| author | wenzelm | 
| Sat, 08 Sep 2018 22:43:25 +0200 | |
| changeset 68955 | 0851db8cde12 | 
| parent 68687 | 2976a4a3b126 | 
| child 69122 | 1b5178abaf97 | 
| permissions | -rw-r--r-- | 
| 35849 | 1 | (* Title: HOL/Algebra/Group.thy | 
| 2 | Author: Clemens Ballarin, started 4 February 2003 | |
| 13813 | 3 | |
| 4 | Based on work by Florian Kammueller, L C Paulson and Markus Wenzel. | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 5 | With additional contributions from Martin Baillon and Paulo EmÃlio de Vilhena. | 
| 13813 | 6 | *) | 
| 7 | ||
| 28823 | 8 | theory Group | 
| 68188 
2af1f142f855
move FuncSet back to HOL-Library (amending 493b818e8e10)
 immler parents: 
68072diff
changeset | 9 | imports Complete_Lattice "HOL-Library.FuncSet" | 
| 28823 | 10 | begin | 
| 13813 | 11 | |
| 61382 | 12 | section \<open>Monoids and Groups\<close> | 
| 13936 | 13 | |
| 61382 | 14 | subsection \<open>Definitions\<close> | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 15 | |
| 61382 | 16 | text \<open> | 
| 58622 | 17 |   Definitions follow @{cite "Jacobson:1985"}.
 | 
| 61382 | 18 | \<close> | 
| 13813 | 19 | |
| 14963 | 20 | record 'a monoid = "'a partial_object" + | 
| 21 | mult :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<otimes>\<index>" 70) | |
| 22 |   one     :: 'a ("\<one>\<index>")
 | |
| 13817 | 23 | |
| 35847 | 24 | definition | 
| 14852 | 25 |   m_inv :: "('a, 'b) monoid_scheme => 'a => 'a" ("inv\<index> _" [81] 80)
 | 
| 67091 | 26 | where "inv\<^bsub>G\<^esub> x = (THE y. y \<in> carrier G \<and> x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> \<and> y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)" | 
| 13936 | 27 | |
| 35847 | 28 | definition | 
| 14651 | 29 | Units :: "_ => 'a set" | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67399diff
changeset | 30 | \<comment> \<open>The set of invertible elements\<close> | 
| 67091 | 31 |   where "Units G = {y. y \<in> carrier G \<and> (\<exists>x \<in> carrier G. x \<otimes>\<^bsub>G\<^esub> y = \<one>\<^bsub>G\<^esub> \<and> y \<otimes>\<^bsub>G\<^esub> x = \<one>\<^bsub>G\<^esub>)}"
 | 
| 13936 | 32 | |
| 33 | consts | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 34 |   pow :: "[('a, 'm) monoid_scheme, 'a, 'b::semiring_1] => 'a"  (infixr "[^]\<index>" 75)
 | 
| 35850 | 35 | |
| 36 | overloading nat_pow == "pow :: [_, 'a, nat] => 'a" | |
| 37 | begin | |
| 55415 | 38 | definition "nat_pow G a n = rec_nat \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) n" | 
| 35850 | 39 | end | 
| 13936 | 40 | |
| 35850 | 41 | overloading int_pow == "pow :: [_, 'a, int] => 'a" | 
| 42 | begin | |
| 43 | definition "int_pow G a z = | |
| 55415 | 44 | (let p = rec_nat \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a) | 
| 46559 | 45 | in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))" | 
| 35850 | 46 | end | 
| 13813 | 47 | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 48 | lemma int_pow_int: "x [^]\<^bsub>G\<^esub> (int n) = x [^]\<^bsub>G\<^esub> n" | 
| 61628 | 49 | by(simp add: int_pow_def nat_pow_def) | 
| 50 | ||
| 19783 | 51 | locale monoid = | 
| 52 | fixes G (structure) | |
| 13813 | 53 | assumes m_closed [intro, simp]: | 
| 14963 | 54 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G" | 
| 55 | and m_assoc: | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 56 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> | 
| 14963 | 57 | \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 58 | and one_closed [intro, simp]: "\<one> \<in> carrier G" | |
| 59 | and l_one [simp]: "x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x" | |
| 60 | and r_one [simp]: "x \<in> carrier G \<Longrightarrow> x \<otimes> \<one> = x" | |
| 13817 | 61 | |
| 13936 | 62 | lemma monoidI: | 
| 19783 | 63 | fixes G (structure) | 
| 13936 | 64 | assumes m_closed: | 
| 14693 | 65 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 66 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 67 | and m_assoc: | 
| 68 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 69 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 70 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 71 | and r_one: "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x" | |
| 13936 | 72 | shows "monoid G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 73 | by (fast intro!: monoid.intro intro: assms) | 
| 13936 | 74 | |
| 75 | lemma (in monoid) Units_closed [dest]: | |
| 76 | "x \<in> Units G ==> x \<in> carrier G" | |
| 77 | by (unfold Units_def) fast | |
| 78 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 79 | lemma (in monoid) one_unique: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 80 | assumes "u \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 81 | and "\<And>x. x \<in> carrier G \<Longrightarrow> u \<otimes> x = x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 82 | shows "u = \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 83 | using assms(2)[OF one_closed] r_one[OF assms(1)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 84 | |
| 13936 | 85 | lemma (in monoid) inv_unique: | 
| 14693 | 86 | assumes eq: "y \<otimes> x = \<one>" "x \<otimes> y' = \<one>" | 
| 87 | and G: "x \<in> carrier G" "y \<in> carrier G" "y' \<in> carrier G" | |
| 13936 | 88 | shows "y = y'" | 
| 89 | proof - | |
| 90 | from G eq have "y = y \<otimes> (x \<otimes> y')" by simp | |
| 91 | also from G have "... = (y \<otimes> x) \<otimes> y'" by (simp add: m_assoc) | |
| 92 | also from G eq have "... = y'" by simp | |
| 93 | finally show ?thesis . | |
| 94 | qed | |
| 95 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 96 | lemma (in monoid) Units_m_closed [simp, intro]: | 
| 27698 | 97 | assumes x: "x \<in> Units G" and y: "y \<in> Units G" | 
| 98 | shows "x \<otimes> y \<in> Units G" | |
| 99 | proof - | |
| 100 | from x obtain x' where x: "x \<in> carrier G" "x' \<in> carrier G" and xinv: "x \<otimes> x' = \<one>" "x' \<otimes> x = \<one>" | |
| 101 | unfolding Units_def by fast | |
| 102 | from y obtain y' where y: "y \<in> carrier G" "y' \<in> carrier G" and yinv: "y \<otimes> y' = \<one>" "y' \<otimes> y = \<one>" | |
| 103 | unfolding Units_def by fast | |
| 104 | from x y xinv yinv have "y' \<otimes> (x' \<otimes> x) \<otimes> y = \<one>" by simp | |
| 105 | moreover from x y xinv yinv have "x \<otimes> (y \<otimes> y') \<otimes> x' = \<one>" by simp | |
| 106 | moreover note x y | |
| 107 | ultimately show ?thesis unfolding Units_def | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 108 | by simp (metis m_assoc m_closed) | 
| 27698 | 109 | qed | 
| 110 | ||
| 13940 | 111 | lemma (in monoid) Units_one_closed [intro, simp]: | 
| 112 | "\<one> \<in> Units G" | |
| 113 | by (unfold Units_def) auto | |
| 114 | ||
| 13936 | 115 | lemma (in monoid) Units_inv_closed [intro, simp]: | 
| 116 | "x \<in> Units G ==> inv x \<in> carrier G" | |
| 68662 | 117 | apply (simp add: Units_def m_inv_def) | 
| 118 | by (metis (mono_tags, lifting) inv_unique the_equality) | |
| 13936 | 119 | |
| 19981 | 120 | lemma (in monoid) Units_l_inv_ex: | 
| 121 | "x \<in> Units G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | |
| 122 | by (unfold Units_def) auto | |
| 123 | ||
| 124 | lemma (in monoid) Units_r_inv_ex: | |
| 125 | "x \<in> Units G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>" | |
| 126 | by (unfold Units_def) auto | |
| 127 | ||
| 27698 | 128 | lemma (in monoid) Units_l_inv [simp]: | 
| 13936 | 129 | "x \<in> Units G ==> inv x \<otimes> x = \<one>" | 
| 68662 | 130 | apply (unfold Units_def m_inv_def, simp) | 
| 131 | by (metis (mono_tags, lifting) inv_unique the_equality) | |
| 13936 | 132 | |
| 27698 | 133 | lemma (in monoid) Units_r_inv [simp]: | 
| 13936 | 134 | "x \<in> Units G ==> x \<otimes> inv x = \<one>" | 
| 68458 | 135 | by (metis (full_types) Units_closed Units_inv_closed Units_l_inv Units_r_inv_ex inv_unique) | 
| 13936 | 136 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 137 | lemma (in monoid) inv_one [simp]: | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 138 | "inv \<one> = \<one>" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 139 | by (metis Units_one_closed Units_r_inv l_one monoid.Units_inv_closed monoid_axioms) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 140 | |
| 13936 | 141 | lemma (in monoid) Units_inv_Units [intro, simp]: | 
| 142 | "x \<in> Units G ==> inv x \<in> Units G" | |
| 143 | proof - | |
| 144 | assume x: "x \<in> Units G" | |
| 145 | show "inv x \<in> Units G" | |
| 146 | by (auto simp add: Units_def | |
| 147 | intro: Units_l_inv Units_r_inv x Units_closed [OF x]) | |
| 148 | qed | |
| 149 | ||
| 150 | lemma (in monoid) Units_l_cancel [simp]: | |
| 151 | "[| x \<in> Units G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 152 | (x \<otimes> y = x \<otimes> z) = (y = z)" | |
| 153 | proof | |
| 154 | assume eq: "x \<otimes> y = x \<otimes> z" | |
| 14693 | 155 | and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13936 | 156 | then have "(inv x \<otimes> x) \<otimes> y = (inv x \<otimes> x) \<otimes> z" | 
| 27698 | 157 | by (simp add: m_assoc Units_closed del: Units_l_inv) | 
| 44472 | 158 | with G show "y = z" by simp | 
| 13936 | 159 | next | 
| 160 | assume eq: "y = z" | |
| 14693 | 161 | and G: "x \<in> Units G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13936 | 162 | then show "x \<otimes> y = x \<otimes> z" by simp | 
| 163 | qed | |
| 164 | ||
| 165 | lemma (in monoid) Units_inv_inv [simp]: | |
| 166 | "x \<in> Units G ==> inv (inv x) = x" | |
| 167 | proof - | |
| 168 | assume x: "x \<in> Units G" | |
| 27698 | 169 | then have "inv x \<otimes> inv (inv x) = inv x \<otimes> x" by simp | 
| 170 | with x show ?thesis by (simp add: Units_closed del: Units_l_inv Units_r_inv) | |
| 13936 | 171 | qed | 
| 172 | ||
| 173 | lemma (in monoid) inv_inj_on_Units: | |
| 174 | "inj_on (m_inv G) (Units G)" | |
| 175 | proof (rule inj_onI) | |
| 176 | fix x y | |
| 14693 | 177 | assume G: "x \<in> Units G" "y \<in> Units G" and eq: "inv x = inv y" | 
| 13936 | 178 | then have "inv (inv x) = inv (inv y)" by simp | 
| 179 | with G show "x = y" by simp | |
| 180 | qed | |
| 181 | ||
| 13940 | 182 | lemma (in monoid) Units_inv_comm: | 
| 183 | assumes inv: "x \<otimes> y = \<one>" | |
| 14693 | 184 | and G: "x \<in> Units G" "y \<in> Units G" | 
| 13940 | 185 | shows "y \<otimes> x = \<one>" | 
| 186 | proof - | |
| 187 | from G have "x \<otimes> y \<otimes> x = x \<otimes> \<one>" by (auto simp add: inv Units_closed) | |
| 188 | with G show ?thesis by (simp del: r_one add: m_assoc Units_closed) | |
| 189 | qed | |
| 190 | ||
| 61628 | 191 | lemma (in monoid) carrier_not_empty: "carrier G \<noteq> {}"
 | 
| 192 | by auto | |
| 193 | ||
| 61382 | 194 | text \<open>Power\<close> | 
| 13936 | 195 | |
| 196 | lemma (in monoid) nat_pow_closed [intro, simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 197 | "x \<in> carrier G ==> x [^] (n::nat) \<in> carrier G" | 
| 13936 | 198 | by (induct n) (simp_all add: nat_pow_def) | 
| 199 | ||
| 200 | lemma (in monoid) nat_pow_0 [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 201 | "x [^] (0::nat) = \<one>" | 
| 13936 | 202 | by (simp add: nat_pow_def) | 
| 203 | ||
| 204 | lemma (in monoid) nat_pow_Suc [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 205 | "x [^] (Suc n) = x [^] n \<otimes> x" | 
| 13936 | 206 | by (simp add: nat_pow_def) | 
| 207 | ||
| 208 | lemma (in monoid) nat_pow_one [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 209 | "\<one> [^] (n::nat) = \<one>" | 
| 13936 | 210 | by (induct n) simp_all | 
| 211 | ||
| 212 | lemma (in monoid) nat_pow_mult: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 213 | "x \<in> carrier G ==> x [^] (n::nat) \<otimes> x [^] m = x [^] (n + m)" | 
| 13936 | 214 | by (induct m) (simp_all add: m_assoc [THEN sym]) | 
| 215 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 216 | lemma (in monoid) nat_pow_comm: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 217 | "x \<in> carrier G \<Longrightarrow> (x [^] (n::nat)) \<otimes> (x [^] (m :: nat)) = (x [^] m) \<otimes> (x [^] n)" | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 218 | using nat_pow_mult[of x n m] nat_pow_mult[of x m n] by (simp add: add.commute) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 219 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 220 | lemma (in monoid) nat_pow_Suc2: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 221 | "x \<in> carrier G \<Longrightarrow> x [^] (Suc n) = x \<otimes> (x [^] n)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 222 | using nat_pow_mult[of x 1 n] Suc_eq_plus1[of n] | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 223 | by (metis One_nat_def Suc_eq_plus1_left l_one nat.rec(1) nat_pow_Suc nat_pow_def) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 224 | |
| 13936 | 225 | lemma (in monoid) nat_pow_pow: | 
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 226 | "x \<in> carrier G ==> (x [^] n) [^] m = x [^] (n * m::nat)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57271diff
changeset | 227 | by (induct m) (simp, simp add: nat_pow_mult add.commute) | 
| 13936 | 228 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 229 | lemma (in monoid) nat_pow_consistent: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 230 | "x [^] (n :: nat) = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 231 | unfolding nat_pow_def by simp | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 232 | |
| 27698 | 233 | |
| 234 | (* Jacobson defines submonoid here. *) | |
| 235 | (* Jacobson defines the order of a monoid here. *) | |
| 236 | ||
| 237 | ||
| 61382 | 238 | subsection \<open>Groups\<close> | 
| 27698 | 239 | |
| 61382 | 240 | text \<open> | 
| 13936 | 241 | A group is a monoid all of whose elements are invertible. | 
| 61382 | 242 | \<close> | 
| 13936 | 243 | |
| 244 | locale group = monoid + | |
| 245 | assumes Units: "carrier G <= Units G" | |
| 246 | ||
| 26199 | 247 | lemma (in group) is_group: "group G" by (rule group_axioms) | 
| 14761 | 248 | |
| 13936 | 249 | theorem groupI: | 
| 19783 | 250 | fixes G (structure) | 
| 13936 | 251 | assumes m_closed [simp]: | 
| 14693 | 252 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 253 | and one_closed [simp]: "\<one> \<in> carrier G" | |
| 13936 | 254 | and m_assoc: | 
| 255 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 256 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 257 | and l_one [simp]: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 14963 | 258 | and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 259 | shows "group G" | 
| 260 | proof - | |
| 261 | have l_cancel [simp]: | |
| 262 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 263 | (x \<otimes> y = x \<otimes> z) = (y = z)" | 
| 13936 | 264 | proof | 
| 265 | fix x y z | |
| 14693 | 266 | assume eq: "x \<otimes> y = x \<otimes> z" | 
| 267 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | |
| 13936 | 268 | with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" | 
| 14693 | 269 | and l_inv: "x_inv \<otimes> x = \<one>" by fast | 
| 270 | from G eq xG have "(x_inv \<otimes> x) \<otimes> y = (x_inv \<otimes> x) \<otimes> z" | |
| 13936 | 271 | by (simp add: m_assoc) | 
| 272 | with G show "y = z" by (simp add: l_inv) | |
| 273 | next | |
| 274 | fix x y z | |
| 275 | assume eq: "y = z" | |
| 14693 | 276 | and G: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 277 | then show "x \<otimes> y = x \<otimes> z" by simp | |
| 13936 | 278 | qed | 
| 279 | have r_one: | |
| 14693 | 280 | "!!x. x \<in> carrier G ==> x \<otimes> \<one> = x" | 
| 13936 | 281 | proof - | 
| 282 | fix x | |
| 283 | assume x: "x \<in> carrier G" | |
| 284 | with l_inv_ex obtain x_inv where xG: "x_inv \<in> carrier G" | |
| 14693 | 285 | and l_inv: "x_inv \<otimes> x = \<one>" by fast | 
| 286 | from x xG have "x_inv \<otimes> (x \<otimes> \<one>) = x_inv \<otimes> x" | |
| 13936 | 287 | by (simp add: m_assoc [symmetric] l_inv) | 
| 14693 | 288 | with x xG show "x \<otimes> \<one> = x" by simp | 
| 13936 | 289 | qed | 
| 290 | have inv_ex: | |
| 67091 | 291 | "\<And>x. x \<in> carrier G \<Longrightarrow> \<exists>y \<in> carrier G. y \<otimes> x = \<one> \<and> x \<otimes> y = \<one>" | 
| 13936 | 292 | proof - | 
| 293 | fix x | |
| 294 | assume x: "x \<in> carrier G" | |
| 295 | with l_inv_ex obtain y where y: "y \<in> carrier G" | |
| 14693 | 296 | and l_inv: "y \<otimes> x = \<one>" by fast | 
| 297 | from x y have "y \<otimes> (x \<otimes> y) = y \<otimes> \<one>" | |
| 13936 | 298 | by (simp add: m_assoc [symmetric] l_inv r_one) | 
| 14693 | 299 | with x y have r_inv: "x \<otimes> y = \<one>" | 
| 13936 | 300 | by simp | 
| 67091 | 301 | from x y show "\<exists>y \<in> carrier G. y \<otimes> x = \<one> \<and> x \<otimes> y = \<one>" | 
| 13936 | 302 | by (fast intro: l_inv r_inv) | 
| 303 | qed | |
| 67091 | 304 | then have carrier_subset_Units: "carrier G \<subseteq> Units G" | 
| 13936 | 305 | by (unfold Units_def) fast | 
| 61169 | 306 | show ?thesis | 
| 307 | by standard (auto simp: r_one m_assoc carrier_subset_Units) | |
| 13936 | 308 | qed | 
| 309 | ||
| 27698 | 310 | lemma (in monoid) group_l_invI: | 
| 13936 | 311 | assumes l_inv_ex: | 
| 14963 | 312 | "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 313 | shows "group G" | 
| 314 | by (rule groupI) (auto intro: m_assoc l_inv_ex) | |
| 315 | ||
| 316 | lemma (in group) Units_eq [simp]: | |
| 317 | "Units G = carrier G" | |
| 318 | proof | |
| 67091 | 319 | show "Units G \<subseteq> carrier G" by fast | 
| 13936 | 320 | next | 
| 67091 | 321 | show "carrier G \<subseteq> Units G" by (rule Units) | 
| 13936 | 322 | qed | 
| 323 | ||
| 324 | lemma (in group) inv_closed [intro, simp]: | |
| 325 | "x \<in> carrier G ==> inv x \<in> carrier G" | |
| 326 | using Units_inv_closed by simp | |
| 327 | ||
| 19981 | 328 | lemma (in group) l_inv_ex [simp]: | 
| 329 | "x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | |
| 330 | using Units_l_inv_ex by simp | |
| 331 | ||
| 332 | lemma (in group) r_inv_ex [simp]: | |
| 333 | "x \<in> carrier G ==> \<exists>y \<in> carrier G. x \<otimes> y = \<one>" | |
| 334 | using Units_r_inv_ex by simp | |
| 335 | ||
| 14963 | 336 | lemma (in group) l_inv [simp]: | 
| 13936 | 337 | "x \<in> carrier G ==> inv x \<otimes> x = \<one>" | 
| 68399 
0b71d08528f0
resolution of name clashes in Algebra
 paulson <lp15@cam.ac.uk> parents: 
68188diff
changeset | 338 | by simp | 
| 13813 | 339 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 340 | |
| 61382 | 341 | subsection \<open>Cancellation Laws and Basic Properties\<close> | 
| 13813 | 342 | |
| 14963 | 343 | lemma (in group) r_inv [simp]: | 
| 13813 | 344 | "x \<in> carrier G ==> x \<otimes> inv x = \<one>" | 
| 68399 
0b71d08528f0
resolution of name clashes in Algebra
 paulson <lp15@cam.ac.uk> parents: 
68188diff
changeset | 345 | by simp | 
| 13813 | 346 | |
| 68399 
0b71d08528f0
resolution of name clashes in Algebra
 paulson <lp15@cam.ac.uk> parents: 
68188diff
changeset | 347 | lemma (in group) right_cancel [simp]: | 
| 13813 | 348 | "[| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | 
| 349 | (y \<otimes> x = z \<otimes> x) = (y = z)" | |
| 68399 
0b71d08528f0
resolution of name clashes in Algebra
 paulson <lp15@cam.ac.uk> parents: 
68188diff
changeset | 350 | by (metis inv_closed m_assoc r_inv r_one) | 
| 13813 | 351 | |
| 352 | lemma (in group) inv_inv [simp]: | |
| 353 | "x \<in> carrier G ==> inv (inv x) = x" | |
| 13936 | 354 | using Units_inv_inv by simp | 
| 355 | ||
| 356 | lemma (in group) inv_inj: | |
| 357 | "inj_on (m_inv G) (carrier G)" | |
| 358 | using inv_inj_on_Units by simp | |
| 13813 | 359 | |
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 360 | lemma (in group) inv_mult_group: | 
| 13813 | 361 | "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv y \<otimes> inv x" | 
| 362 | proof - | |
| 14693 | 363 | assume G: "x \<in> carrier G" "y \<in> carrier G" | 
| 13813 | 364 | then have "inv (x \<otimes> y) \<otimes> (x \<otimes> y) = (inv y \<otimes> inv x) \<otimes> (x \<otimes> y)" | 
| 44472 | 365 | by (simp add: m_assoc) (simp add: m_assoc [symmetric]) | 
| 27698 | 366 | with G show ?thesis by (simp del: l_inv Units_l_inv) | 
| 13813 | 367 | qed | 
| 368 | ||
| 13940 | 369 | lemma (in group) inv_comm: | 
| 370 | "[| x \<otimes> y = \<one>; x \<in> carrier G; y \<in> carrier G |] ==> y \<otimes> x = \<one>" | |
| 14693 | 371 | by (rule Units_inv_comm) auto | 
| 13940 | 372 | |
| 13944 | 373 | lemma (in group) inv_equality: | 
| 13943 | 374 | "[|y \<otimes> x = \<one>; x \<in> carrier G; y \<in> carrier G|] ==> inv x = y" | 
| 68399 
0b71d08528f0
resolution of name clashes in Algebra
 paulson <lp15@cam.ac.uk> parents: 
68188diff
changeset | 375 | using inv_unique r_inv by blast | 
| 13943 | 376 | |
| 57271 | 377 | (* Contributed by Joachim Breitner *) | 
| 378 | lemma (in group) inv_solve_left: | |
| 379 | "\<lbrakk> a \<in> carrier G; b \<in> carrier G; c \<in> carrier G \<rbrakk> \<Longrightarrow> a = inv b \<otimes> c \<longleftrightarrow> c = b \<otimes> a" | |
| 380 | by (metis inv_equality l_inv_ex l_one m_assoc r_inv) | |
| 381 | lemma (in group) inv_solve_right: | |
| 382 | "\<lbrakk> a \<in> carrier G; b \<in> carrier G; c \<in> carrier G \<rbrakk> \<Longrightarrow> a = b \<otimes> inv c \<longleftrightarrow> b = a \<otimes> c" | |
| 383 | by (metis inv_equality l_inv_ex l_one m_assoc r_inv) | |
| 384 | ||
| 61382 | 385 | text \<open>Power\<close> | 
| 13936 | 386 | |
| 387 | lemma (in group) int_pow_def2: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 388 | "a [^] (z::int) = (if z < 0 then inv (a [^] (nat (-z))) else a [^] (nat z))" | 
| 13936 | 389 | by (simp add: int_pow_def nat_pow_def Let_def) | 
| 390 | ||
| 391 | lemma (in group) int_pow_0 [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 392 | "x [^] (0::int) = \<one>" | 
| 13936 | 393 | by (simp add: int_pow_def2) | 
| 394 | ||
| 395 | lemma (in group) int_pow_one [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 396 | "\<one> [^] (z::int) = \<one>" | 
| 13936 | 397 | by (simp add: int_pow_def2) | 
| 398 | ||
| 57271 | 399 | (* The following are contributed by Joachim Breitner *) | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 400 | |
| 57271 | 401 | lemma (in group) int_pow_closed [intro, simp]: | 
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 402 | "x \<in> carrier G ==> x [^] (i::int) \<in> carrier G" | 
| 57271 | 403 | by (simp add: int_pow_def2) | 
| 404 | ||
| 405 | lemma (in group) int_pow_1 [simp]: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 406 | "x \<in> carrier G \<Longrightarrow> x [^] (1::int) = x" | 
| 57271 | 407 | by (simp add: int_pow_def2) | 
| 408 | ||
| 409 | lemma (in group) int_pow_neg: | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 410 | "x \<in> carrier G \<Longrightarrow> x [^] (-i::int) = inv (x [^] i)" | 
| 57271 | 411 | by (simp add: int_pow_def2) | 
| 412 | ||
| 413 | lemma (in group) int_pow_mult: | |
| 68662 | 414 | assumes "x \<in> carrier G" shows "x [^] (i + j::int) = x [^] i \<otimes> x [^] j" | 
| 57271 | 415 | proof - | 
| 416 | have [simp]: "-i - j = -j - i" by simp | |
| 417 | show ?thesis | |
| 68662 | 418 | by (auto simp add: assms int_pow_def2 inv_solve_left inv_solve_right nat_add_distrib [symmetric] nat_pow_mult ) | 
| 57271 | 419 | qed | 
| 420 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 421 | lemma (in group) nat_pow_inv: | 
| 68662 | 422 | assumes "x \<in> carrier G" shows "(inv x) [^] (i :: nat) = inv (x [^] i)" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 423 | proof (induction i) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 424 | case 0 thus ?case by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 425 | next | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 426 | case (Suc i) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 427 | have "(inv x) [^] Suc i = ((inv x) [^] i) \<otimes> inv x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 428 | by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 429 | also have " ... = (inv (x [^] i)) \<otimes> inv x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 430 | by (simp add: Suc.IH Suc.prems) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 431 | also have " ... = inv (x \<otimes> (x [^] i))" | 
| 68662 | 432 | by (simp add: assms inv_mult_group) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 433 | also have " ... = inv (x [^] (Suc i))" | 
| 68662 | 434 | using assms nat_pow_Suc2 by auto | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 435 | finally show ?case . | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 436 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 437 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 438 | lemma (in group) int_pow_inv: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 439 | "x \<in> carrier G \<Longrightarrow> (inv x) [^] (i :: int) = inv (x [^] i)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 440 | by (simp add: nat_pow_inv int_pow_def2) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 441 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 442 | lemma (in group) int_pow_pow: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 443 | assumes "x \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 444 | shows "(x [^] (n :: int)) [^] (m :: int) = x [^] (n * m :: int)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 445 | proof (cases) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 446 | assume n_ge: "n \<ge> 0" thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 447 | proof (cases) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 448 | assume m_ge: "m \<ge> 0" thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 449 | using n_ge nat_pow_pow[OF assms, of "nat n" "nat m"] int_pow_def2 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 450 | by (simp add: mult_less_0_iff nat_mult_distrib) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 451 | next | 
| 68605 | 452 | assume m_lt: "\<not> m \<ge> 0" | 
| 453 | with n_ge show ?thesis | |
| 454 | apply (simp add: int_pow_def2 mult_less_0_iff) | |
| 455 | by (metis assms mult_minus_right n_ge nat_mult_distrib nat_pow_pow) | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 456 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 457 | next | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 458 | assume n_lt: "\<not> n \<ge> 0" thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 459 | proof (cases) | 
| 68605 | 460 | assume m_ge: "m \<ge> 0" | 
| 461 | have "inv x [^] (nat m * nat (- n)) = inv x [^] nat (- (m * n))" | |
| 462 | by (metis (full_types) m_ge mult_minus_right nat_mult_distrib) | |
| 463 | with m_ge n_lt show ?thesis | |
| 464 | by (simp add: int_pow_def2 mult_less_0_iff assms mult.commute nat_pow_inv nat_pow_pow) | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 465 | next | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 466 | assume m_lt: "\<not> m \<ge> 0" thus ?thesis | 
| 68605 | 467 | using n_lt by (auto simp: int_pow_def2 mult_less_0_iff assms nat_mult_distrib_neg nat_pow_inv nat_pow_pow) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 468 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 469 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 470 | |
| 61628 | 471 | lemma (in group) int_pow_diff: | 
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 472 | "x \<in> carrier G \<Longrightarrow> x [^] (n - m :: int) = x [^] n \<otimes> inv (x [^] m)" | 
| 68662 | 473 | by(simp only: diff_conv_add_uminus int_pow_mult int_pow_neg) | 
| 61628 | 474 | |
| 475 | lemma (in group) inj_on_multc: "c \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. x \<otimes> c) (carrier G)" | |
| 68662 | 476 | by(simp add: inj_on_def) | 
| 61628 | 477 | |
| 478 | lemma (in group) inj_on_cmult: "c \<in> carrier G \<Longrightarrow> inj_on (\<lambda>x. c \<otimes> x) (carrier G)" | |
| 68662 | 479 | by(simp add: inj_on_def) | 
| 61628 | 480 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 481 | (*Following subsection contributed by Martin Baillon*) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 482 | subsection \<open>Submonoids\<close> | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 483 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 484 | locale submonoid = | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 485 | fixes H and G (structure) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 486 | assumes subset: "H \<subseteq> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 487 | and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 488 | and one_closed [simp]: "\<one> \<in> H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 489 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 490 | lemma (in submonoid) is_submonoid: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 491 | "submonoid H G" by (rule submonoid_axioms) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 492 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 493 | lemma (in submonoid) mem_carrier [simp]: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 494 | "x \<in> H \<Longrightarrow> x \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 495 | using subset by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 496 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 497 | lemma (in submonoid) submonoid_is_monoid [intro]: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 498 | assumes "monoid G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 499 | shows "monoid (G\<lparr>carrier := H\<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 500 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 501 | interpret monoid G by fact | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 502 | show ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 503 | by (simp add: monoid_def m_assoc) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 504 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 505 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 506 | lemma submonoid_nonempty: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 507 |   "~ submonoid {} G"
 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 508 | by (blast dest: submonoid.one_closed) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 509 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 510 | lemma (in submonoid) finite_monoid_imp_card_positive: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 511 | "finite (carrier G) ==> 0 < card H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 512 | proof (rule classical) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 513 | assume "finite (carrier G)" and a: "~ 0 < card H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 514 | then have "finite H" by (blast intro: finite_subset [OF subset]) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 515 |   with is_submonoid a have "submonoid {} G" by simp
 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 516 | with submonoid_nonempty show ?thesis by contradiction | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 517 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 518 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 519 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 520 | lemma (in monoid) monoid_incl_imp_submonoid : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 521 | assumes "H \<subseteq> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 522 | and "monoid (G\<lparr>carrier := H\<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 523 | shows "submonoid H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 524 | proof (intro submonoid.intro[OF assms(1)]) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 525 | have ab_eq : "\<And> a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> b = a \<otimes> b" using assms by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 526 | have "\<And>a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes> b \<in> carrier (G\<lparr>carrier := H\<rparr>) " | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 527 | using assms ab_eq unfolding group_def using monoid.m_closed by fastforce | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 528 | thus "\<And>a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes> b \<in> H" by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 529 | show "\<one> \<in> H " using monoid.one_closed[OF assms(2)] assms by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 530 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 531 | |
| 68517 | 532 | lemma (in monoid) inv_unique': | 
| 533 | assumes "x \<in> carrier G" "y \<in> carrier G" | |
| 534 | shows "\<lbrakk> x \<otimes> y = \<one>; y \<otimes> x = \<one> \<rbrakk> \<Longrightarrow> y = inv x" | |
| 535 | proof - | |
| 536 | assume "x \<otimes> y = \<one>" and l_inv: "y \<otimes> x = \<one>" | |
| 537 | hence unit: "x \<in> Units G" | |
| 538 | using assms unfolding Units_def by auto | |
| 539 | show "y = inv x" | |
| 540 | using inv_unique[OF l_inv Units_r_inv[OF unit] assms Units_inv_closed[OF unit]] . | |
| 541 | qed | |
| 542 | ||
| 543 | lemma (in monoid) m_inv_monoid_consistent: (* contributed by Paulo *) | |
| 544 | assumes "x \<in> Units (G \<lparr> carrier := H \<rparr>)" and "submonoid H G" | |
| 545 | shows "inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> x = inv x" | |
| 546 | proof - | |
| 547 | have monoid: "monoid (G \<lparr> carrier := H \<rparr>)" | |
| 548 | using submonoid.submonoid_is_monoid[OF assms(2) monoid_axioms] . | |
| 549 | obtain y where y: "y \<in> H" "x \<otimes> y = \<one>" "y \<otimes> x = \<one>" | |
| 550 | using assms(1) unfolding Units_def by auto | |
| 551 | have x: "x \<in> H" and in_carrier: "x \<in> carrier G" "y \<in> carrier G" | |
| 552 | using y(1) submonoid.subset[OF assms(2)] assms(1) unfolding Units_def by auto | |
| 553 | show ?thesis | |
| 554 | using monoid.inv_unique'[OF monoid, of x y] x y | |
| 555 | using inv_unique'[OF in_carrier y(2-3)] by auto | |
| 556 | qed | |
| 557 | ||
| 61382 | 558 | subsection \<open>Subgroups\<close> | 
| 13813 | 559 | |
| 19783 | 560 | locale subgroup = | 
| 561 | fixes H and G (structure) | |
| 14963 | 562 | assumes subset: "H \<subseteq> carrier G" | 
| 563 | and m_closed [intro, simp]: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H" | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 564 | and one_closed [simp]: "\<one> \<in> H" | 
| 14963 | 565 | and m_inv_closed [intro,simp]: "x \<in> H \<Longrightarrow> inv x \<in> H" | 
| 13813 | 566 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 567 | lemma (in subgroup) is_subgroup: | 
| 26199 | 568 | "subgroup H G" by (rule subgroup_axioms) | 
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 569 | |
| 13813 | 570 | declare (in subgroup) group.intro [intro] | 
| 13949 
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
 ballarin parents: 
13944diff
changeset | 571 | |
| 14963 | 572 | lemma (in subgroup) mem_carrier [simp]: | 
| 573 | "x \<in> H \<Longrightarrow> x \<in> carrier G" | |
| 574 | using subset by blast | |
| 13813 | 575 | |
| 14963 | 576 | lemma (in subgroup) subgroup_is_group [intro]: | 
| 27611 | 577 | assumes "group G" | 
| 578 | shows "group (G\<lparr>carrier := H\<rparr>)" | |
| 579 | proof - | |
| 29237 | 580 | interpret group G by fact | 
| 68458 | 581 | have "Group.monoid (G\<lparr>carrier := H\<rparr>)" | 
| 582 | by (simp add: monoid_axioms submonoid.intro submonoid.submonoid_is_monoid subset) | |
| 583 | then show ?thesis | |
| 584 | by (rule monoid.group_l_invI) (auto intro: l_inv mem_carrier) | |
| 27611 | 585 | qed | 
| 13813 | 586 | |
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 587 | lemma subgroup_is_submonoid: | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 588 | assumes "subgroup H G" shows "submonoid H G" | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 589 | using assms by (auto intro: submonoid.intro simp add: subgroup_def) | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 590 | |
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 591 | lemma (in group) subgroup_Units: | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 592 | assumes "subgroup H G" shows "H \<subseteq> Units (G \<lparr> carrier := H \<rparr>)" | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 593 | using group.Units[OF subgroup.subgroup_is_group[OF assms group_axioms]] by simp | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 594 | |
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 595 | lemma (in group) m_inv_consistent: | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 596 | assumes "subgroup H G" "x \<in> H" | 
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 597 | shows "inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> x = inv x" | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 598 | using assms m_inv_monoid_consistent[OF _ subgroup_is_submonoid] subgroup_Units[of H] by auto | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 599 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 600 | lemma (in group) int_pow_consistent: (* by Paulo *) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 601 | assumes "subgroup H G" "x \<in> H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 602 | shows "x [^] (n :: int) = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 603 | proof (cases) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 604 | assume ge: "n \<ge> 0" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 605 | hence "x [^] n = x [^] (nat n)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 606 | using int_pow_def2 by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 607 | also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat n)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 608 | using nat_pow_consistent by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 609 | also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 610 | using group.int_pow_def2[OF subgroup.subgroup_is_group[OF assms(1) is_group]] ge by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 611 | finally show ?thesis . | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 612 | next | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 613 | assume "\<not> n \<ge> 0" hence lt: "n < 0" by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 614 | hence "x [^] n = inv (x [^] (nat (- n)))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 615 | using int_pow_def2 by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 616 | also have " ... = (inv x) [^] (nat (- n))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 617 | by (metis assms nat_pow_inv subgroup.mem_carrier) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 618 | also have " ... = (inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> x) [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat (- n))" | 
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 619 | using m_inv_consistent[OF assms] nat_pow_consistent by auto | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 620 | also have " ... = inv\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> (nat (- n)))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 621 | using group.nat_pow_inv[OF subgroup.subgroup_is_group[OF assms(1) is_group]] assms(2) by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 622 | also have " ... = x [^]\<^bsub>(G \<lparr> carrier := H \<rparr>)\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 623 | using group.int_pow_def2[OF subgroup.subgroup_is_group[OF assms(1) is_group]] lt by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 624 | finally show ?thesis . | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 625 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 626 | |
| 61382 | 627 | text \<open> | 
| 13813 | 628 |   Since @{term H} is nonempty, it contains some element @{term x}.  Since
 | 
| 63167 | 629 | it is closed under inverse, it contains \<open>inv x\<close>. Since | 
| 630 | it is closed under product, it contains \<open>x \<otimes> inv x = \<one>\<close>. | |
| 61382 | 631 | \<close> | 
| 13813 | 632 | |
| 633 | lemma (in group) one_in_subset: | |
| 634 |   "[| H \<subseteq> carrier G; H \<noteq> {}; \<forall>a \<in> H. inv a \<in> H; \<forall>a\<in>H. \<forall>b\<in>H. a \<otimes> b \<in> H |]
 | |
| 635 | ==> \<one> \<in> H" | |
| 44472 | 636 | by force | 
| 13813 | 637 | |
| 61382 | 638 | text \<open>A characterization of subgroups: closed, non-empty subset.\<close> | 
| 13813 | 639 | |
| 640 | lemma (in group) subgroupI: | |
| 641 |   assumes subset: "H \<subseteq> carrier G" and non_empty: "H \<noteq> {}"
 | |
| 14963 | 642 | and inv: "!!a. a \<in> H \<Longrightarrow> inv a \<in> H" | 
| 643 | and mult: "!!a b. \<lbrakk>a \<in> H; b \<in> H\<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H" | |
| 13813 | 644 | shows "subgroup H G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 645 | proof (simp add: subgroup_def assms) | 
| 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 646 | show "\<one> \<in> H" by (rule one_in_subset) (auto simp only: assms) | 
| 13813 | 647 | qed | 
| 648 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 649 | lemma (in group) subgroupE: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 650 | assumes "subgroup H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 651 | shows "H \<subseteq> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 652 |     and "H \<noteq> {}"
 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 653 | and "\<And>a. a \<in> H \<Longrightarrow> inv a \<in> H" | 
| 68517 | 654 | and "\<And>a b. \<lbrakk> a \<in> H; b \<in> H \<rbrakk> \<Longrightarrow> a \<otimes> b \<in> H" | 
| 655 | using assms unfolding subgroup_def[of H G] by auto | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 656 | |
| 13936 | 657 | declare monoid.one_closed [iff] group.inv_closed [simp] | 
| 658 | monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp] | |
| 13813 | 659 | |
| 660 | lemma subgroup_nonempty: | |
| 67091 | 661 |   "\<not> subgroup {} G"
 | 
| 13813 | 662 | by (blast dest: subgroup.one_closed) | 
| 663 | ||
| 68517 | 664 | lemma (in subgroup) finite_imp_card_positive: "finite (carrier G) \<Longrightarrow> 0 < card H" | 
| 665 | using subset one_closed card_gt_0_iff finite_subset by blast | |
| 13813 | 666 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 667 | (*Following 3 lemmas contributed by Martin Baillon*) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 668 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 669 | lemma (in subgroup) subgroup_is_submonoid : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 670 | "submonoid H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 671 | by (simp add: submonoid.intro subset) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 672 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 673 | lemma (in group) submonoid_subgroupI : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 674 | assumes "submonoid H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 675 | and "\<And>a. a \<in> H \<Longrightarrow> inv a \<in> H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 676 | shows "subgroup H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 677 | by (metis assms subgroup_def submonoid_def) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 678 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 679 | lemma (in group) group_incl_imp_subgroup: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 680 | assumes "H \<subseteq> carrier G" | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 681 | and "group (G\<lparr>carrier := H\<rparr>)" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 682 | shows "subgroup H G" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 683 | proof (intro submonoid_subgroupI[OF monoid_incl_imp_submonoid[OF assms(1)]]) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 684 | show "monoid (G\<lparr>carrier := H\<rparr>)" using group_def assms by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 685 | have ab_eq : "\<And> a b. a \<in> H \<Longrightarrow> b \<in> H \<Longrightarrow> a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> b = a \<otimes> b" using assms by simp | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 686 | fix a assume aH : "a \<in> H" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 687 | have " inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 688 | using assms aH group.inv_closed[OF assms(2)] by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 689 | moreover have "\<one>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> = \<one>" using assms monoid.one_closed ab_eq one_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 690 | hence "a \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a= \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 691 | using assms ab_eq aH group.r_inv[OF assms(2)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 692 | hence "a \<otimes> inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a= \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 693 | using aH assms group.inv_closed[OF assms(2)] ab_eq by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 694 | ultimately have "inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a = inv a" | 
| 68605 | 695 | by (metis aH assms(1) contra_subsetD group.inv_inv is_group local.inv_equality) | 
| 696 | moreover have "inv\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> a \<in> H" | |
| 697 | using aH group.inv_closed[OF assms(2)] by auto | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 698 | ultimately show "inv a \<in> H" by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 699 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 700 | |
| 13936 | 701 | |
| 61382 | 702 | subsection \<open>Direct Products\<close> | 
| 13813 | 703 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 704 | definition | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 705 |   DirProd :: "_ \<Rightarrow> _ \<Rightarrow> ('a \<times> 'b) monoid" (infixr "\<times>\<times>" 80) where
 | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 706 | "G \<times>\<times> H = | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 707 | \<lparr>carrier = carrier G \<times> carrier H, | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 708 | mult = (\<lambda>(g, h) (g', h'). (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')), | 
| 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 709 | one = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)\<rparr>" | 
| 13813 | 710 | |
| 14963 | 711 | lemma DirProd_monoid: | 
| 27611 | 712 | assumes "monoid G" and "monoid H" | 
| 14963 | 713 | shows "monoid (G \<times>\<times> H)" | 
| 714 | proof - | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 715 | interpret G: monoid G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 716 | interpret H: monoid H by fact | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 717 | from assms | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 718 | show ?thesis by (unfold monoid_def DirProd_def, auto) | 
| 14963 | 719 | qed | 
| 13813 | 720 | |
| 721 | ||
| 61382 | 722 | text\<open>Does not use the previous result because it's easier just to use auto.\<close> | 
| 14963 | 723 | lemma DirProd_group: | 
| 27611 | 724 | assumes "group G" and "group H" | 
| 14963 | 725 | shows "group (G \<times>\<times> H)" | 
| 27611 | 726 | proof - | 
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 727 | interpret G: group G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 728 | interpret H: group H by fact | 
| 27611 | 729 | show ?thesis by (rule groupI) | 
| 14963 | 730 | (auto intro: G.m_assoc H.m_assoc G.l_inv H.l_inv | 
| 731 | simp add: DirProd_def) | |
| 27611 | 732 | qed | 
| 13813 | 733 | |
| 68662 | 734 | lemma carrier_DirProd [simp]: "carrier (G \<times>\<times> H) = carrier G \<times> carrier H" | 
| 14963 | 735 | by (simp add: DirProd_def) | 
| 13944 | 736 | |
| 68662 | 737 | lemma one_DirProd [simp]: "\<one>\<^bsub>G \<times>\<times> H\<^esub> = (\<one>\<^bsub>G\<^esub>, \<one>\<^bsub>H\<^esub>)" | 
| 14963 | 738 | by (simp add: DirProd_def) | 
| 13944 | 739 | |
| 68662 | 740 | lemma mult_DirProd [simp]: "(g, h) \<otimes>\<^bsub>(G \<times>\<times> H)\<^esub> (g', h') = (g \<otimes>\<^bsub>G\<^esub> g', h \<otimes>\<^bsub>H\<^esub> h')" | 
| 14963 | 741 | by (simp add: DirProd_def) | 
| 13944 | 742 | |
| 68662 | 743 | lemma DirProd_assoc: "(G \<times>\<times> H \<times>\<times> I) = (G \<times>\<times> (H \<times>\<times> I))" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 744 | by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 745 | |
| 14963 | 746 | lemma inv_DirProd [simp]: | 
| 27611 | 747 | assumes "group G" and "group H" | 
| 13944 | 748 | assumes g: "g \<in> carrier G" | 
| 749 | and h: "h \<in> carrier H" | |
| 14963 | 750 | shows "m_inv (G \<times>\<times> H) (g, h) = (inv\<^bsub>G\<^esub> g, inv\<^bsub>H\<^esub> h)" | 
| 27611 | 751 | proof - | 
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 752 | interpret G: group G by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 753 | interpret H: group H by fact | 
| 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
29240diff
changeset | 754 | interpret Prod: group "G \<times>\<times> H" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 755 | by (auto intro: DirProd_group group.intro group.axioms assms) | 
| 14963 | 756 | show ?thesis by (simp add: Prod.inv_equality g h) | 
| 757 | qed | |
| 27698 | 758 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 759 | lemma DirProd_subgroups : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 760 | assumes "group G" | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 761 | and "subgroup H G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 762 | and "group K" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 763 | and "subgroup I K" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 764 | shows "subgroup (H \<times> I) (G \<times>\<times> K)" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 765 | proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]]) | 
| 68687 | 766 | have "H \<subseteq> carrier G" "I \<subseteq> carrier K" using subgroup.subset assms by blast+ | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 767 | thus "(H \<times> I) \<subseteq> carrier (G \<times>\<times> K)" unfolding DirProd_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 768 | have "Group.group ((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 769 | using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)] | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 770 | subgroup.subgroup_is_group[OF assms(4)assms(3)]]. | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 771 | moreover have "((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>)) = ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)" | 
| 68687 | 772 | unfolding DirProd_def using assms by simp | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 773 | ultimately show "Group.group ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)" by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 774 | qed | 
| 14963 | 775 | |
| 61382 | 776 | subsection \<open>Homomorphisms and Isomorphisms\<close> | 
| 13813 | 777 | |
| 35847 | 778 | definition | 
| 779 |   hom :: "_ => _ => ('a => 'b) set" where
 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 780 | "hom G H = | 
| 67091 | 781 |     {h. h \<in> carrier G \<rightarrow> carrier H \<and>
 | 
| 14693 | 782 | (\<forall>x \<in> carrier G. \<forall>y \<in> carrier G. h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y)}" | 
| 13813 | 783 | |
| 14761 | 784 | lemma (in group) hom_compose: | 
| 31754 | 785 | "[|h \<in> hom G H; i \<in> hom H I|] ==> compose (carrier G) i h \<in> hom G I" | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44655diff
changeset | 786 | by (fastforce simp add: hom_def compose_def) | 
| 13943 | 787 | |
| 35848 
5443079512ea
slightly more uniform definitions -- eliminated old-style meta-equality;
 wenzelm parents: 
35847diff
changeset | 788 | definition | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 789 |   iso :: "_ => _ => ('a => 'b) set"
 | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 790 |   where "iso G H = {h. h \<in> hom G H \<and> bij_betw h (carrier G) (carrier H)}"
 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 791 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 792 | definition | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 793 | is_iso :: "_ \<Rightarrow> _ \<Rightarrow> bool" (infixr "\<cong>" 60) | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 794 |   where "G \<cong> H = (iso G H  \<noteq> {})"
 | 
| 14761 | 795 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 796 | lemma iso_set_refl: "(\<lambda>x. x) \<in> iso G G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 797 | by (simp add: iso_def hom_def inj_on_def bij_betw_def Pi_def) | 
| 14761 | 798 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 799 | corollary iso_refl : "G \<cong> G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 800 | using iso_set_refl unfolding is_iso_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 801 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 802 | lemma (in group) iso_set_sym: | 
| 68458 | 803 | assumes "h \<in> iso G H" | 
| 804 | shows "inv_into (carrier G) h \<in> iso H G" | |
| 805 | proof - | |
| 806 | have h: "h \<in> hom G H" "bij_betw h (carrier G) (carrier H)" | |
| 807 | using assms by (auto simp add: iso_def bij_betw_inv_into) | |
| 808 | then have HG: "bij_betw (inv_into (carrier G) h) (carrier H) (carrier G)" | |
| 809 | by (simp add: bij_betw_inv_into) | |
| 810 | have "inv_into (carrier G) h \<in> hom H G" | |
| 811 | unfolding hom_def | |
| 812 | proof safe | |
| 813 | show *: "\<And>x. x \<in> carrier H \<Longrightarrow> inv_into (carrier G) h x \<in> carrier G" | |
| 814 | by (meson HG bij_betwE) | |
| 815 | show "inv_into (carrier G) h (x \<otimes>\<^bsub>H\<^esub> y) = inv_into (carrier G) h x \<otimes> inv_into (carrier G) h y" | |
| 816 | if "x \<in> carrier H" "y \<in> carrier H" for x y | |
| 817 | proof (rule inv_into_f_eq) | |
| 818 | show "inj_on h (carrier G)" | |
| 819 | using bij_betw_def h(2) by blast | |
| 820 | show "inv_into (carrier G) h x \<otimes> inv_into (carrier G) h y \<in> carrier G" | |
| 821 | by (simp add: * that) | |
| 822 | show "h (inv_into (carrier G) h x \<otimes> inv_into (carrier G) h y) = x \<otimes>\<^bsub>H\<^esub> y" | |
| 823 | using h bij_betw_inv_into_right [of h] unfolding hom_def by (simp add: "*" that) | |
| 824 | qed | |
| 825 | qed | |
| 826 | then show ?thesis | |
| 827 | by (simp add: Group.iso_def bij_betw_inv_into h) | |
| 828 | qed | |
| 14761 | 829 | |
| 68458 | 830 | |
| 831 | corollary (in group) iso_sym: "G \<cong> H \<Longrightarrow> H \<cong> G" | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 832 | using iso_set_sym unfolding is_iso_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 833 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 834 | lemma (in group) iso_set_trans: | 
| 68662 | 835 | "[|h \<in> iso G H; i \<in> iso H I|] ==> (compose (carrier G) i h) \<in> iso G I" | 
| 836 | by (auto simp add: iso_def hom_compose bij_betw_compose) | |
| 14761 | 837 | |
| 68458 | 838 | corollary (in group) iso_trans: "\<lbrakk>G \<cong> H ; H \<cong> I\<rbrakk> \<Longrightarrow> G \<cong> I" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 839 | using iso_set_trans unfolding is_iso_def by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 840 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 841 | (* Next four lemmas contributed by Paulo. *) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 842 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 843 | lemma (in monoid) hom_imp_img_monoid: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 844 | assumes "h \<in> hom G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 845 | shows "monoid (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "monoid ?h_img") | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 846 | proof (rule monoidI) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 847 | show "\<one>\<^bsub>?h_img\<^esub> \<in> carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 848 | by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 849 | next | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 850 | fix x y z assume "x \<in> carrier ?h_img" "y \<in> carrier ?h_img" "z \<in> carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 851 | then obtain g1 g2 g3 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 852 | where g1: "g1 \<in> carrier G" "x = h g1" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 853 | and g2: "g2 \<in> carrier G" "y = h g2" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 854 | and g3: "g3 \<in> carrier G" "z = h g3" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 855 | using image_iff[where ?f = h and ?A = "carrier G"] by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 856 | have aux_lemma: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 857 | "\<And>a b. \<lbrakk> a \<in> carrier G; b \<in> carrier G \<rbrakk> \<Longrightarrow> h a \<otimes>\<^bsub>(?h_img)\<^esub> h b = h (a \<otimes> b)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 858 | using assms unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 859 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 860 | show "x \<otimes>\<^bsub>(?h_img)\<^esub> \<one>\<^bsub>(?h_img)\<^esub> = x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 861 | using aux_lemma[OF g1(1) one_closed] g1(2) r_one[OF g1(1)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 862 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 863 | show "\<one>\<^bsub>(?h_img)\<^esub> \<otimes>\<^bsub>(?h_img)\<^esub> x = x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 864 | using aux_lemma[OF one_closed g1(1)] g1(2) l_one[OF g1(1)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 865 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 866 | have "x \<otimes>\<^bsub>(?h_img)\<^esub> y = h (g1 \<otimes> g2)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 867 | using aux_lemma g1 g2 by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 868 | thus "x \<otimes>\<^bsub>(?h_img)\<^esub> y \<in> carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 869 | using g1(1) g2(1) by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 870 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 871 | have "(x \<otimes>\<^bsub>(?h_img)\<^esub> y) \<otimes>\<^bsub>(?h_img)\<^esub> z = h ((g1 \<otimes> g2) \<otimes> g3)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 872 | using aux_lemma g1 g2 g3 by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 873 | also have " ... = h (g1 \<otimes> (g2 \<otimes> g3))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 874 | using m_assoc[OF g1(1) g2(1) g3(1)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 875 | also have " ... = x \<otimes>\<^bsub>(?h_img)\<^esub> (y \<otimes>\<^bsub>(?h_img)\<^esub> z)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 876 | using aux_lemma g1 g2 g3 by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 877 | finally show "(x \<otimes>\<^bsub>(?h_img)\<^esub> y) \<otimes>\<^bsub>(?h_img)\<^esub> z = x \<otimes>\<^bsub>(?h_img)\<^esub> (y \<otimes>\<^bsub>(?h_img)\<^esub> z)" . | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 878 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 879 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 880 | lemma (in group) hom_imp_img_group: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 881 | assumes "h \<in> hom G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 882 | shows "group (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "group ?h_img") | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 883 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 884 | interpret monoid ?h_img | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 885 | using hom_imp_img_monoid[OF assms] . | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 886 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 887 | show ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 888 | proof (unfold_locales) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 889 | show "carrier ?h_img \<subseteq> Units ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 890 | proof (auto simp add: Units_def) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 891 | have aux_lemma: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 892 | "\<And>g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow> h g1 \<otimes>\<^bsub>H\<^esub> h g2 = h (g1 \<otimes> g2)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 893 | using assms unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 894 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 895 | fix g1 assume g1: "g1 \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 896 | thus "\<exists>g2 \<in> carrier G. (h g2) \<otimes>\<^bsub>H\<^esub> (h g1) = h \<one> \<and> (h g1) \<otimes>\<^bsub>H\<^esub> (h g2) = h \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 897 | using aux_lemma[OF g1 inv_closed[OF g1]] | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 898 | aux_lemma[OF inv_closed[OF g1] g1] | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 899 | inv_closed by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 900 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 901 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 902 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 903 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 904 | lemma (in group) iso_imp_group: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 905 | assumes "G \<cong> H" and "monoid H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 906 | shows "group H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 907 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 908 | obtain \<phi> where phi: "\<phi> \<in> iso G H" "inv_into (carrier G) \<phi> \<in> iso H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 909 | using iso_set_sym assms unfolding is_iso_def by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 910 | define \<psi> where psi_def: "\<psi> = inv_into (carrier G) \<phi>" | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 911 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 912 | have surj: "\<phi> ` (carrier G) = (carrier H)" "\<psi> ` (carrier H) = (carrier G)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 913 | and inj: "inj_on \<phi> (carrier G)" "inj_on \<psi> (carrier H)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 914 | and phi_hom: "\<And>g1 g2. \<lbrakk> g1 \<in> carrier G; g2 \<in> carrier G \<rbrakk> \<Longrightarrow> \<phi> (g1 \<otimes> g2) = (\<phi> g1) \<otimes>\<^bsub>H\<^esub> (\<phi> g2)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 915 | and psi_hom: "\<And>h1 h2. \<lbrakk> h1 \<in> carrier H; h2 \<in> carrier H \<rbrakk> \<Longrightarrow> \<psi> (h1 \<otimes>\<^bsub>H\<^esub> h2) = (\<psi> h1) \<otimes> (\<psi> h2)" | 
| 68662 | 916 | using phi psi_def unfolding iso_def bij_betw_def hom_def by auto | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 917 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 918 | have phi_one: "\<phi> \<one> = \<one>\<^bsub>H\<^esub>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 919 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 920 | have "(\<phi> \<one>) \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = (\<phi> \<one>) \<otimes>\<^bsub>H\<^esub> (\<phi> \<one>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 921 | by (metis assms(2) image_eqI monoid.r_one one_closed phi_hom r_one surj(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 922 | thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 923 | by (metis (no_types, hide_lams) Units_eq Units_one_closed assms(2) f_inv_into_f imageI | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 924 | monoid.l_one monoid.one_closed phi_hom psi_def r_one surj) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 925 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 926 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 927 | have "carrier H \<subseteq> Units H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 928 | proof | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 929 | fix h assume h: "h \<in> carrier H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 930 | let ?inv_h = "\<phi> (inv (\<psi> h))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 931 | have "h \<otimes>\<^bsub>H\<^esub> ?inv_h = \<phi> (\<psi> h) \<otimes>\<^bsub>H\<^esub> ?inv_h" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 932 | by (simp add: f_inv_into_f h psi_def surj(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 933 | also have " ... = \<phi> ((\<psi> h) \<otimes> inv (\<psi> h))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 934 | by (metis h imageI inv_closed phi_hom surj(2)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 935 | also have " ... = \<phi> \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 936 | by (simp add: h inv_into_into psi_def surj(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 937 | finally have 1: "h \<otimes>\<^bsub>H\<^esub> ?inv_h = \<one>\<^bsub>H\<^esub>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 938 | using phi_one by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 939 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 940 | have "?inv_h \<otimes>\<^bsub>H\<^esub> h = ?inv_h \<otimes>\<^bsub>H\<^esub> \<phi> (\<psi> h)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 941 | by (simp add: f_inv_into_f h psi_def surj(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 942 | also have " ... = \<phi> (inv (\<psi> h) \<otimes> (\<psi> h))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 943 | by (metis h imageI inv_closed phi_hom surj(2)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 944 | also have " ... = \<phi> \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 945 | by (simp add: h inv_into_into psi_def surj(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 946 | finally have 2: "?inv_h \<otimes>\<^bsub>H\<^esub> h = \<one>\<^bsub>H\<^esub>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 947 | using phi_one by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 948 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 949 | thus "h \<in> Units H" unfolding Units_def using 1 2 h surj by fastforce | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 950 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 951 | thus ?thesis unfolding group_def group_axioms_def using assms(2) by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 952 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 953 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 954 | corollary (in group) iso_imp_img_group: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 955 | assumes "h \<in> iso G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 956 | shows "group (H \<lparr> one := h \<one> \<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 957 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 958 | let ?h_img = "H \<lparr> carrier := h ` (carrier G), one := h \<one> \<rparr>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 959 | have "h \<in> iso G ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 960 | using assms unfolding iso_def hom_def bij_betw_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 961 | hence "G \<cong> ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 962 | unfolding is_iso_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 963 | hence "group ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 964 | using iso_imp_group[of ?h_img] hom_imp_img_monoid[of h H] assms unfolding iso_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 965 | moreover have "carrier H = carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 966 | using assms unfolding iso_def bij_betw_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 967 | hence "H \<lparr> one := h \<one> \<rparr> = ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 968 | by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 969 | ultimately show ?thesis by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 970 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 971 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 972 | lemma DirProd_commute_iso_set: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 973 | shows "(\<lambda>(x,y). (y,x)) \<in> iso (G \<times>\<times> H) (H \<times>\<times> G)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 974 | by (auto simp add: iso_def hom_def inj_on_def bij_betw_def) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 975 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 976 | corollary DirProd_commute_iso : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 977 | "(G \<times>\<times> H) \<cong> (H \<times>\<times> G)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 978 | using DirProd_commute_iso_set unfolding is_iso_def by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 979 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 980 | lemma DirProd_assoc_iso_set: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 981 | shows "(\<lambda>(x,y,z). (x,(y,z))) \<in> iso (G \<times>\<times> H \<times>\<times> I) (G \<times>\<times> (H \<times>\<times> I))" | 
| 31754 | 982 | by (auto simp add: iso_def hom_def inj_on_def bij_betw_def) | 
| 14761 | 983 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 984 | lemma (in group) DirProd_iso_set_trans: | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 985 | assumes "g \<in> iso G G2" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 986 | and "h \<in> iso H I" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 987 | shows "(\<lambda>(x,y). (g x, h y)) \<in> iso (G \<times>\<times> H) (G2 \<times>\<times> I)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 988 | proof- | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 989 | have "(\<lambda>(x,y). (g x, h y)) \<in> hom (G \<times>\<times> H) (G2 \<times>\<times> I)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 990 | using assms unfolding iso_def hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 991 | moreover have " inj_on (\<lambda>(x,y). (g x, h y)) (carrier (G \<times>\<times> H))" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 992 | using assms unfolding iso_def DirProd_def bij_betw_def inj_on_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 993 | moreover have "(\<lambda>(x, y). (g x, h y)) ` carrier (G \<times>\<times> H) = carrier (G2 \<times>\<times> I)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 994 | using assms unfolding iso_def bij_betw_def image_def DirProd_def by fastforce | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 995 | ultimately show "(\<lambda>(x,y). (g x, h y)) \<in> iso (G \<times>\<times> H) (G2 \<times>\<times> I)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 996 | unfolding iso_def bij_betw_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 997 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 998 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 999 | corollary (in group) DirProd_iso_trans : | 
| 68662 | 1000 | assumes "G \<cong> G2" and "H \<cong> I" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1001 | shows "G \<times>\<times> H \<cong> G2 \<times>\<times> I" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1002 | using DirProd_iso_set_trans assms unfolding is_iso_def by blast | 
| 14761 | 1003 | |
| 1004 | ||
| 61382 | 1005 | text\<open>Basis for homomorphism proofs: we assume two groups @{term G} and
 | 
| 1006 |   @{term H}, with a homomorphism @{term h} between them\<close>
 | |
| 61565 
352c73a689da
Qualifiers in locale expressions default to mandatory regardless of the command.
 ballarin parents: 
61384diff
changeset | 1007 | locale group_hom = G?: group G + H?: group H for G (structure) and H (structure) + | 
| 29237 | 1008 | fixes h | 
| 13813 | 1009 | assumes homh: "h \<in> hom G H" | 
| 29240 | 1010 | |
| 1011 | lemma (in group_hom) hom_mult [simp]: | |
| 1012 | "[| x \<in> carrier G; y \<in> carrier G |] ==> h (x \<otimes>\<^bsub>G\<^esub> y) = h x \<otimes>\<^bsub>H\<^esub> h y" | |
| 1013 | proof - | |
| 1014 | assume "x \<in> carrier G" "y \<in> carrier G" | |
| 1015 | with homh [unfolded hom_def] show ?thesis by simp | |
| 1016 | qed | |
| 1017 | ||
| 1018 | lemma (in group_hom) hom_closed [simp]: | |
| 1019 | "x \<in> carrier G ==> h x \<in> carrier H" | |
| 1020 | proof - | |
| 1021 | assume "x \<in> carrier G" | |
| 31754 | 1022 | with homh [unfolded hom_def] show ?thesis by auto | 
| 29240 | 1023 | qed | 
| 13813 | 1024 | |
| 68662 | 1025 | lemma (in group_hom) one_closed [simp]: "h \<one> \<in> carrier H" | 
| 13813 | 1026 | by simp | 
| 1027 | ||
| 68662 | 1028 | lemma (in group_hom) hom_one [simp]: "h \<one> = \<one>\<^bsub>H\<^esub>" | 
| 13813 | 1029 | proof - | 
| 15076 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 ballarin parents: 
14963diff
changeset | 1030 | have "h \<one> \<otimes>\<^bsub>H\<^esub> \<one>\<^bsub>H\<^esub> = h \<one> \<otimes>\<^bsub>H\<^esub> h \<one>" | 
| 13813 | 1031 | by (simp add: hom_mult [symmetric] del: hom_mult) | 
| 1032 | then show ?thesis by (simp del: r_one) | |
| 1033 | qed | |
| 1034 | ||
| 1035 | lemma (in group_hom) inv_closed [simp]: | |
| 1036 | "x \<in> carrier G ==> h (inv x) \<in> carrier H" | |
| 1037 | by simp | |
| 1038 | ||
| 1039 | lemma (in group_hom) hom_inv [simp]: | |
| 68662 | 1040 | assumes "x \<in> carrier G" shows "h (inv x) = inv\<^bsub>H\<^esub> (h x)" | 
| 13813 | 1041 | proof - | 
| 68662 | 1042 | have "h x \<otimes>\<^bsub>H\<^esub> h (inv x) = h x \<otimes>\<^bsub>H\<^esub> inv\<^bsub>H\<^esub> (h x)" | 
| 1043 | using assms by (simp flip: hom_mult) | |
| 1044 | with assms show ?thesis by (simp del: H.r_inv H.Units_r_inv) | |
| 13813 | 1045 | qed | 
| 1046 | ||
| 57271 | 1047 | (* Contributed by Joachim Breitner *) | 
| 1048 | lemma (in group) int_pow_is_hom: | |
| 67399 | 1049 | "x \<in> carrier G \<Longrightarrow> (([^]) x) \<in> hom \<lparr> carrier = UNIV, mult = (+), one = 0::int \<rparr> G " | 
| 57271 | 1050 | unfolding hom_def by (simp add: int_pow_mult) | 
| 1051 | ||
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1052 | (* Next six lemmas contributed by Paulo. *) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1053 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1054 | lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1055 | apply (rule subgroupI) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1056 | apply (auto simp add: image_subsetI) | 
| 68687 | 1057 | apply (metis G.inv_closed hom_inv image_iff) | 
| 68605 | 1058 | by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1059 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1060 | lemma (in group_hom) subgroup_img_is_subgroup: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1061 | assumes "subgroup I G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1062 | shows "subgroup (h ` I) H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1063 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1064 | have "h \<in> hom (G \<lparr> carrier := I \<rparr>) H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1065 | using G.subgroupE[OF assms] subgroup.mem_carrier[OF assms] homh | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1066 | unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1067 | hence "group_hom (G \<lparr> carrier := I \<rparr>) H h" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1068 | using subgroup.subgroup_is_group[OF assms G.is_group] is_group | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1069 | unfolding group_hom_def group_hom_axioms_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1070 | thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1071 | using group_hom.img_is_subgroup[of "G \<lparr> carrier := I \<rparr>" H h] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1072 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1073 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1074 | lemma (in group_hom) induced_group_hom: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1075 | assumes "subgroup I G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1076 | shows "group_hom (G \<lparr> carrier := I \<rparr>) (H \<lparr> carrier := h ` I \<rparr>) h" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1077 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1078 | have "h \<in> hom (G \<lparr> carrier := I \<rparr>) (H \<lparr> carrier := h ` I \<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1079 | using homh subgroup.mem_carrier[OF assms] unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1080 | thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1081 | unfolding group_hom_def group_hom_axioms_def | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1082 | using subgroup.subgroup_is_group[OF assms G.is_group] | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1083 | subgroup.subgroup_is_group[OF subgroup_img_is_subgroup[OF assms] is_group] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1084 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1085 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1086 | lemma (in group) canonical_inj_is_hom: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1087 | assumes "subgroup H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1088 | shows "group_hom (G \<lparr> carrier := H \<rparr>) G id" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1089 | unfolding group_hom_def group_hom_axioms_def hom_def | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1090 | using subgroup.subgroup_is_group[OF assms is_group] | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1091 | is_group subgroup.subset[OF assms] by auto | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1092 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1093 | lemma (in group_hom) nat_pow_hom: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1094 | "x \<in> carrier G \<Longrightarrow> h (x [^] (n :: nat)) = (h x) [^]\<^bsub>H\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1095 | by (induction n) auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1096 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1097 | lemma (in group_hom) int_pow_hom: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1098 | "x \<in> carrier G \<Longrightarrow> h (x [^] (n :: int)) = (h x) [^]\<^bsub>H\<^esub> n" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1099 | using int_pow_def2 nat_pow_hom by (simp add: G.int_pow_def2) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1100 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 1101 | |
| 61382 | 1102 | subsection \<open>Commutative Structures\<close> | 
| 13936 | 1103 | |
| 61382 | 1104 | text \<open> | 
| 13936 | 1105 | Naming convention: multiplicative structures that are commutative | 
| 1106 |   are called \emph{commutative}, additive structures are called
 | |
| 1107 |   \emph{Abelian}.
 | |
| 61382 | 1108 | \<close> | 
| 13813 | 1109 | |
| 14963 | 1110 | locale comm_monoid = monoid + | 
| 1111 | assumes m_comm: "\<lbrakk>x \<in> carrier G; y \<in> carrier G\<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x" | |
| 13813 | 1112 | |
| 14963 | 1113 | lemma (in comm_monoid) m_lcomm: | 
| 1114 | "\<lbrakk>x \<in> carrier G; y \<in> carrier G; z \<in> carrier G\<rbrakk> \<Longrightarrow> | |
| 13813 | 1115 | x \<otimes> (y \<otimes> z) = y \<otimes> (x \<otimes> z)" | 
| 1116 | proof - | |
| 14693 | 1117 | assume xyz: "x \<in> carrier G" "y \<in> carrier G" "z \<in> carrier G" | 
| 13813 | 1118 | from xyz have "x \<otimes> (y \<otimes> z) = (x \<otimes> y) \<otimes> z" by (simp add: m_assoc) | 
| 1119 | also from xyz have "... = (y \<otimes> x) \<otimes> z" by (simp add: m_comm) | |
| 1120 | also from xyz have "... = y \<otimes> (x \<otimes> z)" by (simp add: m_assoc) | |
| 1121 | finally show ?thesis . | |
| 1122 | qed | |
| 1123 | ||
| 14963 | 1124 | lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm | 
| 13813 | 1125 | |
| 13936 | 1126 | lemma comm_monoidI: | 
| 19783 | 1127 | fixes G (structure) | 
| 13936 | 1128 | assumes m_closed: | 
| 14693 | 1129 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 1130 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 1131 | and m_assoc: | 
| 1132 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 1133 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 1134 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 13936 | 1135 | and m_comm: | 
| 14693 | 1136 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 13936 | 1137 | shows "comm_monoid G" | 
| 1138 | using l_one | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1139 | by (auto intro!: comm_monoid.intro comm_monoid_axioms.intro monoid.intro | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 1140 | intro: assms simp: m_closed one_closed m_comm) | 
| 13817 | 1141 | |
| 13936 | 1142 | lemma (in monoid) monoid_comm_monoidI: | 
| 1143 | assumes m_comm: | |
| 14693 | 1144 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 13936 | 1145 | shows "comm_monoid G" | 
| 1146 | by (rule comm_monoidI) (auto intro: m_assoc m_comm) | |
| 14963 | 1147 | |
| 13936 | 1148 | lemma (in comm_monoid) nat_pow_distr: | 
| 1149 | "[| x \<in> carrier G; y \<in> carrier G |] ==> | |
| 67341 
df79ef3b3a41
Renamed (^) to [^] in preparation of the move from "op X" to (X)
 nipkow parents: 
67091diff
changeset | 1150 | (x \<otimes> y) [^] (n::nat) = x [^] n \<otimes> y [^] n" | 
| 13936 | 1151 | by (induct n) (simp, simp add: m_ac) | 
| 1152 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1153 | lemma (in comm_monoid) submonoid_is_comm_monoid : | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1154 | assumes "submonoid H G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1155 | shows "comm_monoid (G\<lparr>carrier := H\<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1156 | proof (intro monoid.monoid_comm_monoidI) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1157 | show "monoid (G\<lparr>carrier := H\<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1158 | using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def by blast | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1159 | show "\<And>x y. x \<in> carrier (G\<lparr>carrier := H\<rparr>) \<Longrightarrow> y \<in> carrier (G\<lparr>carrier := H\<rparr>) | 
| 68687 | 1160 | \<Longrightarrow> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y = y \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> x" | 
| 1161 | by simp (meson assms m_comm submonoid.mem_carrier) | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1162 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1163 | |
| 13936 | 1164 | locale comm_group = comm_monoid + group | 
| 1165 | ||
| 1166 | lemma (in group) group_comm_groupI: | |
| 68662 | 1167 | assumes m_comm: "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 13936 | 1168 | shows "comm_group G" | 
| 61169 | 1169 | by standard (simp_all add: m_comm) | 
| 13817 | 1170 | |
| 13936 | 1171 | lemma comm_groupI: | 
| 19783 | 1172 | fixes G (structure) | 
| 13936 | 1173 | assumes m_closed: | 
| 14693 | 1174 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y \<in> carrier G" | 
| 1175 | and one_closed: "\<one> \<in> carrier G" | |
| 13936 | 1176 | and m_assoc: | 
| 1177 | "!!x y z. [| x \<in> carrier G; y \<in> carrier G; z \<in> carrier G |] ==> | |
| 14693 | 1178 | (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 13936 | 1179 | and m_comm: | 
| 14693 | 1180 | "!!x y. [| x \<in> carrier G; y \<in> carrier G |] ==> x \<otimes> y = y \<otimes> x" | 
| 1181 | and l_one: "!!x. x \<in> carrier G ==> \<one> \<otimes> x = x" | |
| 14963 | 1182 | and l_inv_ex: "!!x. x \<in> carrier G ==> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 13936 | 1183 | shows "comm_group G" | 
| 27714 
27b4d7c01f8b
Tuned (for the sake of a meaningless log entry).
 ballarin parents: 
27713diff
changeset | 1184 | by (fast intro: group.group_comm_groupI groupI assms) | 
| 13936 | 1185 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1186 | lemma comm_groupE: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1187 | fixes G (structure) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1188 | assumes "comm_group G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1189 | shows "\<And>x y. \<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<otimes> y \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1190 | and "\<one> \<in> carrier G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1191 | and "\<And>x y z. \<lbrakk> x \<in> carrier G; y \<in> carrier G; z \<in> carrier G \<rbrakk> \<Longrightarrow> (x \<otimes> y) \<otimes> z = x \<otimes> (y \<otimes> z)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1192 | and "\<And>x y. \<lbrakk> x \<in> carrier G; y \<in> carrier G \<rbrakk> \<Longrightarrow> x \<otimes> y = y \<otimes> x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1193 | and "\<And>x. x \<in> carrier G \<Longrightarrow> \<one> \<otimes> x = x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1194 | and "\<And>x. x \<in> carrier G \<Longrightarrow> \<exists>y \<in> carrier G. y \<otimes> x = \<one>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1195 | apply (simp_all add: group.axioms assms comm_group.axioms comm_monoid.m_comm comm_monoid.m_ac(1)) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1196 | by (simp_all add: Group.group.axioms(1) assms comm_group.axioms(2) monoid.m_closed group.r_inv_ex) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1197 | |
| 13936 | 1198 | lemma (in comm_group) inv_mult: | 
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 1199 | "[| x \<in> carrier G; y \<in> carrier G |] ==> inv (x \<otimes> y) = inv x \<otimes> inv y" | 
| 13936 | 1200 | by (simp add: m_ac inv_mult_group) | 
| 13854 
91c9ab25fece
First distributed version of Group and Ring theory.
 ballarin parents: 
13835diff
changeset | 1201 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1202 | (* Next three lemmas contributed by Paulo. *) | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1203 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1204 | lemma (in comm_monoid) hom_imp_img_comm_monoid: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1205 | assumes "h \<in> hom G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1206 | shows "comm_monoid (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" (is "comm_monoid ?h_img") | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1207 | proof (rule monoid.monoid_comm_monoidI) | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1208 | show "monoid ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1209 | using hom_imp_img_monoid[OF assms] . | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1210 | next | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1211 | fix x y assume "x \<in> carrier ?h_img" "y \<in> carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1212 | then obtain g1 g2 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1213 | where g1: "g1 \<in> carrier G" "x = h g1" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1214 | and g2: "g2 \<in> carrier G" "y = h g2" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1215 | by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1216 | have "x \<otimes>\<^bsub>(?h_img)\<^esub> y = h (g1 \<otimes> g2)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1217 | using g1 g2 assms unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1218 | also have " ... = h (g2 \<otimes> g1)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1219 | using m_comm[OF g1(1) g2(1)] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1220 | also have " ... = y \<otimes>\<^bsub>(?h_img)\<^esub> x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1221 | using g1 g2 assms unfolding hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1222 | finally show "x \<otimes>\<^bsub>(?h_img)\<^esub> y = y \<otimes>\<^bsub>(?h_img)\<^esub> x" . | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1223 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1224 | |
| 68517 | 1225 | lemma (in comm_group) hom_imp_img_comm_group: | 
| 1226 | assumes "h \<in> hom G H" | |
| 1227 | shows "comm_group (H \<lparr> carrier := h ` (carrier G), one := h \<one>\<^bsub>G\<^esub> \<rparr>)" | |
| 1228 | unfolding comm_group_def | |
| 1229 | using hom_imp_img_group[OF assms] hom_imp_img_comm_monoid[OF assms] by simp | |
| 1230 | ||
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1231 | lemma (in comm_group) iso_imp_img_comm_group: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1232 | assumes "h \<in> iso G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1233 | shows "comm_group (H \<lparr> one := h \<one>\<^bsub>G\<^esub> \<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1234 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1235 | let ?h_img = "H \<lparr> carrier := h ` (carrier G), one := h \<one> \<rparr>" | 
| 68517 | 1236 | have "comm_group ?h_img" | 
| 1237 | using hom_imp_img_comm_group[of h H] assms unfolding iso_def by auto | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1238 | moreover have "carrier H = carrier ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1239 | using assms unfolding iso_def bij_betw_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1240 | hence "H \<lparr> one := h \<one> \<rparr> = ?h_img" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1241 | by simp | 
| 68517 | 1242 | ultimately show ?thesis by simp | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1243 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1244 | |
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1245 | lemma (in comm_group) iso_imp_comm_group: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1246 | assumes "G \<cong> H" "monoid H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1247 | shows "comm_group H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1248 | proof - | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1249 | obtain h where h: "h \<in> iso G H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1250 | using assms(1) unfolding is_iso_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1251 | hence comm_gr: "comm_group (H \<lparr> one := h \<one> \<rparr>)" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1252 | using iso_imp_img_comm_group[of h H] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1253 | hence "\<And>x. x \<in> carrier H \<Longrightarrow> h \<one> \<otimes>\<^bsub>H\<^esub> x = x" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1254 | using monoid.l_one[of "H \<lparr> one := h \<one> \<rparr>"] unfolding comm_group_def comm_monoid_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1255 | moreover have "h \<one> \<in> carrier H" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1256 | using h one_closed unfolding iso_def hom_def by auto | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1257 | ultimately have "h \<one> = \<one>\<^bsub>H\<^esub>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1258 | using monoid.one_unique[OF assms(2), of "h \<one>"] by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1259 | hence "H = H \<lparr> one := h \<one> \<rparr>" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1260 | by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1261 | thus ?thesis | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1262 | using comm_gr by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1263 | qed | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1264 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1265 | (*A subgroup of a subgroup is a subgroup of the group*) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1266 | lemma (in group) incl_subgroup: | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1267 | assumes "subgroup J G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1268 | and "subgroup I (G\<lparr>carrier:=J\<rparr>)" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1269 | shows "subgroup I G" unfolding subgroup_def | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1270 | proof | 
| 68452 
c027dfbfad30
more on infinite products. Also subgroup_imp_subset -> subgroup.subset
 paulson <lp15@cam.ac.uk> parents: 
68445diff
changeset | 1271 | have H1: "I \<subseteq> carrier (G\<lparr>carrier:=J\<rparr>)" using assms(2) subgroup.subset by blast | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1272 | also have H2: "...\<subseteq>J" by simp | 
| 68452 
c027dfbfad30
more on infinite products. Also subgroup_imp_subset -> subgroup.subset
 paulson <lp15@cam.ac.uk> parents: 
68445diff
changeset | 1273 | also have "...\<subseteq>(carrier G)" by (simp add: assms(1) subgroup.subset) | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1274 | finally have H: "I \<subseteq> carrier G" by simp | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1275 | have "(\<And>x y. \<lbrakk>x \<in> I ; y \<in> I\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> I)" using assms(2) by (auto simp add: subgroup_def) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1276 | thus "I \<subseteq> carrier G \<and> (\<forall>x y. x \<in> I \<longrightarrow> y \<in> I \<longrightarrow> x \<otimes> y \<in> I)" using H by blast | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1277 | have K: "\<one> \<in> I" using assms(2) by (auto simp add: subgroup_def) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1278 | have "(\<And>x. x \<in> I \<Longrightarrow> inv x \<in> I)" using assms subgroup.m_inv_closed H | 
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1279 | by (metis H1 H2 m_inv_consistent subsetCE) | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1280 | thus "\<one> \<in> I \<and> (\<forall>x. x \<in> I \<longrightarrow> inv x \<in> I)" using K by blast | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1281 | qed | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1282 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1283 | (*A subgroup included in another subgroup is a subgroup of the subgroup*) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1284 | lemma (in group) subgroup_incl: | 
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1285 | assumes "subgroup I G" and "subgroup J G" and "I \<subseteq> J" | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1286 | shows "subgroup I (G \<lparr> carrier := J \<rparr>)" | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1287 | using group.group_incl_imp_subgroup[of "G \<lparr> carrier := J \<rparr>" I] | 
| 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1288 | assms(1-2)[THEN subgroup.subgroup_is_group[OF _ group_axioms]] assms(3) by auto | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1289 | |
| 20318 
0e0ea63fe768
Restructured algebra library, added ideals and quotient rings.
 ballarin parents: 
19984diff
changeset | 1290 | |
| 61382 | 1291 | subsection \<open>The Lattice of Subgroups of a Group\<close> | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1292 | |
| 61382 | 1293 | text_raw \<open>\label{sec:subgroup-lattice}\<close>
 | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1294 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1295 | theorem (in group) subgroups_partial_order: | 
| 67399 | 1296 |   "partial_order \<lparr>carrier = {H. subgroup H G}, eq = (=), le = (\<subseteq>)\<rparr>"
 | 
| 61169 | 1297 | by standard simp_all | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1298 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1299 | lemma (in group) subgroup_self: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1300 | "subgroup (carrier G) G" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1301 | by (rule subgroupI) auto | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1302 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1303 | lemma (in group) subgroup_imp_group: | 
| 55926 | 1304 | "subgroup H G ==> group (G\<lparr>carrier := H\<rparr>)" | 
| 26199 | 1305 | by (erule subgroup.subgroup_is_group) (rule group_axioms) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1306 | |
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1307 | lemma (in group) is_monoid [intro, simp]: | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1308 | "monoid G" | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1309 | by (auto intro: monoid.intro m_assoc) | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1310 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1311 | lemma (in group) subgroup_mult_equality: | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1312 | "\<lbrakk> subgroup H G; h1 \<in> H; h2 \<in> H \<rbrakk> \<Longrightarrow> h1 \<otimes>\<^bsub>G \<lparr> carrier := H \<rparr>\<^esub> h2 = h1 \<otimes> h2" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1313 | unfolding subgroup_def by simp | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1314 | |
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1315 | theorem (in group) subgroups_Inter: | 
| 67091 | 1316 | assumes subgr: "(\<And>H. H \<in> A \<Longrightarrow> subgroup H G)" | 
| 1317 |     and not_empty: "A \<noteq> {}"
 | |
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1318 | shows "subgroup (\<Inter>A) G" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1319 | proof (rule subgroupI) | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1320 | from subgr [THEN subgroup.subset] and not_empty | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1321 | show "\<Inter>A \<subseteq> carrier G" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1322 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1323 | from subgr [THEN subgroup.one_closed] | 
| 67091 | 1324 |   show "\<Inter>A \<noteq> {}" by blast
 | 
| 14751 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1325 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1326 | fix x assume "x \<in> \<Inter>A" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1327 | with subgr [THEN subgroup.m_inv_closed] | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1328 | show "inv x \<in> \<Inter>A" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1329 | next | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1330 | fix x y assume "x \<in> \<Inter>A" "y \<in> \<Inter>A" | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1331 | with subgr [THEN subgroup.m_closed] | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1332 | show "x \<otimes> y \<in> \<Inter>A" by blast | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1333 | qed | 
| 
0d7850e27fed
Change of theory hierarchy: Group is now based in Lattice.
 ballarin parents: 
14706diff
changeset | 1334 | |
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1335 | lemma (in group) subgroups_Inter_pair : | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1336 | assumes "subgroup I G" | 
| 68443 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1337 | and "subgroup J G" | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1338 |   shows "subgroup (I\<inter>J) G" using subgroups_Inter[ where ?A = "{I,J}"] assms by auto
 | 
| 
43055b016688
New material from Martin Baillon and Paulo EmÃlio de Vilhena
 paulson <lp15@cam.ac.uk> parents: 
68399diff
changeset | 1339 | |
| 66579 | 1340 | theorem (in group) subgroups_complete_lattice: | 
| 67399 | 1341 |   "complete_lattice \<lparr>carrier = {H. subgroup H G}, eq = (=), le = (\<subseteq>)\<rparr>"
 | 
| 66579 | 1342 | (is "complete_lattice ?L") | 
| 1343 | proof (rule partial_order.complete_lattice_criterion1) | |
| 1344 | show "partial_order ?L" by (rule subgroups_partial_order) | |
| 1345 | next | |
| 1346 | have "greatest ?L (carrier G) (carrier ?L)" | |
| 1347 | by (unfold greatest_def) (simp add: subgroup.subset subgroup_self) | |
| 1348 | then show "\<exists>G. greatest ?L G (carrier ?L)" .. | |
| 1349 | next | |
| 1350 | fix A | |
| 67091 | 1351 |   assume L: "A \<subseteq> carrier ?L" and non_empty: "A \<noteq> {}"
 | 
| 66579 | 1352 | then have Int_subgroup: "subgroup (\<Inter>A) G" | 
| 1353 | by (fastforce intro: subgroups_Inter) | |
| 1354 | have "greatest ?L (\<Inter>A) (Lower ?L A)" (is "greatest _ ?Int _") | |
| 1355 | proof (rule greatest_LowerI) | |
| 1356 | fix H | |
| 1357 | assume H: "H \<in> A" | |
| 1358 | with L have subgroupH: "subgroup H G" by auto | |
| 1359 | from subgroupH have groupH: "group (G \<lparr>carrier := H\<rparr>)" (is "group ?H") | |
| 1360 | by (rule subgroup_imp_group) | |
| 1361 | from groupH have monoidH: "monoid ?H" | |
| 1362 | by (rule group.is_monoid) | |
| 1363 | from H have Int_subset: "?Int \<subseteq> H" by fastforce | |
| 1364 | then show "le ?L ?Int H" by simp | |
| 1365 | next | |
| 1366 | fix H | |
| 1367 | assume H: "H \<in> Lower ?L A" | |
| 1368 | with L Int_subgroup show "le ?L H ?Int" | |
| 1369 | by (fastforce simp: Lower_def intro: Inter_greatest) | |
| 1370 | next | |
| 1371 | show "A \<subseteq> carrier ?L" by (rule L) | |
| 1372 | next | |
| 1373 | show "?Int \<in> carrier ?L" by simp (rule Int_subgroup) | |
| 1374 | qed | |
| 1375 | then show "\<exists>I. greatest ?L I (Lower ?L A)" .. | |
| 1376 | qed | |
| 1377 | ||
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1378 | subsection\<open>Jeremy Avigad's @{text"More_Group"} material\<close>
 | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1379 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1380 | text \<open> | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1381 | Show that the units in any monoid give rise to a group. | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1382 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1383 | The file Residues.thy provides some infrastructure to use | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1384 | facts about the unit group within the ring locale. | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1385 | \<close> | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1386 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1387 | definition units_of :: "('a, 'b) monoid_scheme \<Rightarrow> 'a monoid"
 | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1388 | where "units_of G = | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1389 | \<lparr>carrier = Units G, Group.monoid.mult = Group.monoid.mult G, one = one G\<rparr>" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1390 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1391 | lemma (in monoid) units_group: "group (units_of G)" | 
| 68458 | 1392 | proof - | 
| 1393 | have "\<And>x y z. \<lbrakk>x \<in> Units G; y \<in> Units G; z \<in> Units G\<rbrakk> \<Longrightarrow> x \<otimes> y \<otimes> z = x \<otimes> (y \<otimes> z)" | |
| 1394 | by (simp add: Units_closed m_assoc) | |
| 1395 | moreover have "\<And>x. x \<in> Units G \<Longrightarrow> \<exists>y\<in>Units G. y \<otimes> x = \<one>" | |
| 1396 | using Units_l_inv by blast | |
| 1397 | ultimately show ?thesis | |
| 1398 | unfolding units_of_def | |
| 1399 | by (force intro!: groupI) | |
| 1400 | qed | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1401 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1402 | lemma (in comm_monoid) units_comm_group: "comm_group (units_of G)" | 
| 68458 | 1403 | proof - | 
| 1404 | have "\<And>x y. \<lbrakk>x \<in> carrier (units_of G); y \<in> carrier (units_of G)\<rbrakk> | |
| 1405 | \<Longrightarrow> x \<otimes>\<^bsub>units_of G\<^esub> y = y \<otimes>\<^bsub>units_of G\<^esub> x" | |
| 1406 | by (simp add: Units_closed m_comm units_of_def) | |
| 1407 | then show ?thesis | |
| 1408 | by (rule group.group_comm_groupI [OF units_group]) auto | |
| 1409 | qed | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1410 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1411 | lemma units_of_carrier: "carrier (units_of G) = Units G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1412 | by (auto simp: units_of_def) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1413 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1414 | lemma units_of_mult: "mult (units_of G) = mult G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1415 | by (auto simp: units_of_def) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1416 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1417 | lemma units_of_one: "one (units_of G) = one G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1418 | by (auto simp: units_of_def) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1419 | |
| 68555 
22d51874f37d
a few more lemmas from Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68551diff
changeset | 1420 | lemma (in monoid) units_of_inv: | 
| 68458 | 1421 | assumes "x \<in> Units G" | 
| 1422 | shows "m_inv (units_of G) x = m_inv G x" | |
| 1423 | by (simp add: assms group.inv_equality units_group units_of_carrier units_of_mult units_of_one) | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1424 | |
| 68551 
b680e74eb6f2
More on Algebra by Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68517diff
changeset | 1425 | lemma units_of_units [simp] : "Units (units_of G) = Units G" | 
| 
b680e74eb6f2
More on Algebra by Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68517diff
changeset | 1426 | unfolding units_of_def Units_def by force | 
| 
b680e74eb6f2
More on Algebra by Paulo and Martin
 paulson <lp15@cam.ac.uk> parents: 
68517diff
changeset | 1427 | |
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1428 | lemma (in group) surj_const_mult: "a \<in> carrier G \<Longrightarrow> (\<lambda>x. a \<otimes> x) ` carrier G = carrier G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1429 | apply (auto simp add: image_def) | 
| 68458 | 1430 | by (metis inv_closed inv_solve_left m_closed) | 
| 68445 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1431 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1432 | lemma (in group) l_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x \<otimes> a = x \<longleftrightarrow> a = one G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1433 | by (metis Units_eq Units_l_cancel monoid.r_one monoid_axioms one_closed) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1434 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1435 | lemma (in group) r_cancel_one [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> a \<otimes> x = x \<longleftrightarrow> a = one G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1436 | by (metis monoid.l_one monoid_axioms one_closed right_cancel) | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1437 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1438 | lemma (in group) l_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = x \<otimes> a \<longleftrightarrow> a = one G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1439 | using l_cancel_one by fastforce | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1440 | |
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1441 | lemma (in group) r_cancel_one' [simp]: "x \<in> carrier G \<Longrightarrow> a \<in> carrier G \<Longrightarrow> x = a \<otimes> x \<longleftrightarrow> a = one G" | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1442 | using r_cancel_one by fastforce | 
| 
c183a6a69f2d
reorganisation of Algebra: new material from Baillon and Vilhena, removal of duplicate names, elimination of "More_" theories
 paulson <lp15@cam.ac.uk> parents: 
68443diff
changeset | 1443 | |
| 13813 | 1444 | end |