--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Number_Theory/Cong.thy Tue Sep 01 15:39:33 2009 +0200
@@ -0,0 +1,1091 @@
+(* Title: HOL/Library/Cong.thy
+ ID:
+ Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb,
+ Thomas M. Rasmussen, Jeremy Avigad
+
+
+Defines congruence (notation: [x = y] (mod z)) for natural numbers and
+integers.
+
+This file combines and revises a number of prior developments.
+
+The original theories "GCD" and "Primes" were by Christophe Tabacznyj
+and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
+gcd, lcm, and prime for the natural numbers.
+
+The original theory "IntPrimes" was by Thomas M. Rasmussen, and
+extended gcd, lcm, primes to the integers. Amine Chaieb provided
+another extension of the notions to the integers, and added a number
+of results to "Primes" and "GCD".
+
+The original theory, "IntPrimes", by Thomas M. Rasmussen, defined and
+developed the congruence relations on the integers. The notion was
+extended to the natural numbers by Chiaeb. Jeremy Avigad combined
+these, revised and tidied them, made the development uniform for the
+natural numbers and the integers, and added a number of new theorems.
+
+*)
+
+
+header {* Congruence *}
+
+theory Cong
+imports GCD Primes
+begin
+
+subsection {* Turn off One_nat_def *}
+
+lemma induct'_nat [case_names zero plus1, induct type: nat]:
+ "\<lbrakk> P (0::nat); !!n. P n \<Longrightarrow> P (n + 1)\<rbrakk> \<Longrightarrow> P n"
+by (erule nat_induct) (simp add:One_nat_def)
+
+lemma cases_nat [case_names zero plus1, cases type: nat]:
+ "P (0::nat) \<Longrightarrow> (!!n. P (n + 1)) \<Longrightarrow> P n"
+by(metis induct'_nat)
+
+lemma power_plus_one [simp]: "(x::'a::power)^(n + 1) = x * x^n"
+by (simp add: One_nat_def)
+
+lemma power_eq_one_eq_nat [simp]:
+ "((x::nat)^m = 1) = (m = 0 | x = 1)"
+by (induct m, auto)
+
+lemma card_insert_if' [simp]: "finite A \<Longrightarrow>
+ card (insert x A) = (if x \<in> A then (card A) else (card A) + 1)"
+by (auto simp add: insert_absorb)
+
+(* why wasn't card_insert_if a simp rule? *)
+declare card_insert_disjoint [simp del]
+
+lemma nat_1' [simp]: "nat 1 = 1"
+by simp
+
+(* For those annoying moments where Suc reappears, use Suc_eq_plus1 *)
+
+declare nat_1 [simp del]
+declare add_2_eq_Suc [simp del]
+declare add_2_eq_Suc' [simp del]
+
+
+declare mod_pos_pos_trivial [simp]
+
+
+subsection {* Main definitions *}
+
+class cong =
+
+fixes
+ cong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ = _] '(mod _'))")
+
+begin
+
+abbreviation
+ notcong :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool" ("(1[_ \<noteq> _] '(mod _'))")
+where
+ "notcong x y m == (~cong x y m)"
+
+end
+
+(* definitions for the natural numbers *)
+
+instantiation nat :: cong
+
+begin
+
+definition
+ cong_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> bool"
+where
+ "cong_nat x y m = ((x mod m) = (y mod m))"
+
+instance proof qed
+
+end
+
+
+(* definitions for the integers *)
+
+instantiation int :: cong
+
+begin
+
+definition
+ cong_int :: "int \<Rightarrow> int \<Rightarrow> int \<Rightarrow> bool"
+where
+ "cong_int x y m = ((x mod m) = (y mod m))"
+
+instance proof qed
+
+end
+
+
+subsection {* Set up Transfer *}
+
+
+lemma transfer_nat_int_cong:
+ "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> m >= 0 \<Longrightarrow>
+ ([(nat x) = (nat y)] (mod (nat m))) = ([x = y] (mod m))"
+ unfolding cong_int_def cong_nat_def
+ apply (auto simp add: nat_mod_distrib [symmetric])
+ apply (subst (asm) eq_nat_nat_iff)
+ apply (case_tac "m = 0", force, rule pos_mod_sign, force)+
+ apply assumption
+done
+
+declare TransferMorphism_nat_int[transfer add return:
+ transfer_nat_int_cong]
+
+lemma transfer_int_nat_cong:
+ "[(int x) = (int y)] (mod (int m)) = [x = y] (mod m)"
+ apply (auto simp add: cong_int_def cong_nat_def)
+ apply (auto simp add: zmod_int [symmetric])
+done
+
+declare TransferMorphism_int_nat[transfer add return:
+ transfer_int_nat_cong]
+
+
+subsection {* Congruence *}
+
+(* was zcong_0, etc. *)
+lemma cong_0_nat [simp, presburger]: "([(a::nat) = b] (mod 0)) = (a = b)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_0_int [simp, presburger]: "([(a::int) = b] (mod 0)) = (a = b)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_1_nat [simp, presburger]: "[(a::nat) = b] (mod 1)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_Suc_0_nat [simp, presburger]: "[(a::nat) = b] (mod Suc 0)"
+ by (unfold cong_nat_def, auto simp add: One_nat_def)
+
+lemma cong_1_int [simp, presburger]: "[(a::int) = b] (mod 1)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_refl_nat [simp]: "[(k::nat) = k] (mod m)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_refl_int [simp]: "[(k::int) = k] (mod m)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_sym_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_sym_int: "[(a::int) = b] (mod m) \<Longrightarrow> [b = a] (mod m)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_sym_eq_nat: "[(a::nat) = b] (mod m) = [b = a] (mod m)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_sym_eq_int: "[(a::int) = b] (mod m) = [b = a] (mod m)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_trans_nat [trans]:
+ "[(a::nat) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_trans_int [trans]:
+ "[(a::int) = b] (mod m) \<Longrightarrow> [b = c] (mod m) \<Longrightarrow> [a = c] (mod m)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_add_nat:
+ "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
+ apply (unfold cong_nat_def)
+ apply (subst (1 2) mod_add_eq)
+ apply simp
+done
+
+lemma cong_add_int:
+ "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a + c = b + d] (mod m)"
+ apply (unfold cong_int_def)
+ apply (subst (1 2) mod_add_left_eq)
+ apply (subst (1 2) mod_add_right_eq)
+ apply simp
+done
+
+lemma cong_diff_int:
+ "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a - c = b - d] (mod m)"
+ apply (unfold cong_int_def)
+ apply (subst (1 2) mod_diff_eq)
+ apply simp
+done
+
+lemma cong_diff_aux_int:
+ "(a::int) >= c \<Longrightarrow> b >= d \<Longrightarrow> [(a::int) = b] (mod m) \<Longrightarrow>
+ [c = d] (mod m) \<Longrightarrow> [tsub a c = tsub b d] (mod m)"
+ apply (subst (1 2) tsub_eq)
+ apply (auto intro: cong_diff_int)
+done;
+
+lemma cong_diff_nat:
+ assumes "(a::nat) >= c" and "b >= d" and "[a = b] (mod m)" and
+ "[c = d] (mod m)"
+ shows "[a - c = b - d] (mod m)"
+
+ using prems by (rule cong_diff_aux_int [transferred]);
+
+lemma cong_mult_nat:
+ "[(a::nat) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
+ apply (unfold cong_nat_def)
+ apply (subst (1 2) mod_mult_eq)
+ apply simp
+done
+
+lemma cong_mult_int:
+ "[(a::int) = b] (mod m) \<Longrightarrow> [c = d] (mod m) \<Longrightarrow> [a * c = b * d] (mod m)"
+ apply (unfold cong_int_def)
+ apply (subst (1 2) zmod_zmult1_eq)
+ apply (subst (1 2) mult_commute)
+ apply (subst (1 2) zmod_zmult1_eq)
+ apply simp
+done
+
+lemma cong_exp_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
+ apply (induct k)
+ apply (auto simp add: cong_refl_nat cong_mult_nat)
+done
+
+lemma cong_exp_int: "[(x::int) = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
+ apply (induct k)
+ apply (auto simp add: cong_refl_int cong_mult_int)
+done
+
+lemma cong_setsum_nat [rule_format]:
+ "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow>
+ [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
+ apply (case_tac "finite A")
+ apply (induct set: finite)
+ apply (auto intro: cong_add_nat)
+done
+
+lemma cong_setsum_int [rule_format]:
+ "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow>
+ [(SUM x:A. f x) = (SUM x:A. g x)] (mod m)"
+ apply (case_tac "finite A")
+ apply (induct set: finite)
+ apply (auto intro: cong_add_int)
+done
+
+lemma cong_setprod_nat [rule_format]:
+ "(ALL x: A. [((f x)::nat) = g x] (mod m)) \<longrightarrow>
+ [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
+ apply (case_tac "finite A")
+ apply (induct set: finite)
+ apply (auto intro: cong_mult_nat)
+done
+
+lemma cong_setprod_int [rule_format]:
+ "(ALL x: A. [((f x)::int) = g x] (mod m)) \<longrightarrow>
+ [(PROD x:A. f x) = (PROD x:A. g x)] (mod m)"
+ apply (case_tac "finite A")
+ apply (induct set: finite)
+ apply (auto intro: cong_mult_int)
+done
+
+lemma cong_scalar_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
+ by (rule cong_mult_nat, simp_all)
+
+lemma cong_scalar_int: "[(a::int)= b] (mod m) \<Longrightarrow> [a * k = b * k] (mod m)"
+ by (rule cong_mult_int, simp_all)
+
+lemma cong_scalar2_nat: "[(a::nat)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
+ by (rule cong_mult_nat, simp_all)
+
+lemma cong_scalar2_int: "[(a::int)= b] (mod m) \<Longrightarrow> [k * a = k * b] (mod m)"
+ by (rule cong_mult_int, simp_all)
+
+lemma cong_mult_self_nat: "[(a::nat) * m = 0] (mod m)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_mult_self_int: "[(a::int) * m = 0] (mod m)"
+ by (unfold cong_int_def, auto)
+
+lemma cong_eq_diff_cong_0_int: "[(a::int) = b] (mod m) = [a - b = 0] (mod m)"
+ apply (rule iffI)
+ apply (erule cong_diff_int [of a b m b b, simplified])
+ apply (erule cong_add_int [of "a - b" 0 m b b, simplified])
+done
+
+lemma cong_eq_diff_cong_0_aux_int: "a >= b \<Longrightarrow>
+ [(a::int) = b] (mod m) = [tsub a b = 0] (mod m)"
+ by (subst tsub_eq, assumption, rule cong_eq_diff_cong_0_int)
+
+lemma cong_eq_diff_cong_0_nat:
+ assumes "(a::nat) >= b"
+ shows "[a = b] (mod m) = [a - b = 0] (mod m)"
+
+ using prems by (rule cong_eq_diff_cong_0_aux_int [transferred])
+
+lemma cong_diff_cong_0'_nat:
+ "[(x::nat) = y] (mod n) \<longleftrightarrow>
+ (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
+ apply (case_tac "y <= x")
+ apply (frule cong_eq_diff_cong_0_nat [where m = n])
+ apply auto [1]
+ apply (subgoal_tac "x <= y")
+ apply (frule cong_eq_diff_cong_0_nat [where m = n])
+ apply (subst cong_sym_eq_nat)
+ apply auto
+done
+
+lemma cong_altdef_nat: "(a::nat) >= b \<Longrightarrow> [a = b] (mod m) = (m dvd (a - b))"
+ apply (subst cong_eq_diff_cong_0_nat, assumption)
+ apply (unfold cong_nat_def)
+ apply (simp add: dvd_eq_mod_eq_0 [symmetric])
+done
+
+lemma cong_altdef_int: "[(a::int) = b] (mod m) = (m dvd (a - b))"
+ apply (subst cong_eq_diff_cong_0_int)
+ apply (unfold cong_int_def)
+ apply (simp add: dvd_eq_mod_eq_0 [symmetric])
+done
+
+lemma cong_abs_int: "[(x::int) = y] (mod abs m) = [x = y] (mod m)"
+ by (simp add: cong_altdef_int)
+
+lemma cong_square_int:
+ "\<lbrakk> prime (p::int); 0 < a; [a * a = 1] (mod p) \<rbrakk>
+ \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
+ apply (simp only: cong_altdef_int)
+ apply (subst prime_dvd_mult_eq_int [symmetric], assumption)
+ (* any way around this? *)
+ apply (subgoal_tac "a * a - 1 = (a - 1) * (a - -1)")
+ apply (auto simp add: ring_simps)
+done
+
+lemma cong_mult_rcancel_int:
+ "coprime k (m::int) \<Longrightarrow> [a * k = b * k] (mod m) = [a = b] (mod m)"
+ apply (subst (1 2) cong_altdef_int)
+ apply (subst left_diff_distrib [symmetric])
+ apply (rule coprime_dvd_mult_iff_int)
+ apply (subst gcd_commute_int, assumption)
+done
+
+lemma cong_mult_rcancel_nat:
+ assumes "coprime k (m::nat)"
+ shows "[a * k = b * k] (mod m) = [a = b] (mod m)"
+
+ apply (rule cong_mult_rcancel_int [transferred])
+ using prems apply auto
+done
+
+lemma cong_mult_lcancel_nat:
+ "coprime k (m::nat) \<Longrightarrow> [k * a = k * b ] (mod m) = [a = b] (mod m)"
+ by (simp add: mult_commute cong_mult_rcancel_nat)
+
+lemma cong_mult_lcancel_int:
+ "coprime k (m::int) \<Longrightarrow> [k * a = k * b] (mod m) = [a = b] (mod m)"
+ by (simp add: mult_commute cong_mult_rcancel_int)
+
+(* was zcong_zgcd_zmult_zmod *)
+lemma coprime_cong_mult_int:
+ "[(a::int) = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n
+ \<Longrightarrow> [a = b] (mod m * n)"
+ apply (simp only: cong_altdef_int)
+ apply (erule (2) divides_mult_int)
+done
+
+lemma coprime_cong_mult_nat:
+ assumes "[(a::nat) = b] (mod m)" and "[a = b] (mod n)" and "coprime m n"
+ shows "[a = b] (mod m * n)"
+
+ apply (rule coprime_cong_mult_int [transferred])
+ using prems apply auto
+done
+
+lemma cong_less_imp_eq_nat: "0 \<le> (a::nat) \<Longrightarrow>
+ a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
+ by (auto simp add: cong_nat_def mod_pos_pos_trivial)
+
+lemma cong_less_imp_eq_int: "0 \<le> (a::int) \<Longrightarrow>
+ a < m \<Longrightarrow> 0 \<le> b \<Longrightarrow> b < m \<Longrightarrow> [a = b] (mod m) \<Longrightarrow> a = b"
+ by (auto simp add: cong_int_def mod_pos_pos_trivial)
+
+lemma cong_less_unique_nat:
+ "0 < (m::nat) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
+ apply auto
+ apply (rule_tac x = "a mod m" in exI)
+ apply (unfold cong_nat_def, auto)
+done
+
+lemma cong_less_unique_int:
+ "0 < (m::int) \<Longrightarrow> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
+ apply auto
+ apply (rule_tac x = "a mod m" in exI)
+ apply (unfold cong_int_def, auto simp add: mod_pos_pos_trivial)
+done
+
+lemma cong_iff_lin_int: "([(a::int) = b] (mod m)) = (\<exists>k. b = a + m * k)"
+ apply (auto simp add: cong_altdef_int dvd_def ring_simps)
+ apply (rule_tac [!] x = "-k" in exI, auto)
+done
+
+lemma cong_iff_lin_nat: "([(a::nat) = b] (mod m)) =
+ (\<exists>k1 k2. b + k1 * m = a + k2 * m)"
+ apply (rule iffI)
+ apply (case_tac "b <= a")
+ apply (subst (asm) cong_altdef_nat, assumption)
+ apply (unfold dvd_def, auto)
+ apply (rule_tac x = k in exI)
+ apply (rule_tac x = 0 in exI)
+ apply (auto simp add: ring_simps)
+ apply (subst (asm) cong_sym_eq_nat)
+ apply (subst (asm) cong_altdef_nat)
+ apply force
+ apply (unfold dvd_def, auto)
+ apply (rule_tac x = 0 in exI)
+ apply (rule_tac x = k in exI)
+ apply (auto simp add: ring_simps)
+ apply (unfold cong_nat_def)
+ apply (subgoal_tac "a mod m = (a + k2 * m) mod m")
+ apply (erule ssubst)back
+ apply (erule subst)
+ apply auto
+done
+
+lemma cong_gcd_eq_int: "[(a::int) = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
+ apply (subst (asm) cong_iff_lin_int, auto)
+ apply (subst add_commute)
+ apply (subst (2) gcd_commute_int)
+ apply (subst mult_commute)
+ apply (subst gcd_add_mult_int)
+ apply (rule gcd_commute_int)
+done
+
+lemma cong_gcd_eq_nat:
+ assumes "[(a::nat) = b] (mod m)"
+ shows "gcd a m = gcd b m"
+
+ apply (rule cong_gcd_eq_int [transferred])
+ using prems apply auto
+done
+
+lemma cong_imp_coprime_nat: "[(a::nat) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow>
+ coprime b m"
+ by (auto simp add: cong_gcd_eq_nat)
+
+lemma cong_imp_coprime_int: "[(a::int) = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow>
+ coprime b m"
+ by (auto simp add: cong_gcd_eq_int)
+
+lemma cong_cong_mod_nat: "[(a::nat) = b] (mod m) =
+ [a mod m = b mod m] (mod m)"
+ by (auto simp add: cong_nat_def)
+
+lemma cong_cong_mod_int: "[(a::int) = b] (mod m) =
+ [a mod m = b mod m] (mod m)"
+ by (auto simp add: cong_int_def)
+
+lemma cong_minus_int [iff]: "[(a::int) = b] (mod -m) = [a = b] (mod m)"
+ by (subst (1 2) cong_altdef_int, auto)
+
+lemma cong_zero_nat [iff]: "[(a::nat) = b] (mod 0) = (a = b)"
+ by (auto simp add: cong_nat_def)
+
+lemma cong_zero_int [iff]: "[(a::int) = b] (mod 0) = (a = b)"
+ by (auto simp add: cong_int_def)
+
+(*
+lemma mod_dvd_mod_int:
+ "0 < (m::int) \<Longrightarrow> m dvd b \<Longrightarrow> (a mod b mod m) = (a mod m)"
+ apply (unfold dvd_def, auto)
+ apply (rule mod_mod_cancel)
+ apply auto
+done
+
+lemma mod_dvd_mod:
+ assumes "0 < (m::nat)" and "m dvd b"
+ shows "(a mod b mod m) = (a mod m)"
+
+ apply (rule mod_dvd_mod_int [transferred])
+ using prems apply auto
+done
+*)
+
+lemma cong_add_lcancel_nat:
+ "[(a::nat) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+ by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_lcancel_int:
+ "[(a::int) + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+ by (simp add: cong_iff_lin_int)
+
+lemma cong_add_rcancel_nat: "[(x::nat) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+ by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_rcancel_int: "[(x::int) + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
+ by (simp add: cong_iff_lin_int)
+
+lemma cong_add_lcancel_0_nat: "[(a::nat) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+ by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_lcancel_0_int: "[(a::int) + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+ by (simp add: cong_iff_lin_int)
+
+lemma cong_add_rcancel_0_nat: "[x + (a::nat) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+ by (simp add: cong_iff_lin_nat)
+
+lemma cong_add_rcancel_0_int: "[x + (a::int) = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
+ by (simp add: cong_iff_lin_int)
+
+lemma cong_dvd_modulus_nat: "[(x::nat) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow>
+ [x = y] (mod n)"
+ apply (auto simp add: cong_iff_lin_nat dvd_def)
+ apply (rule_tac x="k1 * k" in exI)
+ apply (rule_tac x="k2 * k" in exI)
+ apply (simp add: ring_simps)
+done
+
+lemma cong_dvd_modulus_int: "[(x::int) = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow>
+ [x = y] (mod n)"
+ by (auto simp add: cong_altdef_int dvd_def)
+
+lemma cong_dvd_eq_nat: "[(x::nat) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
+ by (unfold cong_nat_def, auto simp add: dvd_eq_mod_eq_0)
+
+lemma cong_dvd_eq_int: "[(x::int) = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
+ by (unfold cong_int_def, auto simp add: dvd_eq_mod_eq_0)
+
+lemma cong_mod_nat: "(n::nat) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)"
+ by (simp add: cong_nat_def)
+
+lemma cong_mod_int: "(n::int) ~= 0 \<Longrightarrow> [a mod n = a] (mod n)"
+ by (simp add: cong_int_def)
+
+lemma mod_mult_cong_nat: "(a::nat) ~= 0 \<Longrightarrow> b ~= 0
+ \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
+ by (simp add: cong_nat_def mod_mult2_eq mod_add_left_eq)
+
+lemma neg_cong_int: "([(a::int) = b] (mod m)) = ([-a = -b] (mod m))"
+ apply (simp add: cong_altdef_int)
+ apply (subst dvd_minus_iff [symmetric])
+ apply (simp add: ring_simps)
+done
+
+lemma cong_modulus_neg_int: "([(a::int) = b] (mod m)) = ([a = b] (mod -m))"
+ by (auto simp add: cong_altdef_int)
+
+lemma mod_mult_cong_int: "(a::int) ~= 0 \<Longrightarrow> b ~= 0
+ \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
+ apply (case_tac "b > 0")
+ apply (simp add: cong_int_def mod_mod_cancel mod_add_left_eq)
+ apply (subst (1 2) cong_modulus_neg_int)
+ apply (unfold cong_int_def)
+ apply (subgoal_tac "a * b = (-a * -b)")
+ apply (erule ssubst)
+ apply (subst zmod_zmult2_eq)
+ apply (auto simp add: mod_add_left_eq)
+done
+
+lemma cong_to_1_nat: "([(a::nat) = 1] (mod n)) \<Longrightarrow> (n dvd (a - 1))"
+ apply (case_tac "a = 0")
+ apply force
+ apply (subst (asm) cong_altdef_nat)
+ apply auto
+done
+
+lemma cong_0_1_nat: "[(0::nat) = 1] (mod n) = (n = 1)"
+ by (unfold cong_nat_def, auto)
+
+lemma cong_0_1_int: "[(0::int) = 1] (mod n) = ((n = 1) | (n = -1))"
+ by (unfold cong_int_def, auto simp add: zmult_eq_1_iff)
+
+lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow>
+ a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
+ apply (case_tac "n = 1")
+ apply auto [1]
+ apply (drule_tac x = "a - 1" in spec)
+ apply force
+ apply (case_tac "a = 0")
+ apply (auto simp add: cong_0_1_nat) [1]
+ apply (rule iffI)
+ apply (drule cong_to_1_nat)
+ apply (unfold dvd_def)
+ apply auto [1]
+ apply (rule_tac x = k in exI)
+ apply (auto simp add: ring_simps) [1]
+ apply (subst cong_altdef_nat)
+ apply (auto simp add: dvd_def)
+done
+
+lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
+ apply (subst cong_altdef_nat)
+ apply assumption
+ apply (unfold dvd_def, auto simp add: ring_simps)
+ apply (rule_tac x = k in exI)
+ apply auto
+done
+
+lemma cong_solve_nat: "(a::nat) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
+ apply (case_tac "n = 0")
+ apply force
+ apply (frule bezout_nat [of a n], auto)
+ apply (rule exI, erule ssubst)
+ apply (rule cong_trans_nat)
+ apply (rule cong_add_nat)
+ apply (subst mult_commute)
+ apply (rule cong_mult_self_nat)
+ prefer 2
+ apply simp
+ apply (rule cong_refl_nat)
+ apply (rule cong_refl_nat)
+done
+
+lemma cong_solve_int: "(a::int) \<noteq> 0 \<Longrightarrow> EX x. [a * x = gcd a n] (mod n)"
+ apply (case_tac "n = 0")
+ apply (case_tac "a \<ge> 0")
+ apply auto
+ apply (rule_tac x = "-1" in exI)
+ apply auto
+ apply (insert bezout_int [of a n], auto)
+ apply (rule exI)
+ apply (erule subst)
+ apply (rule cong_trans_int)
+ prefer 2
+ apply (rule cong_add_int)
+ apply (rule cong_refl_int)
+ apply (rule cong_sym_int)
+ apply (rule cong_mult_self_int)
+ apply simp
+ apply (subst mult_commute)
+ apply (rule cong_refl_int)
+done
+
+lemma cong_solve_dvd_nat:
+ assumes a: "(a::nat) \<noteq> 0" and b: "gcd a n dvd d"
+ shows "EX x. [a * x = d] (mod n)"
+proof -
+ from cong_solve_nat [OF a] obtain x where
+ "[a * x = gcd a n](mod n)"
+ by auto
+ hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
+ by (elim cong_scalar2_nat)
+ also from b have "(d div gcd a n) * gcd a n = d"
+ by (rule dvd_div_mult_self)
+ also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
+ by auto
+ finally show ?thesis
+ by auto
+qed
+
+lemma cong_solve_dvd_int:
+ assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
+ shows "EX x. [a * x = d] (mod n)"
+proof -
+ from cong_solve_int [OF a] obtain x where
+ "[a * x = gcd a n](mod n)"
+ by auto
+ hence "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
+ by (elim cong_scalar2_int)
+ also from b have "(d div gcd a n) * gcd a n = d"
+ by (rule dvd_div_mult_self)
+ also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
+ by auto
+ finally show ?thesis
+ by auto
+qed
+
+lemma cong_solve_coprime_nat: "coprime (a::nat) n \<Longrightarrow>
+ EX x. [a * x = 1] (mod n)"
+ apply (case_tac "a = 0")
+ apply force
+ apply (frule cong_solve_nat [of a n])
+ apply auto
+done
+
+lemma cong_solve_coprime_int: "coprime (a::int) n \<Longrightarrow>
+ EX x. [a * x = 1] (mod n)"
+ apply (case_tac "a = 0")
+ apply auto
+ apply (case_tac "n \<ge> 0")
+ apply auto
+ apply (subst cong_int_def, auto)
+ apply (frule cong_solve_int [of a n])
+ apply auto
+done
+
+lemma coprime_iff_invertible_nat: "m > (1::nat) \<Longrightarrow> coprime a m =
+ (EX x. [a * x = 1] (mod m))"
+ apply (auto intro: cong_solve_coprime_nat)
+ apply (unfold cong_nat_def, auto intro: invertible_coprime_nat)
+done
+
+lemma coprime_iff_invertible_int: "m > (1::int) \<Longrightarrow> coprime a m =
+ (EX x. [a * x = 1] (mod m))"
+ apply (auto intro: cong_solve_coprime_int)
+ apply (unfold cong_int_def)
+ apply (auto intro: invertible_coprime_int)
+done
+
+lemma coprime_iff_invertible'_int: "m > (1::int) \<Longrightarrow> coprime a m =
+ (EX x. 0 <= x & x < m & [a * x = 1] (mod m))"
+ apply (subst coprime_iff_invertible_int)
+ apply auto
+ apply (auto simp add: cong_int_def)
+ apply (rule_tac x = "x mod m" in exI)
+ apply (auto simp add: mod_mult_right_eq [symmetric])
+done
+
+
+lemma cong_cong_lcm_nat: "[(x::nat) = y] (mod a) \<Longrightarrow>
+ [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
+ apply (case_tac "y \<le> x")
+ apply (auto simp add: cong_altdef_nat lcm_least_nat) [1]
+ apply (rule cong_sym_nat)
+ apply (subst (asm) (1 2) cong_sym_eq_nat)
+ apply (auto simp add: cong_altdef_nat lcm_least_nat)
+done
+
+lemma cong_cong_lcm_int: "[(x::int) = y] (mod a) \<Longrightarrow>
+ [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
+ by (auto simp add: cong_altdef_int lcm_least_int) [1]
+
+lemma cong_cong_coprime_nat: "coprime a b \<Longrightarrow> [(x::nat) = y] (mod a) \<Longrightarrow>
+ [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
+ apply (frule (1) cong_cong_lcm_nat)back
+ apply (simp add: lcm_nat_def)
+done
+
+lemma cong_cong_coprime_int: "coprime a b \<Longrightarrow> [(x::int) = y] (mod a) \<Longrightarrow>
+ [x = y] (mod b) \<Longrightarrow> [x = y] (mod a * b)"
+ apply (frule (1) cong_cong_lcm_int)back
+ apply (simp add: lcm_altdef_int cong_abs_int abs_mult [symmetric])
+done
+
+lemma cong_cong_setprod_coprime_nat [rule_format]: "finite A \<Longrightarrow>
+ (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+ (ALL i:A. [(x::nat) = y] (mod m i)) \<longrightarrow>
+ [x = y] (mod (PROD i:A. m i))"
+ apply (induct set: finite)
+ apply auto
+ apply (rule cong_cong_coprime_nat)
+ apply (subst gcd_commute_nat)
+ apply (rule setprod_coprime_nat)
+ apply auto
+done
+
+lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow>
+ (ALL i:A. (ALL j:A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+ (ALL i:A. [(x::int) = y] (mod m i)) \<longrightarrow>
+ [x = y] (mod (PROD i:A. m i))"
+ apply (induct set: finite)
+ apply auto
+ apply (rule cong_cong_coprime_int)
+ apply (subst gcd_commute_int)
+ apply (rule setprod_coprime_int)
+ apply auto
+done
+
+lemma binary_chinese_remainder_aux_nat:
+ assumes a: "coprime (m1::nat) m2"
+ shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
+ [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
+proof -
+ from cong_solve_coprime_nat [OF a]
+ obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
+ by auto
+ from a have b: "coprime m2 m1"
+ by (subst gcd_commute_nat)
+ from cong_solve_coprime_nat [OF b]
+ obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
+ by auto
+ have "[m1 * x1 = 0] (mod m1)"
+ by (subst mult_commute, rule cong_mult_self_nat)
+ moreover have "[m2 * x2 = 0] (mod m2)"
+ by (subst mult_commute, rule cong_mult_self_nat)
+ moreover note one two
+ ultimately show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_aux_int:
+ assumes a: "coprime (m1::int) m2"
+ shows "EX b1 b2. [b1 = 1] (mod m1) \<and> [b1 = 0] (mod m2) \<and>
+ [b2 = 0] (mod m1) \<and> [b2 = 1] (mod m2)"
+proof -
+ from cong_solve_coprime_int [OF a]
+ obtain x1 where one: "[m1 * x1 = 1] (mod m2)"
+ by auto
+ from a have b: "coprime m2 m1"
+ by (subst gcd_commute_int)
+ from cong_solve_coprime_int [OF b]
+ obtain x2 where two: "[m2 * x2 = 1] (mod m1)"
+ by auto
+ have "[m1 * x1 = 0] (mod m1)"
+ by (subst mult_commute, rule cong_mult_self_int)
+ moreover have "[m2 * x2 = 0] (mod m2)"
+ by (subst mult_commute, rule cong_mult_self_int)
+ moreover note one two
+ ultimately show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_nat:
+ assumes a: "coprime (m1::nat) m2"
+ shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+ from binary_chinese_remainder_aux_nat [OF a] obtain b1 b2
+ where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
+ "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
+ by blast
+ let ?x = "u1 * b1 + u2 * b2"
+ have "[?x = u1 * 1 + u2 * 0] (mod m1)"
+ apply (rule cong_add_nat)
+ apply (rule cong_scalar2_nat)
+ apply (rule `[b1 = 1] (mod m1)`)
+ apply (rule cong_scalar2_nat)
+ apply (rule `[b2 = 0] (mod m1)`)
+ done
+ hence "[?x = u1] (mod m1)" by simp
+ have "[?x = u1 * 0 + u2 * 1] (mod m2)"
+ apply (rule cong_add_nat)
+ apply (rule cong_scalar2_nat)
+ apply (rule `[b1 = 0] (mod m2)`)
+ apply (rule cong_scalar2_nat)
+ apply (rule `[b2 = 1] (mod m2)`)
+ done
+ hence "[?x = u2] (mod m2)" by simp
+ with `[?x = u1] (mod m1)` show ?thesis by blast
+qed
+
+lemma binary_chinese_remainder_int:
+ assumes a: "coprime (m1::int) m2"
+ shows "EX x. [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+ from binary_chinese_remainder_aux_int [OF a] obtain b1 b2
+ where "[b1 = 1] (mod m1)" and "[b1 = 0] (mod m2)" and
+ "[b2 = 0] (mod m1)" and "[b2 = 1] (mod m2)"
+ by blast
+ let ?x = "u1 * b1 + u2 * b2"
+ have "[?x = u1 * 1 + u2 * 0] (mod m1)"
+ apply (rule cong_add_int)
+ apply (rule cong_scalar2_int)
+ apply (rule `[b1 = 1] (mod m1)`)
+ apply (rule cong_scalar2_int)
+ apply (rule `[b2 = 0] (mod m1)`)
+ done
+ hence "[?x = u1] (mod m1)" by simp
+ have "[?x = u1 * 0 + u2 * 1] (mod m2)"
+ apply (rule cong_add_int)
+ apply (rule cong_scalar2_int)
+ apply (rule `[b1 = 0] (mod m2)`)
+ apply (rule cong_scalar2_int)
+ apply (rule `[b2 = 1] (mod m2)`)
+ done
+ hence "[?x = u2] (mod m2)" by simp
+ with `[?x = u1] (mod m1)` show ?thesis by blast
+qed
+
+lemma cong_modulus_mult_nat: "[(x::nat) = y] (mod m * n) \<Longrightarrow>
+ [x = y] (mod m)"
+ apply (case_tac "y \<le> x")
+ apply (simp add: cong_altdef_nat)
+ apply (erule dvd_mult_left)
+ apply (rule cong_sym_nat)
+ apply (subst (asm) cong_sym_eq_nat)
+ apply (simp add: cong_altdef_nat)
+ apply (erule dvd_mult_left)
+done
+
+lemma cong_modulus_mult_int: "[(x::int) = y] (mod m * n) \<Longrightarrow>
+ [x = y] (mod m)"
+ apply (simp add: cong_altdef_int)
+ apply (erule dvd_mult_left)
+done
+
+lemma cong_less_modulus_unique_nat:
+ "[(x::nat) = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
+ by (simp add: cong_nat_def)
+
+lemma binary_chinese_remainder_unique_nat:
+ assumes a: "coprime (m1::nat) m2" and
+ nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
+ shows "EX! x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
+proof -
+ from binary_chinese_remainder_nat [OF a] obtain y where
+ "[y = u1] (mod m1)" and "[y = u2] (mod m2)"
+ by blast
+ let ?x = "y mod (m1 * m2)"
+ from nz have less: "?x < m1 * m2"
+ by auto
+ have one: "[?x = u1] (mod m1)"
+ apply (rule cong_trans_nat)
+ prefer 2
+ apply (rule `[y = u1] (mod m1)`)
+ apply (rule cong_modulus_mult_nat)
+ apply (rule cong_mod_nat)
+ using nz apply auto
+ done
+ have two: "[?x = u2] (mod m2)"
+ apply (rule cong_trans_nat)
+ prefer 2
+ apply (rule `[y = u2] (mod m2)`)
+ apply (subst mult_commute)
+ apply (rule cong_modulus_mult_nat)
+ apply (rule cong_mod_nat)
+ using nz apply auto
+ done
+ have "ALL z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow>
+ z = ?x"
+ proof (clarify)
+ fix z
+ assume "z < m1 * m2"
+ assume "[z = u1] (mod m1)" and "[z = u2] (mod m2)"
+ have "[?x = z] (mod m1)"
+ apply (rule cong_trans_nat)
+ apply (rule `[?x = u1] (mod m1)`)
+ apply (rule cong_sym_nat)
+ apply (rule `[z = u1] (mod m1)`)
+ done
+ moreover have "[?x = z] (mod m2)"
+ apply (rule cong_trans_nat)
+ apply (rule `[?x = u2] (mod m2)`)
+ apply (rule cong_sym_nat)
+ apply (rule `[z = u2] (mod m2)`)
+ done
+ ultimately have "[?x = z] (mod m1 * m2)"
+ by (auto intro: coprime_cong_mult_nat a)
+ with `z < m1 * m2` `?x < m1 * m2` show "z = ?x"
+ apply (intro cong_less_modulus_unique_nat)
+ apply (auto, erule cong_sym_nat)
+ done
+ qed
+ with less one two show ?thesis
+ by auto
+ qed
+
+lemma chinese_remainder_aux_nat:
+ fixes A :: "'a set" and
+ m :: "'a \<Rightarrow> nat"
+ assumes fin: "finite A" and
+ cop: "ALL i : A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+ shows "EX b. (ALL i : A.
+ [b i = 1] (mod m i) \<and> [b i = 0] (mod (PROD j : A - {i}. m j)))"
+proof (rule finite_set_choice, rule fin, rule ballI)
+ fix i
+ assume "i : A"
+ with cop have "coprime (PROD j : A - {i}. m j) (m i)"
+ by (intro setprod_coprime_nat, auto)
+ hence "EX x. [(PROD j : A - {i}. m j) * x = 1] (mod m i)"
+ by (elim cong_solve_coprime_nat)
+ then obtain x where "[(PROD j : A - {i}. m j) * x = 1] (mod m i)"
+ by auto
+ moreover have "[(PROD j : A - {i}. m j) * x = 0]
+ (mod (PROD j : A - {i}. m j))"
+ by (subst mult_commute, rule cong_mult_self_nat)
+ ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0]
+ (mod setprod m (A - {i}))"
+ by blast
+qed
+
+lemma chinese_remainder_nat:
+ fixes A :: "'a set" and
+ m :: "'a \<Rightarrow> nat" and
+ u :: "'a \<Rightarrow> nat"
+ assumes
+ fin: "finite A" and
+ cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+ shows "EX x. (ALL i:A. [x = u i] (mod m i))"
+proof -
+ from chinese_remainder_aux_nat [OF fin cop] obtain b where
+ bprop: "ALL i:A. [b i = 1] (mod m i) \<and>
+ [b i = 0] (mod (PROD j : A - {i}. m j))"
+ by blast
+ let ?x = "SUM i:A. (u i) * (b i)"
+ show "?thesis"
+ proof (rule exI, clarify)
+ fix i
+ assume a: "i : A"
+ show "[?x = u i] (mod m i)"
+ proof -
+ from fin a have "?x = (SUM j:{i}. u j * b j) +
+ (SUM j:A-{i}. u j * b j)"
+ by (subst setsum_Un_disjoint [symmetric], auto intro: setsum_cong)
+ hence "[?x = u i * b i + (SUM j:A-{i}. u j * b j)] (mod m i)"
+ by auto
+ also have "[u i * b i + (SUM j:A-{i}. u j * b j) =
+ u i * 1 + (SUM j:A-{i}. u j * 0)] (mod m i)"
+ apply (rule cong_add_nat)
+ apply (rule cong_scalar2_nat)
+ using bprop a apply blast
+ apply (rule cong_setsum_nat)
+ apply (rule cong_scalar2_nat)
+ using bprop apply auto
+ apply (rule cong_dvd_modulus_nat)
+ apply (drule (1) bspec)
+ apply (erule conjE)
+ apply assumption
+ apply (rule dvd_setprod)
+ using fin a apply auto
+ done
+ finally show ?thesis
+ by simp
+ qed
+ qed
+qed
+
+lemma coprime_cong_prod_nat [rule_format]: "finite A \<Longrightarrow>
+ (ALL i: A. (ALL j: A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))) \<longrightarrow>
+ (ALL i: A. [(x::nat) = y] (mod m i)) \<longrightarrow>
+ [x = y] (mod (PROD i:A. m i))"
+ apply (induct set: finite)
+ apply auto
+ apply (erule (1) coprime_cong_mult_nat)
+ apply (subst gcd_commute_nat)
+ apply (rule setprod_coprime_nat)
+ apply auto
+done
+
+lemma chinese_remainder_unique_nat:
+ fixes A :: "'a set" and
+ m :: "'a \<Rightarrow> nat" and
+ u :: "'a \<Rightarrow> nat"
+ assumes
+ fin: "finite A" and
+ nz: "ALL i:A. m i \<noteq> 0" and
+ cop: "ALL i:A. (ALL j : A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
+ shows "EX! x. x < (PROD i:A. m i) \<and> (ALL i:A. [x = u i] (mod m i))"
+proof -
+ from chinese_remainder_nat [OF fin cop] obtain y where
+ one: "(ALL i:A. [y = u i] (mod m i))"
+ by blast
+ let ?x = "y mod (PROD i:A. m i)"
+ from fin nz have prodnz: "(PROD i:A. m i) \<noteq> 0"
+ by auto
+ hence less: "?x < (PROD i:A. m i)"
+ by auto
+ have cong: "ALL i:A. [?x = u i] (mod m i)"
+ apply auto
+ apply (rule cong_trans_nat)
+ prefer 2
+ using one apply auto
+ apply (rule cong_dvd_modulus_nat)
+ apply (rule cong_mod_nat)
+ using prodnz apply auto
+ apply (rule dvd_setprod)
+ apply (rule fin)
+ apply assumption
+ done
+ have unique: "ALL z. z < (PROD i:A. m i) \<and>
+ (ALL i:A. [z = u i] (mod m i)) \<longrightarrow> z = ?x"
+ proof (clarify)
+ fix z
+ assume zless: "z < (PROD i:A. m i)"
+ assume zcong: "(ALL i:A. [z = u i] (mod m i))"
+ have "ALL i:A. [?x = z] (mod m i)"
+ apply clarify
+ apply (rule cong_trans_nat)
+ using cong apply (erule bspec)
+ apply (rule cong_sym_nat)
+ using zcong apply auto
+ done
+ with fin cop have "[?x = z] (mod (PROD i:A. m i))"
+ by (intro coprime_cong_prod_nat, auto)
+ with zless less show "z = ?x"
+ apply (intro cong_less_modulus_unique_nat)
+ apply (auto, erule cong_sym_nat)
+ done
+ qed
+ from less cong unique show ?thesis
+ by blast
+qed
+
+end