qed
+
+lemma cong_mult: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
+  shows "[x * y = x' * y'] (mod n)"
+proof-
+  have "(x * y) mod n = (x mod n) * (y mod n) mod n"
+    by (simp add: mod_mult_left_eq[of x y n] mod_mult_right_eq[of "x mod n" y n])
+  also have "\<dots> = (x' mod n) * (y' mod n) mod n" using xx'[unfolded modeq_def] yy'[unfolded modeq_def] by simp
+  also have "\<dots> = (x' * y') mod n"
+    by (simp add: mod_mult_left_eq[of x' y' n] mod_mult_right_eq[of "x' mod n" y' n])
+  finally show ?thesis unfolding modeq_def .
+qed
+
+lemma cong_exp: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
+  by (induct k, auto simp add: cong_refl cong_mult)
+lemma cong_sub: assumes xx': "[x = x'] (mod n)" and yy': "[y = y'] (mod n)"
+  and yx: "y <= x" and yx': "y' <= x'"
+  shows "[x - y = x' - y'] (mod n)"
+proof-
+  { fix x a x' a' y b y' b'
+    have "(x::nat) + a = x' + a' \<Longrightarrow> y + b = y' + b' \<Longrightarrow> y <= x \<Longrightarrow> y' <= x'
+      \<Longrightarrow> (x - y) + (a + b') = (x' - y') + (a' + b)" by arith}
+  note th = this
+  from xx' yy' obtain q1 q2 q1' q2' where q12: "x + n*q1 = x'+n*q2"
+    and q12': "y + n*q1' = y'+n*q2'" unfolding nat_mod by blast+
+  from th[OF q12 q12' yx yx']
+  have "(x - y) + n*(q1 + q2') = (x' - y') + n*(q2 + q1')"
+    by (simp add: right_distrib)
+  thus ?thesis unfolding nat_mod by blast
+qed
+
+lemma cong_mult_lcancel_eq: assumes an: "coprime a n"
+  shows "[a * x = a * y] (mod n) \<longleftrightarrow> [x = y] (mod n)" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume H: "?rhs" from cong_mult[OF cong_refl[of a n] H] show ?lhs .
+next
+  assume H: "?lhs" hence H': "[x*a = y*a] (mod n)" by (simp add: mult_commute)
+  from cong_mult_rcancel[OF an H'] show ?rhs  .
+qed
+
+lemma cong_mult_rcancel_eq: assumes an: "coprime a n"
+  shows "[x * a = y * a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+using cong_mult_lcancel_eq[OF an, of x y] by (simp add: mult_commute)
+
+lemma cong_add_lcancel_eq: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_add_rcancel_eq: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_add_rcancel: "[x + a = y + a] (mod n) \<Longrightarrow> [x = y] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_add_lcancel: "[a + x = a + y] (mod n) \<Longrightarrow> [x = y] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_add_lcancel_eq_0: "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_add_rcancel_eq_0: "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+  by (simp add: nat_mod)
+
+lemma cong_imp_eq: assumes xn: "x < n" and yn: "y < n" and xy: "[x = y] (mod n)"
+  shows "x = y"
+  using xy[unfolded modeq_def mod_less[OF xn] mod_less[OF yn]] .
+
+lemma cong_divides_modulus: "[x = y] (mod m) \<Longrightarrow> n dvd m ==> [x = y] (mod n)"
+  apply (auto simp add: nat_mod dvd_def)
+  apply (rule_tac x="k*q1" in exI)
+  apply (rule_tac x="k*q2" in exI)
+  by simp
+
+lemma cong_0_divides: "[x = 0] (mod n) \<longleftrightarrow> n dvd x" by simp
+
+lemma cong_1_divides:"[x = 1] (mod n) ==> n dvd x - 1"
+  apply (cases "x\<le>1", simp_all)
+  using cong_sub_cases[of x 1 n] by auto
+
+lemma cong_divides: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
+apply (auto simp add: nat_mod dvd_def)
+apply (rule_tac x="k + q1 - q2" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
+apply (rule_tac x="k + q2 - q1" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
+done
+
+lemma cong_coprime: assumes xy: "[x = y] (mod n)"
+  shows "coprime n x \<longleftrightarrow> coprime n y"
+proof-
+  {assume "n=0" hence ?thesis using xy by simp}
+  moreover
+  {assume nz: "n \<noteq> 0"
+  have "coprime n x \<longleftrightarrow> coprime (x mod n) n"
+    by (simp add: coprime_mod[OF nz, of x] coprime_commute[of n x])
+  also have "\<dots> \<longleftrightarrow> coprime (y mod n) n" using xy[unfolded modeq_def] by simp
+  also have "\<dots> \<longleftrightarrow> coprime y n" by (simp add: coprime_mod[OF nz, of y])
+  finally have ?thesis by (simp add: coprime_commute) }
+ultimately show ?thesis by blast
+qed
+
+lemma cong_mod: "~(n = 0) \<Longrightarrow> [a mod n = a] (mod n)" by (simp add: modeq_def)
+
+lemma mod_mult_cong: "~(a = 0) \<Longrightarrow> ~(b = 0)
+  \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
+  by (simp add: modeq_def mod_mult2_eq mod_add_left_eq)
+
+lemma cong_mod_mult: "[x = y] (mod n) \<Longrightarrow> m dvd n \<Longrightarrow> [x = y] (mod m)"
+  apply (auto simp add: nat_mod dvd_def)
+  apply (rule_tac x="k*q1" in exI)
+  apply (rule_tac x="k*q2" in exI, simp)
+  done
+
+(* Some things when we know more about the order.                            *)
+
+lemma cong_le: "y <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
+  using nat_mod_lemma[of x y n]
+  apply auto
+  apply (simp add: nat_mod)
+  apply (rule_tac x="q" in exI)
+  apply (rule_tac x="q + q" in exI)
+  by (auto simp: algebra_simps)
+
+lemma cong_to_1: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
+proof-
+  {assume "n = 0 \<or> n = 1\<or> a = 0 \<or> a = 1" hence ?thesis
+      apply (cases "n=0", simp_all add: cong_commute)
+      apply (cases "n=1", simp_all add: cong_commute modeq_def)
+      apply arith
+      by (cases "a=1", simp_all add: modeq_def cong_commute)}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1" and a:"a\<noteq>0" "a \<noteq> 1" hence a': "a \<ge> 1" by simp
+    hence ?thesis using cong_le[OF a', of n] by auto }
+  ultimately show ?thesis by auto
+qed
+
+(* Some basic theorems about solving congruences.                            *)
+
+
+lemma cong_solve: assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)"
+proof-
+  {assume "a=0" hence ?thesis using an by (simp add: modeq_def)}
+  moreover
+  {assume az: "a\<noteq>0"
+  from bezout_add_strong[OF az, of n]
+  obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast
+  from an[unfolded coprime, rule_format, of d] dxy(1,2) have d1: "d = 1" by blast
+  hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp
+  hence "a*(x*b) = n*(y*b) + b" by algebra
+  hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp
+  hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq)
+  hence "[a*(x*b) = b] (mod n)" unfolding modeq_def .
+  hence ?thesis by blast}
+ultimately  show ?thesis by blast
+qed
+
+lemma cong_solve_unique: assumes an: "coprime a n" and nz: "n \<noteq> 0"
+  shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)"
+proof-
+  let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)"
+  from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast
+  let ?x = "x mod n"
+  from x have th: "[a * ?x = b] (mod n)"
+    by (simp add: modeq_def mod_mult_right_eq[of a x n])
+  from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp
+  {fix y assume Py: "y < n" "[a * y = b] (mod n)"
+    from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: modeq_def)
+    hence "[y = ?x] (mod n)" by (simp add: cong_mult_lcancel_eq[OF an])
+    with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz
+    have "y = ?x" by (simp add: modeq_def)}
+  with Px show ?thesis by blast
+qed
+
+lemma cong_solve_unique_nontrivial:
+  assumes p: "prime p" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p"
+  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)"
+proof-
+  from p have p1: "p > 1" using prime_ge_2[OF p] by arith
+  hence p01: "p \<noteq> 0" "p \<noteq> 1" by arith+
+  from pa have ap: "coprime a p" by (simp add: coprime_commute)
+  from prime_coprime[OF p, of x] dvd_imp_le[of p x] x0 xp have px:"coprime x p"
+    by (auto simp add: coprime_commute)
+  from cong_solve_unique[OF px p01(1)]
+  obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y" by blast
+  {assume y0: "y = 0"
+    with y(2) have th: "p dvd a" by (simp add: cong_commute[of 0 a p])
+    with p coprime_prime[OF pa, of p] have False by simp}
+  with y show ?thesis unfolding Ex1_def using neq0_conv by blast
+qed
+lemma cong_unique_inverse_prime:
+  assumes p: "prime p" and x0: "0 < x" and xp: "x < p"
+  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)"
+  using cong_solve_unique_nontrivial[OF p coprime_1[of p] x0 xp] .
+
+(* Forms of the Chinese remainder theorem.                                   *)
+
+lemma cong_chinese:
+  assumes ab: "coprime a b" and  xya: "[x = y] (mod a)"
+  and xyb: "[x = y] (mod b)"
+  shows "[x = y] (mod a*b)"
+  using ab xya xyb
+  by (simp add: cong_sub_cases[of x y a] cong_sub_cases[of x y b]
+    cong_sub_cases[of x y "a*b"])
+(cases "x \<le> y", simp_all add: divides_mul[of a _ b])
+
+lemma chinese_remainder_unique:
+  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b\<noteq>0"
+  shows "\<exists>!x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
+proof-
+  from az bz have abpos: "a*b > 0" by simp
+  from chinese_remainder[OF ab az bz] obtain x q1 q2 where
+    xq12: "x = m + q1 * a" "x = n + q2 * b" by blast
+  let ?w = "x mod (a*b)"
+  have wab: "?w < a*b" by (simp add: mod_less_divisor[OF abpos])
+  from xq12(1) have "?w mod a = ((m + q1 * a) mod (a*b)) mod a" by simp
+  also have "\<dots> = m mod a" apply (simp add: mod_mult2_eq)
+    apply (subst mod_add_left_eq)
+    by simp
+  finally have th1: "[?w = m] (mod a)" by (simp add: modeq_def)
+  from xq12(2) have "?w mod b = ((n + q2 * b) mod (a*b)) mod b" by simp
+  also have "\<dots> = ((n + q2 * b) mod (b*a)) mod b" by (simp add: mult_commute)
+  also have "\<dots> = n mod b" apply (simp add: mod_mult2_eq)
+    apply (subst mod_add_left_eq)
+    by simp
+  finally have th2: "[?w = n] (mod b)" by (simp add: modeq_def)
+  {fix y assume H: "y < a*b" "[y = m] (mod a)" "[y = n] (mod b)"
+    with th1 th2 have H': "[y = ?w] (mod a)" "[y = ?w] (mod b)"
+      by (simp_all add: modeq_def)
+    from cong_chinese[OF ab H'] mod_less[OF H(1)] mod_less[OF wab]
+    have "y = ?w" by (simp add: modeq_def)}
+  with th1 th2 wab show ?thesis by blast
+qed
+
+lemma chinese_remainder_coprime_unique:
+  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0"
+  and ma: "coprime m a" and nb: "coprime n b"
+  shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
+proof-
+  let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
+  from chinese_remainder_unique[OF ab az bz]
+  obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)"
+    "\<forall>y. ?P y \<longrightarrow> y = x" by blast
+  from ma nb cong_coprime[OF x(2)] cong_coprime[OF x(3)]
+  have "coprime x a" "coprime x b" by (simp_all add: coprime_commute)
+  with coprime_mul[of x a b] have "coprime x (a*b)" by simp
+  with x show ?thesis by blast
+qed
+
+(* Euler totient function.                                                   *)
+
+definition phi_def: "\<phi> n = card { m. 0 < m \<and> m <= n \<and> coprime m n }"
+
+lemma phi_0[simp]: "\<phi> 0 = 0"
+  unfolding phi_def by auto
+
+lemma phi_finite[simp]: "finite ({ m. 0 < m \<and> m <= n \<and> coprime m n })"
+proof-
+  have "{ m. 0 < m \<and> m <= n \<and> coprime m n } \<subseteq> {0..n}" by auto
+  thus ?thesis by (auto intro: finite_subset)
+qed
+
+declare coprime_1[presburger]
+lemma phi_1[simp]: "\<phi> 1 = 1"
+proof-
+  {fix m
+    have "0 < m \<and> m <= 1 \<and> coprime m 1 \<longleftrightarrow> m = 1" by presburger }
+  thus ?thesis by (simp add: phi_def)
+qed
+
+lemma [simp]: "\<phi> (Suc 0) = Suc 0" using phi_1 by simp
+
+lemma phi_alt: "\<phi>(n) = card { m. coprime m n \<and> m < n}"
+proof-
+  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=0", simp_all)}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    {fix m
+      from n have "0 < m \<and> m <= n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
+	apply (cases "m = 0", simp_all)
+	apply (cases "m = 1", simp_all)
+	apply (cases "m = n", auto)
+	done }
+    hence ?thesis unfolding phi_def by simp}
+  ultimately show ?thesis by auto
+qed
+
+lemma phi_finite_lemma[simp]: "finite {m. coprime m n \<and>  m < n}" (is "finite ?S")
+  by (rule finite_subset[of "?S" "{0..n}"], auto)
+
+lemma phi_another: assumes n: "n\<noteq>1"
+  shows "\<phi> n = card {m. 0 < m \<and> m < n \<and> coprime m n }"
+proof-
+  {fix m
+    from n have "0 < m \<and> m < n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
+      by (cases "m=0", auto)}
+  thus ?thesis unfolding phi_alt by auto
+qed
+
+lemma phi_limit: "\<phi> n \<le> n"
+proof-
+  have "{ m. coprime m n \<and> m < n} \<subseteq> {0 ..<n}" by auto
+  with card_mono[of "{0 ..<n}" "{ m. coprime m n \<and> m < n}"]
+  show ?thesis unfolding phi_alt by auto
+qed
+
+lemma stupid[simp]: "{m. (0::nat) < m \<and> m < n} = {1..<n}"
+  by auto
+
+lemma phi_limit_strong: assumes n: "n\<noteq>1"
+  shows "\<phi>(n) \<le> n - 1"
+proof-
+  show ?thesis
+    unfolding phi_another[OF n] finite_number_segment[of n, symmetric]
+    by (rule card_mono[of "{m. 0 < m \<and> m < n}" "{m. 0 < m \<and> m < n \<and> coprime m n}"], auto)
+qed
+
+lemma phi_lowerbound_1_strong: assumes n: "n \<ge> 1"
+  shows "\<phi>(n) \<ge> 1"
+proof-
+  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
+  from card_0_eq[of ?S] n have "\<phi> n \<noteq> 0" unfolding phi_alt
+    apply auto
+    apply (cases "n=1", simp_all)
+    apply (rule exI[where x=1], simp)
+    done
+  thus ?thesis by arith
+qed
+
+lemma phi_lowerbound_1: "2 <= n ==> 1 <= \<phi>(n)"
+  using phi_lowerbound_1_strong[of n] by auto
+
+lemma phi_lowerbound_2: assumes n: "3 <= n" shows "2 <= \<phi> (n)"
+proof-
+  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
+  have inS: "{1, n - 1} \<subseteq> ?S" using n coprime_plus1[of "n - 1"]
+    by (auto simp add: coprime_commute)
+  from n have c2: "card {1, n - 1} = 2" by (auto simp add: card_insert_if)
+  from card_mono[of ?S "{1, n - 1}", simplified inS c2] show ?thesis
+    unfolding phi_def by auto
+qed
+
+lemma phi_prime: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1 \<longleftrightarrow> prime n"
+proof-
+  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=1", simp_all)}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    let ?S = "{m. 0 < m \<and> m < n}"
+    have fS: "finite ?S" by simp
+    let ?S' = "{m. 0 < m \<and> m < n \<and> coprime m n}"
+    have fS':"finite ?S'" apply (rule finite_subset[of ?S' ?S]) by auto
+    {assume H: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1"
+      hence ceq: "card ?S' = card ?S"
+      using n finite_number_segment[of n] phi_another[OF n(2)] by simp
+      {fix m assume m: "0 < m" "m < n" "\<not> coprime m n"
+	hence mS': "m \<notin> ?S'" by auto
+	have "insert m ?S' \<le> ?S" using m by auto
+	from m have "card (insert m ?S') \<le> card ?S"
+	  by - (rule card_mono[of ?S "insert m ?S'"], auto)
+	hence False
+	  unfolding card_insert_disjoint[of "?S'" m, OF fS' mS'] ceq
+	  by simp }
+      hence "\<forall>m. 0 <m \<and> m < n \<longrightarrow> coprime m n" by blast
+      hence "prime n" unfolding prime using n by (simp add: coprime_commute)}
+    moreover
+    {assume H: "prime n"
+      hence "?S = ?S'" unfolding prime using n
+	by (auto simp add: coprime_commute)
+      hence "card ?S = card ?S'" by simp
+      hence "\<phi> n = n - 1" unfolding phi_another[OF n(2)] by simp}
+    ultimately have ?thesis using n by blast}
+  ultimately show ?thesis by (cases "n=0") blast+
+qed
+
+(* Multiplicativity property.                                                *)
+
+lemma phi_multiplicative: assumes ab: "coprime a b"
+  shows "\<phi> (a * b) = \<phi> a * \<phi> b"
+proof-
+  {assume "a = 0 \<or> b = 0 \<or> a = 1 \<or> b = 1"
+    hence ?thesis
+      by (cases "a=0", simp, cases "b=0", simp, cases"a=1", simp_all) }
+  moreover
+  {assume a: "a\<noteq>0" "a\<noteq>1" and b: "b\<noteq>0" "b\<noteq>1"
+    hence ab0: "a*b \<noteq> 0" by simp
+    let ?S = "\<lambda>k. {m. coprime m k \<and> m < k}"
+    let ?f = "\<lambda>x. (x mod a, x mod b)"
+    have eq: "?f ` (?S (a*b)) = (?S a \<times> ?S b)"
+    proof-
+      {fix x assume x:"x \<in> ?S (a*b)"
+	hence x': "coprime x (a*b)" "x < a*b" by simp_all
+	hence xab: "coprime x a" "coprime x b" by (simp_all add: coprime_mul_eq)
+	from mod_less_divisor a b have xab':"x mod a < a" "x mod b < b" by auto
+	from xab xab' have "?f x \<in> (?S a \<times> ?S b)"
+	  by (simp add: coprime_mod[OF a(1)] coprime_mod[OF b(1)])}
+      moreover
+      {fix x y assume x: "x \<in> ?S a" and y: "y \<in> ?S b"
+	hence x': "coprime x a" "x < a" and y': "coprime y b" "y < b" by simp_all
+	from chinese_remainder_coprime_unique[OF ab a(1) b(1) x'(1) y'(1)]
+	obtain z where z: "coprime z (a * b)" "z < a * b" "[z = x] (mod a)"
+	  "[z = y] (mod b)" by blast
+	hence "(x,y) \<in> ?f ` (?S (a*b))"
+	  using y'(2) mod_less_divisor[of b y] x'(2) mod_less_divisor[of a x]
+	  by (auto simp add: image_iff modeq_def)}
+      ultimately show ?thesis by auto
+    qed
+    have finj: "inj_on ?f (?S (a*b))"
+      unfolding inj_on_def
+    proof(clarify)
+      fix x y assume H: "coprime x (a * b)" "x < a * b" "coprime y (a * b)"
+	"y < a * b" "x mod a = y mod a" "x mod b = y mod b"
+      hence cp: "coprime x a" "coprime x b" "coprime y a" "coprime y b"
+	by (simp_all add: coprime_mul_eq)
+      from chinese_remainder_coprime_unique[OF ab a(1) b(1) cp(3,4)] H
+      show "x = y" unfolding modeq_def by blast
+    qed
+    from card_image[OF finj, unfolded eq] have ?thesis
+      unfolding phi_alt by simp }
+  ultimately show ?thesis by auto
+qed
+
+(* Fermat's Little theorem / Fermat-Euler theorem.                           *)
+
+
+lemma nproduct_mod:
+  assumes fS: "finite S" and n0: "n \<noteq> 0"
+  shows "[setprod (\<lambda>m. a(m) mod n) S = setprod a S] (mod n)"
+proof-
+  have th1:"[1 = 1] (mod n)" by (simp add: modeq_def)
+  from cong_mult
+  have th3:"\<forall>x1 y1 x2 y2.
+    [x1 = x2] (mod n) \<and> [y1 = y2] (mod n) \<longrightarrow> [x1 * y1 = x2 * y2] (mod n)"
+    by blast
+  have th4:"\<forall>x\<in>S. [a x mod n = a x] (mod n)" by (simp add: modeq_def)
+  from fold_image_related[where h="(\<lambda>m. a(m) mod n)" and g=a, OF th1 th3 fS, OF th4] show ?thesis unfolding setprod_def by (simp add: fS)
+qed
+
+lemma nproduct_cmul:
+  assumes fS:"finite S"
+  shows "setprod (\<lambda>m. (c::'a::{comm_monoid_mult})* a(m)) S = c ^ (card S) * setprod a S"
+unfolding setprod_timesf setprod_constant[OF fS, of c] ..
+
+lemma coprime_nproduct:
+  assumes fS: "finite S" and Sn: "\<forall>x\<in>S. coprime n (a x)"
+  shows "coprime n (setprod a S)"
+  using fS unfolding setprod_def by (rule finite_subset_induct)
+    (insert Sn, auto simp add: coprime_mul)
+
+lemma fermat_little: assumes an: "coprime a n"
+  shows "[a ^ (\<phi> n) = 1] (mod n)"
+proof-
+  {assume "n=0" hence ?thesis by simp}
+  moreover
+  {assume "n=1" hence ?thesis by (simp add: modeq_def)}
+  moreover
+  {assume nz: "n \<noteq> 0" and n1: "n \<noteq> 1"
+    let ?S = "{m. coprime m n \<and> m < n}"
+    let ?P = "\<Prod> ?S"
+    have fS: "finite ?S" by simp
+    have cardfS: "\<phi> n = card ?S" unfolding phi_alt ..
+    {fix m assume m: "m \<in> ?S"
+      hence "coprime m n" by simp
+      with coprime_mul[of n a m] an have "coprime (a*m) n"
+	by (simp add: coprime_commute)}
+    hence Sn: "\<forall>m\<in> ?S. coprime (a*m) n " by blast
+    from coprime_nproduct[OF fS, of n "\<lambda>m. m"] have nP:"coprime ?P n"
+      by (simp add: coprime_commute)
+    have Paphi: "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
+    proof-
+      let ?h = "\<lambda>m. m mod n"
+      {fix m assume mS: "m\<in> ?S"
+	hence "?h m \<in> ?S" by simp}
+      hence hS: "?h ` ?S = ?S"by (auto simp add: image_iff)
+      have "a\<noteq>0" using an n1 nz apply- apply (rule ccontr) by simp
+      hence inj: "inj_on (op * a) ?S" unfolding inj_on_def by simp
+
+      have eq0: "fold_image op * (?h \<circ> op * a) 1 {m. coprime m n \<and> m < n} =
+     fold_image op * (\<lambda>m. m) 1 {m. coprime m n \<and> m < n}"
+      proof (rule fold_image_eq_general[where h="?h o (op * a)"])
+	show "finite ?S" using fS .
+      next
+	{fix y assume yS: "y \<in> ?S" hence y: "coprime y n" "y < n" by simp_all
+	  from cong_solve_unique[OF an nz, of y]
+	  obtain x where x:"x < n" "[a * x = y] (mod n)" "\<forall>z. z < n \<and> [a * z = y] (mod n) \<longrightarrow> z=x" by blast
+	  from cong_coprime[OF x(2)] y(1)
+	  have xm: "coprime x n" by (simp add: coprime_mul_eq coprime_commute)
+	  {fix z assume "z \<in> ?S" "(?h \<circ> op * a) z = y"
+	    hence z: "coprime z n" "z < n" "(?h \<circ> op * a) z = y" by simp_all
+	    from x(3)[rule_format, of z] z(2,3) have "z=x"
+	      unfolding modeq_def mod_less[OF y(2)] by simp}
+	  with xm x(1,2) have "\<exists>!x. x \<in> ?S \<and> (?h \<circ> op * a) x = y"
+	    unfolding modeq_def mod_less[OF y(2)] by auto }
+	thus "\<forall>y\<in>{m. coprime m n \<and> m < n}.
+       \<exists>!x. x \<in> {m. coprime m n \<and> m < n} \<and> ((\<lambda>m. m mod n) \<circ> op * a) x = y" by blast
+      next
+	{fix x assume xS: "x\<in> ?S"
+	  hence x: "coprime x n" "x < n" by simp_all
+	  with an have "coprime (a*x) n"
+	    by (simp add: coprime_mul_eq[of n a x] coprime_commute)
+	  hence "?h (a*x) \<in> ?S" using nz
+	    by (simp add: coprime_mod[OF nz] mod_less_divisor)}
+	thus " \<forall>x\<in>{m. coprime m n \<and> m < n}.
+       ((\<lambda>m. m mod n) \<circ> op * a) x \<in> {m. coprime m n \<and> m < n} \<and>
+       ((\<lambda>m. m mod n) \<circ> op * a) x = ((\<lambda>m. m mod n) \<circ> op * a) x" by simp
+      qed
+      from nproduct_mod[OF fS nz, of "op * a"]
+      have "[(setprod (op *a) ?S) = (setprod (?h o (op * a)) ?S)] (mod n)"
+	unfolding o_def
+	by (simp add: cong_commute)
+      also have "[setprod (?h o (op * a)) ?S = ?P ] (mod n)"
+	using eq0 fS an by (simp add: setprod_def modeq_def o_def)
+      finally show "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
+	unfolding cardfS mult_commute[of ?P "a^ (card ?S)"]
+	  nproduct_cmul[OF fS, symmetric] mult_1_right by simp
+    qed
+    from cong_mult_lcancel[OF nP Paphi] have ?thesis . }
+  ultimately show ?thesis by blast
+qed
+
+lemma fermat_little_prime: assumes p: "prime p" and ap: "coprime a p"
+  shows "[a^ (p - 1) = 1] (mod p)"
+  using fermat_little[OF ap] p[unfolded phi_prime[symmetric]]
+by simp
+
+
+(* Lucas's theorem.                                                          *)
+
+lemma lucas_coprime_lemma:
+  assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)"
+  shows "coprime a n"
+proof-
+  {assume "n=1" hence ?thesis by simp}
+  moreover
+  {assume "n = 0" hence ?thesis using am m exp_eq_1[of a m] by simp}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    from m obtain m' where m': "m = Suc m'" by (cases m, blast+)
+    {fix d
+      assume d: "d dvd a" "d dvd n"
+      from n have n1: "1 < n" by arith
+      from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding modeq_def by simp
+      from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m')
+      from dvd_mod_iff[OF d(2), of "a^m"] dam am1
+      have "d = 1" by simp }
+    hence ?thesis unfolding coprime by auto
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma lucas_weak:
+  assumes n: "n \<ge> 2" and an:"[a^(n - 1) = 1] (mod n)"
+  and nm: "\<forall>m. 0 <m \<and> m < n - 1 \<longrightarrow> \<not> [a^m = 1] (mod n)"
+  shows "prime n"
+proof-
+  from n have n1: "n \<noteq> 1" "n\<noteq>0" "n - 1 \<noteq> 0" "n - 1 > 0" "n - 1 < n" by arith+
+  from lucas_coprime_lemma[OF n1(3) an] have can: "coprime a n" .
+  from fermat_little[OF can] have afn: "[a ^ \<phi> n = 1] (mod n)" .
+  {assume "\<phi> n \<noteq> n - 1"
+    with phi_limit_strong[OF n1(1)] phi_lowerbound_1[OF n]
+    have c:"\<phi> n > 0 \<and> \<phi> n < n - 1" by arith
+    from nm[rule_format, OF c] afn have False ..}
+  hence "\<phi> n = n - 1" by blast
+  with phi_prime[of n] n1(1,2) show ?thesis by simp
+qed
+
+lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume ?rhs thus ?lhs by blast
+next
+  assume H: ?lhs then obtain n where n: "P n" by blast
+  let ?x = "Least P"
+  {fix m assume m: "m < ?x"
+    from not_less_Least[OF m] have "\<not> P m" .}
+  with LeastI_ex[OF H] show ?rhs by blast
+qed
+
+lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof-
+  {assume ?rhs hence ?lhs by blast}
+  moreover
+  { assume H: ?lhs then obtain n where n: "P n" by blast
+    let ?x = "Least P"
+    {fix m assume m: "m < ?x"
+      from not_less_Least[OF m] have "\<not> P m" .}
+    with LeastI_ex[OF H] have ?rhs by blast}
+  ultimately show ?thesis by blast
+qed
+
+lemma power_mod: "((x::nat) mod m)^n mod m = x^n mod m"
+proof(induct n)
+  case 0 thus ?case by simp
+next
+  case (Suc n)
+  have "(x mod m)^(Suc n) mod m = ((x mod m) * (((x mod m) ^ n) mod m)) mod m"
+    by (simp add: mod_mult_right_eq[symmetric])
+  also have "\<dots> = ((x mod m) * (x^n mod m)) mod m" using Suc.hyps by simp
+  also have "\<dots> = x^(Suc n) mod m"
+    by (simp add: mod_mult_left_eq[symmetric] mod_mult_right_eq[symmetric])
+  finally show ?case .
+qed
+
+lemma lucas:
+  assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)"
+  and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> \<not> [a^((n - 1) div p) = 1] (mod n)"
+  shows "prime n"
+proof-
+  from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+
+  from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp
+  from lucas_coprime_lemma[OF n01(3) an1] cong_coprime[OF an1]
+  have an: "coprime a n" "coprime (a^(n - 1)) n" by (simp_all add: coprime_commute)
+  {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
+    from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where
+      m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast
+    {assume nm1: "(n - 1) mod m > 0"
+      from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast
+      let ?y = "a^ ((n - 1) div m * m)"
+      note mdeq = mod_div_equality[of "(n - 1)" m]
+      from coprime_exp[OF an(1)[unfolded coprime_commute[of a n]],
+	of "(n - 1) div m * m"]
+      have yn: "coprime ?y n" by (simp add: coprime_commute)
+      have "?y mod n = (a^m)^((n - 1) div m) mod n"
+	by (simp add: algebra_simps power_mult)
+      also have "\<dots> = (a^m mod n)^((n - 1) div m) mod n"
+	using power_mod[of "a^m" n "(n - 1) div m"] by simp
+      also have "\<dots> = 1" using m(3)[unfolded modeq_def onen] onen
+	by (simp add: power_Suc0)
+      finally have th3: "?y mod n = 1"  .
+      have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)"
+	using an1[unfolded modeq_def onen] onen
+	  mod_div_equality[of "(n - 1)" m, symmetric]
+	by (simp add:power_add[symmetric] modeq_def th3 del: One_nat_def)
+      from cong_mult_lcancel[of ?y n "a^((n - 1) mod m)" 1, OF yn th2]
+      have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)"  .
+      from m(4)[rule_format, OF th0] nm1
+	less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1
+      have False by blast }
+    hence "(n - 1) mod m = 0" by auto
+    then have mn: "m dvd n - 1" by presburger
+    then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast
+    from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+
+    from prime_factor[OF r01(2)] obtain p where p: "prime p" "p dvd r" by blast
+    hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult)
+    have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r
+      by (simp add: power_mult)
+    also have "\<dots> = (a^(m*(r div p))) mod n" using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp
+    also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult)
+    also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod[of "a^m" "n" "r div p" ] ..
+    also have "\<dots> = 1" using m(3) onen by (simp add: modeq_def power_Suc0)
+    finally have "[(a ^ ((n - 1) div p))= 1] (mod n)"
+      using onen by (simp add: modeq_def)
+    with pn[rule_format, OF th] have False by blast}
+  hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast
+  from lucas_weak[OF n2 an1 th] show ?thesis .
+qed
+
+(* Definition of the order of a number mod n (0 in non-coprime case).        *)
+
+definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)"
+
+(* This has the expected properties.                                         *)
+
+lemma coprime_ord:
+  assumes na: "coprime n a"
+  shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))"
+proof-
+  let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)"
+  from euclid[of a] obtain p where p: "prime p" "a < p" by blast
+  from na have o: "ord n a = Least ?P" by (simp add: ord_def)
+  {assume "n=0 \<or> n=1" with na have "\<exists>m>0. ?P m" apply auto apply (rule exI[where x=1]) by (simp  add: modeq_def)}
+  moreover
+  {assume "n\<noteq>0 \<and> n\<noteq>1" hence n2:"n \<ge> 2" by arith
+    from na have na': "coprime a n" by (simp add: coprime_commute)
+    from phi_lowerbound_1[OF n2] fermat_little[OF na']
+    have ex: "\<exists>m>0. ?P m" by - (rule exI[where x="\<phi> n"], auto) }
+  ultimately have ex: "\<exists>m>0. ?P m" by blast
+  from nat_exists_least_iff'[of ?P] ex na show ?thesis
+    unfolding o[symmetric] by auto
+qed
+(* With the special value 0 for non-coprime case, it's more convenient.      *)
+lemma ord_works:
+ "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))"
+apply (cases "coprime n a")
+using coprime_ord[of n a]
+by (blast, simp add: ord_def modeq_def)
+
+lemma ord: "[a^(ord n a) = 1] (mod n)" using ord_works by blast
+lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)"
+  using ord_works by blast
+lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> ~coprime n a"
+by (cases "coprime n a", simp add: neq0_conv coprime_ord, simp add: neq0_conv ord_def)
+
+lemma ord_divides:
+ "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume rh: ?rhs
+  then obtain k where "d = ord n a * k" unfolding dvd_def by blast
+  hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)"
+    by (simp add : modeq_def power_mult power_mod)
+  also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)"
+    using ord[of a n, unfolded modeq_def]
+    by (simp add: modeq_def power_mod power_Suc0)
+  finally  show ?lhs .
+next
+  assume lh: ?lhs
+  { assume H: "\<not> coprime n a"
+    hence o: "ord n a = 0" by (simp add: ord_def)
+    {assume d: "d=0" with o H have ?rhs by (simp add: modeq_def)}
+    moreover
+    {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
+      from H[unfolded coprime]
+      obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto
+      from lh[unfolded nat_mod]
+      obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2" by blast
+      hence "a ^ d + n * q1 - n * q2 = 1" by simp
+      with dvd_diff_nat [OF dvd_add [OF divides_rexp[OF p(2), of d'] dvd_mult2[OF p(1), of q1]] dvd_mult2[OF p(1), of q2]] d' have "p dvd 1" by simp
+      with p(3) have False by simp
+      hence ?rhs ..}
+    ultimately have ?rhs by blast}
+  moreover
+  {assume H: "coprime n a"
+    let ?o = "ord n a"
+    let ?q = "d div ord n a"
+    let ?r = "d mod ord n a"
+    from cong_exp[OF ord[of a n], of ?q]
+    have eqo: "[(a^?o)^?q = 1] (mod n)"  by (simp add: modeq_def power_Suc0)
+    from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0)
+    hence op: "?o > 0" by simp
+    from mod_div_equality[of d "ord n a"] lh
+    have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: modeq_def mult_commute)
+    hence "[(a^?o)^?q * (a^?r) = 1] (mod n)"
+      by (simp add: modeq_def power_mult[symmetric] power_add[symmetric])
+    hence th: "[a^?r = 1] (mod n)"
+      using eqo mod_mult_left_eq[of "(a^?o)^?q" "a^?r" n]
+      apply (simp add: modeq_def del: One_nat_def)
+      by (simp add: mod_mult_left_eq[symmetric])
+    {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
+    moreover
+    {assume r: "?r \<noteq> 0"
+      with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp
+      from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th
+      have ?rhs by blast}
+    ultimately have ?rhs by blast}
+  ultimately  show ?rhs by blast
+qed
+
+lemma order_divides_phi: "coprime n a \<Longrightarrow> ord n a dvd \<phi> n"
+using ord_divides fermat_little coprime_commute by simp
+lemma order_divides_expdiff:
+  assumes na: "coprime n a"
+  shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
+proof-
+  {fix n a d e
+    assume na: "coprime n a" and ed: "(e::nat) \<le> d"
+    hence "\<exists>c. d = e + c" by arith
+    then obtain c where c: "d = e + c" by arith
+    from na have an: "coprime a n" by (simp add: coprime_commute)
+    from coprime_exp[OF na, of e]
+    have aen: "coprime (a^e) n" by (simp add: coprime_commute)
+    from coprime_exp[OF na, of c]
+    have acn: "coprime (a^c) n" by (simp add: coprime_commute)
+    have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)"
+      using c by simp
+    also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add)
+    also have  "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)"
+      using cong_mult_lcancel_eq[OF aen, of "a^c" "a^0"] by simp
+    also  have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides)
+    also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)"
+      using cong_add_lcancel_eq[of e c 0 "ord n a", simplified cong_0_divides]
+      by simp
+    finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
+      using c by simp }
+  note th = this
+  have "e \<le> d \<or> d \<le> e" by arith
+  moreover
+  {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
+  moreover
+  {assume de: "d \<le> e"
+    from th[OF na de] have ?thesis by (simp add: cong_commute) }
+  ultimately show ?thesis by blast
+qed
+
+(* Another trivial primality characterization.                               *)
+
+lemma prime_prime_factor:
+  "prime n \<longleftrightarrow> n \<noteq> 1\<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)"
+proof-
+  {assume n: "n=0 \<or> n=1" hence ?thesis using prime_0 two_is_prime by auto}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    {assume pn: "prime n"
+
+      from pn[unfolded prime_def] have "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
+	using n
+	apply (cases "n = 0 \<or> n=1",simp)
+	by (clarsimp, erule_tac x="p" in allE, auto)}
+    moreover
+    {assume H: "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
+      from n have n1: "n > 1" by arith
+      {fix m assume m: "m dvd n" "m\<noteq>1"
+	from prime_factor[OF m(2)] obtain p where
+	  p: "prime p" "p dvd m" by blast
+	from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast
+	with p(2) have "n dvd m"  by simp
+	hence "m=n"  using dvd_anti_sym[OF m(1)] by simp }
+      with n1 have "prime n"  unfolding prime_def by auto }
+    ultimately have ?thesis using n by blast}
+  ultimately       show ?thesis by auto
+qed
+
+lemma prime_divisor_sqrt:
+  "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d^2 \<le> n \<longrightarrow> d = 1)"
+proof-
+  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1
+    by (auto simp add: nat_power_eq_0_iff)}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    hence np: "n > 1" by arith
+    {fix d assume d: "d dvd n" "d^2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
+      from H d have d1n: "d = 1 \<or> d=n" by blast
+      {assume dn: "d=n"
+	have "n^2 > n*1" using n
+	  by (simp add: power2_eq_square mult_less_cancel1)
+	with dn d(2) have "d=1" by simp}
+      with d1n have "d = 1" by blast  }
+    moreover
+    {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'^2 \<le> n \<longrightarrow> d' = 1"
+      from d n have "d \<noteq> 0" apply - apply (rule ccontr) by simp
+      hence dp: "d > 0" by simp
+      from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast
+      from n dp e have ep:"e > 0" by simp
+      have "d^2 \<le> n \<or> e^2 \<le> n" using dp ep
+	by (auto simp add: e power2_eq_square mult_le_cancel_left)
+      moreover
+      {assume h: "d^2 \<le> n"
+	from H[rule_format, of d] h d have "d = 1" by blast}
+      moreover
+      {assume h: "e^2 \<le> n"
+	from e have "e dvd n" unfolding dvd_def by (simp add: mult_commute)
+	with H[rule_format, of e] h have "e=1" by simp
+	with e have "d = n" by simp}
+      ultimately have "d=1 \<or> d=n"  by blast}
+    ultimately have ?thesis unfolding prime_def using np n(2) by blast}
+  ultimately show ?thesis by auto
+qed
+lemma prime_prime_factor_sqrt:
+  "prime n \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p^2 \<le> n)"
+  (is "?lhs \<longleftrightarrow>?rhs")
+proof-
+  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 by auto}
+  moreover
+  {assume n: "n\<noteq>0" "n\<noteq>1"
+    {assume H: ?lhs
+      from H[unfolded prime_divisor_sqrt] n
+      have ?rhs  apply clarsimp by (erule_tac x="p" in allE, simp add: prime_1)
+    }
+    moreover
+    {assume H: ?rhs
+      {fix d assume d: "d dvd n" "d^2 \<le> n" "d\<noteq>1"
+	from prime_factor[OF d(3)]
+	obtain p where p: "prime p" "p dvd d" by blast
+	from n have np: "n > 0" by arith
+	from d(1) n have "d \<noteq> 0" by - (rule ccontr, auto)
+	hence dp: "d > 0" by arith
+	from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2)
+	have "p^2 \<le> n" unfolding power2_eq_square by arith
+	with H n p(1) dvd_trans[OF p(2) d(1)] have False  by blast}
+      with n prime_divisor_sqrt  have ?lhs by auto}
+    ultimately have ?thesis by blast }
+  ultimately show ?thesis by (cases "n=0 \<or> n=1", auto)
+qed
+(* Pocklington theorem. *)
+
+lemma pocklington_lemma:
+  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)"
+  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
+  and pp: "prime p" and pn: "p dvd n"
+  shows "[p = 1] (mod q)"
+proof-
+  from pp prime_0 prime_1 have p01: "p \<noteq> 0" "p \<noteq> 1" by - (rule ccontr, simp)+
+  from cong_1_divides[OF an, unfolded nqr, unfolded dvd_def]
+  obtain k where k: "a ^ (q * r) - 1 = n*k" by blast
+  from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast
+  {assume a0: "a = 0"
+    hence "a^ (n - 1) = 0" using n by (simp add: power_0_left)
+    with n an mod_less[of 1 n]  have False by (simp add: power_0_left modeq_def)}
+  hence a0: "a\<noteq>0" ..
+  from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by (simp add: neq0_conv)
+  hence "(a ^ (q * r) - 1) + 1  = a ^ (q * r)" by simp
+  with k l have "a ^ (q * r) = p*l*k + 1" by simp
+  hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: mult_ac)
+  hence odq: "ord p (a^r) dvd q"
+    unfolding ord_divides[symmetric] power_mult[symmetric] nat_mod  by blast
+  from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast
+  {assume d1: "d \<noteq> 1"
+    from prime_factor[OF d1] obtain P where P: "prime P" "P dvd d" by blast
+    from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp
+    from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast
+    from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast
+    have P0: "P \<noteq> 0" using P(1) prime_0 by - (rule ccontr, simp)
+    from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast
+    from d s t P0  have s': "ord p (a^r) * t = s" by algebra
+    have "ord p (a^r) * t*r = r * ord p (a^r) * t" by algebra
+    hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t"
+      by (simp only: power_mult)
+    have "[((a ^ r) ^ ord p (a^r)) ^ t= 1^t] (mod p)"
+      by (rule cong_exp, rule ord)
+    then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)"
+      by (simp add: power_Suc0)
+    from cong_1_divides[OF th] exps have pd0: "p dvd a^(ord p (a^r) * t*r) - 1" by simp
+    from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp
+    with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp
+    with p01 pn pd0 have False unfolding coprime by auto}
+  hence d1: "d = 1" by blast
+  hence o: "ord p (a^r) = q" using d by simp
+  from pp phi_prime[of p] have phip: " \<phi> p = p - 1" by simp
+  {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
+    from pp[unfolded prime_def] d have dp: "d = p" by blast
+    from n have n12:"Suc (n - 2) = n - 1" by arith
+    with divides_rexp[OF d(2)[unfolded dp], of "n - 2"]
+    have th0: "p dvd a ^ (n - 1)" by simp
+    from n have n0: "n \<noteq> 0" by simp
+    from d(2) an n12[symmetric] have a0: "a \<noteq> 0"
+      by - (rule ccontr, simp add: modeq_def)
+    have th1: "a^ (n - 1) \<noteq> 0" using n d(2) dp a0 by (auto simp add: neq0_conv)
+    from coprime_minus1[OF th1, unfolded coprime]
+      dvd_trans[OF pn cong_1_divides[OF an]] th0 d(3) dp
+    have False by auto}
+  hence cpa: "coprime p a" using coprime by auto
+  from coprime_exp[OF cpa, of r] coprime_commute
+  have arp: "coprime (a^r) p" by blast
+  from fermat_little[OF arp, simplified ord_divides] o phip
+  have "q dvd (p - 1)" by simp
+  then obtain d where d:"p - 1 = q * d" unfolding dvd_def by blast
+  from prime_0 pp have p0:"p \<noteq> 0" by -  (rule ccontr, auto)
+  from p0 d have "p + q * 0 = 1 + q * d" by simp
+  with nat_mod[of p 1 q, symmetric]
+  show ?thesis by blast
+qed
+
+lemma pocklington:
+  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
+  and an: "[a^ (n - 1) = 1] (mod n)"
+  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
+  shows "prime n"
+unfolding prime_prime_factor_sqrt[of n]
+proof-
+  let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<twosuperior> \<le> n)"
+  from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+
+  {fix p assume p: "prime p" "p dvd n" "p^2 \<le> n"
+    from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square)
+    hence pq: "p \<le> q" unfolding exp_mono_le .
+    from pocklington_lemma[OF n nqr an aq p(1,2)]  cong_1_divides
+    have th: "q dvd p - 1" by blast
+    have "p - 1 \<noteq> 0"using prime_ge_2[OF p(1)] by arith
+    with divides_ge[OF th] pq have False by arith }
+  with n01 show ?ths by blast
+qed
+
+(* Variant for application, to separate the exponentiation.                  *)
+lemma pocklington_alt:
+  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
+  and an: "[a^ (n - 1) = 1] (mod n)"
+  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)"
+  shows "prime n"
+proof-
+  {fix p assume p: "prime p" "p dvd q"
+    from aq[rule_format] p obtain b where
+      b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast
+    {assume a0: "a=0"
+      from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto
+      hence False using n by (simp add: modeq_def dvd_eq_mod_eq_0[symmetric])}
+    hence a0: "a\<noteq> 0" ..
+    hence a1: "a \<ge> 1" by arith
+    from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" .
+    {assume b0: "b = 0"
+      from p(2) nqr have "(n - 1) mod p = 0"
+	apply (simp only: dvd_eq_mod_eq_0[symmetric]) by (rule dvd_mult2, simp)
+      with mod_div_equality[of "n - 1" p]
+      have "(n - 1) div p * p= n - 1" by auto
+      hence eq: "(a^((n - 1) div p))^p = a^(n - 1)"
+	by (simp only: power_mult[symmetric])
+      from prime_ge_2[OF p(1)] have pS: "Suc (p - 1) = p" by arith
+      from b(1) have d: "n dvd a^((n - 1) div p)" unfolding b0 cong_0_divides .
+      from divides_rexp[OF d, of "p - 1"] pS eq cong_divides[OF an] n
+      have False by simp}
+    then have b0: "b \<noteq> 0" ..
+    hence b1: "b \<ge> 1" by arith
+    from cong_coprime[OF cong_sub[OF b(1) cong_refl[of 1] ath b1]] b(2) nqr
+    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute)}
+  hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n "
+    by blast
+  from pocklington[OF n nqr sqr an th] show ?thesis .
+qed
+
+(* Prime factorizations.                                                     *)
+
+definition "primefact ps n = (foldr op * ps  1 = n \<and> (\<forall>p\<in> set ps. prime p))"
+
+lemma primefact: assumes n: "n \<noteq> 0"
+  shows "\<exists>ps. primefact ps n"
+using n
+proof(induct n rule: nat_less_induct)
+  fix n assume H: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>ps. primefact ps m)" and n: "n\<noteq>0"
+  let ?ths = "\<exists>ps. primefact ps n"
+  {assume "n = 1"
+    hence "primefact [] n" by (simp add: primefact_def)
+    hence ?ths by blast }
+  moreover
+  {assume n1: "n \<noteq> 1"
+    with n have n2: "n \<ge> 2" by arith
+    from prime_factor[OF n1] obtain p where p: "prime p" "p dvd n" by blast
+    from p(2) obtain m where m: "n = p*m" unfolding dvd_def by blast
+    from n m have m0: "m > 0" "m\<noteq>0" by auto
+    from prime_ge_2[OF p(1)] have "1 < p" by arith
+    with m0 m have mn: "m < n" by auto
+    from H[rule_format, OF mn m0(2)] obtain ps where ps: "primefact ps m" ..
+    from ps m p(1) have "primefact (p#ps) n" by (simp add: primefact_def)
+    hence ?ths by blast}
+  ultimately show ?ths by blast
+qed
+
+lemma primefact_contains:
+  assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n"
+  shows "p \<in> set ps"
+  using pf p pn
+proof(induct ps arbitrary: p n)
+  case Nil thus ?case by (auto simp add: primefact_def)
+next
+  case (Cons q qs p n)
+  from Cons.prems[unfolded primefact_def]
+  have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p"  and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all
+  {assume "p dvd q"
+    with p(1) q(1) have "p = q" unfolding prime_def by auto
+    hence ?case by simp}
+  moreover
+  { assume h: "p dvd foldr op * qs 1"
+    from q(3) have pqs: "primefact qs (foldr op * qs 1)"
+      by (simp add: primefact_def)
+    from Cons.hyps[OF pqs p(1) h] have ?case by simp}
+  ultimately show ?case using prime_divprod[OF p] by blast
+qed
+
+lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps" by (auto simp add: primefact_def list_all_iff)
+
+(* Variant of Lucas theorem.                                                 *)
+
+lemma lucas_primefact:
+  assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)"
+  and psn: "foldr op * ps 1 = n - 1"
+  and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps"
+  shows "prime n"
+proof-
+  {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
+    from psn psp have psn1: "primefact ps (n - 1)"
+      by (auto simp add: list_all_iff primefact_variant)
+    from p(3) primefact_contains[OF psn1 p(1,2)] psp
+    have False by (induct ps, auto)}
+  with lucas[OF n an] show ?thesis by blast
+qed
+
+(* Variant of Pocklington theorem.                                           *)
+
+lemma mod_le: assumes n: "n \<noteq> (0::nat)" shows "m mod n \<le> m"
+proof-
+    from mod_div_equality[of m n]
+    have "\<exists>x. x + m mod n = m" by blast
+    then show ?thesis by auto
+qed
+
+
+lemma pocklington_primefact:
+  assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q^2"
+  and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q"
+  and bqn: "(b^q) mod n = 1"
+  and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps"
+  shows "prime n"
+proof-
+  from bqn psp qrn
+  have bqn: "a ^ (n - 1) mod n = 1"
+    and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps"  unfolding arnb[symmetric] power_mod
+    by (simp_all add: power_mult[symmetric] algebra_simps)
+  from n  have n0: "n > 0" by arith
+  from mod_div_equality[of "a^(n - 1)" n]
+    mod_less_divisor[OF n0, of "a^(n - 1)"]
+  have an1: "[a ^ (n - 1) = 1] (mod n)"
+    unfolding nat_mod bqn
+    apply -
+    apply (rule exI[where x="0"])
+    apply (rule exI[where x="a^(n - 1) div n"])
+    by (simp add: algebra_simps)
+  {fix p assume p: "prime p" "p dvd q"
+    from psp psq have pfpsq: "primefact ps q"
+      by (auto simp add: primefact_variant list_all_iff)
+    from psp primefact_contains[OF pfpsq p]
+    have p': "coprime (a ^ (r * (q div p)) mod n - 1) n"
+      by (simp add: list_all_iff)
+    from prime_ge_2[OF p(1)] have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)" by arith+
+    from div_mult1_eq[of r q p] p(2)
+    have eq1: "r* (q div p) = (n - 1) div p"
+      unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult_commute)
+    have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith
+    from n0 have n00: "n \<noteq> 0" by arith
+    from mod_le[OF n00]
+    have th10: "a ^ ((n - 1) div p) mod n \<le> a ^ ((n - 1) div p)" .
+    {assume "a ^ ((n - 1) div p) mod n = 0"
+      then obtain s where s: "a ^ ((n - 1) div p) = n*s"
+	unfolding mod_eq_0_iff by blast
+      hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp
+      from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto
+      from dvd_trans[OF p(2) qn1] div_mod_equality'[of "n - 1" p]
+      have npp: "(n - 1) div p * p = n - 1" by (simp add: dvd_eq_mod_eq_0)
+      with eq0 have "a^ (n - 1) = (n*s)^p"
+	by (simp add: power_mult[symmetric])
+      hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp
+      also have "\<dots> = 0" by (simp add: mult_assoc)
+      finally have False by simp }
+      then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto
+    have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"
+      unfolding modeq_def by simp
+    from cong_sub[OF th1 cong_refl[of 1]]  ath[OF th10 th11]
+    have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
+      by blast
+    from cong_coprime[OF th] p'[unfolded eq1]
+    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute) }
+  with pocklington[OF n qrn[symmetric] nq2 an1]
+  show ?thesis by blast
+qed
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Primes.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,826 @@
+(*  Title:      HOL/Library/Primes.thy
+    Author:     Amine Chaieb, Christophe Tabacznyj and Lawrence C Paulson
+    Copyright   1996  University of Cambridge
+*)
+
+header {* Primality on nat *}
+
+theory Primes
+imports Complex_Main Legacy_GCD
+begin
+
+definition
+  coprime :: "nat => nat => bool" where
+  "coprime m n \<longleftrightarrow> gcd m n = 1"
+
+definition
+  prime :: "nat \<Rightarrow> bool" where
+  [code del]: "prime p \<longleftrightarrow> (1 < p \<and> (\<forall>m. m dvd p --> m = 1 \<or> m = p))"
+
+
+lemma two_is_prime: "prime 2"
+  apply (auto simp add: prime_def)
+  apply (case_tac m)
+   apply (auto dest!: dvd_imp_le)
+  done
+
+lemma prime_imp_relprime: "prime p ==> \<not> p dvd n ==> gcd p n = 1"
+  apply (auto simp add: prime_def)
+  apply (metis One_nat_def gcd_dvd1 gcd_dvd2)
+  done
+
+text {*
+  This theorem leads immediately to a proof of the uniqueness of
+  factorization.  If @{term p} divides a product of primes then it is
+  one of those primes.
+*}
+
+lemma prime_dvd_mult: "prime p ==> p dvd m * n ==> p dvd m \<or> p dvd n"
+  by (blast intro: relprime_dvd_mult prime_imp_relprime)
+
+lemma prime_dvd_square: "prime p ==> p dvd m^Suc (Suc 0) ==> p dvd m"
+  by (auto dest: prime_dvd_mult)
+
+lemma prime_dvd_power_two: "prime p ==> p dvd m\<twosuperior> ==> p dvd m"
+  by (rule prime_dvd_square) (simp_all add: power2_eq_square)
+
+
+lemma exp_eq_1:"(x::nat)^n = 1 \<longleftrightarrow> x = 1 \<or> n = 0"
+by (induct n, auto)
+
+lemma exp_mono_lt: "(x::nat) ^ (Suc n) < y ^ (Suc n) \<longleftrightarrow> x < y"
+by(metis linorder_not_less not_less0 power_le_imp_le_base power_less_imp_less_base)
+
+lemma exp_mono_le: "(x::nat) ^ (Suc n) \<le> y ^ (Suc n) \<longleftrightarrow> x \<le> y"
+by (simp only: linorder_not_less[symmetric] exp_mono_lt)
+
+lemma exp_mono_eq: "(x::nat) ^ Suc n = y ^ Suc n \<longleftrightarrow> x = y"
+using power_inject_base[of x n y] by auto
+
+
+lemma even_square: assumes e: "even (n::nat)" shows "\<exists>x. n ^ 2 = 4*x"
+proof-
+  from e have "2 dvd n" by presburger
+  then obtain k where k: "n = 2*k" using dvd_def by auto
+  hence "n^2 = 4* (k^2)" by (simp add: power2_eq_square)
+  thus ?thesis by blast
+qed
+
+lemma odd_square: assumes e: "odd (n::nat)" shows "\<exists>x. n ^ 2 = 4*x + 1"
+proof-
+  from e have np: "n > 0" by presburger
+  from e have "2 dvd (n - 1)" by presburger
+  then obtain k where "n - 1 = 2*k" using dvd_def by auto
+  hence k: "n = 2*k + 1"  using e by presburger 
+  hence "n^2 = 4* (k^2 + k) + 1" by algebra   
+  thus ?thesis by blast
+qed
+
+lemma diff_square: "(x::nat)^2 - y^2 = (x+y)*(x - y)" 
+proof-
+  have "x \<le> y \<or> y \<le> x" by (rule nat_le_linear)
+  moreover
+  {assume le: "x \<le> y"
+    hence "x ^2 \<le> y^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def)
+    with le have ?thesis by simp }
+  moreover
+  {assume le: "y \<le> x"
+    hence le2: "y ^2 \<le> x^2" by (simp only: numeral_2_eq_2 exp_mono_le Let_def)
+    from le have "\<exists>z. y + z = x" by presburger
+    then obtain z where z: "x = y + z" by blast 
+    from le2 have "\<exists>z. x^2 = y^2 + z" by presburger
+    then obtain z2 where z2: "x^2 = y^2 + z2"  by blast
+    from z z2 have ?thesis apply simp by algebra }
+  ultimately show ?thesis by blast  
+qed
+
+text {* Elementary theory of divisibility *}
+lemma divides_ge: "(a::nat) dvd b \<Longrightarrow> b = 0 \<or> a \<le> b" unfolding dvd_def by auto
+lemma divides_antisym: "(x::nat) dvd y \<and> y dvd x \<longleftrightarrow> x = y"
+  using dvd_anti_sym[of x y] by auto
+
+lemma divides_add_revr: assumes da: "(d::nat) dvd a" and dab:"d dvd (a + b)"
+  shows "d dvd b"
+proof-
+  from da obtain k where k:"a = d*k" by (auto simp add: dvd_def)
+  from dab obtain k' where k': "a + b = d*k'" by (auto simp add: dvd_def)
+  from k k' have "b = d *(k' - k)" by (simp add : diff_mult_distrib2)
+  thus ?thesis unfolding dvd_def by blast
+qed
+
+declare nat_mult_dvd_cancel_disj[presburger]
+lemma nat_mult_dvd_cancel_disj'[presburger]: 
+  "(m\<Colon>nat)*k dvd n*k \<longleftrightarrow> k = 0 \<or> m dvd n" unfolding mult_commute[of m k] mult_commute[of n k] by presburger 
+
+lemma divides_mul_l: "(a::nat) dvd b ==> (c * a) dvd (c * b)"
+  by presburger
+
+lemma divides_mul_r: "(a::nat) dvd b ==> (a * c) dvd (b * c)" by presburger
+lemma divides_cases: "(n::nat) dvd m ==> m = 0 \<or> m = n \<or> 2 * n <= m" 
+  by (auto simp add: dvd_def)
+
+lemma divides_div_not: "(x::nat) = (q * n) + r \<Longrightarrow> 0 < r \<Longrightarrow> r < n ==> ~(n dvd x)"
+proof(auto simp add: dvd_def)
+  fix k assume H: "0 < r" "r < n" "q * n + r = n * k"
+  from H(3) have r: "r = n* (k -q)" by(simp add: diff_mult_distrib2 mult_commute)
+  {assume "k - q = 0" with r H(1) have False by simp}
+  moreover
+  {assume "k - q \<noteq> 0" with r have "r \<ge> n" by auto
+    with H(2) have False by simp}
+  ultimately show False by blast
+qed
+lemma divides_exp: "(x::nat) dvd y ==> x ^ n dvd y ^ n"
+  by (auto simp add: power_mult_distrib dvd_def)
+
+lemma divides_exp2: "n \<noteq> 0 \<Longrightarrow> (x::nat) ^ n dvd y \<Longrightarrow> x dvd y" 
+  by (induct n ,auto simp add: dvd_def)
+
+fun fact :: "nat \<Rightarrow> nat" where
+  "fact 0 = 1"
+| "fact (Suc n) = Suc n * fact n"	
+
+lemma fact_lt: "0 < fact n" by(induct n, simp_all)
+lemma fact_le: "fact n \<ge> 1" using fact_lt[of n] by simp 
+lemma fact_mono: assumes le: "m \<le> n" shows "fact m \<le> fact n"
+proof-
+  from le have "\<exists>i. n = m+i" by presburger
+  then obtain i where i: "n = m+i" by blast 
+  have "fact m \<le> fact (m + i)"
+  proof(induct m)
+    case 0 thus ?case using fact_le[of i] by simp
+  next
+    case (Suc m)
+    have "fact (Suc m) = Suc m * fact m" by simp
+    have th1: "Suc m \<le> Suc (m + i)" by simp
+    from mult_le_mono[of "Suc m" "Suc (m+i)" "fact m" "fact (m+i)", OF th1 Suc.hyps]
+    show ?case by simp
+  qed
+  thus ?thesis using i by simp
+qed
+
+lemma divides_fact: "1 <= p \<Longrightarrow> p <= n ==> p dvd fact n"
+proof(induct n arbitrary: p)
+  case 0 thus ?case by simp
+next
+  case (Suc n p)
+  from Suc.prems have "p = Suc n \<or> p \<le> n" by presburger 
+  moreover
+  {assume "p = Suc n" hence ?case  by (simp only: fact.simps dvd_triv_left)}
+  moreover
+  {assume "p \<le> n"
+    with Suc.prems(1) Suc.hyps have th: "p dvd fact n" by simp
+    from dvd_mult[OF th] have ?case by (simp only: fact.simps) }
+  ultimately show ?case by blast
+qed
+
+declare dvd_triv_left[presburger]
+declare dvd_triv_right[presburger]
+lemma divides_rexp: 
+  "x dvd y \<Longrightarrow> (x::nat) dvd (y^(Suc n))" by (simp add: dvd_mult2[of x y])
+
+text {* Coprimality *}
+
+lemma coprime: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)"
+using gcd_unique[of 1 a b, simplified] by (auto simp add: coprime_def)
+lemma coprime_commute: "coprime a b \<longleftrightarrow> coprime b a" by (simp add: coprime_def gcd_commute)
+
+lemma coprime_bezout: "coprime a b \<longleftrightarrow> (\<exists>x y. a * x - b * y = 1 \<or> b * x - a * y = 1)"
+using coprime_def gcd_bezout by auto
+
+lemma coprime_divprod: "d dvd a * b  \<Longrightarrow> coprime d a \<Longrightarrow> d dvd b"
+  using relprime_dvd_mult_iff[of d a b] by (auto simp add: coprime_def mult_commute)
+
+lemma coprime_1[simp]: "coprime a 1" by (simp add: coprime_def)
+lemma coprime_1'[simp]: "coprime 1 a" by (simp add: coprime_def)
+lemma coprime_Suc0[simp]: "coprime a (Suc 0)" by (simp add: coprime_def)
+lemma coprime_Suc0'[simp]: "coprime (Suc 0) a" by (simp add: coprime_def)
+
+lemma gcd_coprime: 
+  assumes z: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b" 
+  shows    "coprime a' b'"
+proof-
+  let ?g = "gcd a b"
+  {assume bz: "a = 0" from b bz z a have ?thesis by (simp add: gcd_zero coprime_def)}
+  moreover 
+  {assume az: "a\<noteq> 0" 
+    from z have z': "?g > 0" by simp
+    from bezout_gcd_strong[OF az, of b] 
+    obtain x y where xy: "a*x = b*y + ?g" by blast
+    from xy a b have "?g * a'*x = ?g * (b'*y + 1)" by (simp add: algebra_simps)
+    hence "?g * (a'*x) = ?g * (b'*y + 1)" by (simp add: mult_assoc)
+    hence "a'*x = (b'*y + 1)"
+      by (simp only: nat_mult_eq_cancel1[OF z']) 
+    hence "a'*x - b'*y = 1" by simp
+    with coprime_bezout[of a' b'] have ?thesis by auto}
+  ultimately show ?thesis by blast
+qed
+lemma coprime_0: "coprime d 0 \<longleftrightarrow> d = 1" by (simp add: coprime_def)
+lemma coprime_mul: assumes da: "coprime d a" and db: "coprime d b"
+  shows "coprime d (a * b)"
+proof-
+  from da have th: "gcd a d = 1" by (simp add: coprime_def gcd_commute)
+  from gcd_mult_cancel[of a d b, OF th] db[unfolded coprime_def] have "gcd d (a*b) = 1"
+    by (simp add: gcd_commute)
+  thus ?thesis unfolding coprime_def .
+qed
+lemma coprime_lmul2: assumes dab: "coprime d (a * b)" shows "coprime d b"
+using prems unfolding coprime_bezout
+apply clarsimp
+apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all)
+apply (rule_tac x="x" in exI)
+apply (rule_tac x="a*y" in exI)
+apply (simp add: mult_ac)
+apply (rule_tac x="a*x" in exI)
+apply (rule_tac x="y" in exI)
+apply (simp add: mult_ac)
+done
+
+lemma coprime_rmul2: "coprime d (a * b) \<Longrightarrow> coprime d a"
+unfolding coprime_bezout
+apply clarsimp
+apply (case_tac "d * x - a * b * y = Suc 0 ", simp_all)
+apply (rule_tac x="x" in exI)
+apply (rule_tac x="b*y" in exI)
+apply (simp add: mult_ac)
+apply (rule_tac x="b*x" in exI)
+apply (rule_tac x="y" in exI)
+apply (simp add: mult_ac)
+done
+lemma coprime_mul_eq: "coprime d (a * b) \<longleftrightarrow> coprime d a \<and>  coprime d b"
+  using coprime_rmul2[of d a b] coprime_lmul2[of d a b] coprime_mul[of d a b] 
+  by blast
+
+lemma gcd_coprime_exists:
+  assumes nz: "gcd a b \<noteq> 0" 
+  shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
+proof-
+  let ?g = "gcd a b"
+  from gcd_dvd1[of a b] gcd_dvd2[of a b] 
+  obtain a' b' where "a = ?g*a'"  "b = ?g*b'" unfolding dvd_def by blast
+  hence ab': "a = a'*?g" "b = b'*?g" by algebra+
+  from ab' gcd_coprime[OF nz ab'] show ?thesis by blast
+qed
+
+lemma coprime_exp: "coprime d a ==> coprime d (a^n)" 
+  by(induct n, simp_all add: coprime_mul)
+
+lemma coprime_exp_imp: "coprime a b ==> coprime (a ^n) (b ^n)"
+  by (induct n, simp_all add: coprime_mul_eq coprime_commute coprime_exp)
+lemma coprime_refl[simp]: "coprime n n \<longleftrightarrow> n = 1" by (simp add: coprime_def)
+lemma coprime_plus1[simp]: "coprime (n + 1) n"
+  apply (simp add: coprime_bezout)
+  apply (rule exI[where x=1])
+  apply (rule exI[where x=1])
+  apply simp
+  done
+lemma coprime_minus1: "n \<noteq> 0 ==> coprime (n - 1) n"
+  using coprime_plus1[of "n - 1"] coprime_commute[of "n - 1" n] by auto
+
+lemma bezout_gcd_pow: "\<exists>x y. a ^n * x - b ^ n * y = gcd a b ^ n \<or> b ^ n * x - a ^ n * y = gcd a b ^ n"
+proof-
+  let ?g = "gcd a b"
+  {assume z: "?g = 0" hence ?thesis 
+      apply (cases n, simp)
+      apply arith
+      apply (simp only: z power_0_Suc)
+      apply (rule exI[where x=0])
+      apply (rule exI[where x=0])
+      by simp}
+  moreover
+  {assume z: "?g \<noteq> 0"
+    from gcd_dvd1[of a b] gcd_dvd2[of a b] obtain a' b' where
+      ab': "a = a'*?g" "b = b'*?g" unfolding dvd_def by (auto simp add: mult_ac)
+    hence ab'': "?g*a' = a" "?g * b' = b" by algebra+
+    from coprime_exp_imp[OF gcd_coprime[OF z ab'], unfolded coprime_bezout, of n]
+    obtain x y where "a'^n * x - b'^n * y = 1 \<or> b'^n * x - a'^n * y = 1"  by blast
+    hence "?g^n * (a'^n * x - b'^n * y) = ?g^n \<or> ?g^n*(b'^n * x - a'^n * y) = ?g^n"
+      using z by auto 
+    then have "a^n * x - b^n * y = ?g^n \<or> b^n * x - a^n * y = ?g^n"
+      using z ab'' by (simp only: power_mult_distrib[symmetric] 
+	diff_mult_distrib2 mult_assoc[symmetric])
+    hence  ?thesis by blast }
+  ultimately show ?thesis by blast
+qed
+
+lemma gcd_exp: "gcd (a^n) (b^n) = gcd a b^n"
+proof-
+  let ?g = "gcd (a^n) (b^n)"
+  let ?gn = "gcd a b^n"
+  {fix e assume H: "e dvd a^n" "e dvd b^n"
+    from bezout_gcd_pow[of a n b] obtain x y 
+      where xy: "a ^ n * x - b ^ n * y = ?gn \<or> b ^ n * x - a ^ n * y = ?gn" by blast
+    from dvd_diff_nat [OF dvd_mult2[OF H(1), of x] dvd_mult2[OF H(2), of y]]
+      dvd_diff_nat [OF dvd_mult2[OF H(2), of x] dvd_mult2[OF H(1), of y]] xy
+    have "e dvd ?gn" by (cases "a ^ n * x - b ^ n * y = gcd a b ^ n", simp_all)}
+  hence th:  "\<forall>e. e dvd a^n \<and> e dvd b^n \<longrightarrow> e dvd ?gn" by blast
+  from divides_exp[OF gcd_dvd1[of a b], of n] divides_exp[OF gcd_dvd2[of a b], of n] th
+    gcd_unique have "?gn = ?g" by blast thus ?thesis by simp 
+qed
+
+lemma coprime_exp2:  "coprime (a ^ Suc n) (b^ Suc n) \<longleftrightarrow> coprime a b"
+by (simp only: coprime_def gcd_exp exp_eq_1) simp
+
+lemma division_decomp: assumes dc: "(a::nat) dvd b * c"
+  shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c"
+proof-
+  let ?g = "gcd a b"
+  {assume "?g = 0" with dc have ?thesis apply (simp add: gcd_zero)
+      apply (rule exI[where x="0"])
+      by (rule exI[where x="c"], simp)}
+  moreover
+  {assume z: "?g \<noteq> 0"
+    from gcd_coprime_exists[OF z]
+    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast
+    from gcd_dvd2[of a b] have thb: "?g dvd b" .
+    from ab'(1) have "a' dvd a"  unfolding dvd_def by blast  
+    with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp
+    from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto
+    hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc)
+    with z have th_1: "a' dvd b'*c" by simp
+    from coprime_divprod[OF th_1 ab'(3)] have thc: "a' dvd c" . 
+    from ab' have "a = ?g*a'" by algebra
+    with thb thc have ?thesis by blast }
+  ultimately show ?thesis by blast
+qed
+
+lemma nat_power_eq_0_iff: "(m::nat) ^ n = 0 \<longleftrightarrow> n \<noteq> 0 \<and> m = 0" by (induct n, auto)
+
+lemma divides_rev: assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" shows "a dvd b"
+proof-
+  let ?g = "gcd a b"
+  from n obtain m where m: "n = Suc m" by (cases n, simp_all)
+  {assume "?g = 0" with ab n have ?thesis by (simp add: gcd_zero)}
+  moreover
+  {assume z: "?g \<noteq> 0"
+    hence zn: "?g ^ n \<noteq> 0" using n by (simp add: neq0_conv)
+    from gcd_coprime_exists[OF z] 
+    obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" by blast
+    from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" by (simp add: ab'(1,2)[symmetric])
+    hence "?g^n*a'^n dvd ?g^n *b'^n" by (simp only: power_mult_distrib mult_commute)
+    with zn z n have th0:"a'^n dvd b'^n" by (auto simp add: nat_power_eq_0_iff)
+    have "a' dvd a'^n" by (simp add: m)
+    with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp
+    hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute)
+    from coprime_divprod[OF th1 coprime_exp[OF ab'(3), of m]]
+    have "a' dvd b'" .
+    hence "a'*?g dvd b'*?g" by simp
+    with ab'(1,2)  have ?thesis by simp }
+  ultimately show ?thesis by blast
+qed
+
+lemma divides_mul: assumes mr: "m dvd r" and nr: "n dvd r" and mn:"coprime m n" 
+  shows "m * n dvd r"
+proof-
+  from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'"
+    unfolding dvd_def by blast
+  from mr n' have "m dvd n'*n" by (simp add: mult_commute)
+  hence "m dvd n'" using relprime_dvd_mult_iff[OF mn[unfolded coprime_def]] by simp
+  then obtain k where k: "n' = m*k" unfolding dvd_def by blast
+  from n' k show ?thesis unfolding dvd_def by auto
+qed
+
+
+text {* A binary form of the Chinese Remainder Theorem. *}
+
+lemma chinese_remainder: assumes ab: "coprime a b" and a:"a \<noteq> 0" and b:"b \<noteq> 0"
+  shows "\<exists>x q1 q2. x = u + q1 * a \<and> x = v + q2 * b"
+proof-
+  from bezout_add_strong[OF a, of b] bezout_add_strong[OF b, of a]
+  obtain d1 x1 y1 d2 x2 y2 where dxy1: "d1 dvd a" "d1 dvd b" "a * x1 = b * y1 + d1" 
+    and dxy2: "d2 dvd b" "d2 dvd a" "b * x2 = a * y2 + d2" by blast
+  from gcd_unique[of 1 a b, simplified ab[unfolded coprime_def], simplified] 
+    dxy1(1,2) dxy2(1,2) have d12: "d1 = 1" "d2 =1" by auto
+  let ?x = "v * a * x1 + u * b * x2"
+  let ?q1 = "v * x1 + u * y2"
+  let ?q2 = "v * y1 + u * x2"
+  from dxy2(3)[simplified d12] dxy1(3)[simplified d12] 
+  have "?x = u + ?q1 * a" "?x = v + ?q2 * b" by algebra+ 
+  thus ?thesis by blast
+qed
+
+text {* Primality *}
+
+text {* A few useful theorems about primes *}
+
+lemma prime_0[simp]: "~prime 0" by (simp add: prime_def)
+lemma prime_1[simp]: "~ prime 1"  by (simp add: prime_def)
+lemma prime_Suc0[simp]: "~ prime (Suc 0)"  by (simp add: prime_def)
+
+lemma prime_ge_2: "prime p ==> p \<ge> 2" by (simp add: prime_def)
+lemma prime_factor: assumes n: "n \<noteq> 1" shows "\<exists> p. prime p \<and> p dvd n"
+using n
+proof(induct n rule: nat_less_induct)
+  fix n
+  assume H: "\<forall>m<n. m \<noteq> 1 \<longrightarrow> (\<exists>p. prime p \<and> p dvd m)" "n \<noteq> 1"
+  let ?ths = "\<exists>p. prime p \<and> p dvd n"
+  {assume "n=0" hence ?ths using two_is_prime by auto}
+  moreover
+  {assume nz: "n\<noteq>0" 
+    {assume "prime n" hence ?ths by - (rule exI[where x="n"], simp)}
+    moreover
+    {assume n: "\<not> prime n"
+      with nz H(2) 
+      obtain k where k:"k dvd n" "k \<noteq> 1" "k \<noteq> n" by (auto simp add: prime_def) 
+      from dvd_imp_le[OF k(1)] nz k(3) have kn: "k < n" by simp
+      from H(1)[rule_format, OF kn k(2)] obtain p where p: "prime p" "p dvd k" by blast
+      from dvd_trans[OF p(2) k(1)] p(1) have ?ths by blast}
+    ultimately have ?ths by blast}
+  ultimately show ?ths by blast
+qed
+
+lemma prime_factor_lt: assumes p: "prime p" and n: "n \<noteq> 0" and npm:"n = p * m"
+  shows "m < n"
+proof-
+  {assume "m=0" with n have ?thesis by simp}
+  moreover
+  {assume m: "m \<noteq> 0"
+    from npm have mn: "m dvd n" unfolding dvd_def by auto
+    from npm m have "n \<noteq> m" using p by auto
+    with dvd_imp_le[OF mn] n have ?thesis by simp}
+  ultimately show ?thesis by blast
+qed
+
+lemma euclid_bound: "\<exists>p. prime p \<and> n < p \<and>  p <= Suc (fact n)"
+proof-
+  have f1: "fact n + 1 \<noteq> 1" using fact_le[of n] by arith 
+  from prime_factor[OF f1] obtain p where p: "prime p" "p dvd fact n + 1" by blast
+  from dvd_imp_le[OF p(2)] have pfn: "p \<le> fact n + 1" by simp
+  {assume np: "p \<le> n"
+    from p(1) have p1: "p \<ge> 1" by (cases p, simp_all)
+    from divides_fact[OF p1 np] have pfn': "p dvd fact n" .
+    from divides_add_revr[OF pfn' p(2)] p(1) have False by simp}
+  hence "n < p" by arith
+  with p(1) pfn show ?thesis by auto
+qed
+
+lemma euclid: "\<exists>p. prime p \<and> p > n" using euclid_bound by auto
+
+lemma primes_infinite: "\<not> (finite {p. prime p})"
+apply(simp add: finite_nat_set_iff_bounded_le)
+apply (metis euclid linorder_not_le)
+done
+
+lemma coprime_prime: assumes ab: "coprime a b"
+  shows "~(prime p \<and> p dvd a \<and> p dvd b)"
+proof
+  assume "prime p \<and> p dvd a \<and> p dvd b"
+  thus False using ab gcd_greatest[of p a b] by (simp add: coprime_def)
+qed
+lemma coprime_prime_eq: "coprime a b \<longleftrightarrow> (\<forall>p. ~(prime p \<and> p dvd a \<and> p dvd b))" 
+  (is "?lhs = ?rhs")
+proof-
+  {assume "?lhs" with coprime_prime  have ?rhs by blast}
+  moreover
+  {assume r: "?rhs" and c: "\<not> ?lhs"
+    then obtain g where g: "g\<noteq>1" "g dvd a" "g dvd b" unfolding coprime_def by blast
+    from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast
+    from dvd_trans [OF p(2) g(2)] dvd_trans [OF p(2) g(3)] 
+    have "p dvd a" "p dvd b" . with p(1) r have False by blast}
+  ultimately show ?thesis by blast
+qed
+
+lemma prime_coprime: assumes p: "prime p" 
+  shows "n = 1 \<or> p dvd n \<or> coprime p n"
+using p prime_imp_relprime[of p n] by (auto simp add: coprime_def)
+
+lemma prime_coprime_strong: "prime p \<Longrightarrow> p dvd n \<or> coprime p n"
+  using prime_coprime[of p n] by auto
+
+declare  coprime_0[simp]
+
+lemma coprime_0'[simp]: "coprime 0 d \<longleftrightarrow> d = 1" by (simp add: coprime_commute[of 0 d])
+lemma coprime_bezout_strong: assumes ab: "coprime a b" and b: "b \<noteq> 1"
+  shows "\<exists>x y. a * x = b * y + 1"
+proof-
+  from ab b have az: "a \<noteq> 0" by - (rule ccontr, auto)
+  from bezout_gcd_strong[OF az, of b] ab[unfolded coprime_def]
+  show ?thesis by auto
+qed
+
+lemma bezout_prime: assumes p: "prime p"  and pa: "\<not> p dvd a"
+  shows "\<exists>x y. a*x = p*y + 1"
+proof-
+  from p have p1: "p \<noteq> 1" using prime_1 by blast 
+  from prime_coprime[OF p, of a] p1 pa have ap: "coprime a p" 
+    by (auto simp add: coprime_commute)
+  from coprime_bezout_strong[OF ap p1] show ?thesis . 
+qed
+lemma prime_divprod: assumes p: "prime p" and pab: "p dvd a*b"
+  shows "p dvd a \<or> p dvd b"
+proof-
+  {assume "a=1" hence ?thesis using pab by simp }
+  moreover
+  {assume "p dvd a" hence ?thesis by blast}
+  moreover
+  {assume pa: "coprime p a" from coprime_divprod[OF pab pa]  have ?thesis .. }
+  ultimately show ?thesis using prime_coprime[OF p, of a] by blast
+qed
+
+lemma prime_divprod_eq: assumes p: "prime p"
+  shows "p dvd a*b \<longleftrightarrow> p dvd a \<or> p dvd b"
+using p prime_divprod dvd_mult dvd_mult2 by auto
+
+lemma prime_divexp: assumes p:"prime p" and px: "p dvd x^n"
+  shows "p dvd x"
+using px
+proof(induct n)
+  case 0 thus ?case by simp
+next
+  case (Suc n) 
+  hence th: "p dvd x*x^n" by simp
+  {assume H: "p dvd x^n"
+    from Suc.hyps[OF H] have ?case .}
+  with prime_divprod[OF p th] show ?case by blast
+qed
+
+lemma prime_divexp_n: "prime p \<Longrightarrow> p dvd x^n \<Longrightarrow> p^n dvd x^n"
+  using prime_divexp[of p x n] divides_exp[of p x n] by blast
+
+lemma coprime_prime_dvd_ex: assumes xy: "\<not>coprime x y"
+  shows "\<exists>p. prime p \<and> p dvd x \<and> p dvd y"
+proof-
+  from xy[unfolded coprime_def] obtain g where g: "g \<noteq> 1" "g dvd x" "g dvd y" 
+    by blast
+  from prime_factor[OF g(1)] obtain p where p: "prime p" "p dvd g" by blast
+  from g(2,3) dvd_trans[OF p(2)] p(1) show ?thesis by auto
+qed
+lemma coprime_sos: assumes xy: "coprime x y" 
+  shows "coprime (x * y) (x^2 + y^2)"
+proof-
+  {assume c: "\<not> coprime (x * y) (x^2 + y^2)"
+    from coprime_prime_dvd_ex[OF c] obtain p 
+      where p: "prime p" "p dvd x*y" "p dvd x^2 + y^2" by blast
+    {assume px: "p dvd x"
+      from dvd_mult[OF px, of x] p(3) 
+        obtain r s where "x * x = p * r" and "x^2 + y^2 = p * s"
+          by (auto elim!: dvdE)
+        then have "y^2 = p * (s - r)" 
+          by (auto simp add: power2_eq_square diff_mult_distrib2)
+        then have "p dvd y^2" ..
+      with prime_divexp[OF p(1), of y 2] have py: "p dvd y" .
+      from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1  
+      have False by simp }
+    moreover
+    {assume py: "p dvd y"
+      from dvd_mult[OF py, of y] p(3)
+        obtain r s where "y * y = p * r" and "x^2 + y^2 = p * s"
+          by (auto elim!: dvdE)
+        then have "x^2 = p * (s - r)" 
+          by (auto simp add: power2_eq_square diff_mult_distrib2)
+        then have "p dvd x^2" ..
+      with prime_divexp[OF p(1), of x 2] have px: "p dvd x" .
+      from p(1) px py xy[unfolded coprime, rule_format, of p] prime_1  
+      have False by simp }
+    ultimately have False using prime_divprod[OF p(1,2)] by blast}
+  thus ?thesis by blast
+qed
+
+lemma distinct_prime_coprime: "prime p \<Longrightarrow> prime q \<Longrightarrow> p \<noteq> q \<Longrightarrow> coprime p q"
+  unfolding prime_def coprime_prime_eq by blast
+
+lemma prime_coprime_lt: assumes p: "prime p" and x: "0 < x" and xp: "x < p"
+  shows "coprime x p"
+proof-
+  {assume c: "\<not> coprime x p"
+    then obtain g where g: "g \<noteq> 1" "g dvd x" "g dvd p" unfolding coprime_def by blast
+  from dvd_imp_le[OF g(2)] x xp have gp: "g < p" by arith
+  from g(2) x have "g \<noteq> 0" by - (rule ccontr, simp)
+  with g gp p[unfolded prime_def] have False by blast}
+thus ?thesis by blast
+qed
+
+lemma even_dvd[simp]: "even (n::nat) \<longleftrightarrow> 2 dvd n" by presburger
+lemma prime_odd: "prime p \<Longrightarrow> p = 2 \<or> odd p" unfolding prime_def by auto
+
+
+text {* One property of coprimality is easier to prove via prime factors. *}
+
+lemma prime_divprod_pow: 
+  assumes p: "prime p" and ab: "coprime a b" and pab: "p^n dvd a * b"
+  shows "p^n dvd a \<or> p^n dvd b"
+proof-
+  {assume "n = 0 \<or> a = 1 \<or> b = 1" with pab have ?thesis 
+      apply (cases "n=0", simp_all)
+      apply (cases "a=1", simp_all) done}
+  moreover
+  {assume n: "n \<noteq> 0" and a: "a\<noteq>1" and b: "b\<noteq>1" 
+    then obtain m where m: "n = Suc m" by (cases n, auto)
+    from divides_exp2[OF n pab] have pab': "p dvd a*b" .
+    from prime_divprod[OF p pab'] 
+    have "p dvd a \<or> p dvd b" .
+    moreover
+    {assume pa: "p dvd a"
+      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
+      from coprime_prime[OF ab, of p] p pa have "\<not> p dvd b" by blast
+      with prime_coprime[OF p, of b] b 
+      have cpb: "coprime b p" using coprime_commute by blast 
+      from coprime_exp[OF cpb] have pnb: "coprime (p^n) b" 
+	by (simp add: coprime_commute)
+      from coprime_divprod[OF pnba pnb] have ?thesis by blast }
+    moreover
+    {assume pb: "p dvd b"
+      have pnba: "p^n dvd b*a" using pab by (simp add: mult_commute)
+      from coprime_prime[OF ab, of p] p pb have "\<not> p dvd a" by blast
+      with prime_coprime[OF p, of a] a
+      have cpb: "coprime a p" using coprime_commute by blast 
+      from coprime_exp[OF cpb] have pnb: "coprime (p^n) a" 
+	by (simp add: coprime_commute)
+      from coprime_divprod[OF pab pnb] have ?thesis by blast }
+    ultimately have ?thesis by blast}
+  ultimately show ?thesis by blast
+qed
+
+lemma nat_mult_eq_one: "(n::nat) * m = 1 \<longleftrightarrow> n = 1 \<and> m = 1" (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume H: "?lhs"
+  hence "n dvd 1" "m dvd 1" unfolding dvd_def by (auto simp add: mult_commute)
+  thus ?rhs by auto
+next
+  assume ?rhs then show ?lhs by auto
+qed
+  
+lemma power_Suc0[simp]: "Suc 0 ^ n = Suc 0" 
+  unfolding One_nat_def[symmetric] power_one ..
+lemma coprime_pow: assumes ab: "coprime a b" and abcn: "a * b = c ^n"
+  shows "\<exists>r s. a = r^n  \<and> b = s ^n"
+  using ab abcn
+proof(induct c arbitrary: a b rule: nat_less_induct)
+  fix c a b
+  assume H: "\<forall>m<c. \<forall>a b. coprime a b \<longrightarrow> a * b = m ^ n \<longrightarrow> (\<exists>r s. a = r ^ n \<and> b = s ^ n)" "coprime a b" "a * b = c ^ n" 
+  let ?ths = "\<exists>r s. a = r^n  \<and> b = s ^n"
+  {assume n: "n = 0"
+    with H(3) power_one have "a*b = 1" by simp
+    hence "a = 1 \<and> b = 1" by simp
+    hence ?ths 
+      apply -
+      apply (rule exI[where x=1])
+      apply (rule exI[where x=1])
+      using power_one[of  n]
+      by simp}
+  moreover
+  {assume n: "n \<noteq> 0" then obtain m where m: "n = Suc m" by (cases n, auto)
+    {assume c: "c = 0"
+      with H(3) m H(2) have ?ths apply simp 
+	apply (cases "a=0", simp_all) 
+	apply (rule exI[where x="0"], simp)
+	apply (rule exI[where x="0"], simp)
+	done}
+    moreover
+    {assume "c=1" with H(3) power_one have "a*b = 1" by simp 
+	hence "a = 1 \<and> b = 1" by simp
+	hence ?ths 
+      apply -
+      apply (rule exI[where x=1])
+      apply (rule exI[where x=1])
+      using power_one[of  n]
+      by simp}
+  moreover
+  {assume c: "c\<noteq>1" "c \<noteq> 0"
+    from prime_factor[OF c(1)] obtain p where p: "prime p" "p dvd c" by blast
+    from prime_divprod_pow[OF p(1) H(2), unfolded H(3), OF divides_exp[OF p(2), of n]] 
+    have pnab: "p ^ n dvd a \<or> p^n dvd b" . 
+    from p(2) obtain l where l: "c = p*l" unfolding dvd_def by blast
+    have pn0: "p^n \<noteq> 0" using n prime_ge_2 [OF p(1)] by (simp add: neq0_conv)
+    {assume pa: "p^n dvd a"
+      then obtain k where k: "a = p^n * k" unfolding dvd_def by blast
+      from l have "l dvd c" by auto
+      with dvd_imp_le[of l c] c have "l \<le> c" by auto
+      moreover {assume "l = c" with l c  have "p = 1" by simp with p have False by simp}
+      ultimately have lc: "l < c" by arith
+      from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" b]]]
+      have kb: "coprime k b" by (simp add: coprime_commute) 
+      from H(3) l k pn0 have kbln: "k * b = l ^ n" 
+	by (auto simp add: power_mult_distrib)
+      from H(1)[rule_format, OF lc kb kbln]
+      obtain r s where rs: "k = r ^n" "b = s^n" by blast
+      from k rs(1) have "a = (p*r)^n" by (simp add: power_mult_distrib)
+      with rs(2) have ?ths by blast }
+    moreover
+    {assume pb: "p^n dvd b"
+      then obtain k where k: "b = p^n * k" unfolding dvd_def by blast
+      from l have "l dvd c" by auto
+      with dvd_imp_le[of l c] c have "l \<le> c" by auto
+      moreover {assume "l = c" with l c  have "p = 1" by simp with p have False by simp}
+      ultimately have lc: "l < c" by arith
+      from coprime_lmul2 [OF H(2)[unfolded k coprime_commute[of "p^n*k" a]]]
+      have kb: "coprime k a" by (simp add: coprime_commute) 
+      from H(3) l k pn0 n have kbln: "k * a = l ^ n" 
+	by (simp add: power_mult_distrib mult_commute)
+      from H(1)[rule_format, OF lc kb kbln]
+      obtain r s where rs: "k = r ^n" "a = s^n" by blast
+      from k rs(1) have "b = (p*r)^n" by (simp add: power_mult_distrib)
+      with rs(2) have ?ths by blast }
+    ultimately have ?ths using pnab by blast}
+  ultimately have ?ths by blast}
+ultimately show ?ths by blast
+qed
+
+text {* More useful lemmas. *}
+lemma prime_product: 
+  assumes "prime (p * q)"
+  shows "p = 1 \<or> q = 1"
+proof -
+  from assms have 
+    "1 < p * q" and P: "\<And>m. m dvd p * q \<Longrightarrow> m = 1 \<or> m = p * q"
+    unfolding prime_def by auto
+  from `1 < p * q` have "p \<noteq> 0" by (cases p) auto
+  then have Q: "p = p * q \<longleftrightarrow> q = 1" by auto
+  have "p dvd p * q" by simp
+  then have "p = 1 \<or> p = p * q" by (rule P)
+  then show ?thesis by (simp add: Q)
+qed
+
+lemma prime_exp: "prime (p^n) \<longleftrightarrow> prime p \<and> n = 1"
+proof(induct n)
+  case 0 thus ?case by simp
+next
+  case (Suc n)
+  {assume "p = 0" hence ?case by simp}
+  moreover
+  {assume "p=1" hence ?case by simp}
+  moreover
+  {assume p: "p \<noteq> 0" "p\<noteq>1"
+    {assume pp: "prime (p^Suc n)"
+      hence "p = 1 \<or> p^n = 1" using prime_product[of p "p^n"] by simp
+      with p have n: "n = 0" 
+	by (simp only: exp_eq_1 ) simp
+      with pp have "prime p \<and> Suc n = 1" by simp}
+    moreover
+    {assume n: "prime p \<and> Suc n = 1" hence "prime (p^Suc n)" by simp}
+    ultimately have ?case by blast}
+  ultimately show ?case by blast
+qed
+
+lemma prime_power_mult: 
+  assumes p: "prime p" and xy: "x * y = p ^ k"
+  shows "\<exists>i j. x = p ^i \<and> y = p^ j"
+  using xy
+proof(induct k arbitrary: x y)
+  case 0 thus ?case apply simp by (rule exI[where x="0"], simp)
+next
+  case (Suc k x y)
+  from Suc.prems have pxy: "p dvd x*y" by auto
+  from prime_divprod[OF p pxy] have pxyc: "p dvd x \<or> p dvd y" .
+  from p have p0: "p \<noteq> 0" by - (rule ccontr, simp) 
+  {assume px: "p dvd x"
+    then obtain d where d: "x = p*d" unfolding dvd_def by blast
+    from Suc.prems d  have "p*d*y = p^Suc k" by simp
+    hence th: "d*y = p^k" using p0 by simp
+    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "y = p^j" by blast
+    with d have "x = p^Suc i" by simp 
+    with ij(2) have ?case by blast}
+  moreover 
+  {assume px: "p dvd y"
+    then obtain d where d: "y = p*d" unfolding dvd_def by blast
+    from Suc.prems d  have "p*d*x = p^Suc k" by (simp add: mult_commute)
+    hence th: "d*x = p^k" using p0 by simp
+    from Suc.hyps[OF th] obtain i j where ij: "d = p^i" "x = p^j" by blast
+    with d have "y = p^Suc i" by simp 
+    with ij(2) have ?case by blast}
+  ultimately show ?case  using pxyc by blast
+qed
+
+lemma prime_power_exp: assumes p: "prime p" and n:"n \<noteq> 0" 
+  and xn: "x^n = p^k" shows "\<exists>i. x = p^i"
+  using n xn
+proof(induct n arbitrary: k)
+  case 0 thus ?case by simp
+next
+  case (Suc n k) hence th: "x*x^n = p^k" by simp
+  {assume "n = 0" with prems have ?case apply simp 
+      by (rule exI[where x="k"],simp)}
+  moreover
+  {assume n: "n \<noteq> 0"
+    from prime_power_mult[OF p th] 
+    obtain i j where ij: "x = p^i" "x^n = p^j"by blast
+    from Suc.hyps[OF n ij(2)] have ?case .}
+  ultimately show ?case by blast
+qed
+
+lemma divides_primepow: assumes p: "prime p" 
+  shows "d dvd p^k \<longleftrightarrow> (\<exists> i. i \<le> k \<and> d = p ^i)"
+proof
+  assume H: "d dvd p^k" then obtain e where e: "d*e = p^k" 
+    unfolding dvd_def  apply (auto simp add: mult_commute) by blast
+  from prime_power_mult[OF p e] obtain i j where ij: "d = p^i" "e=p^j" by blast
+  from prime_ge_2[OF p] have p1: "p > 1" by arith
+  from e ij have "p^(i + j) = p^k" by (simp add: power_add)
+  hence "i + j = k" using power_inject_exp[of p "i+j" k, OF p1] by simp 
+  hence "i \<le> k" by arith
+  with ij(1) show "\<exists>i\<le>k. d = p ^ i" by blast
+next
+  {fix i assume H: "i \<le> k" "d = p^i"
+    hence "\<exists>j. k = i + j" by arith
+    then obtain j where j: "k = i + j" by blast
+    hence "p^k = p^j*d" using H(2) by (simp add: power_add)
+    hence "d dvd p^k" unfolding dvd_def by auto}
+  thus "\<exists>i\<le>k. d = p ^ i \<Longrightarrow> d dvd p ^ k" by blast
+qed
+
+lemma coprime_divisors: "d dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> coprime d e"
+  by (auto simp add: dvd_def coprime)
+
+declare power_Suc0[simp del]
+declare even_dvd[simp del]
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Quadratic_Reciprocity.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,642 @@
+(*  Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {* The law of Quadratic reciprocity *}
+
+theory Quadratic_Reciprocity
+imports Gauss
+begin
+
+text {*
+  Lemmas leading up to the proof of theorem 3.3 in Niven and
+  Zuckerman's presentation.
+*}
+
+context GAUSS
+begin
+
+lemma QRLemma1: "a * setsum id A =
+  p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E"
+proof -
+  from finite_A have "a * setsum id A = setsum (%x. a * x) A"
+    by (auto simp add: setsum_const_mult id_def)
+  also have "setsum (%x. a * x) = setsum (%x. x * a)"
+    by (auto simp add: zmult_commute)
+  also have "setsum (%x. x * a) A = setsum id B"
+    by (simp add: B_def setsum_reindex_id[OF inj_on_xa_A])
+  also have "... = setsum (%x. p * (x div p) + StandardRes p x) B"
+    by (auto simp add: StandardRes_def zmod_zdiv_equality)
+  also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B"
+    by (rule setsum_addf)
+  also have "setsum (StandardRes p) B = setsum id C"
+    by (auto simp add: C_def setsum_reindex_id[OF SR_B_inj])
+  also from C_eq have "... = setsum id (D \<union> E)"
+    by auto
+  also from finite_D finite_E have "... = setsum id D + setsum id E"
+    by (rule setsum_Un_disjoint) (auto simp add: D_def E_def)
+  also have "setsum (%x. p * (x div p)) B =
+      setsum ((%x. p * (x div p)) o (%x. (x * a))) A"
+    by (auto simp add: B_def setsum_reindex inj_on_xa_A)
+  also have "... = setsum (%x. p * ((x * a) div p)) A"
+    by (auto simp add: o_def)
+  also from finite_A have "setsum (%x. p * ((x * a) div p)) A =
+    p * setsum (%x. ((x * a) div p)) A"
+    by (auto simp add: setsum_const_mult)
+  finally show ?thesis by arith
+qed
+
+lemma QRLemma2: "setsum id A = p * int (card E) - setsum id E +
+  setsum id D"
+proof -
+  from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)"
+    by (simp add: Un_commute)
+  also from F_D_disj finite_D finite_F
+  have "... = setsum id D + setsum id F"
+    by (auto simp add: Int_commute intro: setsum_Un_disjoint)
+  also from F_def have "F = (%x. (p - x)) ` E"
+    by auto
+  also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =
+      setsum (%x. (p - x)) E"
+    by (auto simp add: setsum_reindex)
+  also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E"
+    by (auto simp add: setsum_subtractf id_def)
+  also from finite_E have "setsum (%x. p) E = p * int(card E)"
+    by (intro setsum_const)
+  finally show ?thesis
+    by arith
+qed
+
+lemma QRLemma3: "(a - 1) * setsum id A =
+    p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E"
+proof -
+  have "(a - 1) * setsum id A = a * setsum id A - setsum id A"
+    by (auto simp add: zdiff_zmult_distrib)
+  also note QRLemma1
+  also from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
+     setsum id E - setsum id A =
+      p * (\<Sum>x \<in> A. x * a div p) + setsum id D +
+      setsum id E - (p * int (card E) - setsum id E + setsum id D)"
+    by auto
+  also have "... = p * (\<Sum>x \<in> A. x * a div p) -
+      p * int (card E) + 2 * setsum id E"
+    by arith
+  finally show ?thesis
+    by (auto simp only: zdiff_zmult_distrib2)
+qed
+
+lemma QRLemma4: "a \<in> zOdd ==>
+    (setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)"
+proof -
+  assume a_odd: "a \<in> zOdd"
+  from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =
+      (a - 1) * setsum id A - 2 * setsum id E"
+    by arith
+  from a_odd have "a - 1 \<in> zEven"
+    by (rule odd_minus_one_even)
+  hence "(a - 1) * setsum id A \<in> zEven"
+    by (rule even_times_either)
+  moreover have "2 * setsum id E \<in> zEven"
+    by (auto simp add: zEven_def)
+  ultimately have "(a - 1) * setsum id A - 2 * setsum id E \<in> zEven"
+    by (rule even_minus_even)
+  with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
+    by simp
+  hence "p \<in> zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
+    by (rule EvenOdd.even_product)
+  with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven"
+    by (auto simp add: odd_iff_not_even)
+  thus ?thesis
+    by (auto simp only: even_diff [symmetric])
+qed
+
+lemma QRLemma5: "a \<in> zOdd ==>
+   (-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
+proof -
+  assume "a \<in> zOdd"
+  from QRLemma4 [OF this] have
+    "(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \<in> zEven)" ..
+  moreover have "0 \<le> int(card E)"
+    by auto
+  moreover have "0 \<le> setsum (%x. ((x * a) div p)) A"
+    proof (intro setsum_nonneg)
+      show "\<forall>x \<in> A. 0 \<le> x * a div p"
+      proof
+        fix x
+        assume "x \<in> A"
+        then have "0 \<le> x"
+          by (auto simp add: A_def)
+        with a_nonzero have "0 \<le> x * a"
+          by (auto simp add: zero_le_mult_iff)
+        with p_g_2 show "0 \<le> x * a div p"
+          by (auto simp add: pos_imp_zdiv_nonneg_iff)
+      qed
+    qed
+  ultimately have "(-1::int)^nat((int (card E))) =
+      (-1)^nat(((\<Sum>x \<in> A. x * a div p)))"
+    by (intro neg_one_power_parity, auto)
+  also have "nat (int(card E)) = card E"
+    by auto
+  finally show ?thesis .
+qed
+
+end
+
+lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p)); zprime p; 2 < p;
+  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==>
+  (Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))"
+  apply (subst GAUSS.gauss_lemma)
+  apply (auto simp add: GAUSS_def)
+  apply (subst GAUSS.QRLemma5)
+  apply (auto simp add: GAUSS_def)
+  apply (simp add: GAUSS.A_def [OF GAUSS.intro] GAUSS_def)
+  done
+
+
+subsection {* Stuff about S, S1 and S2 *}
+
+locale QRTEMP =
+  fixes p     :: "int"
+  fixes q     :: "int"
+
+  assumes p_prime: "zprime p"
+  assumes p_g_2: "2 < p"
+  assumes q_prime: "zprime q"
+  assumes q_g_2: "2 < q"
+  assumes p_neq_q:      "p \<noteq> q"
+begin
+
+definition
+  P_set :: "int set" where
+  "P_set = {x. 0 < x & x \<le> ((p - 1) div 2) }"
+
+definition
+  Q_set :: "int set" where
+  "Q_set = {x. 0 < x & x \<le> ((q - 1) div 2) }"
+  
+definition
+  S :: "(int * int) set" where
+  "S = P_set <*> Q_set"
+
+definition
+  S1 :: "(int * int) set" where
+  "S1 = { (x, y). (x, y):S & ((p * y) < (q * x)) }"
+
+definition
+  S2 :: "(int * int) set" where
+  "S2 = { (x, y). (x, y):S & ((q * x) < (p * y)) }"
+
+definition
+  f1 :: "int => (int * int) set" where
+  "f1 j = { (j1, y). (j1, y):S & j1 = j & (y \<le> (q * j) div p) }"
+
+definition
+  f2 :: "int => (int * int) set" where
+  "f2 j = { (x, j1). (x, j1):S & j1 = j & (x \<le> (p * j) div q) }"
+
+lemma p_fact: "0 < (p - 1) div 2"
+proof -
+  from p_g_2 have "2 \<le> p - 1" by arith
+  then have "2 div 2 \<le> (p - 1) div 2" by (rule zdiv_mono1, auto)
+  then show ?thesis by auto
+qed
+
+lemma q_fact: "0 < (q - 1) div 2"
+proof -
+  from q_g_2 have "2 \<le> q - 1" by arith
+  then have "2 div 2 \<le> (q - 1) div 2" by (rule zdiv_mono1, auto)
+  then show ?thesis by auto
+qed
+
+lemma pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>
+    (p * b \<noteq> q * a)"
+proof
+  assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2"
+  then have "q dvd (p * b)" by (auto simp add: dvd_def)
+  with q_prime p_g_2 have "q dvd p | q dvd b"
+    by (auto simp add: zprime_zdvd_zmult)
+  moreover have "~ (q dvd p)"
+  proof
+    assume "q dvd p"
+    with p_prime have "q = 1 | q = p"
+      apply (auto simp add: zprime_def QRTEMP_def)
+      apply (drule_tac x = q and R = False in allE)
+      apply (simp add: QRTEMP_def)
+      apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)
+      apply (insert prems)
+      apply (auto simp add: QRTEMP_def)
+      done
+    with q_g_2 p_neq_q show False by auto
+  qed
+  ultimately have "q dvd b" by auto
+  then have "q \<le> b"
+  proof -
+    assume "q dvd b"
+    moreover from prems have "0 < b" by auto
+    ultimately show ?thesis using zdvd_bounds [of q b] by auto
+  qed
+  with prems have "q \<le> (q - 1) div 2" by auto
+  then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith
+  then have "2 * q \<le> q - 1"
+  proof -
+    assume "2 * q \<le> 2 * ((q - 1) div 2)"
+    with prems have "q \<in> zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)
+    with odd_minus_one_even have "(q - 1):zEven" by auto
+    with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto
+    with prems show ?thesis by auto
+  qed
+  then have p1: "q \<le> -1" by arith
+  with q_g_2 show False by auto
+qed
+
+lemma P_set_finite: "finite (P_set)"
+  using p_fact by (auto simp add: P_set_def bdd_int_set_l_le_finite)
+
+lemma Q_set_finite: "finite (Q_set)"
+  using q_fact by (auto simp add: Q_set_def bdd_int_set_l_le_finite)
+
+lemma S_finite: "finite S"
+  by (auto simp add: S_def  P_set_finite Q_set_finite finite_cartesian_product)
+
+lemma S1_finite: "finite S1"
+proof -
+  have "finite S" by (auto simp add: S_finite)
+  moreover have "S1 \<subseteq> S" by (auto simp add: S1_def S_def)
+  ultimately show ?thesis by (auto simp add: finite_subset)
+qed
+
+lemma S2_finite: "finite S2"
+proof -
+  have "finite S" by (auto simp add: S_finite)
+  moreover have "S2 \<subseteq> S" by (auto simp add: S2_def S_def)
+  ultimately show ?thesis by (auto simp add: finite_subset)
+qed
+
+lemma P_set_card: "(p - 1) div 2 = int (card (P_set))"
+  using p_fact by (auto simp add: P_set_def card_bdd_int_set_l_le)
+
+lemma Q_set_card: "(q - 1) div 2 = int (card (Q_set))"
+  using q_fact by (auto simp add: Q_set_def card_bdd_int_set_l_le)
+
+lemma S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
+  using P_set_card Q_set_card P_set_finite Q_set_finite
+  by (auto simp add: S_def zmult_int setsum_constant)
+
+lemma S1_Int_S2_prop: "S1 \<inter> S2 = {}"
+  by (auto simp add: S1_def S2_def)
+
+lemma S1_Union_S2_prop: "S = S1 \<union> S2"
+  apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)
+proof -
+  fix a and b
+  assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2"
+  with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto
+  moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto
+  ultimately show "p * b < q * a" by auto
+qed
+
+lemma card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =
+    int(card(S1)) + int(card(S2))"
+proof -
+  have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))"
+    by (auto simp add: S_card)
+  also have "... = int( card(S1) + card(S2))"
+    apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)
+    apply (drule card_Un_disjoint, auto)
+    done
+  also have "... = int(card(S1)) + int(card(S2))" by auto
+  finally show ?thesis .
+qed
+
+lemma aux1a: "[| 0 < a; a \<le> (p - 1) div 2;
+                             0 < b; b \<le> (q - 1) div 2 |] ==>
+                          (p * b < q * a) = (b \<le> q * a div p)"
+proof -
+  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
+  have "p * b < q * a ==> b \<le> q * a div p"
+  proof -
+    assume "p * b < q * a"
+    then have "p * b \<le> q * a" by auto
+    then have "(p * b) div p \<le> (q * a) div p"
+      by (rule zdiv_mono1) (insert p_g_2, auto)
+    then show "b \<le> (q * a) div p"
+      apply (subgoal_tac "p \<noteq> 0")
+      apply (frule div_mult_self1_is_id, force)
+      apply (insert p_g_2, auto)
+      done
+  qed
+  moreover have "b \<le> q * a div p ==> p * b < q * a"
+  proof -
+    assume "b \<le> q * a div p"
+    then have "p * b \<le> p * ((q * a) div p)"
+      using p_g_2 by (auto simp add: mult_le_cancel_left)
+    also have "... \<le> q * a"
+      by (rule zdiv_leq_prop) (insert p_g_2, auto)
+    finally have "p * b \<le> q * a" .
+    then have "p * b < q * a | p * b = q * a"
+      by (simp only: order_le_imp_less_or_eq)
+    moreover have "p * b \<noteq> q * a"
+      by (rule  pb_neq_qa) (insert prems, auto)
+    ultimately show ?thesis by auto
+  qed
+  ultimately show ?thesis ..
+qed
+
+lemma aux1b: "[| 0 < a; a \<le> (p - 1) div 2;
+                             0 < b; b \<le> (q - 1) div 2 |] ==>
+                          (q * a < p * b) = (a \<le> p * b div q)"
+proof -
+  assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2"
+  have "q * a < p * b ==> a \<le> p * b div q"
+  proof -
+    assume "q * a < p * b"
+    then have "q * a \<le> p * b" by auto
+    then have "(q * a) div q \<le> (p * b) div q"
+      by (rule zdiv_mono1) (insert q_g_2, auto)
+    then show "a \<le> (p * b) div q"
+      apply (subgoal_tac "q \<noteq> 0")
+      apply (frule div_mult_self1_is_id, force)
+      apply (insert q_g_2, auto)
+      done
+  qed
+  moreover have "a \<le> p * b div q ==> q * a < p * b"
+  proof -
+    assume "a \<le> p * b div q"
+    then have "q * a \<le> q * ((p * b) div q)"
+      using q_g_2 by (auto simp add: mult_le_cancel_left)
+    also have "... \<le> p * b"
+      by (rule zdiv_leq_prop) (insert q_g_2, auto)
+    finally have "q * a \<le> p * b" .
+    then have "q * a < p * b | q * a = p * b"
+      by (simp only: order_le_imp_less_or_eq)
+    moreover have "p * b \<noteq> q * a"
+      by (rule  pb_neq_qa) (insert prems, auto)
+    ultimately show ?thesis by auto
+  qed
+  ultimately show ?thesis ..
+qed
+
+lemma (in -) aux2: "[| zprime p; zprime q; 2 < p; 2 < q |] ==>
+             (q * ((p - 1) div 2)) div p \<le> (q - 1) div 2"
+proof-
+  assume "zprime p" and "zprime q" and "2 < p" and "2 < q"
+  (* Set up what's even and odd *)
+  then have "p \<in> zOdd & q \<in> zOdd"
+    by (auto simp add:  zprime_zOdd_eq_grt_2)
+  then have even1: "(p - 1):zEven & (q - 1):zEven"
+    by (auto simp add: odd_minus_one_even)
+  then have even2: "(2 * p):zEven & ((q - 1) * p):zEven"
+    by (auto simp add: zEven_def)
+  then have even3: "(((q - 1) * p) + (2 * p)):zEven"
+    by (auto simp: EvenOdd.even_plus_even)
+  (* using these prove it *)
+  from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)"
+    by (auto simp add: int_distrib)
+  then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2"
+    apply (rule_tac x = "((p - 1) * q)" in even_div_2_l)
+    by (auto simp add: even3, auto simp add: zmult_ac)
+  also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)"
+    by (auto simp add: even1 even_prod_div_2)
+  also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p"
+    by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)
+  finally show ?thesis
+    apply (rule_tac x = " q * ((p - 1) div 2)" and
+                    y = "(q - 1) div 2" in div_prop2)
+    using prems by auto
+qed
+
+lemma aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p"
+proof
+  fix j
+  assume j_fact: "j \<in> P_set"
+  have "int (card (f1 j)) = int (card {y. y \<in> Q_set & y \<le> (q * j) div p})"
+  proof -
+    have "finite (f1 j)"
+    proof -
+      have "(f1 j) \<subseteq> S" by (auto simp add: f1_def)
+      with S_finite show ?thesis by (auto simp add: finite_subset)
+    qed
+    moreover have "inj_on (%(x,y). y) (f1 j)"
+      by (auto simp add: f1_def inj_on_def)
+    ultimately have "card ((%(x,y). y) ` (f1 j)) = card  (f1 j)"
+      by (auto simp add: f1_def card_image)
+    moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}"
+      using prems by (auto simp add: f1_def S_def Q_set_def P_set_def image_def)
+    ultimately show ?thesis by (auto simp add: f1_def)
+  qed
+  also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})"
+  proof -
+    have "{y. y \<in> Q_set & y \<le> (q * j) div p} =
+        {y. 0 < y & y \<le> (q * j) div p}"
+      apply (auto simp add: Q_set_def)
+    proof -
+      fix x
+      assume "0 < x" and "x \<le> q * j div p"
+      with j_fact P_set_def  have "j \<le> (p - 1) div 2" by auto
+      with q_g_2 have "q * j \<le> q * ((p - 1) div 2)"
+        by (auto simp add: mult_le_cancel_left)
+      with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p"
+        by (auto simp add: zdiv_mono1)
+      also from prems P_set_def have "... \<le> (q - 1) div 2"
+        apply simp
+        apply (insert aux2)
+        apply (simp add: QRTEMP_def)
+        done
+      finally show "x \<le> (q - 1) div 2" using prems by auto
+    qed
+    then show ?thesis by auto
+  qed
+  also have "... = (q * j) div p"
+  proof -
+    from j_fact P_set_def have "0 \<le> j" by auto
+    with q_g_2 have "q * 0 \<le> q * j" by (auto simp only: mult_left_mono)
+    then have "0 \<le> q * j" by auto
+    then have "0 div p \<le> (q * j) div p"
+      apply (rule_tac a = 0 in zdiv_mono1)
+      apply (insert p_g_2, auto)
+      done
+    also have "0 div p = 0" by auto
+    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
+  qed
+  finally show "int (card (f1 j)) = q * j div p" .
+qed
+
+lemma aux3b: "\<forall>j \<in> Q_set. int (card (f2 j)) = (p * j) div q"
+proof
+  fix j
+  assume j_fact: "j \<in> Q_set"
+  have "int (card (f2 j)) = int (card {y. y \<in> P_set & y \<le> (p * j) div q})"
+  proof -
+    have "finite (f2 j)"
+    proof -
+      have "(f2 j) \<subseteq> S" by (auto simp add: f2_def)
+      with S_finite show ?thesis by (auto simp add: finite_subset)
+    qed
+    moreover have "inj_on (%(x,y). x) (f2 j)"
+      by (auto simp add: f2_def inj_on_def)
+    ultimately have "card ((%(x,y). x) ` (f2 j)) = card  (f2 j)"
+      by (auto simp add: f2_def card_image)
+    moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}"
+      using prems by (auto simp add: f2_def S_def Q_set_def P_set_def image_def)
+    ultimately show ?thesis by (auto simp add: f2_def)
+  qed
+  also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})"
+  proof -
+    have "{y. y \<in> P_set & y \<le> (p * j) div q} =
+        {y. 0 < y & y \<le> (p * j) div q}"
+      apply (auto simp add: P_set_def)
+    proof -
+      fix x
+      assume "0 < x" and "x \<le> p * j div q"
+      with j_fact Q_set_def  have "j \<le> (q - 1) div 2" by auto
+      with p_g_2 have "p * j \<le> p * ((q - 1) div 2)"
+        by (auto simp add: mult_le_cancel_left)
+      with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q"
+        by (auto simp add: zdiv_mono1)
+      also from prems have "... \<le> (p - 1) div 2"
+        by (auto simp add: aux2 QRTEMP_def)
+      finally show "x \<le> (p - 1) div 2" using prems by auto
+      qed
+    then show ?thesis by auto
+  qed
+  also have "... = (p * j) div q"
+  proof -
+    from j_fact Q_set_def have "0 \<le> j" by auto
+    with p_g_2 have "p * 0 \<le> p * j" by (auto simp only: mult_left_mono)
+    then have "0 \<le> p * j" by auto
+    then have "0 div q \<le> (p * j) div q"
+      apply (rule_tac a = 0 in zdiv_mono1)
+      apply (insert q_g_2, auto)
+      done
+    also have "0 div q = 0" by auto
+    finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)
+  qed
+  finally show "int (card (f2 j)) = p * j div q" .
+qed
+
+lemma S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set"
+proof -
+  have "\<forall>x \<in> P_set. finite (f1 x)"
+  proof
+    fix x
+    have "f1 x \<subseteq> S" by (auto simp add: f1_def)
+    with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)
+  qed
+  moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})"
+    by (auto simp add: f1_def)
+  moreover note P_set_finite
+  ultimately have "int(card (UNION P_set f1)) =
+      setsum (%x. int(card (f1 x))) P_set"
+    by(simp add:card_UN_disjoint int_setsum o_def)
+  moreover have "S1 = UNION P_set f1"
+    by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)
+  ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"
+    by auto
+  also have "... = setsum (%j. q * j div p) P_set"
+    using aux3a by(fastsimp intro: setsum_cong)
+  finally show ?thesis .
+qed
+
+lemma S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set"
+proof -
+  have "\<forall>x \<in> Q_set. finite (f2 x)"
+  proof
+    fix x
+    have "f2 x \<subseteq> S" by (auto simp add: f2_def)
+    with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)
+  qed
+  moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->
+      (f2 x) \<inter> (f2 y) = {})"
+    by (auto simp add: f2_def)
+  moreover note Q_set_finite
+  ultimately have "int(card (UNION Q_set f2)) =
+      setsum (%x. int(card (f2 x))) Q_set"
+    by(simp add:card_UN_disjoint int_setsum o_def)
+  moreover have "S2 = UNION Q_set f2"
+    by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)
+  ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"
+    by auto
+  also have "... = setsum (%j. p * j div q) Q_set"
+    using aux3b by(fastsimp intro: setsum_cong)
+  finally show ?thesis .
+qed
+
+lemma S1_carda: "int (card(S1)) =
+    setsum (%j. (j * q) div p) P_set"
+  by (auto simp add: S1_card zmult_ac)
+
+lemma S2_carda: "int (card(S2)) =
+    setsum (%j. (j * p) div q) Q_set"
+  by (auto simp add: S2_card zmult_ac)
+
+lemma pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +
+    (setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)"
+proof -
+  have "(setsum (%j. (j * p) div q) Q_set) +
+      (setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)"
+    by (auto simp add: S1_carda S2_carda)
+  also have "... = int (card S1) + int (card S2)"
+    by auto
+  also have "... = ((p - 1) div 2) * ((q - 1) div 2)"
+    by (auto simp add: card_sum_S1_S2)
+  finally show ?thesis .
+qed
+
+
+lemma (in -) pq_prime_neq: "[| zprime p; zprime q; p \<noteq> q |] ==> (~[p = 0] (mod q))"
+  apply (auto simp add: zcong_eq_zdvd_prop zprime_def)
+  apply (drule_tac x = q in allE)
+  apply (drule_tac x = p in allE)
+  apply auto
+  done
+
+
+lemma QR_short: "(Legendre p q) * (Legendre q p) =
+    (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
+proof -
+  from prems have "~([p = 0] (mod q))"
+    by (auto simp add: pq_prime_neq QRTEMP_def)
+  with prems Q_set_def have a1: "(Legendre p q) = (-1::int) ^
+      nat(setsum (%x. ((x * p) div q)) Q_set)"
+    apply (rule_tac p = q in  MainQRLemma)
+    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
+    done
+  from prems have "~([q = 0] (mod p))"
+    apply (rule_tac p = q and q = p in pq_prime_neq)
+    apply (simp add: QRTEMP_def)+
+    done
+  with prems P_set_def have a2: "(Legendre q p) =
+      (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
+    apply (rule_tac p = p in  MainQRLemma)
+    apply (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)
+    done
+  from a1 a2 have "(Legendre p q) * (Legendre q p) =
+      (-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *
+        (-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)"
+    by auto
+  also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +
+                   nat(setsum (%x. ((x * q) div p)) P_set))"
+    by (auto simp add: zpower_zadd_distrib)
+  also have "nat(setsum (%x. ((x * p) div q)) Q_set) +
+      nat(setsum (%x. ((x * q) div p)) P_set) =
+        nat((setsum (%x. ((x * p) div q)) Q_set) +
+          (setsum (%x. ((x * q) div p)) P_set))"
+    apply (rule_tac z = "setsum (%x. ((x * p) div q)) Q_set" in
+      nat_add_distrib [symmetric])
+    apply (auto simp add: S1_carda [symmetric] S2_carda [symmetric])
+    done
+  also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))"
+    by (auto simp add: pq_sum_prop)
+  finally show ?thesis .
+qed
+
+end
+
+theorem Quadratic_Reciprocity:
+     "[| p \<in> zOdd; zprime p; q \<in> zOdd; zprime q;
+         p \<noteq> q |]
+      ==> (Legendre p q) * (Legendre q p) =
+          (-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))"
+  by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [symmetric]
+                     QRTEMP_def)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/ROOT.ML	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,4 @@
+
+no_document use_thys ["Infinite_Set", "Permutation"];
+use_thys ["Fib", "Factorization", "Chinese", "WilsonRuss",
+  "WilsonBij", "Quadratic_Reciprocity", "Primes", "Pocklington"];
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/Residues.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,172 @@
+(*  Title:      HOL/Quadratic_Reciprocity/Residues.thy
+    ID:         $Id$
+    Authors:    Jeremy Avigad, David Gray, and Adam Kramer
+*)
+
+header {* Residue Sets *}
+
+theory Residues imports Int2 begin
+
+text {*
+  \medskip Define the residue of a set, the standard residue,
+  quadratic residues, and prove some basic properties. *}
+
+definition
+  ResSet      :: "int => int set => bool" where
+  "ResSet m X = (\<forall>y1 y2. (y1 \<in> X & y2 \<in> X & [y1 = y2] (mod m) --> y1 = y2))"
+
+definition
+  StandardRes :: "int => int => int" where
+  "StandardRes m x = x mod m"
+
+definition
+  QuadRes     :: "int => int => bool" where
+  "QuadRes m x = (\<exists>y. ([(y ^ 2) = x] (mod m)))"
+
+definition
+  Legendre    :: "int => int => int" where
+  "Legendre a p = (if ([a = 0] (mod p)) then 0
+                     else if (QuadRes p a) then 1
+                     else -1)"
+
+definition
+  SR          :: "int => int set" where
+  "SR p = {x. (0 \<le> x) & (x < p)}"
+
+definition
+  SRStar      :: "int => int set" where
+  "SRStar p = {x. (0 < x) & (x < p)}"
+
+
+subsection {* Some useful properties of StandardRes *}
+
+lemma StandardRes_prop1: "[x = StandardRes m x] (mod m)"
+  by (auto simp add: StandardRes_def zcong_zmod)
+
+lemma StandardRes_prop2: "0 < m ==> (StandardRes m x1 = StandardRes m x2)
+      = ([x1 = x2] (mod m))"
+  by (auto simp add: StandardRes_def zcong_zmod_eq)
+
+lemma StandardRes_prop3: "(~[x = 0] (mod p)) = (~(StandardRes p x = 0))"
+  by (auto simp add: StandardRes_def zcong_def dvd_eq_mod_eq_0)
+
+lemma StandardRes_prop4: "2 < m 
+     ==> [StandardRes m x * StandardRes m y = (x * y)] (mod m)"
+  by (auto simp add: StandardRes_def zcong_zmod_eq 
+                     mod_mult_eq [of x y m])
+
+lemma StandardRes_lbound: "0 < p ==> 0 \<le> StandardRes p x"
+  by (auto simp add: StandardRes_def pos_mod_sign)
+
+lemma StandardRes_ubound: "0 < p ==> StandardRes p x < p"
+  by (auto simp add: StandardRes_def pos_mod_bound)
+
+lemma StandardRes_eq_zcong: 
+   "(StandardRes m x = 0) = ([x = 0](mod m))"
+  by (auto simp add: StandardRes_def zcong_eq_zdvd_prop dvd_def) 
+
+
+subsection {* Relations between StandardRes, SRStar, and SR *}
+
+lemma SRStar_SR_prop: "x \<in> SRStar p ==> x \<in> SR p"
+  by (auto simp add: SRStar_def SR_def)
+
+lemma StandardRes_SR_prop: "x \<in> SR p ==> StandardRes p x = x"
+  by (auto simp add: SR_def StandardRes_def mod_pos_pos_trivial)
+
+lemma StandardRes_SRStar_prop1: "2 < p ==> (StandardRes p x \<in> SRStar p) 
+     = (~[x = 0] (mod p))"
+  apply (auto simp add: StandardRes_prop3 StandardRes_def
+                        SRStar_def pos_mod_bound)
+  apply (subgoal_tac "0 < p")
+  apply (drule_tac a = x in pos_mod_sign, arith, simp)
+  done
+
+lemma StandardRes_SRStar_prop1a: "x \<in> SRStar p ==> ~([x = 0] (mod p))"
+  by (auto simp add: SRStar_def zcong_def zdvd_not_zless)
+
+lemma StandardRes_SRStar_prop2: "[| 2 < p; zprime p; x \<in> SRStar p |] 
+     ==> StandardRes p (MultInv p x) \<in> SRStar p"
+  apply (frule_tac x = "(MultInv p x)" in StandardRes_SRStar_prop1, simp)
+  apply (rule MultInv_prop3)
+  apply (auto simp add: SRStar_def zcong_def zdvd_not_zless)
+  done
+
+lemma StandardRes_SRStar_prop3: "x \<in> SRStar p ==> StandardRes p x = x"
+  by (auto simp add: SRStar_SR_prop StandardRes_SR_prop)
+
+lemma StandardRes_SRStar_prop4: "[| zprime p; 2 < p; x \<in> SRStar p |] 
+     ==> StandardRes p x \<in> SRStar p"
+  by (frule StandardRes_SRStar_prop3, auto)
+
+lemma SRStar_mult_prop1: "[| zprime p; 2 < p; x \<in> SRStar p; y \<in> SRStar p|] 
+     ==> (StandardRes p (x * y)):SRStar p"
+  apply (frule_tac x = x in StandardRes_SRStar_prop4, auto)
+  apply (frule_tac x = y in StandardRes_SRStar_prop4, auto)
+  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
+  done
+
+lemma SRStar_mult_prop2: "[| zprime p; 2 < p; ~([a = 0](mod p)); 
+     x \<in> SRStar p |] 
+     ==> StandardRes p (a * MultInv p x) \<in> SRStar p"
+  apply (frule_tac x = x in StandardRes_SRStar_prop2, auto)
+  apply (frule_tac x = "MultInv p x" in StandardRes_SRStar_prop1)
+  apply (auto simp add: StandardRes_SRStar_prop1 zcong_zmult_prop3)
+  done
+
+lemma SRStar_card: "2 < p ==> int(card(SRStar p)) = p - 1"
+  by (auto simp add: SRStar_def int_card_bdd_int_set_l_l)
+
+lemma SRStar_finite: "2 < p ==> finite( SRStar p)"
+  by (auto simp add: SRStar_def bdd_int_set_l_l_finite)
+
+
+subsection {* Properties relating ResSets with StandardRes *}
+
+lemma aux: "x mod m = y mod m ==> [x = y] (mod m)"
+  apply (subgoal_tac "x = y ==> [x = y](mod m)")
+  apply (subgoal_tac "[x mod m = y mod m] (mod m) ==> [x = y] (mod m)")
+  apply (auto simp add: zcong_zmod [of x y m])
+  done
+
+lemma StandardRes_inj_on_ResSet: "ResSet m X ==> (inj_on (StandardRes m) X)"
+  apply (auto simp add: ResSet_def StandardRes_def inj_on_def)
+  apply (drule_tac m = m in aux, auto)
+  done
+
+lemma StandardRes_Sum: "[| finite X; 0 < m |] 
+     ==> [setsum f X = setsum (StandardRes m o f) X](mod m)" 
+  apply (rule_tac F = X in finite_induct)
+  apply (auto intro!: zcong_zadd simp add: StandardRes_prop1)
+  done
+
+lemma SR_pos: "0 < m ==> (StandardRes m ` X) \<subseteq> {x. 0 \<le> x & x < m}"
+  by (auto simp add: StandardRes_ubound StandardRes_lbound)
+
+lemma ResSet_finite: "0 < m ==> ResSet m X ==> finite X"
+  apply (rule_tac f = "StandardRes m" in finite_imageD) 
+  apply (rule_tac B = "{x. (0 :: int) \<le> x & x < m}" in finite_subset)
+  apply (auto simp add: StandardRes_inj_on_ResSet bdd_int_set_l_finite SR_pos)
+  done
+
+lemma mod_mod_is_mod: "[x = x mod m](mod m)"
+  by (auto simp add: zcong_zmod)
+
+lemma StandardRes_prod: "[| finite X; 0 < m |] 
+     ==> [setprod f X = setprod (StandardRes m o f) X] (mod m)"
+  apply (rule_tac F = X in finite_induct)
+  apply (auto intro!: zcong_zmult simp add: StandardRes_prop1)
+  done
+
+lemma ResSet_image:
+  "[| 0 < m; ResSet m A; \<forall>x \<in> A. \<forall>y \<in> A. ([f x = f y](mod m) --> x = y) |] ==>
+    ResSet m (f ` A)"
+  by (auto simp add: ResSet_def)
+
+
+subsection {* Property for SRStar *}
+
+lemma ResSet_SRStar_prop: "ResSet p (SRStar p)"
+  by (auto simp add: SRStar_def ResSet_def zcong_zless_imp_eq)
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/WilsonBij.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,261 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Wilson's Theorem using a more abstract approach *}
+
+theory WilsonBij imports BijectionRel IntFact begin
+
+text {*
+  Wilson's Theorem using a more ``abstract'' approach based on
+  bijections between sets.  Does not use Fermat's Little Theorem
+  (unlike Russinoff).
+*}
+
+
+subsection {* Definitions and lemmas *}
+
+definition
+  reciR :: "int => int => int => bool" where
+  "reciR p = (\<lambda>a b. zcong (a * b) 1 p \<and> 1 < a \<and> a < p - 1 \<and> 1 < b \<and> b < p - 1)"
+
+definition
+  inv :: "int => int => int" where
+  "inv p a =
+    (if zprime p \<and> 0 < a \<and> a < p then
+      (SOME x. 0 \<le> x \<and> x < p \<and> zcong (a * x) 1 p)
+     else 0)"
+
+
+text {* \medskip Inverse *}
+
+lemma inv_correct:
+  "zprime p ==> 0 < a ==> a < p
+    ==> 0 \<le> inv p a \<and> inv p a < p \<and> [a * inv p a = 1] (mod p)"
+  apply (unfold inv_def)
+  apply (simp (no_asm_simp))
+  apply (rule zcong_lineq_unique [THEN ex1_implies_ex, THEN someI_ex])
+   apply (erule_tac [2] zless_zprime_imp_zrelprime)
+    apply (unfold zprime_def)
+    apply auto
+  done
+
+lemmas inv_ge = inv_correct [THEN conjunct1, standard]
+lemmas inv_less = inv_correct [THEN conjunct2, THEN conjunct1, standard]
+lemmas inv_is_inv = inv_correct [THEN conjunct2, THEN conjunct2, standard]
+
+lemma inv_not_0:
+  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> 0"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     apply (unfold zcong_def)
+     apply auto
+  apply (subgoal_tac "\<not> p dvd 1")
+   apply (rule_tac [2] zdvd_not_zless)
+    apply (subgoal_tac "p dvd 1")
+     prefer 2
+     apply (subst dvd_minus_iff [symmetric])
+     apply auto
+  done
+
+lemma inv_not_1:
+  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> 1"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     prefer 4
+     apply simp
+     apply (subgoal_tac "a = 1")
+      apply (rule_tac [2] zcong_zless_imp_eq)
+          apply auto
+  done
+
+lemma aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
+  -- {* same as @{text WilsonRuss} *}
+  apply (unfold zcong_def)
+  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
+  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
+   apply (simp add: mult_commute)
+  apply (subst dvd_minus_iff)
+  apply (subst zdvd_reduce)
+  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
+   apply (subst zdvd_reduce)
+   apply auto
+  done
+
+lemma inv_not_p_minus_1:
+  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a \<noteq> p - 1"
+  -- {* same as @{text WilsonRuss} *}
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     apply auto
+  apply (simp add: aux)
+  apply (subgoal_tac "a = p - 1")
+   apply (rule_tac [2] zcong_zless_imp_eq)
+       apply auto
+  done
+
+text {*
+  Below is slightly different as we don't expand @{term [source] inv}
+  but use ``@{text correct}'' theorems.
+*}
+
+lemma inv_g_1: "zprime p ==> 1 < a ==> a < p - 1 ==> 1 < inv p a"
+  apply (subgoal_tac "inv p a \<noteq> 1")
+   apply (subgoal_tac "inv p a \<noteq> 0")
+    apply (subst order_less_le)
+    apply (subst zle_add1_eq_le [symmetric])
+    apply (subst order_less_le)
+    apply (rule_tac [2] inv_not_0)
+      apply (rule_tac [5] inv_not_1)
+        apply auto
+  apply (rule inv_ge)
+    apply auto
+  done
+
+lemma inv_less_p_minus_1:
+  "zprime p ==> 1 < a ==> a < p - 1 ==> inv p a < p - 1"
+  -- {* ditto *}
+  apply (subst order_less_le)
+  apply (simp add: inv_not_p_minus_1 inv_less)
+  done
+
+
+text {* \medskip Bijection *}
+
+lemma aux1: "1 < x ==> 0 \<le> (x::int)"
+  apply auto
+  done
+
+lemma aux2: "1 < x ==> 0 < (x::int)"
+  apply auto
+  done
+
+lemma aux3: "x \<le> p - 2 ==> x < (p::int)"
+  apply auto
+  done
+
+lemma aux4: "x \<le> p - 2 ==> x < (p::int) - 1"
+  apply auto
+  done
+
+lemma inv_inj: "zprime p ==> inj_on (inv p) (d22set (p - 2))"
+  apply (unfold inj_on_def)
+  apply auto
+  apply (rule zcong_zless_imp_eq)
+      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
+        apply (rule_tac [7] zcong_trans)
+         apply (tactic {* stac (thm "zcong_sym") 8 *})
+         apply (erule_tac [7] inv_is_inv)
+          apply (tactic "asm_simp_tac @{simpset} 9")
+          apply (erule_tac [9] inv_is_inv)
+           apply (rule_tac [6] zless_zprime_imp_zrelprime)
+             apply (rule_tac [8] inv_less)
+               apply (rule_tac [7] inv_g_1 [THEN aux2])
+                 apply (unfold zprime_def)
+                 apply (auto intro: d22set_g_1 d22set_le
+		   aux1 aux2 aux3 aux4)
+  done
+
+lemma inv_d22set_d22set:
+    "zprime p ==> inv p ` d22set (p - 2) = d22set (p - 2)"
+  apply (rule endo_inj_surj)
+    apply (rule d22set_fin)
+   apply (erule_tac [2] inv_inj)
+  apply auto
+  apply (rule d22set_mem)
+   apply (erule inv_g_1)
+    apply (subgoal_tac [3] "inv p xa < p - 1")
+     apply (erule_tac [4] inv_less_p_minus_1)
+      apply (auto intro: d22set_g_1 d22set_le aux4)
+  done
+
+lemma d22set_d22set_bij:
+    "zprime p ==> (d22set (p - 2), d22set (p - 2)) \<in> bijR (reciR p)"
+  apply (unfold reciR_def)
+  apply (rule_tac s = "(d22set (p - 2), inv p ` d22set (p - 2))" in subst)
+   apply (simp add: inv_d22set_d22set)
+  apply (rule inj_func_bijR)
+    apply (rule_tac [3] d22set_fin)
+   apply (erule_tac [2] inv_inj)
+  apply auto
+      apply (erule inv_is_inv)
+       apply (erule_tac [5] inv_g_1)
+        apply (erule_tac [7] inv_less_p_minus_1)
+         apply (auto intro: d22set_g_1 d22set_le aux2 aux3 aux4)
+  done
+
+lemma reciP_bijP: "zprime p ==> bijP (reciR p) (d22set (p - 2))"
+  apply (unfold reciR_def bijP_def)
+  apply auto
+  apply (rule d22set_mem)
+   apply auto
+  done
+
+lemma reciP_uniq: "zprime p ==> uniqP (reciR p)"
+  apply (unfold reciR_def uniqP_def)
+  apply auto
+   apply (rule zcong_zless_imp_eq)
+       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 5 *})
+         apply (rule_tac [7] zcong_trans)
+          apply (tactic {* stac (thm "zcong_sym") 8 *})
+          apply (rule_tac [6] zless_zprime_imp_zrelprime)
+            apply auto
+  apply (rule zcong_zless_imp_eq)
+      apply (tactic {* stac (thm "zcong_cancel" RS sym) 5 *})
+        apply (rule_tac [7] zcong_trans)
+         apply (tactic {* stac (thm "zcong_sym") 8 *})
+         apply (rule_tac [6] zless_zprime_imp_zrelprime)
+           apply auto
+  done
+
+lemma reciP_sym: "zprime p ==> symP (reciR p)"
+  apply (unfold reciR_def symP_def)
+  apply (simp add: zmult_commute)
+  apply auto
+  done
+
+lemma bijER_d22set: "zprime p ==> d22set (p - 2) \<in> bijER (reciR p)"
+  apply (rule bijR_bijER)
+     apply (erule d22set_d22set_bij)
+    apply (erule reciP_bijP)
+   apply (erule reciP_uniq)
+  apply (erule reciP_sym)
+  done
+
+
+subsection {* Wilson *}
+
+lemma bijER_zcong_prod_1:
+    "zprime p ==> A \<in> bijER (reciR p) ==> [\<Prod>A = 1] (mod p)"
+  apply (unfold reciR_def)
+  apply (erule bijER.induct)
+    apply (subgoal_tac [2] "a = 1 \<or> a = p - 1")
+     apply (rule_tac [3] zcong_square_zless)
+        apply auto
+  apply (subst setprod_insert)
+    prefer 3
+    apply (subst setprod_insert)
+      apply (auto simp add: fin_bijER)
+  apply (subgoal_tac "zcong ((a * b) * \<Prod>A) (1 * 1) p")
+   apply (simp add: zmult_assoc)
+  apply (rule zcong_zmult)
+   apply auto
+  done
+
+theorem Wilson_Bij: "zprime p ==> [zfact (p - 1) = -1] (mod p)"
+  apply (subgoal_tac "zcong ((p - 1) * zfact (p - 2)) (-1 * 1) p")
+   apply (rule_tac [2] zcong_zmult)
+    apply (simp add: zprime_def)
+    apply (subst zfact.simps)
+    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst)
+     apply auto
+   apply (simp add: zcong_def)
+  apply (subst d22set_prod_zfact [symmetric])
+  apply (rule bijER_zcong_prod_1)
+   apply (rule_tac [2] bijER_d22set)
+   apply auto
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/WilsonRuss.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,327 @@
+(*  Author:     Thomas M. Rasmussen
+    Copyright   2000  University of Cambridge
+*)
+
+header {* Wilson's Theorem according to Russinoff *}
+
+theory WilsonRuss imports EulerFermat begin
+
+text {*
+  Wilson's Theorem following quite closely Russinoff's approach
+  using Boyer-Moore (using finite sets instead of lists, though).
+*}
+
+subsection {* Definitions and lemmas *}
+
+definition
+  inv :: "int => int => int" where
+  "inv p a = (a^(nat (p - 2))) mod p"
+
+consts
+  wset :: "int * int => int set"
+
+recdef wset
+  "measure ((\<lambda>(a, p). nat a) :: int * int => nat)"
+  "wset (a, p) =
+    (if 1 < a then
+      let ws = wset (a - 1, p)
+      in (if a \<in> ws then ws else insert a (insert (inv p a) ws)) else {})"
+
+
+text {* \medskip @{term [source] inv} *}
+
+lemma inv_is_inv_aux: "1 < m ==> Suc (nat (m - 2)) = nat (m - 1)"
+by (subst int_int_eq [symmetric], auto)
+
+lemma inv_is_inv:
+    "zprime p \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> [a * inv p a = 1] (mod p)"
+  apply (unfold inv_def)
+  apply (subst zcong_zmod)
+  apply (subst zmod_zmult1_eq [symmetric])
+  apply (subst zcong_zmod [symmetric])
+  apply (subst power_Suc [symmetric])
+  apply (subst inv_is_inv_aux)
+   apply (erule_tac [2] Little_Fermat)
+   apply (erule_tac [2] zdvd_not_zless)
+   apply (unfold zprime_def, auto)
+  done
+
+lemma inv_distinct:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> a \<noteq> inv p a"
+  apply safe
+  apply (cut_tac a = a and p = p in zcong_square)
+     apply (cut_tac [3] a = a and p = p in inv_is_inv, auto)
+   apply (subgoal_tac "a = 1")
+    apply (rule_tac [2] m = p in zcong_zless_imp_eq)
+        apply (subgoal_tac [7] "a = p - 1")
+         apply (rule_tac [8] m = p in zcong_zless_imp_eq, auto)
+  done
+
+lemma inv_not_0:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 0"
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     apply (unfold zcong_def, auto)
+  apply (subgoal_tac "\<not> p dvd 1")
+   apply (rule_tac [2] zdvd_not_zless)
+    apply (subgoal_tac "p dvd 1")
+     prefer 2
+     apply (subst dvd_minus_iff [symmetric], auto)
+  done
+
+lemma inv_not_1:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 1"
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv)
+     prefer 4
+     apply simp
+     apply (subgoal_tac "a = 1")
+      apply (rule_tac [2] zcong_zless_imp_eq, auto)
+  done
+
+lemma inv_not_p_minus_1_aux:
+    "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
+  apply (unfold zcong_def)
+  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
+  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
+   apply (simp add: mult_commute)
+  apply (subst dvd_minus_iff)
+  apply (subst zdvd_reduce)
+  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
+   apply (subst zdvd_reduce, auto)
+  done
+
+lemma inv_not_p_minus_1:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> p - 1"
+  apply safe
+  apply (cut_tac a = a and p = p in inv_is_inv, auto)
+  apply (simp add: inv_not_p_minus_1_aux)
+  apply (subgoal_tac "a = p - 1")
+   apply (rule_tac [2] zcong_zless_imp_eq, auto)
+  done
+
+lemma inv_g_1:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> 1 < inv p a"
+  apply (case_tac "0\<le> inv p a")
+   apply (subgoal_tac "inv p a \<noteq> 1")
+    apply (subgoal_tac "inv p a \<noteq> 0")
+     apply (subst order_less_le)
+     apply (subst zle_add1_eq_le [symmetric])
+     apply (subst order_less_le)
+     apply (rule_tac [2] inv_not_0)
+       apply (rule_tac [5] inv_not_1, auto)
+  apply (unfold inv_def zprime_def, simp)
+  done
+
+lemma inv_less_p_minus_1:
+    "zprime p \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a < p - 1"
+  apply (case_tac "inv p a < p")
+   apply (subst order_less_le)
+   apply (simp add: inv_not_p_minus_1, auto)
+  apply (unfold inv_def zprime_def, simp)
+  done
+
+lemma inv_inv_aux: "5 \<le> p ==>
+    nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))"
+  apply (subst int_int_eq [symmetric])
+  apply (simp add: zmult_int [symmetric])
+  apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2)
+  done
+
+lemma zcong_zpower_zmult:
+    "[x^y = 1] (mod p) \<Longrightarrow> [x^(y * z) = 1] (mod p)"
+  apply (induct z)
+   apply (auto simp add: zpower_zadd_distrib)
+  apply (subgoal_tac "zcong (x^y * x^(y * z)) (1 * 1) p")
+   apply (rule_tac [2] zcong_zmult, simp_all)
+  done
+
+lemma inv_inv: "zprime p \<Longrightarrow>
+    5 \<le> p \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> inv p (inv p a) = a"
+  apply (unfold inv_def)
+  apply (subst zpower_zmod)
+  apply (subst zpower_zpower)
+  apply (rule zcong_zless_imp_eq)
+      prefer 5
+      apply (subst zcong_zmod)
+      apply (subst mod_mod_trivial)
+      apply (subst zcong_zmod [symmetric])
+      apply (subst inv_inv_aux)
+       apply (subgoal_tac [2]
+	 "zcong (a * a^(nat (p - 1) * nat (p - 3))) (a * 1) p")
+        apply (rule_tac [3] zcong_zmult)
+         apply (rule_tac [4] zcong_zpower_zmult)
+         apply (erule_tac [4] Little_Fermat)
+         apply (rule_tac [4] zdvd_not_zless, simp_all)
+  done
+
+
+text {* \medskip @{term wset} *}
+
+declare wset.simps [simp del]
+
+lemma wset_induct:
+  assumes "!!a p. P {} a p"
+    and "!!a p. 1 < (a::int) \<Longrightarrow>
+      P (wset (a - 1, p)) (a - 1) p ==> P (wset (a, p)) a p"
+  shows "P (wset (u, v)) u v"
+  apply (rule wset.induct, safe)
+   prefer 2
+   apply (case_tac "1 < a")
+    apply (rule prems)
+     apply simp_all
+   apply (simp_all add: wset.simps prems)
+  done
+
+lemma wset_mem_imp_or [rule_format]:
+  "1 < a \<Longrightarrow> b \<notin> wset (a - 1, p)
+    ==> b \<in> wset (a, p) --> b = a \<or> b = inv p a"
+  apply (subst wset.simps)
+  apply (unfold Let_def, simp)
+  done
+
+lemma wset_mem_mem [simp]: "1 < a ==> a \<in> wset (a, p)"
+  apply (subst wset.simps)
+  apply (unfold Let_def, simp)
+  done
+
+lemma wset_subset: "1 < a \<Longrightarrow> b \<in> wset (a - 1, p) ==> b \<in> wset (a, p)"
+  apply (subst wset.simps)
+  apply (unfold Let_def, auto)
+  done
+
+lemma wset_g_1 [rule_format]:
+    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> 1 < b"
+  apply (induct a p rule: wset_induct, auto)
+  apply (case_tac "b = a")
+   apply (case_tac [2] "b = inv p a")
+    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
+     apply (rule_tac [4] wset_mem_imp_or)
+       prefer 2
+       apply simp
+       apply (rule inv_g_1, auto)
+  done
+
+lemma wset_less [rule_format]:
+    "zprime p --> a < p - 1 --> b \<in> wset (a, p) --> b < p - 1"
+  apply (induct a p rule: wset_induct, auto)
+  apply (case_tac "b = a")
+   apply (case_tac [2] "b = inv p a")
+    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
+     apply (rule_tac [4] wset_mem_imp_or)
+       prefer 2
+       apply simp
+       apply (rule inv_less_p_minus_1, auto)
+  done
+
+lemma wset_mem [rule_format]:
+  "zprime p -->
+    a < p - 1 --> 1 < b --> b \<le> a --> b \<in> wset (a, p)"
+  apply (induct a p rule: wset.induct, auto)
+  apply (rule_tac wset_subset)
+  apply (simp (no_asm_simp))
+  apply auto
+  done
+
+lemma wset_mem_inv_mem [rule_format]:
+  "zprime p --> 5 \<le> p --> a < p - 1 --> b \<in> wset (a, p)
+    --> inv p b \<in> wset (a, p)"
+  apply (induct a p rule: wset_induct, auto)
+   apply (case_tac "b = a")
+    apply (subst wset.simps)
+    apply (unfold Let_def)
+    apply (rule_tac [3] wset_subset, auto)
+  apply (case_tac "b = inv p a")
+   apply (simp (no_asm_simp))
+   apply (subst inv_inv)
+       apply (subgoal_tac [6] "b = a \<or> b = inv p a")
+        apply (rule_tac [7] wset_mem_imp_or, auto)
+  done
+
+lemma wset_inv_mem_mem:
+  "zprime p \<Longrightarrow> 5 \<le> p \<Longrightarrow> a < p - 1 \<Longrightarrow> 1 < b \<Longrightarrow> b < p - 1
+    \<Longrightarrow> inv p b \<in> wset (a, p) \<Longrightarrow> b \<in> wset (a, p)"
+  apply (rule_tac s = "inv p (inv p b)" and t = b in subst)
+   apply (rule_tac [2] wset_mem_inv_mem)
+      apply (rule inv_inv, simp_all)
+  done
+
+lemma wset_fin: "finite (wset (a, p))"
+  apply (induct a p rule: wset_induct)
+   prefer 2
+   apply (subst wset.simps)
+   apply (unfold Let_def, auto)
+  done
+
+lemma wset_zcong_prod_1 [rule_format]:
+  "zprime p -->
+    5 \<le> p --> a < p - 1 --> [(\<Prod>x\<in>wset(a, p). x) = 1] (mod p)"
+  apply (induct a p rule: wset_induct)
+   prefer 2
+   apply (subst wset.simps)
+   apply (unfold Let_def, auto)
+  apply (subst setprod_insert)
+    apply (tactic {* stac (thm "setprod_insert") 3 *})
+      apply (subgoal_tac [5]
+	"zcong (a * inv p a * (\<Prod>x\<in> wset(a - 1, p). x)) (1 * 1) p")
+       prefer 5
+       apply (simp add: zmult_assoc)
+      apply (rule_tac [5] zcong_zmult)
+       apply (rule_tac [5] inv_is_inv)
+         apply (tactic "clarify_tac @{claset} 4")
+         apply (subgoal_tac [4] "a \<in> wset (a - 1, p)")
+          apply (rule_tac [5] wset_inv_mem_mem)
+               apply (simp_all add: wset_fin)
+  apply (rule inv_distinct, auto)
+  done
+
+lemma d22set_eq_wset: "zprime p ==> d22set (p - 2) = wset (p - 2, p)"
+  apply safe
+   apply (erule wset_mem)
+     apply (rule_tac [2] d22set_g_1)
+     apply (rule_tac [3] d22set_le)
+     apply (rule_tac [4] d22set_mem)
+      apply (erule_tac [4] wset_g_1)
+       prefer 6
+       apply (subst zle_add1_eq_le [symmetric])
+       apply (subgoal_tac "p - 2 + 1 = p - 1")
+        apply (simp (no_asm_simp))
+        apply (erule wset_less, auto)
+  done
+
+
+subsection {* Wilson *}
+
+lemma prime_g_5: "zprime p \<Longrightarrow> p \<noteq> 2 \<Longrightarrow> p \<noteq> 3 ==> 5 \<le> p"
+  apply (unfold zprime_def dvd_def)
+  apply (case_tac "p = 4", auto)
+   apply (rule notE)
+    prefer 2
+    apply assumption
+   apply (simp (no_asm))
+   apply (rule_tac x = 2 in exI)
+   apply (safe, arith)
+     apply (rule_tac x = 2 in exI, auto)
+  done
+
+theorem Wilson_Russ:
+    "zprime p ==> [zfact (p - 1) = -1] (mod p)"
+  apply (subgoal_tac "[(p - 1) * zfact (p - 2) = -1 * 1] (mod p)")
+   apply (rule_tac [2] zcong_zmult)
+    apply (simp only: zprime_def)
+    apply (subst zfact.simps)
+    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst, auto)
+   apply (simp only: zcong_def)
+   apply (simp (no_asm_simp))
+  apply (case_tac "p = 2")
+   apply (simp add: zfact.simps)
+  apply (case_tac "p = 3")
+   apply (simp add: zfact.simps)
+  apply (subgoal_tac "5 \<le> p")
+   apply (erule_tac [2] prime_g_5)
+    apply (subst d22set_prod_zfact [symmetric])
+    apply (subst d22set_eq_wset)
+     apply (rule_tac [2] wset_zcong_prod_1, auto)
+  done
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Old_Number_Theory/document/root.tex	Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,56 @@
+
+\documentclass[11pt,a4paper]{article}
+\usepackage{graphicx}
+\usepackage{isabelle,isabellesym,pdfsetup}
+
+\urlstyle{rm}
+\isabellestyle{it}
+
+\begin{document}
+
+\title{Some results of number theory}
+\author{Jeremy Avigad\\
+    David Gray\\
+    Adam Kramer\\
+    Thomas M Rasmussen}
+
+\maketitle
+
+\begin{abstract}
+This is a collection of formalized proofs of many results of number theory.
+The proofs of the Chinese Remainder Theorem and Wilson's Theorem are due to
+Rasmussen.  The proof of Gauss's law of quadratic reciprocity is due to
+Avigad, Gray and Kramer.  Proofs can be found in most introductory number
+theory textbooks; Goldman's \emph{The Queen of Mathematics: a Historically
+Motivated Guide to Number Theory} provides some historical context.
+
+Avigad, Gray and Kramer have also provided library theories dealing with
+finite sets and finite sums, divisibility and congruences, parity and
+residues.  The authors are engaged in redesigning and polishing these theories
+for more serious use.  For the latest information in this respect, please see
+the web page \url{http://www.andrew.cmu.edu/~avigad/isabelle}.  Other theories
+contain proofs of Euler's criteria, Gauss' lemma, and the law of quadratic
+reciprocity.  The formalization follows Eisenstein's proof, which is the one
+most commonly found in introductory textbooks; in particular, it follows the
+presentation in Niven and Zuckerman, \emph{The Theory of Numbers}.
+
+To avoid having to count roots of polynomials, however, we relied on a trick
+previously used by David Russinoff in formalizing quadratic reciprocity for
+the Boyer-Moore theorem prover; see Russinoff, David, ``A mechanical proof
+of quadratic reciprocity,'' \emph{Journal of Automated Reasoning} 8:3-21,
+1992.  We are grateful to Larry Paulson for calling our attention to this
+reference.
+\end{abstract}
+
+\tableofcontents
+
+\begin{center}
+  \includegraphics[scale=0.5]{session_graph}  
+\end{center}
+
+\newpage
+
+\parindent 0pt\parskip 0.5ex
+\input{session}
+
+\end{document}
--- a/src/HOL/ex/Codegenerator_Candidates.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/ex/Codegenerator_Candidates.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -16,7 +16,7 @@
   Nested_Environment
   Option_ord
   Permutation
-  Primes
+  "~~/src/HOL/Number_Theory/Primes"
   Product_ord
   SetsAndFunctions
   Tree
--- a/src/HOL/ex/ROOT.ML	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/ex/ROOT.ML	Tue Sep 01 15:39:33 2009 +0200
@@ -12,7 +12,6 @@
   "Codegenerator_Test",
   "Codegenerator_Pretty_Test",
   "NormalForm",
-  "../NumberTheory/Factorization",
   "Predicate_Compile",
   "Predicate_Compile_ex"
 ];
--- a/src/HOL/ex/Sqrt.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/ex/Sqrt.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -5,7 +5,7 @@
 header {*  Square roots of primes are irrational *}
 
 theory Sqrt
-imports Complex_Main
+imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
 begin
 
 text {*
--- a/src/HOL/ex/Sqrt_Script.thy	Tue Sep 01 14:13:34 2009 +0200
+++ b/src/HOL/ex/Sqrt_Script.thy	Tue Sep 01 15:39:33 2009 +0200
@@ -6,7 +6,7 @@
 header {* Square roots of primes are irrational (script version) *}
 
 theory Sqrt_Script
-imports Complex_Main Primes
+imports Complex_Main "~~/src/HOL/Number_Theory/Primes"
 begin
 
 text {*
@@ -16,30 +16,30 @@
 
 subsection {* Preliminaries *}
 
-lemma prime_nonzero:  "prime p \<Longrightarrow> p \<noteq> 0"
-  by (force simp add: prime_def)
+lemma prime_nonzero:  "prime (p::nat) \<Longrightarrow> p \<noteq> 0"
+  by (force simp add: prime_nat_def)
 
 lemma prime_dvd_other_side:
-    "n * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n"
-  apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult)
+    "(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n"
+  apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat)
   apply auto
   done
 
-lemma reduction: "prime p \<Longrightarrow>
+lemma reduction: "prime (p::nat) \<Longrightarrow>
     0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j"
   apply (rule ccontr)
   apply (simp add: linorder_not_less)
   apply (erule disjE)
    apply (frule mult_le_mono, assumption)
    apply auto
-  apply (force simp add: prime_def)
+  apply (force simp add: prime_nat_def)
   done
 
 lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)"
   by (simp add: mult_ac)
 
 lemma prime_not_square:
-    "prime p \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"
+    "prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))"
   apply (induct m rule: nat_less_induct)
   apply clarify
   apply (frule prime_dvd_other_side, assumption)
@@ -57,7 +57,7 @@
 *}
 
 theorem prime_sqrt_irrational:
-    "prime p \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"
+    "prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>"
   apply (rule notI)
   apply (erule Rats_abs_nat_div_natE)
   apply (simp del: real_of_nat_mult
@@ -65,6 +65,6 @@
   done
 
 lemmas two_sqrt_irrational =
-  prime_sqrt_irrational [OF two_is_prime]
+  prime_sqrt_irrational [OF two_is_prime_nat]
 
 end