--- a/src/HOL/Complex/Complex.thy Mon May 07 16:46:42 2007 +0200
+++ b/src/HOL/Complex/Complex.thy Mon May 07 23:07:04 2007 +0200
@@ -485,6 +485,11 @@
simp add: add_increasing power2_eq_square [symmetric])
done
+lemma complex_norm_scaleR:
+ "norm (scaleR a x) = \<bar>a\<bar> * norm (x::complex)"
+by (simp only:
+ scaleR_conv_of_real complex_mod_mult complex_mod_complex_of_real)
+
instance complex :: real_normed_field
proof
fix r :: real
@@ -495,8 +500,8 @@
by (rule complex_mod_eq_zero_cancel)
show "cmod (x + y) \<le> cmod x + cmod y"
by (rule complex_mod_triangle_ineq)
- show "cmod (of_real r) = abs r"
- by (rule complex_mod_complex_of_real)
+ show "cmod (scaleR r x) = \<bar>r\<bar> * cmod x"
+ by (rule complex_norm_scaleR)
show "cmod (x * y) = cmod x * cmod y"
by (rule complex_mod_mult)
qed
--- a/src/HOL/Hyperreal/Series.thy Mon May 07 16:46:42 2007 +0200
+++ b/src/HOL/Hyperreal/Series.thy Mon May 07 23:07:04 2007 +0200
@@ -508,7 +508,7 @@
subsection{* The Ratio Test*}
lemma norm_ratiotest_lemma:
- fixes x y :: "'a::normed"
+ fixes x y :: "'a::real_normed_vector"
shows "\<lbrakk>c \<le> 0; norm x \<le> c * norm y\<rbrakk> \<Longrightarrow> x = 0"
apply (subgoal_tac "norm x \<le> 0", simp)
apply (erule order_trans)
--- a/src/HOL/Real/RealVector.thy Mon May 07 16:46:42 2007 +0200
+++ b/src/HOL/Real/RealVector.thy Mon May 07 23:07:04 2007 +0200
@@ -367,56 +367,59 @@
instance real :: norm
real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>" ..
-axclass normed < plus, zero, norm
+axclass real_normed_vector < real_vector, norm
norm_ge_zero [simp]: "0 \<le> norm x"
norm_eq_zero [simp]: "(norm x = 0) = (x = 0)"
norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
-
-axclass real_normed_vector < real_vector, normed
norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
axclass real_normed_algebra < real_algebra, real_normed_vector
norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
-axclass real_normed_div_algebra < real_div_algebra, normed
- norm_of_real: "norm (of_real r) = abs r"
+axclass real_normed_algebra_1 < real_algebra_1, real_normed_algebra
+ norm_one [simp]: "norm 1 = 1"
+
+axclass real_normed_div_algebra < real_div_algebra, real_normed_vector
norm_mult: "norm (x * y) = norm x * norm y"
axclass real_normed_field < real_field, real_normed_div_algebra
-instance real_normed_div_algebra < real_normed_algebra
+instance real_normed_div_algebra < real_normed_algebra_1
proof
- fix a :: real and x :: 'a
- have "norm (scaleR a x) = norm (of_real a * x)"
- by (simp add: of_real_def)
- also have "\<dots> = abs a * norm x"
- by (simp add: norm_mult norm_of_real)
- finally show "norm (scaleR a x) = abs a * norm x" .
-next
fix x y :: 'a
show "norm (x * y) \<le> norm x * norm y"
by (simp add: norm_mult)
+next
+ have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
+ by (rule norm_mult)
+ thus "norm (1::'a) = 1" by simp
qed
instance real :: real_normed_field
-apply (intro_classes, unfold real_norm_def)
+apply (intro_classes, unfold real_norm_def real_scaleR_def)
apply (rule abs_ge_zero)
apply (rule abs_eq_0)
apply (rule abs_triangle_ineq)
-apply simp
+apply (rule abs_mult)
apply (rule abs_mult)
done
-lemma norm_zero [simp]: "norm (0::'a::normed) = 0"
+lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
by simp
-lemma zero_less_norm_iff [simp]: "(0 < norm x) = (x \<noteq> (0::'a::normed))"
+lemma zero_less_norm_iff [simp]:
+ fixes x :: "'a::real_normed_vector"
+ shows "(0 < norm x) = (x \<noteq> 0)"
by (simp add: order_less_le)
-lemma norm_not_less_zero [simp]: "\<not> norm (x::'a::normed) < 0"
+lemma norm_not_less_zero [simp]:
+ fixes x :: "'a::real_normed_vector"
+ shows "\<not> norm x < 0"
by (simp add: linorder_not_less)
-lemma norm_le_zero_iff [simp]: "(norm x \<le> 0) = (x = (0::'a::normed))"
+lemma norm_le_zero_iff [simp]:
+ fixes x :: "'a::real_normed_vector"
+ shows "(norm x \<le> 0) = (x = 0)"
by (simp add: order_le_less)
lemma norm_minus_cancel [simp]:
@@ -485,12 +488,8 @@
finally show ?thesis .
qed
-lemma norm_one [simp]: "norm (1::'a::real_normed_div_algebra) = 1"
-proof -
- have "norm (of_real 1 :: 'a) = abs 1"
- by (rule norm_of_real)
- thus ?thesis by simp
-qed
+lemma norm_of_real: "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
+unfolding of_real_def by (simp add: norm_scaleR)
lemma nonzero_norm_inverse:
fixes a :: "'a::real_normed_div_algebra"
@@ -516,6 +515,21 @@
shows "norm (a / b) = norm a / norm b"
by (simp add: divide_inverse norm_mult norm_inverse)
+lemma norm_power_ineq:
+ fixes x :: "'a::{real_normed_algebra_1,recpower}"
+ shows "norm (x ^ n) \<le> norm x ^ n"
+proof (induct n)
+ case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
+next
+ case (Suc n)
+ have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
+ by (rule norm_mult_ineq)
+ also from Suc have "\<dots> \<le> norm x * norm x ^ n"
+ using norm_ge_zero by (rule mult_left_mono)
+ finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
+ by (simp add: power_Suc)
+qed
+
lemma norm_power:
fixes x :: "'a::{real_normed_div_algebra,recpower}"
shows "norm (x ^ n) = norm x ^ n"