author | wenzelm |
Tue, 10 Jun 2008 19:15:18 +0200 | |
changeset 27125 | 0733f575b51e |
parent 26962 | c8b20f615d6c |
child 27267 | 5ebfb7f25ebb |
permissions | -rw-r--r-- |
25904 | 1 |
(* Title: HOLCF/UpperPD.thy |
2 |
ID: $Id$ |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
6 |
header {* Upper powerdomain *} |
|
7 |
||
8 |
theory UpperPD |
|
9 |
imports CompactBasis |
|
10 |
begin |
|
11 |
||
12 |
subsection {* Basis preorder *} |
|
13 |
||
14 |
definition |
|
15 |
upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
16 |
"upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)" |
25904 | 17 |
|
18 |
lemma upper_le_refl [simp]: "t \<le>\<sharp> t" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
19 |
unfolding upper_le_def by fast |
25904 | 20 |
|
21 |
lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v" |
|
22 |
unfolding upper_le_def |
|
23 |
apply (rule ballI) |
|
24 |
apply (drule (1) bspec, erule bexE) |
|
25 |
apply (drule (1) bspec, erule bexE) |
|
26 |
apply (erule rev_bexI) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
27 |
apply (erule (1) trans_less) |
25904 | 28 |
done |
29 |
||
30 |
interpretation upper_le: preorder [upper_le] |
|
31 |
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans) |
|
32 |
||
33 |
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t" |
|
34 |
unfolding upper_le_def Rep_PDUnit by simp |
|
35 |
||
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
36 |
lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y" |
25904 | 37 |
unfolding upper_le_def Rep_PDUnit by simp |
38 |
||
39 |
lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v" |
|
40 |
unfolding upper_le_def Rep_PDPlus by fast |
|
41 |
||
42 |
lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
43 |
unfolding upper_le_def Rep_PDPlus by fast |
25904 | 44 |
|
45 |
lemma upper_le_PDUnit_PDUnit_iff [simp]: |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
46 |
"(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b" |
25904 | 47 |
unfolding upper_le_def Rep_PDUnit by fast |
48 |
||
49 |
lemma upper_le_PDPlus_PDUnit_iff: |
|
50 |
"(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)" |
|
51 |
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast |
|
52 |
||
53 |
lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)" |
|
54 |
unfolding upper_le_def Rep_PDPlus by fast |
|
55 |
||
56 |
lemma upper_le_induct [induct set: upper_le]: |
|
57 |
assumes le: "t \<le>\<sharp> u" |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
58 |
assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" |
25904 | 59 |
assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)" |
60 |
assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)" |
|
61 |
shows "P t u" |
|
62 |
using le apply (induct u arbitrary: t rule: pd_basis_induct) |
|
63 |
apply (erule rev_mp) |
|
64 |
apply (induct_tac t rule: pd_basis_induct) |
|
65 |
apply (simp add: 1) |
|
66 |
apply (simp add: upper_le_PDPlus_PDUnit_iff) |
|
67 |
apply (simp add: 2) |
|
68 |
apply (subst PDPlus_commute) |
|
69 |
apply (simp add: 2) |
|
70 |
apply (simp add: upper_le_PDPlus_iff 3) |
|
71 |
done |
|
72 |
||
73 |
lemma approx_pd_upper_mono1: |
|
74 |
"i \<le> j \<Longrightarrow> approx_pd i t \<le>\<sharp> approx_pd j t" |
|
75 |
apply (induct t rule: pd_basis_induct) |
|
76 |
apply (simp add: compact_approx_mono1) |
|
77 |
apply (simp add: PDPlus_upper_mono) |
|
78 |
done |
|
79 |
||
80 |
lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t" |
|
81 |
apply (induct t rule: pd_basis_induct) |
|
82 |
apply (simp add: compact_approx_le) |
|
83 |
apply (simp add: PDPlus_upper_mono) |
|
84 |
done |
|
85 |
||
86 |
lemma approx_pd_upper_mono: |
|
87 |
"t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u" |
|
88 |
apply (erule upper_le_induct) |
|
89 |
apply (simp add: compact_approx_mono) |
|
90 |
apply (simp add: upper_le_PDPlus_PDUnit_iff) |
|
91 |
apply (simp add: upper_le_PDPlus_iff) |
|
92 |
done |
|
93 |
||
94 |
||
95 |
subsection {* Type definition *} |
|
96 |
||
97 |
cpodef (open) 'a upper_pd = |
|
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
98 |
"{S::'a::profinite pd_basis set. upper_le.ideal S}" |
25904 | 99 |
apply (simp add: upper_le.adm_ideal) |
100 |
apply (fast intro: upper_le.ideal_principal) |
|
101 |
done |
|
102 |
||
103 |
lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)" |
|
26927 | 104 |
by (rule Rep_upper_pd [unfolded mem_Collect_eq]) |
25904 | 105 |
|
106 |
definition |
|
107 |
upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where |
|
108 |
"upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}" |
|
109 |
||
110 |
lemma Rep_upper_principal: |
|
111 |
"Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}" |
|
112 |
unfolding upper_principal_def |
|
26927 | 113 |
apply (rule Abs_upper_pd_inverse [unfolded mem_Collect_eq]) |
25904 | 114 |
apply (rule upper_le.ideal_principal) |
115 |
done |
|
116 |
||
117 |
interpretation upper_pd: |
|
26927 | 118 |
ideal_completion [upper_le approx_pd upper_principal Rep_upper_pd] |
25904 | 119 |
apply unfold_locales |
120 |
apply (rule approx_pd_upper_le) |
|
121 |
apply (rule approx_pd_idem) |
|
122 |
apply (erule approx_pd_upper_mono) |
|
123 |
apply (rule approx_pd_upper_mono1, simp) |
|
124 |
apply (rule finite_range_approx_pd) |
|
125 |
apply (rule ex_approx_pd_eq) |
|
26420
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
126 |
apply (rule ideal_Rep_upper_pd) |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
127 |
apply (rule cont_Rep_upper_pd) |
57a626f64875
make preorder locale into a superclass of class po
huffman
parents:
26407
diff
changeset
|
128 |
apply (rule Rep_upper_principal) |
26806 | 129 |
apply (simp only: less_upper_pd_def less_set_eq) |
25904 | 130 |
done |
131 |
||
132 |
lemma upper_principal_less_iff [simp]: |
|
26927 | 133 |
"upper_principal t \<sqsubseteq> upper_principal u \<longleftrightarrow> t \<le>\<sharp> u" |
134 |
by (rule upper_pd.principal_less_iff) |
|
135 |
||
136 |
lemma upper_principal_eq_iff: |
|
137 |
"upper_principal t = upper_principal u \<longleftrightarrow> t \<le>\<sharp> u \<and> u \<le>\<sharp> t" |
|
138 |
by (rule upper_pd.principal_eq_iff) |
|
25904 | 139 |
|
140 |
lemma upper_principal_mono: |
|
141 |
"t \<le>\<sharp> u \<Longrightarrow> upper_principal t \<sqsubseteq> upper_principal u" |
|
142 |
by (rule upper_pd.principal_mono) |
|
143 |
||
144 |
lemma compact_upper_principal: "compact (upper_principal t)" |
|
145 |
by (rule upper_pd.compact_principal) |
|
146 |
||
147 |
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys" |
|
148 |
by (induct ys rule: upper_pd.principal_induct, simp, simp) |
|
149 |
||
150 |
instance upper_pd :: (bifinite) pcpo |
|
26927 | 151 |
by intro_classes (fast intro: upper_pd_minimal) |
25904 | 152 |
|
153 |
lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)" |
|
154 |
by (rule upper_pd_minimal [THEN UU_I, symmetric]) |
|
155 |
||
156 |
||
157 |
subsection {* Approximation *} |
|
158 |
||
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
159 |
instantiation upper_pd :: (profinite) profinite |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
160 |
begin |
25904 | 161 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
162 |
definition |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
163 |
approx_upper_pd_def: "approx = upper_pd.completion_approx" |
26927 | 164 |
|
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
165 |
instance |
26927 | 166 |
apply (intro_classes, unfold approx_upper_pd_def) |
167 |
apply (simp add: upper_pd.chain_completion_approx) |
|
168 |
apply (rule upper_pd.lub_completion_approx) |
|
169 |
apply (rule upper_pd.completion_approx_idem) |
|
170 |
apply (rule upper_pd.finite_fixes_completion_approx) |
|
171 |
done |
|
172 |
||
26962
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
173 |
end |
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
huffman
parents:
26927
diff
changeset
|
174 |
|
26927 | 175 |
instance upper_pd :: (bifinite) bifinite .. |
25904 | 176 |
|
177 |
lemma approx_upper_principal [simp]: |
|
178 |
"approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)" |
|
179 |
unfolding approx_upper_pd_def |
|
26927 | 180 |
by (rule upper_pd.completion_approx_principal) |
25904 | 181 |
|
182 |
lemma approx_eq_upper_principal: |
|
183 |
"\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (approx_pd n t)" |
|
184 |
unfolding approx_upper_pd_def |
|
26927 | 185 |
by (rule upper_pd.completion_approx_eq_principal) |
26407
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
huffman
parents:
26041
diff
changeset
|
186 |
|
25904 | 187 |
lemma compact_imp_upper_principal: |
188 |
"compact xs \<Longrightarrow> \<exists>t. xs = upper_principal t" |
|
189 |
apply (drule bifinite_compact_eq_approx) |
|
190 |
apply (erule exE) |
|
191 |
apply (erule subst) |
|
192 |
apply (cut_tac n=i and xs=xs in approx_eq_upper_principal) |
|
193 |
apply fast |
|
194 |
done |
|
195 |
||
196 |
lemma upper_principal_induct: |
|
197 |
"\<lbrakk>adm P; \<And>t. P (upper_principal t)\<rbrakk> \<Longrightarrow> P xs" |
|
26927 | 198 |
by (rule upper_pd.principal_induct) |
25904 | 199 |
|
200 |
lemma upper_principal_induct2: |
|
201 |
"\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys); |
|
202 |
\<And>t u. P (upper_principal t) (upper_principal u)\<rbrakk> \<Longrightarrow> P xs ys" |
|
203 |
apply (rule_tac x=ys in spec) |
|
204 |
apply (rule_tac xs=xs in upper_principal_induct, simp) |
|
205 |
apply (rule allI, rename_tac ys) |
|
206 |
apply (rule_tac xs=ys in upper_principal_induct, simp) |
|
207 |
apply simp |
|
208 |
done |
|
209 |
||
210 |
||
26927 | 211 |
subsection {* Monadic unit and plus *} |
25904 | 212 |
|
213 |
definition |
|
214 |
upper_unit :: "'a \<rightarrow> 'a upper_pd" where |
|
215 |
"upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))" |
|
216 |
||
217 |
definition |
|
218 |
upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where |
|
219 |
"upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u. |
|
220 |
upper_principal (PDPlus t u)))" |
|
221 |
||
222 |
abbreviation |
|
223 |
upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd" |
|
224 |
(infixl "+\<sharp>" 65) where |
|
225 |
"xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys" |
|
226 |
||
26927 | 227 |
syntax |
228 |
"_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>") |
|
229 |
||
230 |
translations |
|
231 |
"{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>" |
|
232 |
"{x}\<sharp>" == "CONST upper_unit\<cdot>x" |
|
233 |
||
234 |
lemma upper_unit_Rep_compact_basis [simp]: |
|
235 |
"{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)" |
|
236 |
unfolding upper_unit_def |
|
237 |
by (simp add: compact_basis.basis_fun_principal |
|
238 |
upper_principal_mono PDUnit_upper_mono) |
|
239 |
||
25904 | 240 |
lemma upper_plus_principal [simp]: |
26927 | 241 |
"upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)" |
25904 | 242 |
unfolding upper_plus_def |
243 |
by (simp add: upper_pd.basis_fun_principal |
|
244 |
upper_pd.basis_fun_mono PDPlus_upper_mono) |
|
245 |
||
26927 | 246 |
lemma approx_upper_unit [simp]: |
247 |
"approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>" |
|
248 |
apply (induct x rule: compact_basis_induct, simp) |
|
249 |
apply (simp add: approx_Rep_compact_basis) |
|
250 |
done |
|
251 |
||
25904 | 252 |
lemma approx_upper_plus [simp]: |
26927 | 253 |
"approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)" |
25904 | 254 |
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp) |
255 |
||
26927 | 256 |
lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)" |
25904 | 257 |
apply (induct xs ys arbitrary: zs rule: upper_principal_induct2, simp, simp) |
258 |
apply (rule_tac xs=zs in upper_principal_induct, simp) |
|
259 |
apply (simp add: PDPlus_assoc) |
|
260 |
done |
|
261 |
||
26927 | 262 |
lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs" |
263 |
apply (induct xs ys rule: upper_principal_induct2, simp, simp) |
|
264 |
apply (simp add: PDPlus_commute) |
|
265 |
done |
|
266 |
||
267 |
lemma upper_plus_absorb: "xs +\<sharp> xs = xs" |
|
25904 | 268 |
apply (induct xs rule: upper_principal_induct, simp) |
269 |
apply (simp add: PDPlus_absorb) |
|
270 |
done |
|
271 |
||
26927 | 272 |
interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"] |
273 |
by unfold_locales |
|
274 |
(rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+ |
|
275 |
||
276 |
lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)" |
|
277 |
by (rule aci_upper_plus.mult_left_commute) |
|
278 |
||
279 |
lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys" |
|
280 |
by (rule aci_upper_plus.mult_left_idem) |
|
281 |
||
282 |
lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem |
|
283 |
||
284 |
lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs" |
|
25904 | 285 |
apply (induct xs ys rule: upper_principal_induct2, simp, simp) |
286 |
apply (simp add: PDPlus_upper_less) |
|
287 |
done |
|
288 |
||
26927 | 289 |
lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys" |
25904 | 290 |
by (subst upper_plus_commute, rule upper_plus_less1) |
291 |
||
26927 | 292 |
lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs" |
25904 | 293 |
apply (subst upper_plus_absorb [of xs, symmetric]) |
294 |
apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) |
|
295 |
done |
|
296 |
||
297 |
lemma upper_less_plus_iff: |
|
26927 | 298 |
"xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs" |
25904 | 299 |
apply safe |
300 |
apply (erule trans_less [OF _ upper_plus_less1]) |
|
301 |
apply (erule trans_less [OF _ upper_plus_less2]) |
|
302 |
apply (erule (1) upper_plus_greatest) |
|
303 |
done |
|
304 |
||
305 |
lemma upper_plus_less_unit_iff: |
|
26927 | 306 |
"xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>" |
25904 | 307 |
apply (rule iffI) |
308 |
apply (subgoal_tac |
|
26927 | 309 |
"adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)") |
25925 | 310 |
apply (drule admD, rule chain_approx) |
25904 | 311 |
apply (drule_tac f="approx i" in monofun_cfun_arg) |
312 |
apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_upper_principal, simp) |
|
313 |
apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_upper_principal, simp) |
|
314 |
apply (cut_tac x="approx i\<cdot>z" in compact_imp_Rep_compact_basis, simp) |
|
315 |
apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff) |
|
316 |
apply simp |
|
317 |
apply simp |
|
318 |
apply (erule disjE) |
|
319 |
apply (erule trans_less [OF upper_plus_less1]) |
|
320 |
apply (erule trans_less [OF upper_plus_less2]) |
|
321 |
done |
|
322 |
||
26927 | 323 |
lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y" |
324 |
apply (rule iffI) |
|
325 |
apply (rule bifinite_less_ext) |
|
326 |
apply (drule_tac f="approx i" in monofun_cfun_arg, simp) |
|
327 |
apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp) |
|
328 |
apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp) |
|
329 |
apply (clarify, simp add: compact_le_def) |
|
330 |
apply (erule monofun_cfun_arg) |
|
331 |
done |
|
332 |
||
25904 | 333 |
lemmas upper_pd_less_simps = |
334 |
upper_unit_less_iff |
|
335 |
upper_less_plus_iff |
|
336 |
upper_plus_less_unit_iff |
|
337 |
||
26927 | 338 |
lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y" |
339 |
unfolding po_eq_conv by simp |
|
340 |
||
341 |
lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>" |
|
342 |
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp |
|
343 |
||
344 |
lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>" |
|
345 |
by (rule UU_I, rule upper_plus_less1) |
|
346 |
||
347 |
lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>" |
|
348 |
by (rule UU_I, rule upper_plus_less2) |
|
349 |
||
350 |
lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>" |
|
351 |
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) |
|
352 |
||
353 |
lemma upper_plus_strict_iff [simp]: |
|
354 |
"xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>" |
|
355 |
apply (rule iffI) |
|
356 |
apply (erule rev_mp) |
|
357 |
apply (rule upper_principal_induct2 [where xs=xs and ys=ys], simp, simp) |
|
358 |
apply (simp add: inst_upper_pd_pcpo upper_principal_eq_iff |
|
359 |
upper_le_PDPlus_PDUnit_iff) |
|
360 |
apply auto |
|
361 |
done |
|
362 |
||
363 |
lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x" |
|
364 |
unfolding bifinite_compact_iff by simp |
|
365 |
||
366 |
lemma compact_upper_plus [simp]: |
|
367 |
"\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)" |
|
368 |
apply (drule compact_imp_upper_principal)+ |
|
369 |
apply (auto simp add: compact_upper_principal) |
|
370 |
done |
|
371 |
||
25904 | 372 |
|
373 |
subsection {* Induction rules *} |
|
374 |
||
375 |
lemma upper_pd_induct1: |
|
376 |
assumes P: "adm P" |
|
26927 | 377 |
assumes unit: "\<And>x. P {x}\<sharp>" |
378 |
assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)" |
|
25904 | 379 |
shows "P (xs::'a upper_pd)" |
380 |
apply (induct xs rule: upper_principal_induct, rule P) |
|
381 |
apply (induct_tac t rule: pd_basis_induct1) |
|
382 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric]) |
|
383 |
apply (rule unit) |
|
384 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric] |
|
385 |
upper_plus_principal [symmetric]) |
|
386 |
apply (erule insert [OF unit]) |
|
387 |
done |
|
388 |
||
389 |
lemma upper_pd_induct: |
|
390 |
assumes P: "adm P" |
|
26927 | 391 |
assumes unit: "\<And>x. P {x}\<sharp>" |
392 |
assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)" |
|
25904 | 393 |
shows "P (xs::'a upper_pd)" |
394 |
apply (induct xs rule: upper_principal_induct, rule P) |
|
395 |
apply (induct_tac t rule: pd_basis_induct) |
|
396 |
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit) |
|
397 |
apply (simp only: upper_plus_principal [symmetric] plus) |
|
398 |
done |
|
399 |
||
400 |
||
401 |
subsection {* Monadic bind *} |
|
402 |
||
403 |
definition |
|
404 |
upper_bind_basis :: |
|
405 |
"'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where |
|
406 |
"upper_bind_basis = fold_pd |
|
407 |
(\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) |
|
26927 | 408 |
(\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" |
25904 | 409 |
|
26927 | 410 |
lemma ACI_upper_bind: |
411 |
"ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" |
|
25904 | 412 |
apply unfold_locales |
26041
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
haftmann
parents:
25925
diff
changeset
|
413 |
apply (simp add: upper_plus_assoc) |
25904 | 414 |
apply (simp add: upper_plus_commute) |
415 |
apply (simp add: upper_plus_absorb eta_cfun) |
|
416 |
done |
|
417 |
||
418 |
lemma upper_bind_basis_simps [simp]: |
|
419 |
"upper_bind_basis (PDUnit a) = |
|
420 |
(\<Lambda> f. f\<cdot>(Rep_compact_basis a))" |
|
421 |
"upper_bind_basis (PDPlus t u) = |
|
26927 | 422 |
(\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)" |
25904 | 423 |
unfolding upper_bind_basis_def |
424 |
apply - |
|
26927 | 425 |
apply (rule fold_pd_PDUnit [OF ACI_upper_bind]) |
426 |
apply (rule fold_pd_PDPlus [OF ACI_upper_bind]) |
|
25904 | 427 |
done |
428 |
||
429 |
lemma upper_bind_basis_mono: |
|
430 |
"t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u" |
|
431 |
unfolding expand_cfun_less |
|
432 |
apply (erule upper_le_induct, safe) |
|
433 |
apply (simp add: compact_le_def monofun_cfun) |
|
434 |
apply (simp add: trans_less [OF upper_plus_less1]) |
|
435 |
apply (simp add: upper_less_plus_iff) |
|
436 |
done |
|
437 |
||
438 |
definition |
|
439 |
upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where |
|
440 |
"upper_bind = upper_pd.basis_fun upper_bind_basis" |
|
441 |
||
442 |
lemma upper_bind_principal [simp]: |
|
443 |
"upper_bind\<cdot>(upper_principal t) = upper_bind_basis t" |
|
444 |
unfolding upper_bind_def |
|
445 |
apply (rule upper_pd.basis_fun_principal) |
|
446 |
apply (erule upper_bind_basis_mono) |
|
447 |
done |
|
448 |
||
449 |
lemma upper_bind_unit [simp]: |
|
26927 | 450 |
"upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x" |
25904 | 451 |
by (induct x rule: compact_basis_induct, simp, simp) |
452 |
||
453 |
lemma upper_bind_plus [simp]: |
|
26927 | 454 |
"upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f" |
25904 | 455 |
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp) |
456 |
||
457 |
lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" |
|
458 |
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit) |
|
459 |
||
460 |
||
461 |
subsection {* Map and join *} |
|
462 |
||
463 |
definition |
|
464 |
upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where |
|
26927 | 465 |
"upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))" |
25904 | 466 |
|
467 |
definition |
|
468 |
upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where |
|
469 |
"upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" |
|
470 |
||
471 |
lemma upper_map_unit [simp]: |
|
26927 | 472 |
"upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>" |
25904 | 473 |
unfolding upper_map_def by simp |
474 |
||
475 |
lemma upper_map_plus [simp]: |
|
26927 | 476 |
"upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys" |
25904 | 477 |
unfolding upper_map_def by simp |
478 |
||
479 |
lemma upper_join_unit [simp]: |
|
26927 | 480 |
"upper_join\<cdot>{xs}\<sharp> = xs" |
25904 | 481 |
unfolding upper_join_def by simp |
482 |
||
483 |
lemma upper_join_plus [simp]: |
|
26927 | 484 |
"upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss" |
25904 | 485 |
unfolding upper_join_def by simp |
486 |
||
487 |
lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" |
|
488 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
489 |
||
490 |
lemma upper_map_map: |
|
491 |
"upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" |
|
492 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
493 |
||
494 |
lemma upper_join_map_unit: |
|
495 |
"upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs" |
|
496 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
497 |
||
498 |
lemma upper_join_map_join: |
|
499 |
"upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)" |
|
500 |
by (induct xsss rule: upper_pd_induct, simp_all) |
|
501 |
||
502 |
lemma upper_join_map_map: |
|
503 |
"upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) = |
|
504 |
upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)" |
|
505 |
by (induct xss rule: upper_pd_induct, simp_all) |
|
506 |
||
507 |
lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" |
|
508 |
by (induct xs rule: upper_pd_induct, simp_all) |
|
509 |
||
510 |
end |