| author | nipkow |
| Thu, 29 Jan 2009 10:07:43 +0100 | |
| changeset 29672 | 07f3da9fd2a0 |
| parent 21404 | eb85850d3eb7 |
| child 32960 | 69916a850301 |
| permissions | -rw-r--r-- |
| 13634 | 1 |
(* Title: ZF/Constructible/Rank.thy |
2 |
ID: $Id$ |
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
*) |
|
5 |
||
6 |
header {*Absoluteness for Order Types, Rank Functions and Well-Founded
|
|
7 |
Relations*} |
|
8 |
||
| 16417 | 9 |
theory Rank imports WF_absolute begin |
| 13634 | 10 |
|
11 |
subsection {*Order Types: A Direct Construction by Replacement*}
|
|
12 |
||
13 |
locale M_ordertype = M_basic + |
|
14 |
assumes well_ord_iso_separation: |
|
15 |
"[| M(A); M(f); M(r) |] |
|
16 |
==> separation (M, \<lambda>x. x\<in>A --> (\<exists>y[M]. (\<exists>p[M]. |
|
17 |
fun_apply(M,f,x,y) & pair(M,y,x,p) & p \<in> r)))" |
|
18 |
and obase_separation: |
|
19 |
--{*part of the order type formalization*}
|
|
20 |
"[| M(A); M(r) |] |
|
21 |
==> separation(M, \<lambda>a. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. |
|
22 |
ordinal(M,x) & membership(M,x,mx) & pred_set(M,A,a,r,par) & |
|
23 |
order_isomorphism(M,par,r,x,mx,g))" |
|
24 |
and obase_equals_separation: |
|
25 |
"[| M(A); M(r) |] |
|
26 |
==> separation (M, \<lambda>x. x\<in>A --> ~(\<exists>y[M]. \<exists>g[M]. |
|
27 |
ordinal(M,y) & (\<exists>my[M]. \<exists>pxr[M]. |
|
28 |
membership(M,y,my) & pred_set(M,A,x,r,pxr) & |
|
29 |
order_isomorphism(M,pxr,r,y,my,g))))" |
|
30 |
and omap_replacement: |
|
31 |
"[| M(A); M(r) |] |
|
32 |
==> strong_replacement(M, |
|
33 |
\<lambda>a z. \<exists>x[M]. \<exists>g[M]. \<exists>mx[M]. \<exists>par[M]. |
|
34 |
ordinal(M,x) & pair(M,a,x,z) & membership(M,x,mx) & |
|
35 |
pred_set(M,A,a,r,par) & order_isomorphism(M,par,r,x,mx,g))" |
|
36 |
||
37 |
||
38 |
text{*Inductive argument for Kunen's Lemma I 6.1, etc.
|
|
39 |
Simple proof from Halmos, page 72*} |
|
40 |
lemma (in M_ordertype) wellordered_iso_subset_lemma: |
|
41 |
"[| wellordered(M,A,r); f \<in> ord_iso(A,r, A',r); A'<= A; y \<in> A; |
|
42 |
M(A); M(f); M(r) |] ==> ~ <f`y, y> \<in> r" |
|
43 |
apply (unfold wellordered_def ord_iso_def) |
|
44 |
apply (elim conjE CollectE) |
|
45 |
apply (erule wellfounded_on_induct, assumption+) |
|
46 |
apply (insert well_ord_iso_separation [of A f r]) |
|
47 |
apply (simp, clarify) |
|
48 |
apply (drule_tac a = x in bij_is_fun [THEN apply_type], assumption, blast) |
|
49 |
done |
|
50 |
||
51 |
||
52 |
text{*Kunen's Lemma I 6.1, page 14:
|
|
53 |
there's no order-isomorphism to an initial segment of a well-ordering*} |
|
54 |
lemma (in M_ordertype) wellordered_iso_predD: |
|
55 |
"[| wellordered(M,A,r); f \<in> ord_iso(A, r, Order.pred(A,x,r), r); |
|
56 |
M(A); M(f); M(r) |] ==> x \<notin> A" |
|
57 |
apply (rule notI) |
|
58 |
apply (frule wellordered_iso_subset_lemma, assumption) |
|
59 |
apply (auto elim: predE) |
|
60 |
(*Now we know ~ (f`x < x) *) |
|
61 |
apply (drule ord_iso_is_bij [THEN bij_is_fun, THEN apply_type], assumption) |
|
62 |
(*Now we also know f`x \<in> pred(A,x,r); contradiction! *) |
|
63 |
apply (simp add: Order.pred_def) |
|
64 |
done |
|
65 |
||
66 |
||
67 |
lemma (in M_ordertype) wellordered_iso_pred_eq_lemma: |
|
68 |
"[| f \<in> \<langle>Order.pred(A,y,r), r\<rangle> \<cong> \<langle>Order.pred(A,x,r), r\<rangle>; |
|
69 |
wellordered(M,A,r); x\<in>A; y\<in>A; M(A); M(f); M(r) |] ==> <x,y> \<notin> r" |
|
70 |
apply (frule wellordered_is_trans_on, assumption) |
|
71 |
apply (rule notI) |
|
72 |
apply (drule_tac x2=y and x=x and r2=r in |
|
73 |
wellordered_subset [OF _ pred_subset, THEN wellordered_iso_predD]) |
|
74 |
apply (simp add: trans_pred_pred_eq) |
|
75 |
apply (blast intro: predI dest: transM)+ |
|
76 |
done |
|
77 |
||
78 |
||
79 |
text{*Simple consequence of Lemma 6.1*}
|
|
80 |
lemma (in M_ordertype) wellordered_iso_pred_eq: |
|
81 |
"[| wellordered(M,A,r); |
|
82 |
f \<in> ord_iso(Order.pred(A,a,r), r, Order.pred(A,c,r), r); |
|
83 |
M(A); M(f); M(r); a\<in>A; c\<in>A |] ==> a=c" |
|
84 |
apply (frule wellordered_is_trans_on, assumption) |
|
85 |
apply (frule wellordered_is_linear, assumption) |
|
86 |
apply (erule_tac x=a and y=c in linearE, auto) |
|
87 |
apply (drule ord_iso_sym) |
|
88 |
(*two symmetric cases*) |
|
89 |
apply (blast dest: wellordered_iso_pred_eq_lemma)+ |
|
90 |
done |
|
91 |
||
92 |
||
93 |
text{*Following Kunen's Theorem I 7.6, page 17. Note that this material is
|
|
94 |
not required elsewhere.*} |
|
95 |
||
96 |
text{*Can't use @{text well_ord_iso_preserving} because it needs the
|
|
97 |
strong premise @{term "well_ord(A,r)"}*}
|
|
98 |
lemma (in M_ordertype) ord_iso_pred_imp_lt: |
|
99 |
"[| f \<in> ord_iso(Order.pred(A,x,r), r, i, Memrel(i)); |
|
100 |
g \<in> ord_iso(Order.pred(A,y,r), r, j, Memrel(j)); |
|
101 |
wellordered(M,A,r); x \<in> A; y \<in> A; M(A); M(r); M(f); M(g); M(j); |
|
102 |
Ord(i); Ord(j); \<langle>x,y\<rangle> \<in> r |] |
|
103 |
==> i < j" |
|
104 |
apply (frule wellordered_is_trans_on, assumption) |
|
105 |
apply (frule_tac y=y in transM, assumption) |
|
106 |
apply (rule_tac i=i and j=j in Ord_linear_lt, auto) |
|
107 |
txt{*case @{term "i=j"} yields a contradiction*}
|
|
108 |
apply (rule_tac x1=x and A1="Order.pred(A,y,r)" in |
|
109 |
wellordered_iso_predD [THEN notE]) |
|
110 |
apply (blast intro: wellordered_subset [OF _ pred_subset]) |
|
111 |
apply (simp add: trans_pred_pred_eq) |
|
112 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
113 |
apply (simp_all add: pred_iff pred_closed converse_closed comp_closed) |
|
114 |
txt{*case @{term "j<i"} also yields a contradiction*}
|
|
115 |
apply (frule restrict_ord_iso2, assumption+) |
|
116 |
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun]) |
|
117 |
apply (frule apply_type, blast intro: ltD) |
|
118 |
--{*thus @{term "converse(f)`j \<in> Order.pred(A,x,r)"}*}
|
|
119 |
apply (simp add: pred_iff) |
|
120 |
apply (subgoal_tac |
|
121 |
"\<exists>h[M]. h \<in> ord_iso(Order.pred(A,y,r), r, |
|
122 |
Order.pred(A, converse(f)`j, r), r)") |
|
123 |
apply (clarify, frule wellordered_iso_pred_eq, assumption+) |
|
124 |
apply (blast dest: wellordered_asym) |
|
125 |
apply (intro rexI) |
|
126 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans)+ |
|
127 |
done |
|
128 |
||
129 |
||
130 |
lemma ord_iso_converse1: |
|
131 |
"[| f: ord_iso(A,r,B,s); <b, f`a>: s; a:A; b:B |] |
|
| 13721 | 132 |
==> <converse(f) ` b, a> \<in> r" |
| 13634 | 133 |
apply (frule ord_iso_converse, assumption+) |
134 |
apply (blast intro: ord_iso_is_bij [THEN bij_is_fun, THEN apply_funtype]) |
|
135 |
apply (simp add: left_inverse_bij [OF ord_iso_is_bij]) |
|
136 |
done |
|
137 |
||
138 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
139 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
140 |
obase :: "[i=>o,i,i] => i" where |
| 13634 | 141 |
--{*the domain of @{text om}, eventually shown to equal @{text A}*}
|
142 |
"obase(M,A,r) == {a\<in>A. \<exists>x[M]. \<exists>g[M]. Ord(x) &
|
|
143 |
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))}" |
|
144 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
145 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
146 |
omap :: "[i=>o,i,i,i] => o" where |
| 13634 | 147 |
--{*the function that maps wosets to order types*}
|
148 |
"omap(M,A,r,f) == |
|
149 |
\<forall>z[M]. |
|
150 |
z \<in> f <-> (\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & |
|
151 |
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))" |
|
152 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
153 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
154 |
otype :: "[i=>o,i,i,i] => o" where --{*the order types themselves*}
|
| 13634 | 155 |
"otype(M,A,r,i) == \<exists>f[M]. omap(M,A,r,f) & is_range(M,f,i)" |
156 |
||
157 |
||
158 |
text{*Can also be proved with the premise @{term "M(z)"} instead of
|
|
159 |
@{term "M(f)"}, but that version is less useful. This lemma
|
|
160 |
is also more useful than the definition, @{text omap_def}.*}
|
|
161 |
lemma (in M_ordertype) omap_iff: |
|
162 |
"[| omap(M,A,r,f); M(A); M(f) |] |
|
163 |
==> z \<in> f <-> |
|
164 |
(\<exists>a\<in>A. \<exists>x[M]. \<exists>g[M]. z = <a,x> & Ord(x) & |
|
165 |
g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x)))" |
|
166 |
apply (simp add: omap_def Memrel_closed pred_closed) |
|
167 |
apply (rule iffI) |
|
168 |
apply (drule_tac [2] x=z in rspec) |
|
169 |
apply (drule_tac x=z in rspec) |
|
170 |
apply (blast dest: transM)+ |
|
171 |
done |
|
172 |
||
173 |
lemma (in M_ordertype) omap_unique: |
|
174 |
"[| omap(M,A,r,f); omap(M,A,r,f'); M(A); M(r); M(f); M(f') |] ==> f' = f" |
|
175 |
apply (rule equality_iffI) |
|
176 |
apply (simp add: omap_iff) |
|
177 |
done |
|
178 |
||
179 |
lemma (in M_ordertype) omap_yields_Ord: |
|
180 |
"[| omap(M,A,r,f); \<langle>a,x\<rangle> \<in> f; M(a); M(x) |] ==> Ord(x)" |
|
181 |
by (simp add: omap_def) |
|
182 |
||
183 |
lemma (in M_ordertype) otype_iff: |
|
184 |
"[| otype(M,A,r,i); M(A); M(r); M(i) |] |
|
185 |
==> x \<in> i <-> |
|
186 |
(M(x) & Ord(x) & |
|
187 |
(\<exists>a\<in>A. \<exists>g[M]. g \<in> ord_iso(Order.pred(A,a,r),r,x,Memrel(x))))" |
|
188 |
apply (auto simp add: omap_iff otype_def) |
|
189 |
apply (blast intro: transM) |
|
190 |
apply (rule rangeI) |
|
191 |
apply (frule transM, assumption) |
|
192 |
apply (simp add: omap_iff, blast) |
|
193 |
done |
|
194 |
||
195 |
lemma (in M_ordertype) otype_eq_range: |
|
196 |
"[| omap(M,A,r,f); otype(M,A,r,i); M(A); M(r); M(f); M(i) |] |
|
197 |
==> i = range(f)" |
|
198 |
apply (auto simp add: otype_def omap_iff) |
|
199 |
apply (blast dest: omap_unique) |
|
200 |
done |
|
201 |
||
202 |
||
203 |
lemma (in M_ordertype) Ord_otype: |
|
204 |
"[| otype(M,A,r,i); trans[A](r); M(A); M(r); M(i) |] ==> Ord(i)" |
|
205 |
apply (rule OrdI) |
|
206 |
prefer 2 |
|
207 |
apply (simp add: Ord_def otype_def omap_def) |
|
208 |
apply clarify |
|
209 |
apply (frule pair_components_in_M, assumption) |
|
210 |
apply blast |
|
211 |
apply (auto simp add: Transset_def otype_iff) |
|
212 |
apply (blast intro: transM) |
|
213 |
apply (blast intro: Ord_in_Ord) |
|
214 |
apply (rename_tac y a g) |
|
215 |
apply (frule ord_iso_sym [THEN ord_iso_is_bij, THEN bij_is_fun, |
|
216 |
THEN apply_funtype], assumption) |
|
217 |
apply (rule_tac x="converse(g)`y" in bexI) |
|
218 |
apply (frule_tac a="converse(g) ` y" in ord_iso_restrict_pred, assumption) |
|
219 |
apply (safe elim!: predE) |
|
220 |
apply (blast intro: restrict_ord_iso ord_iso_sym ltI dest: transM) |
|
221 |
done |
|
222 |
||
223 |
lemma (in M_ordertype) domain_omap: |
|
224 |
"[| omap(M,A,r,f); M(A); M(r); M(B); M(f) |] |
|
225 |
==> domain(f) = obase(M,A,r)" |
|
226 |
apply (simp add: domain_closed obase_def) |
|
227 |
apply (rule equality_iffI) |
|
228 |
apply (simp add: domain_iff omap_iff, blast) |
|
229 |
done |
|
230 |
||
231 |
lemma (in M_ordertype) omap_subset: |
|
232 |
"[| omap(M,A,r,f); otype(M,A,r,i); |
|
233 |
M(A); M(r); M(f); M(B); M(i) |] ==> f \<subseteq> obase(M,A,r) * i" |
|
234 |
apply clarify |
|
235 |
apply (simp add: omap_iff obase_def) |
|
236 |
apply (force simp add: otype_iff) |
|
237 |
done |
|
238 |
||
239 |
lemma (in M_ordertype) omap_funtype: |
|
240 |
"[| omap(M,A,r,f); otype(M,A,r,i); |
|
241 |
M(A); M(r); M(f); M(i) |] ==> f \<in> obase(M,A,r) -> i" |
|
242 |
apply (simp add: domain_omap omap_subset Pi_iff function_def omap_iff) |
|
243 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
244 |
done |
|
245 |
||
246 |
||
247 |
lemma (in M_ordertype) wellordered_omap_bij: |
|
248 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
249 |
M(A); M(r); M(f); M(i) |] ==> f \<in> bij(obase(M,A,r),i)" |
|
250 |
apply (insert omap_funtype [of A r f i]) |
|
251 |
apply (auto simp add: bij_def inj_def) |
|
252 |
prefer 2 apply (blast intro: fun_is_surj dest: otype_eq_range) |
|
253 |
apply (frule_tac a=w in apply_Pair, assumption) |
|
254 |
apply (frule_tac a=x in apply_Pair, assumption) |
|
255 |
apply (simp add: omap_iff) |
|
256 |
apply (blast intro: wellordered_iso_pred_eq ord_iso_sym ord_iso_trans) |
|
257 |
done |
|
258 |
||
259 |
||
260 |
text{*This is not the final result: we must show @{term "oB(A,r) = A"}*}
|
|
261 |
lemma (in M_ordertype) omap_ord_iso: |
|
262 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
263 |
M(A); M(r); M(f); M(i) |] ==> f \<in> ord_iso(obase(M,A,r),r,i,Memrel(i))" |
|
264 |
apply (rule ord_isoI) |
|
265 |
apply (erule wellordered_omap_bij, assumption+) |
|
266 |
apply (insert omap_funtype [of A r f i], simp) |
|
267 |
apply (frule_tac a=x in apply_Pair, assumption) |
|
268 |
apply (frule_tac a=y in apply_Pair, assumption) |
|
269 |
apply (auto simp add: omap_iff) |
|
270 |
txt{*direction 1: assuming @{term "\<langle>x,y\<rangle> \<in> r"}*}
|
|
271 |
apply (blast intro: ltD ord_iso_pred_imp_lt) |
|
272 |
txt{*direction 2: proving @{term "\<langle>x,y\<rangle> \<in> r"} using linearity of @{term r}*}
|
|
273 |
apply (rename_tac x y g ga) |
|
274 |
apply (frule wellordered_is_linear, assumption, |
|
275 |
erule_tac x=x and y=y in linearE, assumption+) |
|
276 |
txt{*the case @{term "x=y"} leads to immediate contradiction*}
|
|
277 |
apply (blast elim: mem_irrefl) |
|
278 |
txt{*the case @{term "\<langle>y,x\<rangle> \<in> r"}: handle like the opposite direction*}
|
|
279 |
apply (blast dest: ord_iso_pred_imp_lt ltD elim: mem_asym) |
|
280 |
done |
|
281 |
||
282 |
lemma (in M_ordertype) Ord_omap_image_pred: |
|
283 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
284 |
M(A); M(r); M(f); M(i); b \<in> A |] ==> Ord(f `` Order.pred(A,b,r))" |
|
285 |
apply (frule wellordered_is_trans_on, assumption) |
|
286 |
apply (rule OrdI) |
|
287 |
prefer 2 apply (simp add: image_iff omap_iff Ord_def, blast) |
|
288 |
txt{*Hard part is to show that the image is a transitive set.*}
|
|
289 |
apply (simp add: Transset_def, clarify) |
|
290 |
apply (simp add: image_iff pred_iff apply_iff [OF omap_funtype [of A r f i]]) |
|
291 |
apply (rename_tac c j, clarify) |
|
292 |
apply (frule omap_funtype [of A r f, THEN apply_funtype], assumption+) |
|
| 13721 | 293 |
apply (subgoal_tac "j \<in> i") |
| 13634 | 294 |
prefer 2 apply (blast intro: Ord_trans Ord_otype) |
| 13721 | 295 |
apply (subgoal_tac "converse(f) ` j \<in> obase(M,A,r)") |
| 13634 | 296 |
prefer 2 |
297 |
apply (blast dest: wellordered_omap_bij [THEN bij_converse_bij, |
|
298 |
THEN bij_is_fun, THEN apply_funtype]) |
|
299 |
apply (rule_tac x="converse(f) ` j" in bexI) |
|
300 |
apply (simp add: right_inverse_bij [OF wellordered_omap_bij]) |
|
301 |
apply (intro predI conjI) |
|
302 |
apply (erule_tac b=c in trans_onD) |
|
303 |
apply (rule ord_iso_converse1 [OF omap_ord_iso [of A r f i]]) |
|
304 |
apply (auto simp add: obase_def) |
|
305 |
done |
|
306 |
||
307 |
lemma (in M_ordertype) restrict_omap_ord_iso: |
|
308 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
309 |
D \<subseteq> obase(M,A,r); M(A); M(r); M(f); M(i) |] |
|
310 |
==> restrict(f,D) \<in> (\<langle>D,r\<rangle> \<cong> \<langle>f``D, Memrel(f``D)\<rangle>)" |
|
311 |
apply (frule ord_iso_restrict_image [OF omap_ord_iso [of A r f i]], |
|
312 |
assumption+) |
|
313 |
apply (drule ord_iso_sym [THEN subset_ord_iso_Memrel]) |
|
314 |
apply (blast dest: subsetD [OF omap_subset]) |
|
315 |
apply (drule ord_iso_sym, simp) |
|
316 |
done |
|
317 |
||
318 |
lemma (in M_ordertype) obase_equals: |
|
319 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
320 |
M(A); M(r); M(f); M(i) |] ==> obase(M,A,r) = A" |
|
321 |
apply (rule equalityI, force simp add: obase_def, clarify) |
|
322 |
apply (unfold obase_def, simp) |
|
323 |
apply (frule wellordered_is_wellfounded_on, assumption) |
|
324 |
apply (erule wellfounded_on_induct, assumption+) |
|
325 |
apply (frule obase_equals_separation [of A r], assumption) |
|
326 |
apply (simp, clarify) |
|
327 |
apply (rename_tac b) |
|
328 |
apply (subgoal_tac "Order.pred(A,b,r) <= obase(M,A,r)") |
|
329 |
apply (blast intro!: restrict_omap_ord_iso Ord_omap_image_pred) |
|
330 |
apply (force simp add: pred_iff obase_def) |
|
331 |
done |
|
332 |
||
333 |
||
334 |
||
335 |
text{*Main result: @{term om} gives the order-isomorphism
|
|
336 |
@{term "\<langle>A,r\<rangle> \<cong> \<langle>i, Memrel(i)\<rangle>"} *}
|
|
337 |
theorem (in M_ordertype) omap_ord_iso_otype: |
|
338 |
"[| wellordered(M,A,r); omap(M,A,r,f); otype(M,A,r,i); |
|
339 |
M(A); M(r); M(f); M(i) |] ==> f \<in> ord_iso(A, r, i, Memrel(i))" |
|
340 |
apply (frule omap_ord_iso, assumption+) |
|
341 |
apply (simp add: obase_equals) |
|
342 |
done |
|
343 |
||
344 |
lemma (in M_ordertype) obase_exists: |
|
345 |
"[| M(A); M(r) |] ==> M(obase(M,A,r))" |
|
346 |
apply (simp add: obase_def) |
|
347 |
apply (insert obase_separation [of A r]) |
|
348 |
apply (simp add: separation_def) |
|
349 |
done |
|
350 |
||
351 |
lemma (in M_ordertype) omap_exists: |
|
352 |
"[| M(A); M(r) |] ==> \<exists>z[M]. omap(M,A,r,z)" |
|
353 |
apply (simp add: omap_def) |
|
354 |
apply (insert omap_replacement [of A r]) |
|
355 |
apply (simp add: strong_replacement_def) |
|
356 |
apply (drule_tac x="obase(M,A,r)" in rspec) |
|
357 |
apply (simp add: obase_exists) |
|
358 |
apply (simp add: Memrel_closed pred_closed obase_def) |
|
359 |
apply (erule impE) |
|
360 |
apply (clarsimp simp add: univalent_def) |
|
361 |
apply (blast intro: Ord_iso_implies_eq ord_iso_sym ord_iso_trans, clarify) |
|
362 |
apply (rule_tac x=Y in rexI) |
|
363 |
apply (simp add: Memrel_closed pred_closed obase_def, blast, assumption) |
|
364 |
done |
|
365 |
||
366 |
declare rall_simps [simp] rex_simps [simp] |
|
367 |
||
368 |
lemma (in M_ordertype) otype_exists: |
|
369 |
"[| wellordered(M,A,r); M(A); M(r) |] ==> \<exists>i[M]. otype(M,A,r,i)" |
|
370 |
apply (insert omap_exists [of A r]) |
|
371 |
apply (simp add: otype_def, safe) |
|
372 |
apply (rule_tac x="range(x)" in rexI) |
|
373 |
apply blast+ |
|
374 |
done |
|
375 |
||
376 |
lemma (in M_ordertype) ordertype_exists: |
|
377 |
"[| wellordered(M,A,r); M(A); M(r) |] |
|
378 |
==> \<exists>f[M]. (\<exists>i[M]. Ord(i) & f \<in> ord_iso(A, r, i, Memrel(i)))" |
|
379 |
apply (insert obase_exists [of A r] omap_exists [of A r] otype_exists [of A r], simp, clarify) |
|
380 |
apply (rename_tac i) |
|
381 |
apply (subgoal_tac "Ord(i)", blast intro: omap_ord_iso_otype) |
|
382 |
apply (rule Ord_otype) |
|
383 |
apply (force simp add: otype_def range_closed) |
|
384 |
apply (simp_all add: wellordered_is_trans_on) |
|
385 |
done |
|
386 |
||
387 |
||
388 |
lemma (in M_ordertype) relativized_imp_well_ord: |
|
389 |
"[| wellordered(M,A,r); M(A); M(r) |] ==> well_ord(A,r)" |
|
390 |
apply (insert ordertype_exists [of A r], simp) |
|
391 |
apply (blast intro: well_ord_ord_iso well_ord_Memrel) |
|
392 |
done |
|
393 |
||
394 |
subsection {*Kunen's theorem 5.4, page 127*}
|
|
395 |
||
396 |
text{*(a) The notion of Wellordering is absolute*}
|
|
397 |
theorem (in M_ordertype) well_ord_abs [simp]: |
|
398 |
"[| M(A); M(r) |] ==> wellordered(M,A,r) <-> well_ord(A,r)" |
|
399 |
by (blast intro: well_ord_imp_relativized relativized_imp_well_ord) |
|
400 |
||
401 |
||
402 |
text{*(b) Order types are absolute*}
|
|
403 |
theorem (in M_ordertype) |
|
404 |
"[| wellordered(M,A,r); f \<in> ord_iso(A, r, i, Memrel(i)); |
|
405 |
M(A); M(r); M(f); M(i); Ord(i) |] ==> i = ordertype(A,r)" |
|
406 |
by (blast intro: Ord_ordertype relativized_imp_well_ord ordertype_ord_iso |
|
407 |
Ord_iso_implies_eq ord_iso_sym ord_iso_trans) |
|
408 |
||
409 |
||
410 |
subsection{*Ordinal Arithmetic: Two Examples of Recursion*}
|
|
411 |
||
412 |
text{*Note: the remainder of this theory is not needed elsewhere.*}
|
|
413 |
||
414 |
subsubsection{*Ordinal Addition*}
|
|
415 |
||
416 |
(*FIXME: update to use new techniques!!*) |
|
417 |
(*This expresses ordinal addition in the language of ZF. It also |
|
418 |
provides an abbreviation that can be used in the instance of strong |
|
419 |
replacement below. Here j is used to define the relation, namely |
|
420 |
Memrel(succ(j)), while x determines the domain of f.*) |
|
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
421 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
422 |
is_oadd_fun :: "[i=>o,i,i,i,i] => o" where |
| 13634 | 423 |
"is_oadd_fun(M,i,j,x,f) == |
424 |
(\<forall>sj msj. M(sj) --> M(msj) --> |
|
425 |
successor(M,j,sj) --> membership(M,sj,msj) --> |
|
426 |
M_is_recfun(M, |
|
427 |
%x g y. \<exists>gx[M]. image(M,g,x,gx) & union(M,i,gx,y), |
|
428 |
msj, x, f))" |
|
429 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
430 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
431 |
is_oadd :: "[i=>o,i,i,i] => o" where |
| 13634 | 432 |
"is_oadd(M,i,j,k) == |
433 |
(~ ordinal(M,i) & ~ ordinal(M,j) & k=0) | |
|
434 |
(~ ordinal(M,i) & ordinal(M,j) & k=j) | |
|
435 |
(ordinal(M,i) & ~ ordinal(M,j) & k=i) | |
|
436 |
(ordinal(M,i) & ordinal(M,j) & |
|
437 |
(\<exists>f fj sj. M(f) & M(fj) & M(sj) & |
|
438 |
successor(M,j,sj) & is_oadd_fun(M,i,sj,sj,f) & |
|
439 |
fun_apply(M,f,j,fj) & fj = k))" |
|
440 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
441 |
definition |
| 13634 | 442 |
(*NEEDS RELATIVIZATION*) |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
443 |
omult_eqns :: "[i,i,i,i] => o" where |
| 13634 | 444 |
"omult_eqns(i,x,g,z) == |
445 |
Ord(x) & |
|
446 |
(x=0 --> z=0) & |
|
447 |
(\<forall>j. x = succ(j) --> z = g`j ++ i) & |
|
448 |
(Limit(x) --> z = \<Union>(g``x))" |
|
449 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
450 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
451 |
is_omult_fun :: "[i=>o,i,i,i] => o" where |
| 13634 | 452 |
"is_omult_fun(M,i,j,f) == |
453 |
(\<exists>df. M(df) & is_function(M,f) & |
|
454 |
is_domain(M,f,df) & subset(M, j, df)) & |
|
455 |
(\<forall>x\<in>j. omult_eqns(i,x,f,f`x))" |
|
456 |
||
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
457 |
definition |
|
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
458 |
is_omult :: "[i=>o,i,i,i] => o" where |
| 13634 | 459 |
"is_omult(M,i,j,k) == |
460 |
\<exists>f fj sj. M(f) & M(fj) & M(sj) & |
|
461 |
successor(M,j,sj) & is_omult_fun(M,i,sj,f) & |
|
462 |
fun_apply(M,f,j,fj) & fj = k" |
|
463 |
||
464 |
||
465 |
locale M_ord_arith = M_ordertype + |
|
466 |
assumes oadd_strong_replacement: |
|
467 |
"[| M(i); M(j) |] ==> |
|
468 |
strong_replacement(M, |
|
469 |
\<lambda>x z. \<exists>y[M]. pair(M,x,y,z) & |
|
470 |
(\<exists>f[M]. \<exists>fx[M]. is_oadd_fun(M,i,j,x,f) & |
|
471 |
image(M,f,x,fx) & y = i Un fx))" |
|
472 |
||
473 |
and omult_strong_replacement': |
|
474 |
"[| M(i); M(j) |] ==> |
|
475 |
strong_replacement(M, |
|
476 |
\<lambda>x z. \<exists>y[M]. z = <x,y> & |
|
477 |
(\<exists>g[M]. is_recfun(Memrel(succ(j)),x,%x g. THE z. omult_eqns(i,x,g,z),g) & |
|
478 |
y = (THE z. omult_eqns(i, x, g, z))))" |
|
479 |
||
480 |
||
481 |
||
482 |
text{*@{text is_oadd_fun}: Relating the pure "language of set theory" to Isabelle/ZF*}
|
|
483 |
lemma (in M_ord_arith) is_oadd_fun_iff: |
|
484 |
"[| a\<le>j; M(i); M(j); M(a); M(f) |] |
|
485 |
==> is_oadd_fun(M,i,j,a,f) <-> |
|
486 |
f \<in> a \<rightarrow> range(f) & (\<forall>x. M(x) --> x < a --> f`x = i Un f``x)" |
|
487 |
apply (frule lt_Ord) |
|
488 |
apply (simp add: is_oadd_fun_def Memrel_closed Un_closed |
|
489 |
relation2_def is_recfun_abs [of "%x g. i Un g``x"] |
|
490 |
image_closed is_recfun_iff_equation |
|
491 |
Ball_def lt_trans [OF ltI, of _ a] lt_Memrel) |
|
492 |
apply (simp add: lt_def) |
|
493 |
apply (blast dest: transM) |
|
494 |
done |
|
495 |
||
496 |
||
497 |
lemma (in M_ord_arith) oadd_strong_replacement': |
|
498 |
"[| M(i); M(j) |] ==> |
|
499 |
strong_replacement(M, |
|
500 |
\<lambda>x z. \<exists>y[M]. z = <x,y> & |
|
501 |
(\<exists>g[M]. is_recfun(Memrel(succ(j)),x,%x g. i Un g``x,g) & |
|
502 |
y = i Un g``x))" |
|
503 |
apply (insert oadd_strong_replacement [of i j]) |
|
504 |
apply (simp add: is_oadd_fun_def relation2_def |
|
505 |
is_recfun_abs [of "%x g. i Un g``x"]) |
|
506 |
done |
|
507 |
||
508 |
||
509 |
lemma (in M_ord_arith) exists_oadd: |
|
510 |
"[| Ord(j); M(i); M(j) |] |
|
511 |
==> \<exists>f[M]. is_recfun(Memrel(succ(j)), j, %x g. i Un g``x, f)" |
|
512 |
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel]) |
|
513 |
apply (simp_all add: Memrel_type oadd_strong_replacement') |
|
514 |
done |
|
515 |
||
516 |
lemma (in M_ord_arith) exists_oadd_fun: |
|
517 |
"[| Ord(j); M(i); M(j) |] ==> \<exists>f[M]. is_oadd_fun(M,i,succ(j),succ(j),f)" |
|
518 |
apply (rule exists_oadd [THEN rexE]) |
|
519 |
apply (erule Ord_succ, assumption, simp) |
|
520 |
apply (rename_tac f) |
|
521 |
apply (frule is_recfun_type) |
|
522 |
apply (rule_tac x=f in rexI) |
|
523 |
apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def |
|
524 |
is_oadd_fun_iff Ord_trans [OF _ succI1], assumption) |
|
525 |
done |
|
526 |
||
527 |
lemma (in M_ord_arith) is_oadd_fun_apply: |
|
528 |
"[| x < j; M(i); M(j); M(f); is_oadd_fun(M,i,j,j,f) |] |
|
529 |
==> f`x = i Un (\<Union>k\<in>x. {f ` k})"
|
|
530 |
apply (simp add: is_oadd_fun_iff lt_Ord2, clarify) |
|
531 |
apply (frule lt_closed, simp) |
|
532 |
apply (frule leI [THEN le_imp_subset]) |
|
533 |
apply (simp add: image_fun, blast) |
|
534 |
done |
|
535 |
||
536 |
lemma (in M_ord_arith) is_oadd_fun_iff_oadd [rule_format]: |
|
537 |
"[| is_oadd_fun(M,i,J,J,f); M(i); M(J); M(f); Ord(i); Ord(j) |] |
|
538 |
==> j<J --> f`j = i++j" |
|
539 |
apply (erule_tac i=j in trans_induct, clarify) |
|
540 |
apply (subgoal_tac "\<forall>k\<in>x. k<J") |
|
541 |
apply (simp (no_asm_simp) add: is_oadd_def oadd_unfold is_oadd_fun_apply) |
|
542 |
apply (blast intro: lt_trans ltI lt_Ord) |
|
543 |
done |
|
544 |
||
545 |
lemma (in M_ord_arith) Ord_oadd_abs: |
|
546 |
"[| M(i); M(j); M(k); Ord(i); Ord(j) |] ==> is_oadd(M,i,j,k) <-> k = i++j" |
|
547 |
apply (simp add: is_oadd_def is_oadd_fun_iff_oadd) |
|
548 |
apply (frule exists_oadd_fun [of j i], blast+) |
|
549 |
done |
|
550 |
||
551 |
lemma (in M_ord_arith) oadd_abs: |
|
552 |
"[| M(i); M(j); M(k) |] ==> is_oadd(M,i,j,k) <-> k = i++j" |
|
553 |
apply (case_tac "Ord(i) & Ord(j)") |
|
554 |
apply (simp add: Ord_oadd_abs) |
|
555 |
apply (auto simp add: is_oadd_def oadd_eq_if_raw_oadd) |
|
556 |
done |
|
557 |
||
558 |
lemma (in M_ord_arith) oadd_closed [intro,simp]: |
|
559 |
"[| M(i); M(j) |] ==> M(i++j)" |
|
560 |
apply (simp add: oadd_eq_if_raw_oadd, clarify) |
|
561 |
apply (simp add: raw_oadd_eq_oadd) |
|
562 |
apply (frule exists_oadd_fun [of j i], auto) |
|
563 |
apply (simp add: apply_closed is_oadd_fun_iff_oadd [symmetric]) |
|
564 |
done |
|
565 |
||
566 |
||
567 |
subsubsection{*Ordinal Multiplication*}
|
|
568 |
||
569 |
lemma omult_eqns_unique: |
|
570 |
"[| omult_eqns(i,x,g,z); omult_eqns(i,x,g,z') |] ==> z=z'"; |
|
571 |
apply (simp add: omult_eqns_def, clarify) |
|
572 |
apply (erule Ord_cases, simp_all) |
|
573 |
done |
|
574 |
||
575 |
lemma omult_eqns_0: "omult_eqns(i,0,g,z) <-> z=0" |
|
576 |
by (simp add: omult_eqns_def) |
|
577 |
||
578 |
lemma the_omult_eqns_0: "(THE z. omult_eqns(i,0,g,z)) = 0" |
|
579 |
by (simp add: omult_eqns_0) |
|
580 |
||
581 |
lemma omult_eqns_succ: "omult_eqns(i,succ(j),g,z) <-> Ord(j) & z = g`j ++ i" |
|
582 |
by (simp add: omult_eqns_def) |
|
583 |
||
584 |
lemma the_omult_eqns_succ: |
|
585 |
"Ord(j) ==> (THE z. omult_eqns(i,succ(j),g,z)) = g`j ++ i" |
|
586 |
by (simp add: omult_eqns_succ) |
|
587 |
||
588 |
lemma omult_eqns_Limit: |
|
589 |
"Limit(x) ==> omult_eqns(i,x,g,z) <-> z = \<Union>(g``x)" |
|
590 |
apply (simp add: omult_eqns_def) |
|
591 |
apply (blast intro: Limit_is_Ord) |
|
592 |
done |
|
593 |
||
594 |
lemma the_omult_eqns_Limit: |
|
595 |
"Limit(x) ==> (THE z. omult_eqns(i,x,g,z)) = \<Union>(g``x)" |
|
596 |
by (simp add: omult_eqns_Limit) |
|
597 |
||
598 |
lemma omult_eqns_Not: "~ Ord(x) ==> ~ omult_eqns(i,x,g,z)" |
|
599 |
by (simp add: omult_eqns_def) |
|
600 |
||
601 |
||
602 |
lemma (in M_ord_arith) the_omult_eqns_closed: |
|
603 |
"[| M(i); M(x); M(g); function(g) |] |
|
604 |
==> M(THE z. omult_eqns(i, x, g, z))" |
|
605 |
apply (case_tac "Ord(x)") |
|
606 |
prefer 2 apply (simp add: omult_eqns_Not) --{*trivial, non-Ord case*}
|
|
607 |
apply (erule Ord_cases) |
|
608 |
apply (simp add: omult_eqns_0) |
|
609 |
apply (simp add: omult_eqns_succ apply_closed oadd_closed) |
|
610 |
apply (simp add: omult_eqns_Limit) |
|
611 |
done |
|
612 |
||
613 |
lemma (in M_ord_arith) exists_omult: |
|
614 |
"[| Ord(j); M(i); M(j) |] |
|
615 |
==> \<exists>f[M]. is_recfun(Memrel(succ(j)), j, %x g. THE z. omult_eqns(i,x,g,z), f)" |
|
616 |
apply (rule wf_exists_is_recfun [OF wf_Memrel trans_Memrel]) |
|
617 |
apply (simp_all add: Memrel_type omult_strong_replacement') |
|
618 |
apply (blast intro: the_omult_eqns_closed) |
|
619 |
done |
|
620 |
||
621 |
lemma (in M_ord_arith) exists_omult_fun: |
|
622 |
"[| Ord(j); M(i); M(j) |] ==> \<exists>f[M]. is_omult_fun(M,i,succ(j),f)" |
|
623 |
apply (rule exists_omult [THEN rexE]) |
|
624 |
apply (erule Ord_succ, assumption, simp) |
|
625 |
apply (rename_tac f) |
|
626 |
apply (frule is_recfun_type) |
|
627 |
apply (rule_tac x=f in rexI) |
|
628 |
apply (simp add: fun_is_function domain_of_fun lt_Memrel apply_recfun lt_def |
|
629 |
is_omult_fun_def Ord_trans [OF _ succI1]) |
|
630 |
apply (force dest: Ord_in_Ord' |
|
631 |
simp add: omult_eqns_def the_omult_eqns_0 the_omult_eqns_succ |
|
632 |
the_omult_eqns_Limit, assumption) |
|
633 |
done |
|
634 |
||
635 |
lemma (in M_ord_arith) is_omult_fun_apply_0: |
|
636 |
"[| 0 < j; is_omult_fun(M,i,j,f) |] ==> f`0 = 0" |
|
637 |
by (simp add: is_omult_fun_def omult_eqns_def lt_def ball_conj_distrib) |
|
638 |
||
639 |
lemma (in M_ord_arith) is_omult_fun_apply_succ: |
|
640 |
"[| succ(x) < j; is_omult_fun(M,i,j,f) |] ==> f`succ(x) = f`x ++ i" |
|
641 |
by (simp add: is_omult_fun_def omult_eqns_def lt_def, blast) |
|
642 |
||
643 |
lemma (in M_ord_arith) is_omult_fun_apply_Limit: |
|
644 |
"[| x < j; Limit(x); M(j); M(f); is_omult_fun(M,i,j,f) |] |
|
645 |
==> f ` x = (\<Union>y\<in>x. f`y)" |
|
646 |
apply (simp add: is_omult_fun_def omult_eqns_def domain_closed lt_def, clarify) |
|
647 |
apply (drule subset_trans [OF OrdmemD], assumption+) |
|
648 |
apply (simp add: ball_conj_distrib omult_Limit image_function) |
|
649 |
done |
|
650 |
||
651 |
lemma (in M_ord_arith) is_omult_fun_eq_omult: |
|
652 |
"[| is_omult_fun(M,i,J,f); M(J); M(f); Ord(i); Ord(j) |] |
|
653 |
==> j<J --> f`j = i**j" |
|
654 |
apply (erule_tac i=j in trans_induct3) |
|
655 |
apply (safe del: impCE) |
|
656 |
apply (simp add: is_omult_fun_apply_0) |
|
657 |
apply (subgoal_tac "x<J") |
|
658 |
apply (simp add: is_omult_fun_apply_succ omult_succ) |
|
659 |
apply (blast intro: lt_trans) |
|
660 |
apply (subgoal_tac "\<forall>k\<in>x. k<J") |
|
661 |
apply (simp add: is_omult_fun_apply_Limit omult_Limit) |
|
662 |
apply (blast intro: lt_trans ltI lt_Ord) |
|
663 |
done |
|
664 |
||
665 |
lemma (in M_ord_arith) omult_abs: |
|
666 |
"[| M(i); M(j); M(k); Ord(i); Ord(j) |] ==> is_omult(M,i,j,k) <-> k = i**j" |
|
667 |
apply (simp add: is_omult_def is_omult_fun_eq_omult) |
|
668 |
apply (frule exists_omult_fun [of j i], blast+) |
|
669 |
done |
|
670 |
||
671 |
||
672 |
||
| 13647 | 673 |
subsection {*Absoluteness of Well-Founded Relations*}
|
674 |
||
675 |
text{*Relativized to @{term M}: Every well-founded relation is a subset of some
|
|
676 |
inverse image of an ordinal. Key step is the construction (in @{term M}) of a
|
|
677 |
rank function.*} |
|
678 |
||
| 13634 | 679 |
locale M_wfrank = M_trancl + |
680 |
assumes wfrank_separation: |
|
681 |
"M(r) ==> |
|
682 |
separation (M, \<lambda>x. |
|
683 |
\<forall>rplus[M]. tran_closure(M,r,rplus) --> |
|
684 |
~ (\<exists>f[M]. M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f)))" |
|
685 |
and wfrank_strong_replacement: |
|
686 |
"M(r) ==> |
|
687 |
strong_replacement(M, \<lambda>x z. |
|
688 |
\<forall>rplus[M]. tran_closure(M,r,rplus) --> |
|
689 |
(\<exists>y[M]. \<exists>f[M]. pair(M,x,y,z) & |
|
690 |
M_is_recfun(M, %x f y. is_range(M,f,y), rplus, x, f) & |
|
691 |
is_range(M,f,y)))" |
|
692 |
and Ord_wfrank_separation: |
|
693 |
"M(r) ==> |
|
694 |
separation (M, \<lambda>x. |
|
695 |
\<forall>rplus[M]. tran_closure(M,r,rplus) --> |
|
696 |
~ (\<forall>f[M]. \<forall>rangef[M]. |
|
697 |
is_range(M,f,rangef) --> |
|
698 |
M_is_recfun(M, \<lambda>x f y. is_range(M,f,y), rplus, x, f) --> |
|
699 |
ordinal(M,rangef)))" |
|
700 |
||
701 |
||
702 |
text{*Proving that the relativized instances of Separation or Replacement
|
|
703 |
agree with the "real" ones.*} |
|
704 |
||
705 |
lemma (in M_wfrank) wfrank_separation': |
|
706 |
"M(r) ==> |
|
707 |
separation |
|
708 |
(M, \<lambda>x. ~ (\<exists>f[M]. is_recfun(r^+, x, %x f. range(f), f)))" |
|
709 |
apply (insert wfrank_separation [of r]) |
|
710 |
apply (simp add: relation2_def is_recfun_abs [of "%x. range"]) |
|
711 |
done |
|
712 |
||
713 |
lemma (in M_wfrank) wfrank_strong_replacement': |
|
714 |
"M(r) ==> |
|
715 |
strong_replacement(M, \<lambda>x z. \<exists>y[M]. \<exists>f[M]. |
|
716 |
pair(M,x,y,z) & is_recfun(r^+, x, %x f. range(f), f) & |
|
717 |
y = range(f))" |
|
718 |
apply (insert wfrank_strong_replacement [of r]) |
|
719 |
apply (simp add: relation2_def is_recfun_abs [of "%x. range"]) |
|
720 |
done |
|
721 |
||
722 |
lemma (in M_wfrank) Ord_wfrank_separation': |
|
723 |
"M(r) ==> |
|
724 |
separation (M, \<lambda>x. |
|
725 |
~ (\<forall>f[M]. is_recfun(r^+, x, \<lambda>x. range, f) --> Ord(range(f))))" |
|
726 |
apply (insert Ord_wfrank_separation [of r]) |
|
727 |
apply (simp add: relation2_def is_recfun_abs [of "%x. range"]) |
|
728 |
done |
|
729 |
||
730 |
text{*This function, defined using replacement, is a rank function for
|
|
731 |
well-founded relations within the class M.*} |
|
| 21233 | 732 |
definition |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
733 |
wellfoundedrank :: "[i=>o,i,i] => i" where |
| 13634 | 734 |
"wellfoundedrank(M,r,A) == |
735 |
{p. x\<in>A, \<exists>y[M]. \<exists>f[M].
|
|
736 |
p = <x,y> & is_recfun(r^+, x, %x f. range(f), f) & |
|
737 |
y = range(f)}" |
|
738 |
||
739 |
lemma (in M_wfrank) exists_wfrank: |
|
740 |
"[| wellfounded(M,r); M(a); M(r) |] |
|
741 |
==> \<exists>f[M]. is_recfun(r^+, a, %x f. range(f), f)" |
|
742 |
apply (rule wellfounded_exists_is_recfun) |
|
743 |
apply (blast intro: wellfounded_trancl) |
|
744 |
apply (rule trans_trancl) |
|
745 |
apply (erule wfrank_separation') |
|
746 |
apply (erule wfrank_strong_replacement') |
|
747 |
apply (simp_all add: trancl_subset_times) |
|
748 |
done |
|
749 |
||
750 |
lemma (in M_wfrank) M_wellfoundedrank: |
|
751 |
"[| wellfounded(M,r); M(r); M(A) |] ==> M(wellfoundedrank(M,r,A))" |
|
752 |
apply (insert wfrank_strong_replacement' [of r]) |
|
753 |
apply (simp add: wellfoundedrank_def) |
|
754 |
apply (rule strong_replacement_closed) |
|
755 |
apply assumption+ |
|
756 |
apply (rule univalent_is_recfun) |
|
757 |
apply (blast intro: wellfounded_trancl) |
|
758 |
apply (rule trans_trancl) |
|
759 |
apply (simp add: trancl_subset_times) |
|
760 |
apply (blast dest: transM) |
|
761 |
done |
|
762 |
||
763 |
lemma (in M_wfrank) Ord_wfrank_range [rule_format]: |
|
764 |
"[| wellfounded(M,r); a\<in>A; M(r); M(A) |] |
|
765 |
==> \<forall>f[M]. is_recfun(r^+, a, %x f. range(f), f) --> Ord(range(f))" |
|
766 |
apply (drule wellfounded_trancl, assumption) |
|
767 |
apply (rule wellfounded_induct, assumption, erule (1) transM) |
|
768 |
apply simp |
|
769 |
apply (blast intro: Ord_wfrank_separation', clarify) |
|
770 |
txt{*The reasoning in both cases is that we get @{term y} such that
|
|
771 |
@{term "\<langle>y, x\<rangle> \<in> r^+"}. We find that
|
|
772 |
@{term "f`y = restrict(f, r^+ -`` {y})"}. *}
|
|
773 |
apply (rule OrdI [OF _ Ord_is_Transset]) |
|
774 |
txt{*An ordinal is a transitive set...*}
|
|
775 |
apply (simp add: Transset_def) |
|
776 |
apply clarify |
|
777 |
apply (frule apply_recfun2, assumption) |
|
778 |
apply (force simp add: restrict_iff) |
|
779 |
txt{*...of ordinals. This second case requires the induction hyp.*}
|
|
780 |
apply clarify |
|
781 |
apply (rename_tac i y) |
|
782 |
apply (frule apply_recfun2, assumption) |
|
783 |
apply (frule is_recfun_imp_in_r, assumption) |
|
784 |
apply (frule is_recfun_restrict) |
|
785 |
(*simp_all won't work*) |
|
786 |
apply (simp add: trans_trancl trancl_subset_times)+ |
|
787 |
apply (drule spec [THEN mp], assumption) |
|
788 |
apply (subgoal_tac "M(restrict(f, r^+ -`` {y}))")
|
|
789 |
apply (drule_tac x="restrict(f, r^+ -`` {y})" in rspec)
|
|
790 |
apply assumption |
|
791 |
apply (simp add: function_apply_equality [OF _ is_recfun_imp_function]) |
|
792 |
apply (blast dest: pair_components_in_M) |
|
793 |
done |
|
794 |
||
795 |
lemma (in M_wfrank) Ord_range_wellfoundedrank: |
|
796 |
"[| wellfounded(M,r); r \<subseteq> A*A; M(r); M(A) |] |
|
797 |
==> Ord (range(wellfoundedrank(M,r,A)))" |
|
798 |
apply (frule wellfounded_trancl, assumption) |
|
799 |
apply (frule trancl_subset_times) |
|
800 |
apply (simp add: wellfoundedrank_def) |
|
801 |
apply (rule OrdI [OF _ Ord_is_Transset]) |
|
802 |
prefer 2 |
|
803 |
txt{*by our previous result the range consists of ordinals.*}
|
|
804 |
apply (blast intro: Ord_wfrank_range) |
|
805 |
txt{*We still must show that the range is a transitive set.*}
|
|
806 |
apply (simp add: Transset_def, clarify, simp) |
|
807 |
apply (rename_tac x i f u) |
|
808 |
apply (frule is_recfun_imp_in_r, assumption) |
|
809 |
apply (subgoal_tac "M(u) & M(i) & M(x)") |
|
810 |
prefer 2 apply (blast dest: transM, clarify) |
|
811 |
apply (rule_tac a=u in rangeI) |
|
812 |
apply (rule_tac x=u in ReplaceI) |
|
813 |
apply simp |
|
814 |
apply (rule_tac x="restrict(f, r^+ -`` {u})" in rexI)
|
|
815 |
apply (blast intro: is_recfun_restrict trans_trancl dest: apply_recfun2) |
|
816 |
apply simp |
|
817 |
apply blast |
|
818 |
txt{*Unicity requirement of Replacement*}
|
|
819 |
apply clarify |
|
820 |
apply (frule apply_recfun2, assumption) |
|
821 |
apply (simp add: trans_trancl is_recfun_cut) |
|
822 |
done |
|
823 |
||
824 |
lemma (in M_wfrank) function_wellfoundedrank: |
|
825 |
"[| wellfounded(M,r); M(r); M(A)|] |
|
826 |
==> function(wellfoundedrank(M,r,A))" |
|
827 |
apply (simp add: wellfoundedrank_def function_def, clarify) |
|
828 |
txt{*Uniqueness: repeated below!*}
|
|
829 |
apply (drule is_recfun_functional, assumption) |
|
830 |
apply (blast intro: wellfounded_trancl) |
|
831 |
apply (simp_all add: trancl_subset_times trans_trancl) |
|
832 |
done |
|
833 |
||
834 |
lemma (in M_wfrank) domain_wellfoundedrank: |
|
835 |
"[| wellfounded(M,r); M(r); M(A)|] |
|
836 |
==> domain(wellfoundedrank(M,r,A)) = A" |
|
837 |
apply (simp add: wellfoundedrank_def function_def) |
|
838 |
apply (rule equalityI, auto) |
|
839 |
apply (frule transM, assumption) |
|
840 |
apply (frule_tac a=x in exists_wfrank, assumption+, clarify) |
|
841 |
apply (rule_tac b="range(f)" in domainI) |
|
842 |
apply (rule_tac x=x in ReplaceI) |
|
843 |
apply simp |
|
844 |
apply (rule_tac x=f in rexI, blast, simp_all) |
|
845 |
txt{*Uniqueness (for Replacement): repeated above!*}
|
|
846 |
apply clarify |
|
847 |
apply (drule is_recfun_functional, assumption) |
|
848 |
apply (blast intro: wellfounded_trancl) |
|
849 |
apply (simp_all add: trancl_subset_times trans_trancl) |
|
850 |
done |
|
851 |
||
852 |
lemma (in M_wfrank) wellfoundedrank_type: |
|
853 |
"[| wellfounded(M,r); M(r); M(A)|] |
|
854 |
==> wellfoundedrank(M,r,A) \<in> A -> range(wellfoundedrank(M,r,A))" |
|
855 |
apply (frule function_wellfoundedrank [of r A], assumption+) |
|
856 |
apply (frule function_imp_Pi) |
|
857 |
apply (simp add: wellfoundedrank_def relation_def) |
|
858 |
apply blast |
|
859 |
apply (simp add: domain_wellfoundedrank) |
|
860 |
done |
|
861 |
||
862 |
lemma (in M_wfrank) Ord_wellfoundedrank: |
|
863 |
"[| wellfounded(M,r); a \<in> A; r \<subseteq> A*A; M(r); M(A) |] |
|
864 |
==> Ord(wellfoundedrank(M,r,A) ` a)" |
|
865 |
by (blast intro: apply_funtype [OF wellfoundedrank_type] |
|
866 |
Ord_in_Ord [OF Ord_range_wellfoundedrank]) |
|
867 |
||
868 |
lemma (in M_wfrank) wellfoundedrank_eq: |
|
869 |
"[| is_recfun(r^+, a, %x. range, f); |
|
870 |
wellfounded(M,r); a \<in> A; M(f); M(r); M(A)|] |
|
871 |
==> wellfoundedrank(M,r,A) ` a = range(f)" |
|
872 |
apply (rule apply_equality) |
|
873 |
prefer 2 apply (blast intro: wellfoundedrank_type) |
|
874 |
apply (simp add: wellfoundedrank_def) |
|
875 |
apply (rule ReplaceI) |
|
876 |
apply (rule_tac x="range(f)" in rexI) |
|
877 |
apply blast |
|
878 |
apply simp_all |
|
879 |
txt{*Unicity requirement of Replacement*}
|
|
880 |
apply clarify |
|
881 |
apply (drule is_recfun_functional, assumption) |
|
882 |
apply (blast intro: wellfounded_trancl) |
|
883 |
apply (simp_all add: trancl_subset_times trans_trancl) |
|
884 |
done |
|
885 |
||
886 |
||
887 |
lemma (in M_wfrank) wellfoundedrank_lt: |
|
888 |
"[| <a,b> \<in> r; |
|
889 |
wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|] |
|
890 |
==> wellfoundedrank(M,r,A) ` a < wellfoundedrank(M,r,A) ` b" |
|
891 |
apply (frule wellfounded_trancl, assumption) |
|
892 |
apply (subgoal_tac "a\<in>A & b\<in>A") |
|
893 |
prefer 2 apply blast |
|
894 |
apply (simp add: lt_def Ord_wellfoundedrank, clarify) |
|
895 |
apply (frule exists_wfrank [of concl: _ b], erule (1) transM, assumption) |
|
896 |
apply clarify |
|
897 |
apply (rename_tac fb) |
|
898 |
apply (frule is_recfun_restrict [of concl: "r^+" a]) |
|
899 |
apply (rule trans_trancl, assumption) |
|
900 |
apply (simp_all add: r_into_trancl trancl_subset_times) |
|
901 |
txt{*Still the same goal, but with new @{text is_recfun} assumptions.*}
|
|
902 |
apply (simp add: wellfoundedrank_eq) |
|
903 |
apply (frule_tac a=a in wellfoundedrank_eq, assumption+) |
|
904 |
apply (simp_all add: transM [of a]) |
|
905 |
txt{*We have used equations for wellfoundedrank and now must use some
|
|
906 |
for @{text is_recfun}. *}
|
|
907 |
apply (rule_tac a=a in rangeI) |
|
908 |
apply (simp add: is_recfun_type [THEN apply_iff] vimage_singleton_iff |
|
909 |
r_into_trancl apply_recfun r_into_trancl) |
|
910 |
done |
|
911 |
||
912 |
||
913 |
lemma (in M_wfrank) wellfounded_imp_subset_rvimage: |
|
914 |
"[|wellfounded(M,r); r \<subseteq> A*A; M(r); M(A)|] |
|
915 |
==> \<exists>i f. Ord(i) & r <= rvimage(A, f, Memrel(i))" |
|
916 |
apply (rule_tac x="range(wellfoundedrank(M,r,A))" in exI) |
|
917 |
apply (rule_tac x="wellfoundedrank(M,r,A)" in exI) |
|
918 |
apply (simp add: Ord_range_wellfoundedrank, clarify) |
|
919 |
apply (frule subsetD, assumption, clarify) |
|
920 |
apply (simp add: rvimage_iff wellfoundedrank_lt [THEN ltD]) |
|
921 |
apply (blast intro: apply_rangeI wellfoundedrank_type) |
|
922 |
done |
|
923 |
||
924 |
lemma (in M_wfrank) wellfounded_imp_wf: |
|
925 |
"[|wellfounded(M,r); relation(r); M(r)|] ==> wf(r)" |
|
926 |
by (blast dest!: relation_field_times_field wellfounded_imp_subset_rvimage |
|
927 |
intro: wf_rvimage_Ord [THEN wf_subset]) |
|
928 |
||
929 |
lemma (in M_wfrank) wellfounded_on_imp_wf_on: |
|
930 |
"[|wellfounded_on(M,A,r); relation(r); M(r); M(A)|] ==> wf[A](r)" |
|
931 |
apply (simp add: wellfounded_on_iff_wellfounded wf_on_def) |
|
932 |
apply (rule wellfounded_imp_wf) |
|
933 |
apply (simp_all add: relation_def) |
|
934 |
done |
|
935 |
||
936 |
||
937 |
theorem (in M_wfrank) wf_abs: |
|
938 |
"[|relation(r); M(r)|] ==> wellfounded(M,r) <-> wf(r)" |
|
939 |
by (blast intro: wellfounded_imp_wf wf_imp_relativized) |
|
940 |
||
941 |
theorem (in M_wfrank) wf_on_abs: |
|
942 |
"[|relation(r); M(r); M(A)|] ==> wellfounded_on(M,A,r) <-> wf[A](r)" |
|
943 |
by (blast intro: wellfounded_on_imp_wf_on wf_on_imp_relativized) |
|
944 |
||
945 |
end |