| author | huffman | 
| Wed, 18 Apr 2012 10:52:49 +0200 | |
| changeset 47534 | 06cc372a80ed | 
| parent 47108 | 2a1953f0d20d | 
| child 49962 | a8cc904a6820 | 
| permissions | -rw-r--r-- | 
| 29197 
6d4cb27ed19c
adapted HOL source structure to distribution layout
 haftmann parents: 
28952diff
changeset | 1 | (* Title: HOL/RealVector.thy | 
| 27552 
15cf4ed9c2a1
re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
 haftmann parents: 
27515diff
changeset | 2 | Author: Brian Huffman | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 3 | *) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 4 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 5 | header {* Vector Spaces and Algebras over the Reals *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 6 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 7 | theory RealVector | 
| 36839 
34dc65df7014
no more RealPow.thy (remaining lemmas moved to RealDef.thy)
 huffman parents: 
36795diff
changeset | 8 | imports RComplete | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 9 | begin | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 10 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 11 | subsection {* Locale for additive functions *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 12 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 13 | locale additive = | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 14 | fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add" | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 15 | assumes add: "f (x + y) = f x + f y" | 
| 27443 | 16 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 17 | |
| 27443 | 18 | lemma zero: "f 0 = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 19 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 20 | have "f 0 = f (0 + 0)" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 21 | also have "\<dots> = f 0 + f 0" by (rule add) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 22 | finally show "f 0 = 0" by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 23 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 24 | |
| 27443 | 25 | lemma minus: "f (- x) = - f x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 26 | proof - | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 27 | have "f (- x) + f x = f (- x + x)" by (rule add [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 28 | also have "\<dots> = - f x + f x" by (simp add: zero) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 29 | finally show "f (- x) = - f x" by (rule add_right_imp_eq) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 30 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 31 | |
| 27443 | 32 | lemma diff: "f (x - y) = f x - f y" | 
| 37887 | 33 | by (simp add: add minus diff_minus) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 34 | |
| 27443 | 35 | lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))" | 
| 22942 | 36 | apply (cases "finite A") | 
| 37 | apply (induct set: finite) | |
| 38 | apply (simp add: zero) | |
| 39 | apply (simp add: add) | |
| 40 | apply (simp add: zero) | |
| 41 | done | |
| 42 | ||
| 27443 | 43 | end | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 44 | |
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 45 | subsection {* Vector spaces *}
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 46 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 47 | locale vector_space = | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 48 | fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 49 | assumes scale_right_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 50 | "scale a (x + y) = scale a x + scale a y" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 51 | and scale_left_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 52 | "scale (a + b) x = scale a x + scale b x" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 53 | and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 54 | and scale_one [simp]: "scale 1 x = x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 55 | begin | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 56 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 57 | lemma scale_left_commute: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 58 | "scale a (scale b x) = scale b (scale a x)" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 59 | by (simp add: mult_commute) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 60 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 61 | lemma scale_zero_left [simp]: "scale 0 x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 62 | and scale_minus_left [simp]: "scale (- a) x = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 63 | and scale_left_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 64 | "scale (a - b) x = scale a x - scale b x" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 65 | and scale_setsum_left: "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 66 | proof - | 
| 29229 | 67 | interpret s: additive "\<lambda>a. scale a x" | 
| 28823 | 68 | proof qed (rule scale_left_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 69 | show "scale 0 x = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 70 | show "scale (- a) x = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 71 | show "scale (a - b) x = scale a x - scale b x" by (rule s.diff) | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 72 | show "scale (setsum f A) x = (\<Sum>a\<in>A. scale (f a) x)" by (rule s.setsum) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 73 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 74 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 75 | lemma scale_zero_right [simp]: "scale a 0 = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 76 | and scale_minus_right [simp]: "scale a (- x) = - (scale a x)" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 77 | and scale_right_diff_distrib [algebra_simps]: | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 78 | "scale a (x - y) = scale a x - scale a y" | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 79 | and scale_setsum_right: "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 80 | proof - | 
| 29229 | 81 | interpret s: additive "\<lambda>x. scale a x" | 
| 28823 | 82 | proof qed (rule scale_right_distrib) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 83 | show "scale a 0 = 0" by (rule s.zero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 84 | show "scale a (- x) = - (scale a x)" by (rule s.minus) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 85 | show "scale a (x - y) = scale a x - scale a y" by (rule s.diff) | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 86 | show "scale a (setsum f A) = (\<Sum>x\<in>A. scale a (f x))" by (rule s.setsum) | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 87 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 88 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 89 | lemma scale_eq_0_iff [simp]: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 90 | "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 91 | proof cases | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 92 | assume "a = 0" thus ?thesis by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 93 | next | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 94 | assume anz [simp]: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 95 |   { assume "scale a x = 0"
 | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 96 | hence "scale (inverse a) (scale a x) = 0" by simp | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 97 | hence "x = 0" by simp } | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 98 | thus ?thesis by force | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 99 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 100 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 101 | lemma scale_left_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 102 | "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 103 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 104 | assume nonzero: "a \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 105 | assume "scale a x = scale a y" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 106 | hence "scale a (x - y) = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 107 | by (simp add: scale_right_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 108 | hence "x - y = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 109 | thus "x = y" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 110 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 111 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 112 | lemma scale_right_imp_eq: | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 113 | "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 114 | proof - | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 115 | assume nonzero: "x \<noteq> 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 116 | assume "scale a x = scale b x" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 117 | hence "scale (a - b) x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 118 | by (simp add: scale_left_diff_distrib) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 119 | hence "a - b = 0" by (simp add: nonzero) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 120 | thus "a = b" by (simp only: right_minus_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 121 | qed | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 122 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 123 | lemma scale_cancel_left [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 124 | "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 125 | by (auto intro: scale_left_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 126 | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 127 | lemma scale_cancel_right [simp]: | 
| 28029 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 128 | "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0" | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 129 | by (auto intro: scale_right_imp_eq) | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 130 | |
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 131 | end | 
| 
4c55cdec4ce7
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
 huffman parents: 
28009diff
changeset | 132 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 133 | subsection {* Real vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 134 | |
| 29608 | 135 | class scaleR = | 
| 25062 | 136 | fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75) | 
| 24748 | 137 | begin | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 138 | |
| 20763 | 139 | abbreviation | 
| 25062 | 140 | divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70) | 
| 24748 | 141 | where | 
| 25062 | 142 | "x /\<^sub>R r == scaleR (inverse r) x" | 
| 24748 | 143 | |
| 144 | end | |
| 145 | ||
| 24588 | 146 | class real_vector = scaleR + ab_group_add + | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 147 | assumes scaleR_add_right: "scaleR a (x + y) = scaleR a x + scaleR a y" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 148 | and scaleR_add_left: "scaleR (a + b) x = scaleR a x + scaleR b x" | 
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 149 | and scaleR_scaleR: "scaleR a (scaleR b x) = scaleR (a * b) x" | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 150 | and scaleR_one: "scaleR 1 x = x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 151 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 152 | interpretation real_vector: | 
| 29229 | 153 | vector_space "scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector" | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 154 | apply unfold_locales | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 155 | apply (rule scaleR_add_right) | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 156 | apply (rule scaleR_add_left) | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 157 | apply (rule scaleR_scaleR) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 158 | apply (rule scaleR_one) | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 159 | done | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 160 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 161 | text {* Recover original theorem names *}
 | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 162 | |
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 163 | lemmas scaleR_left_commute = real_vector.scale_left_commute | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 164 | lemmas scaleR_zero_left = real_vector.scale_zero_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 165 | lemmas scaleR_minus_left = real_vector.scale_minus_left | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 166 | lemmas scaleR_diff_left = real_vector.scale_left_diff_distrib | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 167 | lemmas scaleR_setsum_left = real_vector.scale_setsum_left | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 168 | lemmas scaleR_zero_right = real_vector.scale_zero_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 169 | lemmas scaleR_minus_right = real_vector.scale_minus_right | 
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 170 | lemmas scaleR_diff_right = real_vector.scale_right_diff_distrib | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 171 | lemmas scaleR_setsum_right = real_vector.scale_setsum_right | 
| 28009 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 172 | lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 173 | lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 174 | lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 175 | lemmas scaleR_cancel_left = real_vector.scale_cancel_left | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 176 | lemmas scaleR_cancel_right = real_vector.scale_cancel_right | 
| 
e93b121074fb
move real_vector class proofs into vector_space and group_hom locales
 huffman parents: 
27553diff
changeset | 177 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 178 | text {* Legacy names *}
 | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 179 | |
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 180 | lemmas scaleR_left_distrib = scaleR_add_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 181 | lemmas scaleR_right_distrib = scaleR_add_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 182 | lemmas scaleR_left_diff_distrib = scaleR_diff_left | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 183 | lemmas scaleR_right_diff_distrib = scaleR_diff_right | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 184 | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 185 | lemma scaleR_minus1_left [simp]: | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 186 | fixes x :: "'a::real_vector" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 187 | shows "scaleR (-1) x = - x" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 188 | using scaleR_minus_left [of 1 x] by simp | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 189 | |
| 24588 | 190 | class real_algebra = real_vector + ring + | 
| 25062 | 191 | assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)" | 
| 192 | and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 193 | |
| 24588 | 194 | class real_algebra_1 = real_algebra + ring_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 195 | |
| 24588 | 196 | class real_div_algebra = real_algebra_1 + division_ring | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 197 | |
| 24588 | 198 | class real_field = real_div_algebra + field | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 199 | |
| 30069 | 200 | instantiation real :: real_field | 
| 201 | begin | |
| 202 | ||
| 203 | definition | |
| 204 | real_scaleR_def [simp]: "scaleR a x = a * x" | |
| 205 | ||
| 30070 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 206 | instance proof | 
| 
76cee7c62782
declare scaleR distrib rules [algebra_simps]; cleaned up
 huffman parents: 
30069diff
changeset | 207 | qed (simp_all add: algebra_simps) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 208 | |
| 30069 | 209 | end | 
| 210 | ||
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 211 | interpretation scaleR_left: additive "(\<lambda>a. scaleR a x::'a::real_vector)" | 
| 28823 | 212 | proof qed (rule scaleR_left_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 213 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30273diff
changeset | 214 | interpretation scaleR_right: additive "(\<lambda>x. scaleR a x::'a::real_vector)" | 
| 28823 | 215 | proof qed (rule scaleR_right_distrib) | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 216 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 217 | lemma nonzero_inverse_scaleR_distrib: | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 218 | fixes x :: "'a::real_div_algebra" shows | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 219 | "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20763 | 220 | by (rule inverse_unique, simp) | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 221 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 222 | lemma inverse_scaleR_distrib: | 
| 36409 | 223 |   fixes x :: "'a::{real_div_algebra, division_ring_inverse_zero}"
 | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 224 | shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)" | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 225 | apply (case_tac "a = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 226 | apply (case_tac "x = 0", simp) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 227 | apply (erule (1) nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 228 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 229 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 230 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 231 | subsection {* Embedding of the Reals into any @{text real_algebra_1}:
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 232 | @{term of_real} *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 233 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 234 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21210diff
changeset | 235 | of_real :: "real \<Rightarrow> 'a::real_algebra_1" where | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 236 | "of_real r = scaleR r 1" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 237 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 238 | lemma scaleR_conv_of_real: "scaleR r x = of_real r * x" | 
| 20763 | 239 | by (simp add: of_real_def) | 
| 240 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 241 | lemma of_real_0 [simp]: "of_real 0 = 0" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 242 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 243 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 244 | lemma of_real_1 [simp]: "of_real 1 = 1" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 245 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 246 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 247 | lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 248 | by (simp add: of_real_def scaleR_left_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 249 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 250 | lemma of_real_minus [simp]: "of_real (- x) = - of_real x" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 251 | by (simp add: of_real_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 252 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 253 | lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 254 | by (simp add: of_real_def scaleR_left_diff_distrib) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 255 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 256 | lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y" | 
| 20763 | 257 | by (simp add: of_real_def mult_commute) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 258 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 259 | lemma nonzero_of_real_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 260 | "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 261 | inverse (of_real x :: 'a::real_div_algebra)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 262 | by (simp add: of_real_def nonzero_inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 263 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 264 | lemma of_real_inverse [simp]: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 265 | "of_real (inverse x) = | 
| 36409 | 266 |    inverse (of_real x :: 'a::{real_div_algebra, division_ring_inverse_zero})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 267 | by (simp add: of_real_def inverse_scaleR_distrib) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 268 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 269 | lemma nonzero_of_real_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 270 | "y \<noteq> 0 \<Longrightarrow> of_real (x / y) = | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 271 | (of_real x / of_real y :: 'a::real_field)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 272 | by (simp add: divide_inverse nonzero_of_real_inverse) | 
| 20722 | 273 | |
| 274 | lemma of_real_divide [simp]: | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 275 | "of_real (x / y) = | 
| 36409 | 276 |    (of_real x / of_real y :: 'a::{real_field, field_inverse_zero})"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 277 | by (simp add: divide_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 278 | |
| 20722 | 279 | lemma of_real_power [simp]: | 
| 31017 | 280 |   "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1}) ^ n"
 | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 281 | by (induct n) simp_all | 
| 20722 | 282 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 283 | lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)" | 
| 35216 | 284 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 285 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 286 | lemma inj_of_real: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 287 | "inj of_real" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 288 | by (auto intro: injI) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 289 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 290 | lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified] | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 291 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 292 | lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 293 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 294 | fix r | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 295 | show "of_real r = id r" | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 296 | by (simp add: of_real_def) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 297 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 298 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 299 | text{*Collapse nested embeddings*}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 300 | lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n" | 
| 20772 | 301 | by (induct n) auto | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 302 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 303 | lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 304 | by (cases z rule: int_diff_cases, simp) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 305 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 306 | lemma of_real_numeral: "of_real (numeral w) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 307 | using of_real_of_int_eq [of "numeral w"] by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 308 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 309 | lemma of_real_neg_numeral: "of_real (neg_numeral w) = neg_numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 310 | using of_real_of_int_eq [of "neg_numeral w"] by simp | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 311 | |
| 22912 | 312 | text{*Every real algebra has characteristic zero*}
 | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 313 | |
| 22912 | 314 | instance real_algebra_1 < ring_char_0 | 
| 315 | proof | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 316 | from inj_of_real inj_of_nat have "inj (of_real \<circ> of_nat)" by (rule inj_comp) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37887diff
changeset | 317 | then show "inj (of_nat :: nat \<Rightarrow> 'a)" by (simp add: comp_def) | 
| 22912 | 318 | qed | 
| 319 | ||
| 27553 | 320 | instance real_field < field_char_0 .. | 
| 321 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 322 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 323 | subsection {* The Set of Real Numbers *}
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 324 | |
| 37767 | 325 | definition Reals :: "'a::real_algebra_1 set" where | 
| 326 | "Reals = range of_real" | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 327 | |
| 21210 | 328 | notation (xsymbols) | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 329 |   Reals  ("\<real>")
 | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 330 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 331 | lemma Reals_of_real [simp]: "of_real r \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 332 | by (simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 333 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 334 | lemma Reals_of_int [simp]: "of_int z \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 335 | by (subst of_real_of_int_eq [symmetric], rule Reals_of_real) | 
| 20718 | 336 | |
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 337 | lemma Reals_of_nat [simp]: "of_nat n \<in> Reals" | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 338 | by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real) | 
| 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 339 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 340 | lemma Reals_numeral [simp]: "numeral w \<in> Reals" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 341 | by (subst of_real_numeral [symmetric], rule Reals_of_real) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 342 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 343 | lemma Reals_neg_numeral [simp]: "neg_numeral w \<in> Reals" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 344 | by (subst of_real_neg_numeral [symmetric], rule Reals_of_real) | 
| 20718 | 345 | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 346 | lemma Reals_0 [simp]: "0 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 347 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 348 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 349 | apply (rule of_real_0 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 350 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 351 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 352 | lemma Reals_1 [simp]: "1 \<in> Reals" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 353 | apply (unfold Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 354 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 355 | apply (rule of_real_1 [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 356 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 357 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 358 | lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 359 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 360 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 361 | apply (rule of_real_add [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 362 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 363 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 364 | lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 365 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 366 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 367 | apply (rule of_real_minus [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 368 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 369 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 370 | lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 371 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 372 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 373 | apply (rule of_real_diff [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 374 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 375 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 376 | lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals" | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 377 | apply (auto simp add: Reals_def) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 378 | apply (rule range_eqI) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 379 | apply (rule of_real_mult [symmetric]) | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 380 | done | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 381 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 382 | lemma nonzero_Reals_inverse: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 383 | fixes a :: "'a::real_div_algebra" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 384 | shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 385 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 386 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 387 | apply (erule nonzero_of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 388 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 389 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 390 | lemma Reals_inverse [simp]: | 
| 36409 | 391 |   fixes a :: "'a::{real_div_algebra, division_ring_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 392 | shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 393 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 394 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 395 | apply (rule of_real_inverse [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 396 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 397 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 398 | lemma nonzero_Reals_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 399 | fixes a b :: "'a::real_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 400 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 401 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 402 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 403 | apply (erule nonzero_of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 404 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 405 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 406 | lemma Reals_divide [simp]: | 
| 36409 | 407 |   fixes a b :: "'a::{real_field, field_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 408 | shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 409 | apply (auto simp add: Reals_def) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 410 | apply (rule range_eqI) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 411 | apply (rule of_real_divide [symmetric]) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 412 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 413 | |
| 20722 | 414 | lemma Reals_power [simp]: | 
| 31017 | 415 |   fixes a :: "'a::{real_algebra_1}"
 | 
| 20722 | 416 | shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals" | 
| 417 | apply (auto simp add: Reals_def) | |
| 418 | apply (rule range_eqI) | |
| 419 | apply (rule of_real_power [symmetric]) | |
| 420 | done | |
| 421 | ||
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 422 | lemma Reals_cases [cases set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 423 | assumes "q \<in> \<real>" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 424 | obtains (of_real) r where "q = of_real r" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 425 | unfolding Reals_def | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 426 | proof - | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 427 | from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def . | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 428 | then obtain r where "q = of_real r" .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 429 | then show thesis .. | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 430 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 431 | |
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 432 | lemma Reals_induct [case_names of_real, induct set: Reals]: | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 433 | "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 434 | by (rule Reals_cases) auto | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 435 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 436 | |
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 437 | subsection {* Topological spaces *}
 | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 438 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 439 | class "open" = | 
| 31494 | 440 | fixes "open" :: "'a set \<Rightarrow> bool" | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 441 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 442 | class topological_space = "open" + | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 443 | assumes open_UNIV [simp, intro]: "open UNIV" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 444 | assumes open_Int [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<inter> T)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 445 | assumes open_Union [intro]: "\<forall>S\<in>K. open S \<Longrightarrow> open (\<Union> K)" | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 446 | begin | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 447 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 448 | definition | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 449 | closed :: "'a set \<Rightarrow> bool" where | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 450 | "closed S \<longleftrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 451 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 452 | lemma open_empty [intro, simp]: "open {}"
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 453 |   using open_Union [of "{}"] by simp
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 454 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 455 | lemma open_Un [intro]: "open S \<Longrightarrow> open T \<Longrightarrow> open (S \<union> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 456 |   using open_Union [of "{S, T}"] by simp
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 457 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 458 | lemma open_UN [intro]: "\<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Union>x\<in>A. B x)" | 
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 459 | unfolding SUP_def by (rule open_Union) auto | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 460 | |
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 461 | lemma open_Inter [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. open T \<Longrightarrow> open (\<Inter>S)" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 462 | by (induct set: finite) auto | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 463 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 464 | lemma open_INT [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. open (B x) \<Longrightarrow> open (\<Inter>x\<in>A. B x)" | 
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 465 | unfolding INF_def by (rule open_Inter) auto | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 466 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 467 | lemma closed_empty [intro, simp]:  "closed {}"
 | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 468 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 469 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 470 | lemma closed_Un [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<union> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 471 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 472 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 473 | lemma closed_UNIV [intro, simp]: "closed UNIV" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 474 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 475 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 476 | lemma closed_Int [intro]: "closed S \<Longrightarrow> closed T \<Longrightarrow> closed (S \<inter> T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 477 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 478 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 479 | lemma closed_INT [intro]: "\<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Inter>x\<in>A. B x)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 480 | unfolding closed_def by auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 481 | |
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 482 | lemma closed_Inter [intro]: "\<forall>S\<in>K. closed S \<Longrightarrow> closed (\<Inter> K)" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 483 | unfolding closed_def uminus_Inf by auto | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 484 | |
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 485 | lemma closed_Union [intro]: "finite S \<Longrightarrow> \<forall>T\<in>S. closed T \<Longrightarrow> closed (\<Union>S)" | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 486 | by (induct set: finite) auto | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 487 | |
| 44937 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 488 | lemma closed_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. closed (B x) \<Longrightarrow> closed (\<Union>x\<in>A. B x)" | 
| 
22c0857b8aab
removed further legacy rules from Complete_Lattices
 hoelzl parents: 
44571diff
changeset | 489 | unfolding SUP_def by (rule closed_Union) auto | 
| 31490 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 490 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 491 | lemma open_closed: "open S \<longleftrightarrow> closed (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 492 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 493 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 494 | lemma closed_open: "closed S \<longleftrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 495 | unfolding closed_def by simp | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 496 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 497 | lemma open_Diff [intro]: "open S \<Longrightarrow> closed T \<Longrightarrow> open (S - T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 498 | unfolding closed_open Diff_eq by (rule open_Int) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 499 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 500 | lemma closed_Diff [intro]: "closed S \<Longrightarrow> open T \<Longrightarrow> closed (S - T)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 501 | unfolding open_closed Diff_eq by (rule closed_Int) | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 502 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 503 | lemma open_Compl [intro]: "closed S \<Longrightarrow> open (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 504 | unfolding closed_open . | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 505 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 506 | lemma closed_Compl [intro]: "open S \<Longrightarrow> closed (- S)" | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 507 | unfolding open_closed . | 
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 508 | |
| 
c350f3ad6b0d
move definitions of open, closed to RealVector.thy
 huffman parents: 
31446diff
changeset | 509 | end | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 510 | |
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 511 | |
| 31289 | 512 | subsection {* Metric spaces *}
 | 
| 513 | ||
| 514 | class dist = | |
| 515 | fixes dist :: "'a \<Rightarrow> 'a \<Rightarrow> real" | |
| 516 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 517 | class open_dist = "open" + dist + | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 518 | assumes open_dist: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 519 | |
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 520 | class metric_space = open_dist + | 
| 31289 | 521 | assumes dist_eq_0_iff [simp]: "dist x y = 0 \<longleftrightarrow> x = y" | 
| 522 | assumes dist_triangle2: "dist x y \<le> dist x z + dist y z" | |
| 523 | begin | |
| 524 | ||
| 525 | lemma dist_self [simp]: "dist x x = 0" | |
| 526 | by simp | |
| 527 | ||
| 528 | lemma zero_le_dist [simp]: "0 \<le> dist x y" | |
| 529 | using dist_triangle2 [of x x y] by simp | |
| 530 | ||
| 531 | lemma zero_less_dist_iff: "0 < dist x y \<longleftrightarrow> x \<noteq> y" | |
| 532 | by (simp add: less_le) | |
| 533 | ||
| 534 | lemma dist_not_less_zero [simp]: "\<not> dist x y < 0" | |
| 535 | by (simp add: not_less) | |
| 536 | ||
| 537 | lemma dist_le_zero_iff [simp]: "dist x y \<le> 0 \<longleftrightarrow> x = y" | |
| 538 | by (simp add: le_less) | |
| 539 | ||
| 540 | lemma dist_commute: "dist x y = dist y x" | |
| 541 | proof (rule order_antisym) | |
| 542 | show "dist x y \<le> dist y x" | |
| 543 | using dist_triangle2 [of x y x] by simp | |
| 544 | show "dist y x \<le> dist x y" | |
| 545 | using dist_triangle2 [of y x y] by simp | |
| 546 | qed | |
| 547 | ||
| 548 | lemma dist_triangle: "dist x z \<le> dist x y + dist y z" | |
| 549 | using dist_triangle2 [of x z y] by (simp add: dist_commute) | |
| 550 | ||
| 31565 | 551 | lemma dist_triangle3: "dist x y \<le> dist a x + dist a y" | 
| 552 | using dist_triangle2 [of x y a] by (simp add: dist_commute) | |
| 553 | ||
| 41969 | 554 | lemma dist_triangle_alt: | 
| 555 | shows "dist y z <= dist x y + dist x z" | |
| 556 | by (rule dist_triangle3) | |
| 557 | ||
| 558 | lemma dist_pos_lt: | |
| 559 | shows "x \<noteq> y ==> 0 < dist x y" | |
| 560 | by (simp add: zero_less_dist_iff) | |
| 561 | ||
| 562 | lemma dist_nz: | |
| 563 | shows "x \<noteq> y \<longleftrightarrow> 0 < dist x y" | |
| 564 | by (simp add: zero_less_dist_iff) | |
| 565 | ||
| 566 | lemma dist_triangle_le: | |
| 567 | shows "dist x z + dist y z <= e \<Longrightarrow> dist x y <= e" | |
| 568 | by (rule order_trans [OF dist_triangle2]) | |
| 569 | ||
| 570 | lemma dist_triangle_lt: | |
| 571 | shows "dist x z + dist y z < e ==> dist x y < e" | |
| 572 | by (rule le_less_trans [OF dist_triangle2]) | |
| 573 | ||
| 574 | lemma dist_triangle_half_l: | |
| 575 | shows "dist x1 y < e / 2 \<Longrightarrow> dist x2 y < e / 2 \<Longrightarrow> dist x1 x2 < e" | |
| 576 | by (rule dist_triangle_lt [where z=y], simp) | |
| 577 | ||
| 578 | lemma dist_triangle_half_r: | |
| 579 | shows "dist y x1 < e / 2 \<Longrightarrow> dist y x2 < e / 2 \<Longrightarrow> dist x1 x2 < e" | |
| 580 | by (rule dist_triangle_half_l, simp_all add: dist_commute) | |
| 581 | ||
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 582 | subclass topological_space | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 583 | proof | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 584 | have "\<exists>e::real. 0 < e" | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 585 | by (fast intro: zero_less_one) | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 586 | then show "open UNIV" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 587 | unfolding open_dist by simp | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 588 | next | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 589 | fix S T assume "open S" "open T" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 590 | then show "open (S \<inter> T)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 591 | unfolding open_dist | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 592 | apply clarify | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 593 | apply (drule (1) bspec)+ | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 594 | apply (clarify, rename_tac r s) | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 595 | apply (rule_tac x="min r s" in exI, simp) | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 596 | done | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 597 | next | 
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 598 | fix K assume "\<forall>S\<in>K. open S" thus "open (\<Union>K)" | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 599 | unfolding open_dist by fast | 
| 31413 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 600 | qed | 
| 
729d90a531e4
introduce class topological_space as a superclass of metric_space
 huffman parents: 
31289diff
changeset | 601 | |
| 41969 | 602 | lemma (in metric_space) open_ball: "open {y. dist x y < d}"
 | 
| 603 | proof (unfold open_dist, intro ballI) | |
| 604 |   fix y assume *: "y \<in> {y. dist x y < d}"
 | |
| 605 |   then show "\<exists>e>0. \<forall>z. dist z y < e \<longrightarrow> z \<in> {y. dist x y < d}"
 | |
| 606 | by (auto intro!: exI[of _ "d - dist x y"] simp: field_simps dist_triangle_lt) | |
| 607 | qed | |
| 608 | ||
| 31289 | 609 | end | 
| 610 | ||
| 611 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 612 | subsection {* Real normed vector spaces *}
 | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 613 | |
| 29608 | 614 | class norm = | 
| 22636 | 615 | fixes norm :: "'a \<Rightarrow> real" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 616 | |
| 24520 | 617 | class sgn_div_norm = scaleR + norm + sgn + | 
| 25062 | 618 | assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x" | 
| 24506 | 619 | |
| 31289 | 620 | class dist_norm = dist + norm + minus + | 
| 621 | assumes dist_norm: "dist x y = norm (x - y)" | |
| 622 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 623 | class real_normed_vector = real_vector + sgn_div_norm + dist_norm + open_dist + | 
| 24588 | 624 | assumes norm_ge_zero [simp]: "0 \<le> norm x" | 
| 25062 | 625 | and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0" | 
| 626 | and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 627 | and norm_scaleR [simp]: "norm (scaleR a x) = \<bar>a\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 628 | |
| 24588 | 629 | class real_normed_algebra = real_algebra + real_normed_vector + | 
| 25062 | 630 | assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 631 | |
| 24588 | 632 | class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra + | 
| 25062 | 633 | assumes norm_one [simp]: "norm 1 = 1" | 
| 22852 | 634 | |
| 24588 | 635 | class real_normed_div_algebra = real_div_algebra + real_normed_vector + | 
| 25062 | 636 | assumes norm_mult: "norm (x * y) = norm x * norm y" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 637 | |
| 24588 | 638 | class real_normed_field = real_field + real_normed_div_algebra | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 639 | |
| 22852 | 640 | instance real_normed_div_algebra < real_normed_algebra_1 | 
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 641 | proof | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 642 | fix x y :: 'a | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 643 | show "norm (x * y) \<le> norm x * norm y" | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 644 | by (simp add: norm_mult) | 
| 22852 | 645 | next | 
| 646 | have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)" | |
| 647 | by (rule norm_mult) | |
| 648 | thus "norm (1::'a) = 1" by simp | |
| 20554 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 649 | qed | 
| 
c433e78d4203
define new constant of_real for class real_algebra_1;
 huffman parents: 
20551diff
changeset | 650 | |
| 22852 | 651 | lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 652 | by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 653 | |
| 22852 | 654 | lemma zero_less_norm_iff [simp]: | 
| 655 | fixes x :: "'a::real_normed_vector" | |
| 656 | shows "(0 < norm x) = (x \<noteq> 0)" | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 657 | by (simp add: order_less_le) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 658 | |
| 22852 | 659 | lemma norm_not_less_zero [simp]: | 
| 660 | fixes x :: "'a::real_normed_vector" | |
| 661 | shows "\<not> norm x < 0" | |
| 20828 | 662 | by (simp add: linorder_not_less) | 
| 663 | ||
| 22852 | 664 | lemma norm_le_zero_iff [simp]: | 
| 665 | fixes x :: "'a::real_normed_vector" | |
| 666 | shows "(norm x \<le> 0) = (x = 0)" | |
| 20828 | 667 | by (simp add: order_le_less) | 
| 668 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 669 | lemma norm_minus_cancel [simp]: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 670 | fixes x :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 671 | shows "norm (- x) = norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 672 | proof - | 
| 21809 
4b93e949ac33
remove uses of scaleR infix syntax; add lemma Reals_number_of
 huffman parents: 
21404diff
changeset | 673 | have "norm (- x) = norm (scaleR (- 1) x)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 674 | by (simp only: scaleR_minus_left scaleR_one) | 
| 20533 | 675 | also have "\<dots> = \<bar>- 1\<bar> * norm x" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 676 | by (rule norm_scaleR) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 677 | finally show ?thesis by simp | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 678 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 679 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 680 | lemma norm_minus_commute: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 681 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 682 | shows "norm (a - b) = norm (b - a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 683 | proof - | 
| 22898 | 684 | have "norm (- (b - a)) = norm (b - a)" | 
| 685 | by (rule norm_minus_cancel) | |
| 686 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 687 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 688 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 689 | lemma norm_triangle_ineq2: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 690 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 691 | shows "norm a - norm b \<le> norm (a - b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 692 | proof - | 
| 20533 | 693 | have "norm (a - b + b) \<le> norm (a - b) + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 694 | by (rule norm_triangle_ineq) | 
| 22898 | 695 | thus ?thesis by simp | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 696 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 697 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 698 | lemma norm_triangle_ineq3: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 699 | fixes a b :: "'a::real_normed_vector" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 700 | shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 701 | apply (subst abs_le_iff) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 702 | apply auto | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 703 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 704 | apply (subst norm_minus_commute) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 705 | apply (rule norm_triangle_ineq2) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 706 | done | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 707 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 708 | lemma norm_triangle_ineq4: | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 709 | fixes a b :: "'a::real_normed_vector" | 
| 20533 | 710 | shows "norm (a - b) \<le> norm a + norm b" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 711 | proof - | 
| 22898 | 712 | have "norm (a + - b) \<le> norm a + norm (- b)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 713 | by (rule norm_triangle_ineq) | 
| 22898 | 714 | thus ?thesis | 
| 715 | by (simp only: diff_minus norm_minus_cancel) | |
| 716 | qed | |
| 717 | ||
| 718 | lemma norm_diff_ineq: | |
| 719 | fixes a b :: "'a::real_normed_vector" | |
| 720 | shows "norm a - norm b \<le> norm (a + b)" | |
| 721 | proof - | |
| 722 | have "norm a - norm (- b) \<le> norm (a - - b)" | |
| 723 | by (rule norm_triangle_ineq2) | |
| 724 | thus ?thesis by simp | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 725 | qed | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 726 | |
| 20551 | 727 | lemma norm_diff_triangle_ineq: | 
| 728 | fixes a b c d :: "'a::real_normed_vector" | |
| 729 | shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)" | |
| 730 | proof - | |
| 731 | have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))" | |
| 732 | by (simp add: diff_minus add_ac) | |
| 733 | also have "\<dots> \<le> norm (a - c) + norm (b - d)" | |
| 734 | by (rule norm_triangle_ineq) | |
| 735 | finally show ?thesis . | |
| 736 | qed | |
| 737 | ||
| 22857 | 738 | lemma abs_norm_cancel [simp]: | 
| 739 | fixes a :: "'a::real_normed_vector" | |
| 740 | shows "\<bar>norm a\<bar> = norm a" | |
| 741 | by (rule abs_of_nonneg [OF norm_ge_zero]) | |
| 742 | ||
| 22880 | 743 | lemma norm_add_less: | 
| 744 | fixes x y :: "'a::real_normed_vector" | |
| 745 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s" | |
| 746 | by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono]) | |
| 747 | ||
| 748 | lemma norm_mult_less: | |
| 749 | fixes x y :: "'a::real_normed_algebra" | |
| 750 | shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s" | |
| 751 | apply (rule order_le_less_trans [OF norm_mult_ineq]) | |
| 752 | apply (simp add: mult_strict_mono') | |
| 753 | done | |
| 754 | ||
| 22857 | 755 | lemma norm_of_real [simp]: | 
| 756 | "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 757 | unfolding of_real_def by simp | 
| 20560 | 758 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 759 | lemma norm_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 760 | "norm (numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 761 | by (subst of_real_numeral [symmetric], subst norm_of_real, simp) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 762 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 763 | lemma norm_neg_numeral [simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 764 | "norm (neg_numeral w::'a::real_normed_algebra_1) = numeral w" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46868diff
changeset | 765 | by (subst of_real_neg_numeral [symmetric], subst norm_of_real, simp) | 
| 22876 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 766 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 767 | lemma norm_of_int [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 768 | "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 769 | by (subst of_real_of_int_eq [symmetric], rule norm_of_real) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 770 | |
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 771 | lemma norm_of_nat [simp]: | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 772 | "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n" | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 773 | apply (subst of_real_of_nat_eq [symmetric]) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 774 | apply (subst norm_of_real, simp) | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 775 | done | 
| 
2b4c831ceca7
add lemmas norm_number_of, norm_of_int, norm_of_nat
 huffman parents: 
22857diff
changeset | 776 | |
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 777 | lemma nonzero_norm_inverse: | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 778 | fixes a :: "'a::real_normed_div_algebra" | 
| 20533 | 779 | shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 780 | apply (rule inverse_unique [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 781 | apply (simp add: norm_mult [symmetric]) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 782 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 783 | |
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 784 | lemma norm_inverse: | 
| 36409 | 785 |   fixes a :: "'a::{real_normed_div_algebra, division_ring_inverse_zero}"
 | 
| 20533 | 786 | shows "norm (inverse a) = inverse (norm a)" | 
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 787 | apply (case_tac "a = 0", simp) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 788 | apply (erule nonzero_norm_inverse) | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 789 | done | 
| 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 790 | |
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 791 | lemma nonzero_norm_divide: | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 792 | fixes a b :: "'a::real_normed_field" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 793 | shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 794 | by (simp add: divide_inverse norm_mult nonzero_norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 795 | |
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 796 | lemma norm_divide: | 
| 36409 | 797 |   fixes a b :: "'a::{real_normed_field, field_inverse_zero}"
 | 
| 20584 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 798 | shows "norm (a / b) = norm a / norm b" | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 799 | by (simp add: divide_inverse norm_mult norm_inverse) | 
| 
60b1d52a455d
added classes real_div_algebra and real_field; added lemmas
 huffman parents: 
20560diff
changeset | 800 | |
| 22852 | 801 | lemma norm_power_ineq: | 
| 31017 | 802 |   fixes x :: "'a::{real_normed_algebra_1}"
 | 
| 22852 | 803 | shows "norm (x ^ n) \<le> norm x ^ n" | 
| 804 | proof (induct n) | |
| 805 | case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp | |
| 806 | next | |
| 807 | case (Suc n) | |
| 808 | have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)" | |
| 809 | by (rule norm_mult_ineq) | |
| 810 | also from Suc have "\<dots> \<le> norm x * norm x ^ n" | |
| 811 | using norm_ge_zero by (rule mult_left_mono) | |
| 812 | finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n" | |
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 813 | by simp | 
| 22852 | 814 | qed | 
| 815 | ||
| 20684 | 816 | lemma norm_power: | 
| 31017 | 817 |   fixes x :: "'a::{real_normed_div_algebra}"
 | 
| 20684 | 818 | shows "norm (x ^ n) = norm x ^ n" | 
| 30273 
ecd6f0ca62ea
declare power_Suc [simp]; remove redundant type-specific versions of power_Suc
 huffman parents: 
30242diff
changeset | 819 | by (induct n) (simp_all add: norm_mult) | 
| 20684 | 820 | |
| 31289 | 821 | text {* Every normed vector space is a metric space. *}
 | 
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 822 | |
| 31289 | 823 | instance real_normed_vector < metric_space | 
| 824 | proof | |
| 825 | fix x y :: 'a show "dist x y = 0 \<longleftrightarrow> x = y" | |
| 826 | unfolding dist_norm by simp | |
| 827 | next | |
| 828 | fix x y z :: 'a show "dist x y \<le> dist x z + dist y z" | |
| 829 | unfolding dist_norm | |
| 830 | using norm_triangle_ineq4 [of "x - z" "y - z"] by simp | |
| 831 | qed | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 832 | |
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 833 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 834 | subsection {* Class instances for real numbers *}
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 835 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 836 | instantiation real :: real_normed_field | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 837 | begin | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 838 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 839 | definition real_norm_def [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 840 | "norm r = \<bar>r\<bar>" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 841 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 842 | definition dist_real_def: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 843 | "dist x y = \<bar>x - y\<bar>" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 844 | |
| 37767 | 845 | definition open_real_def: | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 846 | "open (S :: real set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 847 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 848 | instance | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 849 | apply (intro_classes, unfold real_norm_def real_scaleR_def) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 850 | apply (rule dist_real_def) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 851 | apply (rule open_real_def) | 
| 36795 
e05e1283c550
new construction of real numbers using Cauchy sequences
 huffman parents: 
36409diff
changeset | 852 | apply (simp add: sgn_real_def) | 
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 853 | apply (rule abs_ge_zero) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 854 | apply (rule abs_eq_0) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 855 | apply (rule abs_triangle_ineq) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 856 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 857 | apply (rule abs_mult) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 858 | done | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 859 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 860 | end | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 861 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 862 | lemma open_real_lessThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 863 |   fixes a :: real shows "open {..<a}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 864 | unfolding open_real_def dist_real_def | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 865 | proof (clarify) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 866 | fix x assume "x < a" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 867 |   hence "0 < a - x \<and> (\<forall>y. \<bar>y - x\<bar> < a - x \<longrightarrow> y \<in> {..<a})" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 868 |   thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {..<a}" ..
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 869 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 870 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 871 | lemma open_real_greaterThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 872 |   fixes a :: real shows "open {a<..}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 873 | unfolding open_real_def dist_real_def | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 874 | proof (clarify) | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 875 | fix x assume "a < x" | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 876 |   hence "0 < x - a \<and> (\<forall>y. \<bar>y - x\<bar> < x - a \<longrightarrow> y \<in> {a<..})" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 877 |   thus "\<exists>e>0. \<forall>y. \<bar>y - x\<bar> < e \<longrightarrow> y \<in> {a<..}" ..
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 878 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 879 | |
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 880 | lemma open_real_greaterThanLessThan [simp]: | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 881 |   fixes a b :: real shows "open {a<..<b}"
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 882 | proof - | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 883 |   have "{a<..<b} = {a<..} \<inter> {..<b}" by auto
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 884 |   thus "open {a<..<b}" by (simp add: open_Int)
 | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 885 | qed | 
| 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 886 | |
| 31567 | 887 | lemma closed_real_atMost [simp]: | 
| 888 |   fixes a :: real shows "closed {..a}"
 | |
| 889 | unfolding closed_open by simp | |
| 890 | ||
| 891 | lemma closed_real_atLeast [simp]: | |
| 892 |   fixes a :: real shows "closed {a..}"
 | |
| 893 | unfolding closed_open by simp | |
| 894 | ||
| 895 | lemma closed_real_atLeastAtMost [simp]: | |
| 896 |   fixes a b :: real shows "closed {a..b}"
 | |
| 897 | proof - | |
| 898 |   have "{a..b} = {a..} \<inter> {..b}" by auto
 | |
| 899 |   thus "closed {a..b}" by (simp add: closed_Int)
 | |
| 900 | qed | |
| 901 | ||
| 31564 
d2abf6f6f619
subsection for real instances; new lemmas for open sets of reals
 huffman parents: 
31494diff
changeset | 902 | |
| 31446 | 903 | subsection {* Extra type constraints *}
 | 
| 904 | ||
| 31492 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 905 | text {* Only allow @{term "open"} in class @{text topological_space}. *}
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 906 | |
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 907 | setup {* Sign.add_const_constraint
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 908 |   (@{const_name "open"}, SOME @{typ "'a::topological_space set \<Rightarrow> bool"}) *}
 | 
| 
5400beeddb55
replace 'topo' with 'open'; add extra type constraint for 'open'
 huffman parents: 
31490diff
changeset | 909 | |
| 31446 | 910 | text {* Only allow @{term dist} in class @{text metric_space}. *}
 | 
| 911 | ||
| 912 | setup {* Sign.add_const_constraint
 | |
| 913 |   (@{const_name dist}, SOME @{typ "'a::metric_space \<Rightarrow> 'a \<Rightarrow> real"}) *}
 | |
| 914 | ||
| 915 | text {* Only allow @{term norm} in class @{text real_normed_vector}. *}
 | |
| 916 | ||
| 917 | setup {* Sign.add_const_constraint
 | |
| 918 |   (@{const_name norm}, SOME @{typ "'a::real_normed_vector \<Rightarrow> real"}) *}
 | |
| 919 | ||
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31017diff
changeset | 920 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 921 | subsection {* Sign function *}
 | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 922 | |
| 24506 | 923 | lemma norm_sgn: | 
| 924 | "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 925 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 926 | |
| 24506 | 927 | lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0" | 
| 928 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 929 | |
| 24506 | 930 | lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)" | 
| 931 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 932 | |
| 24506 | 933 | lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)" | 
| 934 | by (simp add: sgn_div_norm) | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 935 | |
| 24506 | 936 | lemma sgn_scaleR: | 
| 937 | "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))" | |
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 938 | by (simp add: sgn_div_norm mult_ac) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 939 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 940 | lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1" | 
| 24506 | 941 | by (simp add: sgn_div_norm) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 942 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 943 | lemma sgn_of_real: | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 944 | "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 945 | unfolding of_real_def by (simp only: sgn_scaleR sgn_one) | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 946 | |
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 947 | lemma sgn_mult: | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 948 | fixes x y :: "'a::real_normed_div_algebra" | 
| 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 949 | shows "sgn (x * y) = sgn x * sgn y" | 
| 24506 | 950 | by (simp add: sgn_div_norm norm_mult mult_commute) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 951 | |
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 952 | lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>" | 
| 24506 | 953 | by (simp add: sgn_div_norm divide_inverse) | 
| 22972 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 954 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 955 | lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 956 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 957 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 958 | lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1" | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 959 | unfolding real_sgn_eq by simp | 
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 960 | |
| 
3e96b98d37c6
generalized sgn function to work on any real normed vector space
 huffman parents: 
22942diff
changeset | 961 | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 962 | subsection {* Bounded Linear and Bilinear Operators *}
 | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 963 | |
| 46868 | 964 | locale bounded_linear = additive f for f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" + | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 965 | assumes scaleR: "f (scaleR r x) = scaleR r (f x)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 966 | assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" | 
| 27443 | 967 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 968 | |
| 27443 | 969 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 970 | "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 971 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 972 | obtain K where K: "\<And>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 973 | using bounded by fast | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 974 | show ?thesis | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 975 | proof (intro exI impI conjI allI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 976 | show "0 < max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 977 | by (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 978 | next | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 979 | fix x | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 980 | have "norm (f x) \<le> norm x * K" using K . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 981 | also have "\<dots> \<le> norm x * max 1 K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 982 | by (rule mult_left_mono [OF le_maxI2 norm_ge_zero]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 983 | finally show "norm (f x) \<le> norm x * max 1 K" . | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 984 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 985 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 986 | |
| 27443 | 987 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 988 | "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 989 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 990 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 991 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 992 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 993 | |
| 27443 | 994 | end | 
| 995 | ||
| 44127 | 996 | lemma bounded_linear_intro: | 
| 997 | assumes "\<And>x y. f (x + y) = f x + f y" | |
| 998 | assumes "\<And>r x. f (scaleR r x) = scaleR r (f x)" | |
| 999 | assumes "\<And>x. norm (f x) \<le> norm x * K" | |
| 1000 | shows "bounded_linear f" | |
| 1001 | by default (fast intro: assms)+ | |
| 1002 | ||
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1003 | locale bounded_bilinear = | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1004 | fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector] | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1005 | \<Rightarrow> 'c::real_normed_vector" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1006 | (infixl "**" 70) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1007 | assumes add_left: "prod (a + a') b = prod a b + prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1008 | assumes add_right: "prod a (b + b') = prod a b + prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1009 | assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1010 | assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1011 | assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K" | 
| 27443 | 1012 | begin | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1013 | |
| 27443 | 1014 | lemma pos_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1015 | "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1016 | apply (cut_tac bounded, erule exE) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1017 | apply (rule_tac x="max 1 K" in exI, safe) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1018 | apply (rule order_less_le_trans [OF zero_less_one le_maxI1]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1019 | apply (drule spec, drule spec, erule order_trans) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1020 | apply (rule mult_left_mono [OF le_maxI2]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1021 | apply (intro mult_nonneg_nonneg norm_ge_zero) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1022 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1023 | |
| 27443 | 1024 | lemma nonneg_bounded: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1025 | "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1026 | proof - | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1027 | from pos_bounded | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1028 | show ?thesis by (auto intro: order_less_imp_le) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1029 | qed | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1030 | |
| 27443 | 1031 | lemma additive_right: "additive (\<lambda>b. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1032 | by (rule additive.intro, rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1033 | |
| 27443 | 1034 | lemma additive_left: "additive (\<lambda>a. prod a b)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1035 | by (rule additive.intro, rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1036 | |
| 27443 | 1037 | lemma zero_left: "prod 0 b = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1038 | by (rule additive.zero [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1039 | |
| 27443 | 1040 | lemma zero_right: "prod a 0 = 0" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1041 | by (rule additive.zero [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1042 | |
| 27443 | 1043 | lemma minus_left: "prod (- a) b = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1044 | by (rule additive.minus [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1045 | |
| 27443 | 1046 | lemma minus_right: "prod a (- b) = - prod a b" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1047 | by (rule additive.minus [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1048 | |
| 27443 | 1049 | lemma diff_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1050 | "prod (a - a') b = prod a b - prod a' b" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1051 | by (rule additive.diff [OF additive_left]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1052 | |
| 27443 | 1053 | lemma diff_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1054 | "prod a (b - b') = prod a b - prod a b'" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1055 | by (rule additive.diff [OF additive_right]) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1056 | |
| 27443 | 1057 | lemma bounded_linear_left: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1058 | "bounded_linear (\<lambda>a. a ** b)" | 
| 44127 | 1059 | apply (cut_tac bounded, safe) | 
| 1060 | apply (rule_tac K="norm b * K" in bounded_linear_intro) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1061 | apply (rule add_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1062 | apply (rule scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1063 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1064 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1065 | |
| 27443 | 1066 | lemma bounded_linear_right: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1067 | "bounded_linear (\<lambda>b. a ** b)" | 
| 44127 | 1068 | apply (cut_tac bounded, safe) | 
| 1069 | apply (rule_tac K="norm a * K" in bounded_linear_intro) | |
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1070 | apply (rule add_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1071 | apply (rule scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1072 | apply (simp add: mult_ac) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1073 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1074 | |
| 27443 | 1075 | lemma prod_diff_prod: | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1076 | "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)" | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1077 | by (simp add: diff_left diff_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1078 | |
| 27443 | 1079 | end | 
| 1080 | ||
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1081 | lemma bounded_bilinear_mult: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1082 | "bounded_bilinear (op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra)" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1083 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1084 | apply (rule left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1085 | apply (rule right_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1086 | apply (rule mult_scaleR_left) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1087 | apply (rule mult_scaleR_right) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1088 | apply (rule_tac x="1" in exI) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1089 | apply (simp add: norm_mult_ineq) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1090 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1091 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1092 | lemma bounded_linear_mult_left: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1093 | "bounded_linear (\<lambda>x::'a::real_normed_algebra. x * y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1094 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1095 | by (rule bounded_bilinear.bounded_linear_left) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1096 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1097 | lemma bounded_linear_mult_right: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1098 | "bounded_linear (\<lambda>y::'a::real_normed_algebra. x * y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1099 | using bounded_bilinear_mult | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1100 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1101 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1102 | lemma bounded_linear_divide: | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1103 | "bounded_linear (\<lambda>x::'a::real_normed_field. x / y)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1104 | unfolding divide_inverse by (rule bounded_linear_mult_left) | 
| 23120 | 1105 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1106 | lemma bounded_bilinear_scaleR: "bounded_bilinear scaleR" | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1107 | apply (rule bounded_bilinear.intro) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1108 | apply (rule scaleR_left_distrib) | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1109 | apply (rule scaleR_right_distrib) | 
| 22973 
64d300e16370
add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
 huffman parents: 
22972diff
changeset | 1110 | apply simp | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1111 | apply (rule scaleR_left_commute) | 
| 31586 
d4707b99e631
declare norm_scaleR [simp]; declare scaleR_cancel lemmas [simp]
 huffman parents: 
31567diff
changeset | 1112 | apply (rule_tac x="1" in exI, simp) | 
| 22442 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1113 | done | 
| 
15d9ed9b5051
move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
 huffman parents: 
21809diff
changeset | 1114 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1115 | lemma bounded_linear_scaleR_left: "bounded_linear (\<lambda>r. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1116 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1117 | by (rule bounded_bilinear.bounded_linear_left) | 
| 23127 | 1118 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1119 | lemma bounded_linear_scaleR_right: "bounded_linear (\<lambda>x. scaleR r x)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1120 | using bounded_bilinear_scaleR | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1121 | by (rule bounded_bilinear.bounded_linear_right) | 
| 23127 | 1122 | |
| 44282 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1123 | lemma bounded_linear_of_real: "bounded_linear (\<lambda>r. of_real r)" | 
| 
f0de18b62d63
remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
 huffman parents: 
44127diff
changeset | 1124 | unfolding of_real_def by (rule bounded_linear_scaleR_left) | 
| 22625 | 1125 | |
| 41969 | 1126 | subsection{* Hausdorff and other separation properties *}
 | 
| 1127 | ||
| 1128 | class t0_space = topological_space + | |
| 1129 | assumes t0_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> \<not> (x \<in> U \<longleftrightarrow> y \<in> U)" | |
| 1130 | ||
| 1131 | class t1_space = topological_space + | |
| 1132 | assumes t1_space: "x \<noteq> y \<Longrightarrow> \<exists>U. open U \<and> x \<in> U \<and> y \<notin> U" | |
| 1133 | ||
| 1134 | instance t1_space \<subseteq> t0_space | |
| 1135 | proof qed (fast dest: t1_space) | |
| 1136 | ||
| 1137 | lemma separation_t1: | |
| 1138 | fixes x y :: "'a::t1_space" | |
| 1139 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> x \<in> U \<and> y \<notin> U)" | |
| 1140 | using t1_space[of x y] by blast | |
| 1141 | ||
| 1142 | lemma closed_singleton: | |
| 1143 | fixes a :: "'a::t1_space" | |
| 1144 |   shows "closed {a}"
 | |
| 1145 | proof - | |
| 1146 |   let ?T = "\<Union>{S. open S \<and> a \<notin> S}"
 | |
| 1147 | have "open ?T" by (simp add: open_Union) | |
| 1148 |   also have "?T = - {a}"
 | |
| 1149 | by (simp add: set_eq_iff separation_t1, auto) | |
| 1150 |   finally show "closed {a}" unfolding closed_def .
 | |
| 1151 | qed | |
| 1152 | ||
| 1153 | lemma closed_insert [simp]: | |
| 1154 | fixes a :: "'a::t1_space" | |
| 1155 | assumes "closed S" shows "closed (insert a S)" | |
| 1156 | proof - | |
| 1157 | from closed_singleton assms | |
| 1158 |   have "closed ({a} \<union> S)" by (rule closed_Un)
 | |
| 1159 | thus "closed (insert a S)" by simp | |
| 1160 | qed | |
| 1161 | ||
| 1162 | lemma finite_imp_closed: | |
| 1163 | fixes S :: "'a::t1_space set" | |
| 1164 | shows "finite S \<Longrightarrow> closed S" | |
| 1165 | by (induct set: finite, simp_all) | |
| 1166 | ||
| 1167 | text {* T2 spaces are also known as Hausdorff spaces. *}
 | |
| 1168 | ||
| 1169 | class t2_space = topological_space + | |
| 1170 |   assumes hausdorff: "x \<noteq> y \<Longrightarrow> \<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 1171 | ||
| 1172 | instance t2_space \<subseteq> t1_space | |
| 1173 | proof qed (fast dest: hausdorff) | |
| 1174 | ||
| 1175 | instance metric_space \<subseteq> t2_space | |
| 1176 | proof | |
| 1177 | fix x y :: "'a::metric_space" | |
| 1178 | assume xy: "x \<noteq> y" | |
| 1179 |   let ?U = "{y'. dist x y' < dist x y / 2}"
 | |
| 1180 |   let ?V = "{x'. dist y x' < dist x y / 2}"
 | |
| 1181 | have th0: "\<And>d x y z. (d x z :: real) \<le> d x y + d y z \<Longrightarrow> d y z = d z y | |
| 1182 | \<Longrightarrow> \<not>(d x y * 2 < d x z \<and> d z y * 2 < d x z)" by arith | |
| 1183 |   have "open ?U \<and> open ?V \<and> x \<in> ?U \<and> y \<in> ?V \<and> ?U \<inter> ?V = {}"
 | |
| 1184 | using dist_pos_lt[OF xy] th0[of dist, OF dist_triangle dist_commute] | |
| 1185 | using open_ball[of _ "dist x y / 2"] by auto | |
| 1186 |   then show "\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {}"
 | |
| 1187 | by blast | |
| 1188 | qed | |
| 1189 | ||
| 1190 | lemma separation_t2: | |
| 1191 | fixes x y :: "'a::t2_space" | |
| 1192 |   shows "x \<noteq> y \<longleftrightarrow> (\<exists>U V. open U \<and> open V \<and> x \<in> U \<and> y \<in> V \<and> U \<inter> V = {})"
 | |
| 1193 | using hausdorff[of x y] by blast | |
| 1194 | ||
| 1195 | lemma separation_t0: | |
| 1196 | fixes x y :: "'a::t0_space" | |
| 1197 | shows "x \<noteq> y \<longleftrightarrow> (\<exists>U. open U \<and> ~(x\<in>U \<longleftrightarrow> y\<in>U))" | |
| 1198 | using t0_space[of x y] by blast | |
| 1199 | ||
| 44571 | 1200 | text {* A perfect space is a topological space with no isolated points. *}
 | 
| 1201 | ||
| 1202 | class perfect_space = topological_space + | |
| 1203 |   assumes not_open_singleton: "\<not> open {x}"
 | |
| 1204 | ||
| 1205 | instance real_normed_algebra_1 \<subseteq> perfect_space | |
| 1206 | proof | |
| 1207 | fix x::'a | |
| 1208 |   show "\<not> open {x}"
 | |
| 1209 | unfolding open_dist dist_norm | |
| 1210 | by (clarsimp, rule_tac x="x + of_real (e/2)" in exI, simp) | |
| 1211 | qed | |
| 1212 | ||
| 20504 
6342e872e71d
formalization of vector spaces and algebras over the real numbers
 huffman parents: diff
changeset | 1213 | end |