| author | wenzelm | 
| Sat, 08 Sep 2018 22:43:25 +0200 | |
| changeset 68955 | 0851db8cde12 | 
| parent 68796 | 9ca183045102 | 
| child 69038 | 2ce9bc515a64 | 
| permissions | -rw-r--r-- | 
| 63489 | 1 | (* Title: HOL/GCD.thy | 
| 2 | Author: Christophe Tabacznyj | |
| 3 | Author: Lawrence C. Paulson | |
| 4 | Author: Amine Chaieb | |
| 5 | Author: Thomas M. Rasmussen | |
| 6 | Author: Jeremy Avigad | |
| 7 | Author: Tobias Nipkow | |
| 31706 | 8 | |
| 32479 | 9 | This file deals with the functions gcd and lcm. Definitions and | 
| 10 | lemmas are proved uniformly for the natural numbers and integers. | |
| 31706 | 11 | |
| 12 | This file combines and revises a number of prior developments. | |
| 13 | ||
| 14 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 58623 | 15 | and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
 | 
| 31706 | 16 | gcd, lcm, and prime for the natural numbers. | 
| 17 | ||
| 18 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 19 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 20 | another extension of the notions to the integers, and added a number | |
| 21 | of results to "Primes" and "GCD". IntPrimes also defined and developed | |
| 22 | the congruence relations on the integers. The notion was extended to | |
| 34915 | 23 | the natural numbers by Chaieb. | 
| 31706 | 24 | |
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 25 | Jeremy Avigad combined all of these, made everything uniform for the | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 26 | natural numbers and the integers, and added a number of new theorems. | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 27 | |
| 31798 | 28 | Tobias Nipkow cleaned up a lot. | 
| 21256 | 29 | *) | 
| 30 | ||
| 60758 | 31 | section \<open>Greatest common divisor and least common multiple\<close> | 
| 21256 | 32 | |
| 33 | theory GCD | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 34 | imports Groups_List | 
| 31706 | 35 | begin | 
| 36 | ||
| 64850 | 37 | subsection \<open>Abstract bounded quasi semilattices as common foundation\<close> | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 38 | |
| 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 39 | locale bounded_quasi_semilattice = abel_semigroup + | 
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 40 |   fixes top :: 'a  ("\<^bold>\<top>") and bot :: 'a  ("\<^bold>\<bottom>")
 | 
| 64850 | 41 | and normalize :: "'a \<Rightarrow> 'a" | 
| 42 | assumes idem_normalize [simp]: "a \<^bold>* a = normalize a" | |
| 43 | and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b" | |
| 44 | and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b" | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 45 | and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 46 | and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 47 | and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 48 | and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>" | 
| 64850 | 49 | begin | 
| 50 | ||
| 51 | lemma left_idem [simp]: | |
| 52 | "a \<^bold>* (a \<^bold>* b) = a \<^bold>* b" | |
| 53 | using assoc [of a a b, symmetric] by simp | |
| 54 | ||
| 55 | lemma right_idem [simp]: | |
| 56 | "(a \<^bold>* b) \<^bold>* b = a \<^bold>* b" | |
| 57 | using left_idem [of b a] by (simp add: ac_simps) | |
| 58 | ||
| 59 | lemma comp_fun_idem: "comp_fun_idem f" | |
| 60 | by standard (simp_all add: fun_eq_iff ac_simps) | |
| 61 | ||
| 62 | interpretation comp_fun_idem f | |
| 63 | by (fact comp_fun_idem) | |
| 64 | ||
| 65 | lemma top_right_normalize [simp]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 66 | "a \<^bold>* \<^bold>\<top> = normalize a" | 
| 64850 | 67 | using top_left_normalize [of a] by (simp add: ac_simps) | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 68 | |
| 64850 | 69 | lemma bottom_right_bottom [simp]: | 
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 70 | "a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>" | 
| 64850 | 71 | using bottom_left_bottom [of a] by (simp add: ac_simps) | 
| 72 | ||
| 73 | lemma normalize_right_idem [simp]: | |
| 74 | "a \<^bold>* normalize b = a \<^bold>* b" | |
| 75 | using normalize_left_idem [of b a] by (simp add: ac_simps) | |
| 76 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 77 | end | 
| 64850 | 78 | |
| 79 | locale bounded_quasi_semilattice_set = bounded_quasi_semilattice | |
| 80 | begin | |
| 81 | ||
| 82 | interpretation comp_fun_idem f | |
| 83 | by (fact comp_fun_idem) | |
| 84 | ||
| 85 | definition F :: "'a set \<Rightarrow> 'a" | |
| 86 | where | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 87 | eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 88 | |
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 89 | lemma infinite [simp]: | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 90 | "infinite A \<Longrightarrow> F A = \<^bold>\<bottom>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 91 | by (simp add: eq_fold) | 
| 64850 | 92 | |
| 93 | lemma set_eq_fold [code]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 94 | "F (set xs) = fold f xs \<^bold>\<top>" | 
| 64850 | 95 | by (simp add: eq_fold fold_set_fold) | 
| 96 | ||
| 97 | lemma empty [simp]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 98 |   "F {} = \<^bold>\<top>"
 | 
| 64850 | 99 | by (simp add: eq_fold) | 
| 100 | ||
| 101 | lemma insert [simp]: | |
| 102 | "F (insert a A) = a \<^bold>* F A" | |
| 103 | by (cases "finite A") (simp_all add: eq_fold) | |
| 104 | ||
| 105 | lemma normalize [simp]: | |
| 106 | "normalize (F A) = F A" | |
| 107 | by (induct A rule: infinite_finite_induct) simp_all | |
| 108 | ||
| 109 | lemma in_idem: | |
| 110 | assumes "a \<in> A" | |
| 111 | shows "a \<^bold>* F A = F A" | |
| 112 | using assms by (induct A rule: infinite_finite_induct) | |
| 68708 | 113 | (auto simp: left_commute [of a]) | 
| 64850 | 114 | |
| 115 | lemma union: | |
| 116 | "F (A \<union> B) = F A \<^bold>* F B" | |
| 117 | by (induct A rule: infinite_finite_induct) | |
| 118 | (simp_all add: ac_simps) | |
| 119 | ||
| 120 | lemma remove: | |
| 121 | assumes "a \<in> A" | |
| 122 |   shows "F A = a \<^bold>* F (A - {a})"
 | |
| 123 | proof - | |
| 124 | from assms obtain B where "A = insert a B" and "a \<notin> B" | |
| 125 | by (blast dest: mk_disjoint_insert) | |
| 126 | with assms show ?thesis by simp | |
| 127 | qed | |
| 128 | ||
| 129 | lemma insert_remove: | |
| 130 |   "F (insert a A) = a \<^bold>* F (A - {a})"
 | |
| 131 | by (cases "a \<in> A") (simp_all add: insert_absorb remove) | |
| 132 | ||
| 133 | lemma subset: | |
| 134 | assumes "B \<subseteq> A" | |
| 135 | shows "F B \<^bold>* F A = F A" | |
| 136 | using assms by (simp add: union [symmetric] Un_absorb1) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 137 | |
| 64850 | 138 | end | 
| 63489 | 139 | |
| 62345 | 140 | subsection \<open>Abstract GCD and LCM\<close> | 
| 31706 | 141 | |
| 31992 | 142 | class gcd = zero + one + dvd + | 
| 41550 | 143 | fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 144 | and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 31706 | 145 | |
| 60686 | 146 | class Gcd = gcd + | 
| 63025 | 147 | fixes Gcd :: "'a set \<Rightarrow> 'a" | 
| 148 | and Lcm :: "'a set \<Rightarrow> 'a" | |
| 62350 | 149 | |
| 150 | syntax | |
| 63025 | 151 |   "_GCD1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3GCD _./ _)" [0, 10] 10)
 | 
| 152 |   "_GCD"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3GCD _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 153 |   "_LCM1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3LCM _./ _)" [0, 10] 10)
 | |
| 154 |   "_LCM"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3LCM _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 68795 
210b687cdbbe
dropped redundant syntax translation rules for big operators
 haftmann parents: 
68708diff
changeset | 155 | |
| 62350 | 156 | translations | 
| 68796 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 157 | "GCD x y. f" \<rightleftharpoons> "GCD x. GCD y. f" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 158 | "GCD x. f" \<rightleftharpoons> "CONST Gcd (CONST range (\<lambda>x. f))" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 159 | "GCD x\<in>A. f" \<rightleftharpoons> "CONST Gcd ((\<lambda>x. f) ` A)" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 160 | "LCM x y. f" \<rightleftharpoons> "LCM x. LCM y. f" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 161 | "LCM x. f" \<rightleftharpoons> "CONST Lcm (CONST range (\<lambda>x. f))" | 
| 
9ca183045102
simplified syntax setup for big operators under image, retaining input abbreviations for backward compatibility
 haftmann parents: 
68795diff
changeset | 162 | "LCM x\<in>A. f" \<rightleftharpoons> "CONST Lcm ((\<lambda>x. f) ` A)" | 
| 60686 | 163 | |
| 164 | class semiring_gcd = normalization_semidom + gcd + | |
| 59008 | 165 | assumes gcd_dvd1 [iff]: "gcd a b dvd a" | 
| 59977 | 166 | and gcd_dvd2 [iff]: "gcd a b dvd b" | 
| 167 | and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" | |
| 60686 | 168 | and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" | 
| 169 | and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b" | |
| 63489 | 170 | begin | 
| 171 | ||
| 172 | lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" | |
| 60686 | 173 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 174 | ||
| 63489 | 175 | lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 176 | by (rule dvd_trans) (rule gcd_dvd1) | 
| 177 | ||
| 63489 | 178 | lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 179 | by (rule dvd_trans) (rule gcd_dvd2) | 
| 180 | ||
| 63489 | 181 | lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" | 
| 62345 | 182 | using gcd_dvd1 [of b c] by (blast intro: dvd_trans) | 
| 183 | ||
| 63489 | 184 | lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" | 
| 62345 | 185 | using gcd_dvd2 [of b c] by (blast intro: dvd_trans) | 
| 186 | ||
| 63489 | 187 | lemma gcd_0_left [simp]: "gcd 0 a = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 188 | by (rule associated_eqI) simp_all | 
| 60686 | 189 | |
| 63489 | 190 | lemma gcd_0_right [simp]: "gcd a 0 = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 191 | by (rule associated_eqI) simp_all | 
| 63489 | 192 | |
| 193 | lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 194 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 195 | proof | 
| 63489 | 196 | assume ?P | 
| 197 | then have "0 dvd gcd a b" | |
| 198 | by simp | |
| 199 | then have "0 dvd a" and "0 dvd b" | |
| 200 | by (blast intro: dvd_trans)+ | |
| 201 | then show ?Q | |
| 202 | by simp | |
| 60686 | 203 | next | 
| 63489 | 204 | assume ?Q | 
| 205 | then show ?P | |
| 206 | by simp | |
| 60686 | 207 | qed | 
| 208 | ||
| 63489 | 209 | lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" | 
| 60686 | 210 | proof (cases "gcd a b = 0") | 
| 63489 | 211 | case True | 
| 212 | then show ?thesis by simp | |
| 60686 | 213 | next | 
| 214 | case False | |
| 215 | have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" | |
| 216 | by (rule unit_factor_mult_normalize) | |
| 217 | then have "unit_factor (gcd a b) * gcd a b = gcd a b" | |
| 218 | by simp | |
| 219 | then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" | |
| 220 | by simp | |
| 63489 | 221 | with False show ?thesis | 
| 222 | by simp | |
| 60686 | 223 | qed | 
| 224 | ||
| 67051 | 225 | lemma is_unit_gcd_iff [simp]: | 
| 226 | "is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1" | |
| 68708 | 227 | by (cases "a = 0 \<and> b = 0") (auto simp: unit_factor_gcd dest: is_unit_unit_factor) | 
| 60690 | 228 | |
| 61605 | 229 | sublocale gcd: abel_semigroup gcd | 
| 60686 | 230 | proof | 
| 231 | fix a b c | |
| 232 | show "gcd a b = gcd b a" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 233 | by (rule associated_eqI) simp_all | 
| 60686 | 234 | from gcd_dvd1 have "gcd (gcd a b) c dvd a" | 
| 235 | by (rule dvd_trans) simp | |
| 236 | moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" | |
| 237 | by (rule dvd_trans) simp | |
| 238 | ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" | |
| 239 | by (auto intro!: gcd_greatest) | |
| 240 | from gcd_dvd2 have "gcd a (gcd b c) dvd b" | |
| 241 | by (rule dvd_trans) simp | |
| 242 | moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" | |
| 243 | by (rule dvd_trans) simp | |
| 244 | ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" | |
| 245 | by (auto intro!: gcd_greatest) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 246 | from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 247 | by (rule associated_eqI) simp_all | 
| 60686 | 248 | qed | 
| 249 | ||
| 64850 | 250 | sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize | 
| 251 | proof | |
| 252 | show "gcd a a = normalize a" for a | |
| 253 | proof - | |
| 254 | have "a dvd gcd a a" | |
| 255 | by (rule gcd_greatest) simp_all | |
| 256 | then show ?thesis | |
| 257 | by (auto intro: associated_eqI) | |
| 258 | qed | |
| 259 | show "gcd (normalize a) b = gcd a b" for a b | |
| 260 | using gcd_dvd1 [of "normalize a" b] | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 261 | by (auto intro: associated_eqI) | 
| 67051 | 262 | show "gcd 1 a = 1" for a | 
| 64850 | 263 | by (rule associated_eqI) simp_all | 
| 264 | qed simp_all | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 265 | |
| 64850 | 266 | lemma gcd_self: "gcd a a = normalize a" | 
| 267 | by (fact gcd.idem_normalize) | |
| 268 | ||
| 269 | lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" | |
| 270 | by (fact gcd.left_idem) | |
| 271 | ||
| 272 | lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" | |
| 273 | by (fact gcd.right_idem) | |
| 274 | ||
| 63489 | 275 | lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b" | 
| 60686 | 276 | proof (cases "c = 0") | 
| 63489 | 277 | case True | 
| 278 | then show ?thesis by simp | |
| 60686 | 279 | next | 
| 280 | case False | |
| 63489 | 281 | then have *: "c * gcd a b dvd gcd (c * a) (c * b)" | 
| 60686 | 282 | by (auto intro: gcd_greatest) | 
| 63489 | 283 | moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" | 
| 60686 | 284 | by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) | 
| 285 | ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 286 | by (auto intro: associated_eqI) | 
| 63489 | 287 | then show ?thesis | 
| 288 | by (simp add: normalize_mult) | |
| 60686 | 289 | qed | 
| 290 | ||
| 63489 | 291 | lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c" | 
| 60686 | 292 | using gcd_mult_left [of c a b] by (simp add: ac_simps) | 
| 293 | ||
| 63489 | 294 | lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" | 
| 60686 | 295 | by (simp add: gcd_mult_left mult.assoc [symmetric]) | 
| 296 | ||
| 63489 | 297 | lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" | 
| 60686 | 298 | using mult_gcd_left [of c a b] by (simp add: ac_simps) | 
| 299 | ||
| 63489 | 300 | lemma dvd_lcm1 [iff]: "a dvd lcm a b" | 
| 60686 | 301 | proof - | 
| 302 | have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)" | |
| 303 | by (simp add: lcm_gcd normalize_mult div_mult_swap) | |
| 304 | then show ?thesis | |
| 305 | by (simp add: lcm_gcd) | |
| 306 | qed | |
| 63489 | 307 | |
| 308 | lemma dvd_lcm2 [iff]: "b dvd lcm a b" | |
| 60686 | 309 | proof - | 
| 310 | have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)" | |
| 311 | by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps) | |
| 312 | then show ?thesis | |
| 313 | by (simp add: lcm_gcd) | |
| 314 | qed | |
| 315 | ||
| 63489 | 316 | lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" | 
| 317 | by (rule dvd_trans) (assumption, blast) | |
| 318 | ||
| 319 | lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" | |
| 60689 | 320 | by (rule dvd_trans) (assumption, blast) | 
| 321 | ||
| 63489 | 322 | lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" | 
| 62345 | 323 | using dvd_lcm1 [of a b] by (blast intro: dvd_trans) | 
| 324 | ||
| 63489 | 325 | lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" | 
| 62345 | 326 | using dvd_lcm2 [of a b] by (blast intro: dvd_trans) | 
| 327 | ||
| 60686 | 328 | lemma lcm_least: | 
| 329 | assumes "a dvd c" and "b dvd c" | |
| 330 | shows "lcm a b dvd c" | |
| 331 | proof (cases "c = 0") | |
| 63489 | 332 | case True | 
| 333 | then show ?thesis by simp | |
| 60686 | 334 | next | 
| 63489 | 335 | case False | 
| 336 | then have *: "is_unit (unit_factor c)" | |
| 337 | by simp | |
| 60686 | 338 | show ?thesis | 
| 339 | proof (cases "gcd a b = 0") | |
| 63489 | 340 | case True | 
| 341 | with assms show ?thesis by simp | |
| 60686 | 342 | next | 
| 63489 | 343 | case False | 
| 344 | then have "a \<noteq> 0 \<or> b \<noteq> 0" | |
| 345 | by simp | |
| 60686 | 346 | with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b" | 
| 347 | by (simp_all add: mult_dvd_mono) | |
| 348 | then have "normalize (a * b) dvd gcd (a * c) (b * c)" | |
| 349 | by (auto intro: gcd_greatest simp add: ac_simps) | |
| 350 | then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c" | |
| 63489 | 351 | using * by (simp add: dvd_mult_unit_iff) | 
| 60686 | 352 | then have "normalize (a * b) dvd gcd a b * c" | 
| 353 | by (simp add: mult_gcd_right [of a b c]) | |
| 354 | then have "normalize (a * b) div gcd a b dvd c" | |
| 355 | using False by (simp add: div_dvd_iff_mult ac_simps) | |
| 63489 | 356 | then show ?thesis | 
| 357 | by (simp add: lcm_gcd) | |
| 60686 | 358 | qed | 
| 359 | qed | |
| 360 | ||
| 63489 | 361 | lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" | 
| 60686 | 362 | by (blast intro!: lcm_least intro: dvd_trans) | 
| 363 | ||
| 63489 | 364 | lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" | 
| 60686 | 365 | by (simp add: lcm_gcd dvd_normalize_div) | 
| 366 | ||
| 63489 | 367 | lemma lcm_0_left [simp]: "lcm 0 a = 0" | 
| 368 | by (simp add: lcm_gcd) | |
| 369 | ||
| 370 | lemma lcm_0_right [simp]: "lcm a 0 = 0" | |
| 60686 | 371 | by (simp add: lcm_gcd) | 
| 63489 | 372 | |
| 373 | lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 374 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 375 | proof | 
| 63489 | 376 | assume ?P | 
| 377 | then have "0 dvd lcm a b" | |
| 378 | by simp | |
| 60686 | 379 | then have "0 dvd normalize (a * b) div gcd a b" | 
| 380 | by (simp add: lcm_gcd) | |
| 381 | then have "0 * gcd a b dvd normalize (a * b)" | |
| 382 | using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all | |
| 383 | then have "normalize (a * b) = 0" | |
| 384 | by simp | |
| 63489 | 385 | then show ?Q | 
| 386 | by simp | |
| 60686 | 387 | next | 
| 63489 | 388 | assume ?Q | 
| 389 | then show ?P | |
| 390 | by auto | |
| 60686 | 391 | qed | 
| 392 | ||
| 63489 | 393 | lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 61913 | 394 | by (auto intro: associated_eqI) | 
| 395 | ||
| 63489 | 396 | lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" | 
| 60686 | 397 | by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd) | 
| 398 | ||
| 61605 | 399 | sublocale lcm: abel_semigroup lcm | 
| 60686 | 400 | proof | 
| 401 | fix a b c | |
| 402 | show "lcm a b = lcm b a" | |
| 403 | by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 404 | have "lcm (lcm a b) c dvd lcm a (lcm b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 405 | and "lcm a (lcm b c) dvd lcm (lcm a b) c" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 406 | by (auto intro: lcm_least | 
| 60686 | 407 | dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] | 
| 408 | dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] | |
| 409 | dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] | |
| 410 | dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) | |
| 411 | then show "lcm (lcm a b) c = lcm a (lcm b c)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 412 | by (rule associated_eqI) simp_all | 
| 60686 | 413 | qed | 
| 414 | ||
| 64850 | 415 | sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize | 
| 416 | proof | |
| 417 | show "lcm a a = normalize a" for a | |
| 418 | proof - | |
| 419 | have "lcm a a dvd a" | |
| 420 | by (rule lcm_least) simp_all | |
| 421 | then show ?thesis | |
| 422 | by (auto intro: associated_eqI) | |
| 423 | qed | |
| 424 | show "lcm (normalize a) b = lcm a b" for a b | |
| 425 | using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 426 | by (auto intro: associated_eqI) | 
| 64850 | 427 | show "lcm 1 a = normalize a" for a | 
| 428 | by (rule associated_eqI) simp_all | |
| 429 | qed simp_all | |
| 430 | ||
| 431 | lemma lcm_self: "lcm a a = normalize a" | |
| 432 | by (fact lcm.idem_normalize) | |
| 433 | ||
| 434 | lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b" | |
| 435 | by (fact lcm.left_idem) | |
| 436 | ||
| 437 | lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b" | |
| 438 | by (fact lcm.right_idem) | |
| 61913 | 439 | |
| 63489 | 440 | lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" | 
| 60686 | 441 | by (simp add: lcm_gcd normalize_mult) | 
| 442 | ||
| 63489 | 443 | lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" | 
| 444 | using gcd_mult_lcm [of a b] by (simp add: ac_simps) | |
| 60686 | 445 | |
| 446 | lemma gcd_lcm: | |
| 447 | assumes "a \<noteq> 0" and "b \<noteq> 0" | |
| 448 | shows "gcd a b = normalize (a * b) div lcm a b" | |
| 449 | proof - | |
| 450 | from assms have "lcm a b \<noteq> 0" | |
| 451 | by (simp add: lcm_eq_0_iff) | |
| 63489 | 452 | have "gcd a b * lcm a b = normalize a * normalize b" | 
| 453 | by simp | |
| 60686 | 454 | then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b" | 
| 455 | by (simp_all add: normalize_mult) | |
| 456 | with \<open>lcm a b \<noteq> 0\<close> show ?thesis | |
| 64240 | 457 | using nonzero_mult_div_cancel_right [of "lcm a b" "gcd a b"] by simp | 
| 60686 | 458 | qed | 
| 459 | ||
| 64850 | 460 | lemma lcm_1_left: "lcm 1 a = normalize a" | 
| 461 | by (fact lcm.top_left_normalize) | |
| 462 | ||
| 463 | lemma lcm_1_right: "lcm a 1 = normalize a" | |
| 464 | by (fact lcm.top_right_normalize) | |
| 63489 | 465 | |
| 466 | lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b" | |
| 60686 | 467 | by (cases "c = 0") | 
| 468 | (simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps, | |
| 469 | simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric]) | |
| 470 | ||
| 63489 | 471 | lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c" | 
| 60686 | 472 | using lcm_mult_left [of c a b] by (simp add: ac_simps) | 
| 473 | ||
| 63489 | 474 | lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" | 
| 60686 | 475 | by (simp add: lcm_mult_left mult.assoc [symmetric]) | 
| 476 | ||
| 63489 | 477 | lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" | 
| 60686 | 478 | using mult_lcm_left [of c a b] by (simp add: ac_simps) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 479 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 480 | lemma gcdI: | 
| 63489 | 481 | assumes "c dvd a" and "c dvd b" | 
| 482 | and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 483 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 484 | shows "c = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 485 | by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 486 | |
| 63489 | 487 | lemma gcd_unique: | 
| 488 | "d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 489 | by rule (auto intro: gcdI simp: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 490 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 491 | lemma gcd_dvd_prod: "gcd a b dvd k * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 492 | using mult_dvd_mono [of 1] by auto | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 493 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 494 | lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 495 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 496 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 497 | lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 498 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 499 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 500 | lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 501 | proof | 
| 63489 | 502 | assume *: "gcd m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 503 | show "m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 504 | proof (cases "m = 0") | 
| 63489 | 505 | case True | 
| 506 | with * show ?thesis by simp | |
| 507 | next | |
| 508 | case [simp]: False | |
| 509 | from * have **: "m = gcd m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 510 | by (simp add: unit_eq_div2) | 
| 63489 | 511 | show ?thesis | 
| 512 | by (subst **) (simp add: mult_unit_dvd_iff) | |
| 513 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 514 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 515 | assume "m dvd n" | 
| 63489 | 516 | then show "gcd m n = normalize m" | 
| 517 | by (rule gcd_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 518 | qed | 
| 63489 | 519 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 520 | lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 521 | using gcd_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 522 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 523 | lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 524 | by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 525 | |
| 63489 | 526 | lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 527 | proof- | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 528 | have "normalize k * gcd a b = gcd (k * a) (k * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 529 | by (simp add: gcd_mult_distrib') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 530 | then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 531 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 532 | then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 533 | by (simp only: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 534 | then show ?thesis | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 535 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 536 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 537 | |
| 63489 | 538 | lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 539 | by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 540 | |
| 63489 | 541 | lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 542 | using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 543 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 544 | lemma lcm_div_unit1: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 545 | "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" | 
| 63489 | 546 | by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) | 
| 547 | ||
| 548 | lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 549 | by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 550 | |
| 64850 | 551 | lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b" | 
| 552 | by (fact lcm.normalize_left_idem) | |
| 553 | ||
| 554 | lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b" | |
| 555 | by (fact lcm.normalize_right_idem) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 556 | |
| 68708 | 557 | lemma gcd_mult_unit1: | 
| 558 | assumes "is_unit a" shows "gcd (b * a) c = gcd b c" | |
| 559 | proof - | |
| 560 | have "gcd (b * a) c dvd b" | |
| 561 | using assms local.dvd_mult_unit_iff by blast | |
| 562 | then show ?thesis | |
| 563 | by (rule gcdI) simp_all | |
| 564 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 565 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 566 | lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" | 
| 68708 | 567 | using gcd.commute gcd_mult_unit1 by auto | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 568 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 569 | lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 570 | by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 571 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 572 | lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 573 | by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 574 | |
| 64850 | 575 | lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b" | 
| 576 | by (fact gcd.normalize_left_idem) | |
| 577 | ||
| 578 | lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b" | |
| 579 | by (fact gcd.normalize_right_idem) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 580 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 581 | lemma comp_fun_idem_gcd: "comp_fun_idem gcd" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 582 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 583 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 584 | lemma comp_fun_idem_lcm: "comp_fun_idem lcm" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 585 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 586 | |
| 63489 | 587 | lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 588 | proof (rule gcdI) | 
| 63489 | 589 | assume *: "gcd a b dvd gcd c d" | 
| 590 | and **: "gcd c d dvd gcd a b" | |
| 591 | have "gcd c d dvd c" | |
| 592 | by simp | |
| 593 | with * show "gcd a b dvd c" | |
| 594 | by (rule dvd_trans) | |
| 595 | have "gcd c d dvd d" | |
| 596 | by simp | |
| 597 | with * show "gcd a b dvd d" | |
| 598 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 599 | show "normalize (gcd a b) = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 600 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 601 | fix l assume "l dvd c" and "l dvd d" | 
| 63489 | 602 | then have "l dvd gcd c d" | 
| 603 | by (rule gcd_greatest) | |
| 604 | from this and ** show "l dvd gcd a b" | |
| 605 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 606 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 607 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 608 | lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 609 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 610 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 611 | lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 612 | using gcd_add1 [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 613 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 614 | lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 615 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 616 | |
| 63489 | 617 | lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 618 | by (simp add: lcm_gcd) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 619 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 620 | declare unit_factor_lcm [simp] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 621 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 622 | lemma lcmI: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 623 | assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 624 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 625 | shows "c = lcm a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 626 | by (rule associated_eqI) (auto simp: assms intro: lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 627 | |
| 63489 | 628 | lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 629 | using gcd_dvd2 by (rule dvd_lcmI2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 630 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 631 | lemmas lcm_0 = lcm_0_right | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 632 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 633 | lemma lcm_unique: | 
| 63489 | 634 | "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 635 | by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 636 | |
| 68708 | 637 | lemma lcm_proj1_if_dvd: | 
| 638 | assumes "b dvd a" shows "lcm a b = normalize a" | |
| 639 | proof (cases "a = 0") | |
| 640 | case False | |
| 641 | then show ?thesis | |
| 642 | using assms gcd_proj2_if_dvd lcm_mult_gcd local.lcm_gcd by auto | |
| 643 | qed auto | |
| 63489 | 644 | |
| 645 | lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 646 | using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 647 | |
| 63489 | 648 | lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 649 | proof | 
| 63489 | 650 | assume *: "lcm m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 651 | show "n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 652 | proof (cases "m = 0") | 
| 63489 | 653 | case True | 
| 654 | then show ?thesis by simp | |
| 655 | next | |
| 656 | case [simp]: False | |
| 657 | from * have **: "m = lcm m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 658 | by (simp add: unit_eq_div2) | 
| 63489 | 659 | show ?thesis by (subst **) simp | 
| 660 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 661 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 662 | assume "n dvd m" | 
| 63489 | 663 | then show "lcm m n = normalize m" | 
| 664 | by (rule lcm_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 665 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 666 | |
| 63489 | 667 | lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 668 | using lcm_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 669 | |
| 64850 | 670 | lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)" | 
| 671 | by (rule lcmI) (auto simp: normalize_mult lcm_least mult_dvd_mono lcm_mult_left [symmetric]) | |
| 672 | ||
| 673 | lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k" | |
| 674 | proof- | |
| 675 | have "normalize k * lcm a b = lcm (k * a) (k * b)" | |
| 676 | by (simp add: lcm_mult_distrib') | |
| 677 | then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k" | |
| 678 | by simp | |
| 679 | then have "normalize k * unit_factor k * lcm a b = lcm (k * a) (k * b) * unit_factor k" | |
| 680 | by (simp only: ac_simps) | |
| 681 | then show ?thesis | |
| 682 | by simp | |
| 683 | qed | |
| 684 | ||
| 63924 | 685 | lemma dvd_productE: | 
| 67051 | 686 | assumes "p dvd a * b" | 
| 63924 | 687 | obtains x y where "p = x * y" "x dvd a" "y dvd b" | 
| 688 | proof (cases "a = 0") | |
| 689 | case True | |
| 690 | thus ?thesis by (intro that[of p 1]) simp_all | |
| 691 | next | |
| 692 | case False | |
| 693 | define x y where "x = gcd a p" and "y = p div x" | |
| 694 | have "p = x * y" by (simp add: x_def y_def) | |
| 695 | moreover have "x dvd a" by (simp add: x_def) | |
| 696 | moreover from assms have "p dvd gcd (b * a) (b * p)" | |
| 697 | by (intro gcd_greatest) (simp_all add: mult.commute) | |
| 698 | hence "p dvd b * gcd a p" by (simp add: gcd_mult_distrib) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 699 | with False have "y dvd b" | 
| 63924 | 700 | by (simp add: x_def y_def div_dvd_iff_mult assms) | 
| 701 | ultimately show ?thesis by (rule that) | |
| 702 | qed | |
| 703 | ||
| 60686 | 704 | end | 
| 705 | ||
| 62345 | 706 | class ring_gcd = comm_ring_1 + semiring_gcd | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 707 | begin | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 708 | |
| 63489 | 709 | lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" | 
| 710 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 711 | ||
| 712 | lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" | |
| 713 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 714 | ||
| 715 | lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 716 | by (fact gcd_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 717 | |
| 63489 | 718 | lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 719 | by (fact gcd_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 720 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 721 | lemma gcd_diff1: "gcd (m - n) n = gcd m n" | 
| 63489 | 722 | by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 723 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 724 | lemma gcd_diff2: "gcd (n - m) n = gcd m n" | 
| 63489 | 725 | by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 726 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 727 | lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" | 
| 63489 | 728 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 729 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 730 | lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" | 
| 63489 | 731 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 732 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 733 | lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 734 | by (fact lcm_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 735 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 736 | lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 737 | by (fact lcm_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 738 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 739 | end | 
| 62345 | 740 | |
| 60686 | 741 | class semiring_Gcd = semiring_gcd + Gcd + | 
| 742 | assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" | |
| 743 | and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" | |
| 744 | and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" | |
| 62345 | 745 | assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" | 
| 746 | and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" | |
| 747 | and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" | |
| 60686 | 748 | begin | 
| 749 | ||
| 63489 | 750 | lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}"
 | 
| 62345 | 751 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 752 | ||
| 63489 | 753 | lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}"
 | 
| 62345 | 754 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 755 | ||
| 63489 | 756 | lemma Gcd_empty [simp]: "Gcd {} = 0"
 | 
| 60686 | 757 | by (rule dvd_0_left, rule Gcd_greatest) simp | 
| 758 | ||
| 63489 | 759 | lemma Lcm_empty [simp]: "Lcm {} = 1"
 | 
| 62345 | 760 | by (auto intro: associated_eqI Lcm_least) | 
| 761 | ||
| 63489 | 762 | lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" | 
| 62345 | 763 | proof - | 
| 764 | have "Gcd (insert a A) dvd gcd a (Gcd A)" | |
| 765 | by (auto intro: Gcd_dvd Gcd_greatest) | |
| 766 | moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" | |
| 767 | proof (rule Gcd_greatest) | |
| 768 | fix b | |
| 769 | assume "b \<in> insert a A" | |
| 770 | then show "gcd a (Gcd A) dvd b" | |
| 771 | proof | |
| 63489 | 772 | assume "b = a" | 
| 773 | then show ?thesis | |
| 774 | by simp | |
| 62345 | 775 | next | 
| 776 | assume "b \<in> A" | |
| 63489 | 777 | then have "Gcd A dvd b" | 
| 778 | by (rule Gcd_dvd) | |
| 779 | moreover have "gcd a (Gcd A) dvd Gcd A" | |
| 780 | by simp | |
| 781 | ultimately show ?thesis | |
| 782 | by (blast intro: dvd_trans) | |
| 62345 | 783 | qed | 
| 784 | qed | |
| 785 | ultimately show ?thesis | |
| 786 | by (auto intro: associated_eqI) | |
| 787 | qed | |
| 788 | ||
| 63489 | 789 | lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" | 
| 62345 | 790 | proof (rule sym) | 
| 791 | have "lcm a (Lcm A) dvd Lcm (insert a A)" | |
| 792 | by (auto intro: dvd_Lcm Lcm_least) | |
| 793 | moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" | |
| 794 | proof (rule Lcm_least) | |
| 795 | fix b | |
| 796 | assume "b \<in> insert a A" | |
| 797 | then show "b dvd lcm a (Lcm A)" | |
| 798 | proof | |
| 63489 | 799 | assume "b = a" | 
| 800 | then show ?thesis by simp | |
| 62345 | 801 | next | 
| 802 | assume "b \<in> A" | |
| 63489 | 803 | then have "b dvd Lcm A" | 
| 804 | by (rule dvd_Lcm) | |
| 805 | moreover have "Lcm A dvd lcm a (Lcm A)" | |
| 806 | by simp | |
| 807 | ultimately show ?thesis | |
| 808 | by (blast intro: dvd_trans) | |
| 62345 | 809 | qed | 
| 810 | qed | |
| 811 | ultimately show "lcm a (Lcm A) = Lcm (insert a A)" | |
| 812 | by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) | |
| 813 | qed | |
| 814 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 815 | lemma LcmI: | 
| 63489 | 816 | assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" | 
| 817 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" | |
| 818 | and "normalize b = b" | |
| 819 | shows "b = Lcm A" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 820 | by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 821 | |
| 63489 | 822 | lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 823 | by (blast intro: Lcm_least dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 824 | |
| 63489 | 825 | lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" | 
| 68708 | 826 | proof - | 
| 827 | have "\<And>d. \<lbrakk>Lcm A dvd d; Lcm B dvd d\<rbrakk> \<Longrightarrow> Lcm (A \<union> B) dvd d" | |
| 828 | by (meson UnE local.Lcm_least local.dvd_Lcm local.dvd_trans) | |
| 829 | then show ?thesis | |
| 830 | by (meson Lcm_subset local.lcm_unique local.normalize_Lcm sup.cobounded1 sup.cobounded2) | |
| 831 | qed | |
| 63489 | 832 | |
| 833 | lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
 | |
| 834 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 835 | proof | 
| 836 | assume ?P | |
| 837 | show ?Q | |
| 838 | proof | |
| 839 | fix a | |
| 840 | assume "a \<in> A" | |
| 63489 | 841 | then have "Gcd A dvd a" | 
| 842 | by (rule Gcd_dvd) | |
| 843 | with \<open>?P\<close> have "a = 0" | |
| 844 | by simp | |
| 845 |     then show "a \<in> {0}"
 | |
| 846 | by simp | |
| 60686 | 847 | qed | 
| 848 | next | |
| 849 | assume ?Q | |
| 850 | have "0 dvd Gcd A" | |
| 851 | proof (rule Gcd_greatest) | |
| 852 | fix a | |
| 853 | assume "a \<in> A" | |
| 63489 | 854 | with \<open>?Q\<close> have "a = 0" | 
| 855 | by auto | |
| 856 | then show "0 dvd a" | |
| 857 | by simp | |
| 60686 | 858 | qed | 
| 63489 | 859 | then show ?P | 
| 860 | by simp | |
| 60686 | 861 | qed | 
| 862 | ||
| 63489 | 863 | lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" | 
| 864 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 865 | proof | 
| 866 | assume ?P | |
| 867 | show ?Q | |
| 868 | proof | |
| 869 | fix a | |
| 870 | assume "a \<in> A" | |
| 871 | then have "a dvd Lcm A" | |
| 872 | by (rule dvd_Lcm) | |
| 873 | with \<open>?P\<close> show "is_unit a" | |
| 874 | by simp | |
| 875 | qed | |
| 876 | next | |
| 877 | assume ?Q | |
| 878 | then have "is_unit (Lcm A)" | |
| 879 | by (blast intro: Lcm_least) | |
| 880 | then have "normalize (Lcm A) = 1" | |
| 881 | by (rule is_unit_normalize) | |
| 882 | then show ?P | |
| 883 | by simp | |
| 884 | qed | |
| 885 | ||
| 63489 | 886 | lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" | 
| 62345 | 887 | proof (cases "Lcm A = 0") | 
| 63489 | 888 | case True | 
| 889 | then show ?thesis | |
| 890 | by simp | |
| 62345 | 891 | next | 
| 892 | case False | |
| 893 | with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" | |
| 894 | by blast | |
| 895 | with False show ?thesis | |
| 896 | by simp | |
| 897 | qed | |
| 898 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 899 | lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" | 
| 63489 | 900 | by (simp add: Gcd_Lcm unit_factor_Lcm) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 901 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 902 | lemma GcdI: | 
| 63489 | 903 | assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" | 
| 904 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 905 | and "normalize b = b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 906 | shows "b = Gcd A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 907 | by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 908 | |
| 62345 | 909 | lemma Gcd_eq_1_I: | 
| 910 | assumes "is_unit a" and "a \<in> A" | |
| 911 | shows "Gcd A = 1" | |
| 912 | proof - | |
| 913 | from assms have "is_unit (Gcd A)" | |
| 914 | by (blast intro: Gcd_dvd dvd_unit_imp_unit) | |
| 915 | then have "normalize (Gcd A) = 1" | |
| 916 | by (rule is_unit_normalize) | |
| 917 | then show ?thesis | |
| 918 | by simp | |
| 919 | qed | |
| 920 | ||
| 60686 | 921 | lemma Lcm_eq_0_I: | 
| 922 | assumes "0 \<in> A" | |
| 923 | shows "Lcm A = 0" | |
| 924 | proof - | |
| 925 | from assms have "0 dvd Lcm A" | |
| 926 | by (rule dvd_Lcm) | |
| 927 | then show ?thesis | |
| 928 | by simp | |
| 929 | qed | |
| 930 | ||
| 63489 | 931 | lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" | 
| 62345 | 932 | using dvd_refl by (rule Gcd_eq_1_I) simp | 
| 933 | ||
| 63489 | 934 | lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" | 
| 61929 | 935 | by (rule Lcm_eq_0_I) simp | 
| 60686 | 936 | |
| 61929 | 937 | lemma Lcm_0_iff: | 
| 938 | assumes "finite A" | |
| 939 | shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" | |
| 940 | proof (cases "A = {}")
 | |
| 63489 | 941 | case True | 
| 942 | then show ?thesis by simp | |
| 61929 | 943 | next | 
| 63489 | 944 | case False | 
| 945 | with assms show ?thesis | |
| 68708 | 946 | by (induct A rule: finite_ne_induct) (auto simp: lcm_eq_0_iff) | 
| 60686 | 947 | qed | 
| 61929 | 948 | |
| 63489 | 949 | lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" | 
| 62345 | 950 | proof - | 
| 951 | have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a | |
| 952 | proof - | |
| 63489 | 953 | from that obtain B where "A = insert a B" | 
| 954 | by blast | |
| 62350 | 955 | moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" | 
| 62345 | 956 | by (rule gcd_dvd1) | 
| 957 | ultimately show "Gcd (normalize ` A) dvd a" | |
| 958 | by simp | |
| 959 | qed | |
| 960 | then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" | |
| 961 | by (auto intro!: Gcd_greatest intro: Gcd_dvd) | |
| 962 | then show ?thesis | |
| 963 | by (auto intro: associated_eqI) | |
| 964 | qed | |
| 965 | ||
| 62346 | 966 | lemma Gcd_eqI: | 
| 967 | assumes "normalize a = a" | |
| 968 | assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" | |
| 969 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" | |
| 970 | shows "Gcd A = a" | |
| 971 | using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) | |
| 972 | ||
| 63489 | 973 | lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" | 
| 974 | using Gcd_dvd dvd_trans by blast | |
| 975 | ||
| 976 | lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" | |
| 63359 | 977 | by (blast dest: dvd_GcdD intro: Gcd_greatest) | 
| 978 | ||
| 68708 | 979 | lemma Gcd_mult: "Gcd (( *) c ` A) = normalize c * Gcd A" | 
| 63359 | 980 | proof (cases "c = 0") | 
| 63489 | 981 | case True | 
| 982 | then show ?thesis by auto | |
| 983 | next | |
| 63359 | 984 | case [simp]: False | 
| 68708 | 985 | have "Gcd (( *) c ` A) div c dvd Gcd A" | 
| 63359 | 986 | by (intro Gcd_greatest, subst div_dvd_iff_mult) | 
| 987 | (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) | |
| 68708 | 988 | then have "Gcd (( *) c ` A) dvd c * Gcd A" | 
| 63359 | 989 | by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) | 
| 990 | also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c" | |
| 991 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 68708 | 992 | also have "Gcd (( *) c ` A) dvd \<dots> \<longleftrightarrow> Gcd (( *) c ` A) dvd normalize c * Gcd A" | 
| 63359 | 993 | by (simp add: dvd_mult_unit_iff) | 
| 68708 | 994 | finally have "Gcd (( *) c ` A) dvd normalize c * Gcd A" . | 
| 995 | moreover have "normalize c * Gcd A dvd Gcd (( *) c ` A)" | |
| 63359 | 996 | by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) | 
| 68708 | 997 | ultimately have "normalize (Gcd (( *) c ` A)) = normalize (normalize c * Gcd A)" | 
| 63359 | 998 | by (rule associatedI) | 
| 63489 | 999 | then show ?thesis | 
| 1000 | by (simp add: normalize_mult) | |
| 1001 | qed | |
| 63359 | 1002 | |
| 62346 | 1003 | lemma Lcm_eqI: | 
| 1004 | assumes "normalize a = a" | |
| 63489 | 1005 | and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" | 
| 62346 | 1006 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" | 
| 1007 | shows "Lcm A = a" | |
| 1008 | using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) | |
| 1009 | ||
| 63489 | 1010 | lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" | 
| 1011 | using dvd_Lcm dvd_trans by blast | |
| 1012 | ||
| 1013 | lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" | |
| 63359 | 1014 | by (blast dest: Lcm_dvdD intro: Lcm_least) | 
| 1015 | ||
| 63489 | 1016 | lemma Lcm_mult: | 
| 63359 | 1017 |   assumes "A \<noteq> {}"
 | 
| 68708 | 1018 | shows "Lcm (( *) c ` A) = normalize c * Lcm A" | 
| 63359 | 1019 | proof (cases "c = 0") | 
| 1020 | case True | |
| 68708 | 1021 |   with assms have "( *) c ` A = {0}"
 | 
| 63489 | 1022 | by auto | 
| 1023 | with True show ?thesis by auto | |
| 63359 | 1024 | next | 
| 1025 | case [simp]: False | |
| 63489 | 1026 | from assms obtain x where x: "x \<in> A" | 
| 1027 | by blast | |
| 1028 | have "c dvd c * x" | |
| 1029 | by simp | |
| 68708 | 1030 | also from x have "c * x dvd Lcm (( *) c ` A)" | 
| 63489 | 1031 | by (intro dvd_Lcm) auto | 
| 68708 | 1032 | finally have dvd: "c dvd Lcm (( *) c ` A)" . | 
| 1033 | ||
| 1034 | have "Lcm A dvd Lcm (( *) c ` A) div c" | |
| 63359 | 1035 | by (intro Lcm_least dvd_mult_imp_div) | 
| 63489 | 1036 | (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) | 
| 68708 | 1037 | then have "c * Lcm A dvd Lcm (( *) c ` A)" | 
| 63359 | 1038 | by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd) | 
| 1039 | also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c" | |
| 1040 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 68708 | 1041 | also have "\<dots> dvd Lcm (( *) c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (( *) c ` A)" | 
| 63359 | 1042 | by (simp add: mult_unit_dvd_iff) | 
| 68708 | 1043 | finally have "normalize c * Lcm A dvd Lcm (( *) c ` A)" . | 
| 1044 | moreover have "Lcm (( *) c ` A) dvd normalize c * Lcm A" | |
| 63359 | 1045 | by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) | 
| 68708 | 1046 | ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (( *) c ` A))" | 
| 63359 | 1047 | by (rule associatedI) | 
| 63489 | 1048 | then show ?thesis | 
| 1049 | by (simp add: normalize_mult) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1050 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1051 | |
| 63489 | 1052 | lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})"
 | 
| 1053 | proof - | |
| 1054 |   have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A"
 | |
| 1055 | by blast | |
| 1056 |   then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
 | |
| 1057 | by (simp add: Lcm_Un [symmetric]) | |
| 1058 |   also have "Lcm {a\<in>A. is_unit a} = 1"
 | |
| 1059 | by simp | |
| 1060 | finally show ?thesis | |
| 1061 | by simp | |
| 1062 | qed | |
| 1063 | ||
| 1064 | lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1065 | by (metis Lcm_least dvd_0_left dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1066 | |
| 63489 | 1067 | lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1068 | by (auto simp: Lcm_0_iff') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1069 | |
| 63489 | 1070 | lemma Lcm_singleton [simp]: "Lcm {a} = normalize a"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1071 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1072 | |
| 63489 | 1073 | lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1074 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1075 | |
| 63489 | 1076 | lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1077 | by (auto intro!: Gcd_eq_1_I) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1078 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1079 | lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
 | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1080 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1081 | |
| 63489 | 1082 | lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1083 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1084 | |
| 62350 | 1085 | end | 
| 62345 | 1086 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1087 | |
| 64850 | 1088 | subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close> | 
| 1089 | ||
| 1090 | context semiring_gcd | |
| 1091 | begin | |
| 1092 | ||
| 1093 | sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize | |
| 1094 | defines | |
| 1095 |   Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" ..
 | |
| 1096 | ||
| 1097 | abbreviation gcd_list :: "'a list \<Rightarrow> 'a" | |
| 1098 | where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)" | |
| 1099 | ||
| 1100 | sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize | |
| 1101 | defines | |
| 1102 |   Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Lcm_fin.F ..
 | |
| 1103 | ||
| 1104 | abbreviation lcm_list :: "'a list \<Rightarrow> 'a" | |
| 1105 | where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1106 | |
| 64850 | 1107 | lemma Gcd_fin_dvd: | 
| 1108 | "a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1109 | by (induct A rule: infinite_finite_induct) | 
| 64850 | 1110 | (auto intro: dvd_trans) | 
| 1111 | ||
| 1112 | lemma dvd_Lcm_fin: | |
| 1113 | "a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1114 | by (induct A rule: infinite_finite_induct) | 
| 64850 | 1115 | (auto intro: dvd_trans) | 
| 1116 | ||
| 1117 | lemma Gcd_fin_greatest: | |
| 1118 | "a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b" | |
| 1119 | using that by (induct A) simp_all | |
| 1120 | ||
| 1121 | lemma Lcm_fin_least: | |
| 1122 | "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" | |
| 1123 | using that by (induct A) simp_all | |
| 1124 | ||
| 1125 | lemma gcd_list_greatest: | |
| 1126 | "a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b" | |
| 1127 | by (rule Gcd_fin_greatest) (simp_all add: that) | |
| 1128 | ||
| 1129 | lemma lcm_list_least: | |
| 1130 | "lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a" | |
| 1131 | by (rule Lcm_fin_least) (simp_all add: that) | |
| 1132 | ||
| 1133 | lemma dvd_Gcd_fin_iff: | |
| 1134 | "b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A" | |
| 1135 | using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"]) | |
| 1136 | ||
| 1137 | lemma dvd_gcd_list_iff: | |
| 1138 | "b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)" | |
| 1139 | by (simp add: dvd_Gcd_fin_iff) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1140 | |
| 64850 | 1141 | lemma Lcm_fin_dvd_iff: | 
| 1142 | "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A" | |
| 1143 | using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b]) | |
| 1144 | ||
| 1145 | lemma lcm_list_dvd_iff: | |
| 1146 | "lcm_list xs dvd b \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)" | |
| 1147 | by (simp add: Lcm_fin_dvd_iff) | |
| 1148 | ||
| 1149 | lemma Gcd_fin_mult: | |
| 1150 | "Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" | |
| 1151 | using that proof induct | |
| 1152 | case empty | |
| 1153 | then show ?case | |
| 1154 | by simp | |
| 1155 | next | |
| 1156 | case (insert a A) | |
| 1157 | have "gcd (b * a) (b * Gcd\<^sub>f\<^sub>i\<^sub>n A) = gcd (b * a) (normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A))" | |
| 1158 | by simp | |
| 1159 | also have "\<dots> = gcd (b * a) (normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A)" | |
| 1160 | by (simp add: normalize_mult) | |
| 1161 | finally show ?case | |
| 1162 | using insert by (simp add: gcd_mult_distrib') | |
| 1163 | qed | |
| 1164 | ||
| 1165 | lemma Lcm_fin_mult: | |
| 1166 |   "Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A" if "A \<noteq> {}"
 | |
| 1167 | proof (cases "b = 0") | |
| 1168 | case True | |
| 1169 |   moreover from that have "times 0 ` A = {0}"
 | |
| 1170 | by auto | |
| 1171 | ultimately show ?thesis | |
| 1172 | by simp | |
| 1173 | next | |
| 1174 | case False | |
| 1175 | show ?thesis proof (cases "finite A") | |
| 1176 | case False | |
| 66936 | 1177 | moreover have "inj_on (times b) A" | 
| 1178 | using \<open>b \<noteq> 0\<close> by (rule inj_on_mult) | |
| 64850 | 1179 | ultimately have "infinite (times b ` A)" | 
| 1180 | by (simp add: finite_image_iff) | |
| 1181 | with False show ?thesis | |
| 1182 | by simp | |
| 1183 | next | |
| 1184 | case True | |
| 1185 | then show ?thesis using that proof (induct A rule: finite_ne_induct) | |
| 1186 | case (singleton a) | |
| 1187 | then show ?case | |
| 1188 | by (simp add: normalize_mult) | |
| 1189 | next | |
| 1190 | case (insert a A) | |
| 1191 | have "lcm (b * a) (b * Lcm\<^sub>f\<^sub>i\<^sub>n A) = lcm (b * a) (normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A))" | |
| 1192 | by simp | |
| 1193 | also have "\<dots> = lcm (b * a) (normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A)" | |
| 1194 | by (simp add: normalize_mult) | |
| 1195 | finally show ?case | |
| 1196 | using insert by (simp add: lcm_mult_distrib') | |
| 1197 | qed | |
| 1198 | qed | |
| 1199 | qed | |
| 1200 | ||
| 65811 | 1201 | lemma unit_factor_Gcd_fin: | 
| 1202 | "unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" | |
| 1203 | by (rule normalize_idem_imp_unit_factor_eq) simp | |
| 1204 | ||
| 1205 | lemma unit_factor_Lcm_fin: | |
| 1206 | "unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" | |
| 1207 | by (rule normalize_idem_imp_unit_factor_eq) simp | |
| 1208 | ||
| 1209 | lemma is_unit_Gcd_fin_iff [simp]: | |
| 1210 | "is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1" | |
| 1211 | by (rule normalize_idem_imp_is_unit_iff) simp | |
| 1212 | ||
| 1213 | lemma is_unit_Lcm_fin_iff [simp]: | |
| 1214 | "is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1" | |
| 1215 | by (rule normalize_idem_imp_is_unit_iff) simp | |
| 1216 | ||
| 1217 | lemma Gcd_fin_0_iff: | |
| 1218 |   "Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A"
 | |
| 1219 | by (induct A rule: infinite_finite_induct) simp_all | |
| 1220 | ||
| 1221 | lemma Lcm_fin_0_iff: | |
| 1222 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A" | |
| 68708 | 1223 | using that by (induct A) (auto simp: lcm_eq_0_iff) | 
| 65811 | 1224 | |
| 1225 | lemma Lcm_fin_1_iff: | |
| 1226 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A" | |
| 1227 | by (induct A rule: infinite_finite_induct) simp_all | |
| 1228 | ||
| 64850 | 1229 | end | 
| 1230 | ||
| 1231 | context semiring_Gcd | |
| 1232 | begin | |
| 1233 | ||
| 1234 | lemma Gcd_fin_eq_Gcd [simp]: | |
| 1235 | "Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set" | |
| 1236 | using that by induct simp_all | |
| 1237 | ||
| 1238 | lemma Gcd_set_eq_fold [code_unfold]: | |
| 1239 | "Gcd (set xs) = fold gcd xs 0" | |
| 1240 | by (simp add: Gcd_fin.set_eq_fold [symmetric]) | |
| 1241 | ||
| 1242 | lemma Lcm_fin_eq_Lcm [simp]: | |
| 1243 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set" | |
| 1244 | using that by induct simp_all | |
| 1245 | ||
| 1246 | lemma Lcm_set_eq_fold [code_unfold]: | |
| 1247 | "Lcm (set xs) = fold lcm xs 1" | |
| 1248 | by (simp add: Lcm_fin.set_eq_fold [symmetric]) | |
| 1249 | ||
| 1250 | end | |
| 63489 | 1251 | |
| 67051 | 1252 | |
| 1253 | subsection \<open>Coprimality\<close> | |
| 1254 | ||
| 1255 | context semiring_gcd | |
| 1256 | begin | |
| 1257 | ||
| 1258 | lemma coprime_imp_gcd_eq_1 [simp]: | |
| 1259 | "gcd a b = 1" if "coprime a b" | |
| 1260 | proof - | |
| 1261 | define t r s where "t = gcd a b" and "r = a div t" and "s = b div t" | |
| 1262 | then have "a = t * r" and "b = t * s" | |
| 1263 | by simp_all | |
| 1264 | with that have "coprime (t * r) (t * s)" | |
| 1265 | by simp | |
| 1266 | then show ?thesis | |
| 1267 | by (simp add: t_def) | |
| 1268 | qed | |
| 1269 | ||
| 68270 
2bc921b2159b
treat gcd_eq_1_imp_coprime analogously to mod_0_imp_dvd
 haftmann parents: 
67399diff
changeset | 1270 | lemma gcd_eq_1_imp_coprime [dest!]: | 
| 67051 | 1271 | "coprime a b" if "gcd a b = 1" | 
| 1272 | proof (rule coprimeI) | |
| 1273 | fix c | |
| 1274 | assume "c dvd a" and "c dvd b" | |
| 1275 | then have "c dvd gcd a b" | |
| 1276 | by (rule gcd_greatest) | |
| 1277 | with that show "is_unit c" | |
| 1278 | by simp | |
| 1279 | qed | |
| 1280 | ||
| 1281 | lemma coprime_iff_gcd_eq_1 [presburger, code]: | |
| 1282 | "coprime a b \<longleftrightarrow> gcd a b = 1" | |
| 1283 | by rule (simp_all add: gcd_eq_1_imp_coprime) | |
| 1284 | ||
| 1285 | lemma is_unit_gcd [simp]: | |
| 1286 | "is_unit (gcd a b) \<longleftrightarrow> coprime a b" | |
| 1287 | by (simp add: coprime_iff_gcd_eq_1) | |
| 1288 | ||
| 1289 | lemma coprime_add_one_left [simp]: "coprime (a + 1) a" | |
| 1290 | by (simp add: gcd_eq_1_imp_coprime ac_simps) | |
| 1291 | ||
| 1292 | lemma coprime_add_one_right [simp]: "coprime a (a + 1)" | |
| 1293 | using coprime_add_one_left [of a] by (simp add: ac_simps) | |
| 1294 | ||
| 1295 | lemma coprime_mult_left_iff [simp]: | |
| 1296 | "coprime (a * b) c \<longleftrightarrow> coprime a c \<and> coprime b c" | |
| 1297 | proof | |
| 1298 | assume "coprime (a * b) c" | |
| 1299 | with coprime_common_divisor [of "a * b" c] | |
| 1300 | have *: "is_unit d" if "d dvd a * b" and "d dvd c" for d | |
| 1301 | using that by blast | |
| 1302 | have "coprime a c" | |
| 1303 | by (rule coprimeI, rule *) simp_all | |
| 1304 | moreover have "coprime b c" | |
| 1305 | by (rule coprimeI, rule *) simp_all | |
| 1306 | ultimately show "coprime a c \<and> coprime b c" .. | |
| 1307 | next | |
| 1308 | assume "coprime a c \<and> coprime b c" | |
| 1309 | then have "coprime a c" "coprime b c" | |
| 1310 | by simp_all | |
| 1311 | show "coprime (a * b) c" | |
| 1312 | proof (rule coprimeI) | |
| 1313 | fix d | |
| 1314 | assume "d dvd a * b" | |
| 1315 | then obtain r s where d: "d = r * s" "r dvd a" "s dvd b" | |
| 1316 | by (rule dvd_productE) | |
| 1317 | assume "d dvd c" | |
| 1318 | with d have "r * s dvd c" | |
| 1319 | by simp | |
| 1320 | then have "r dvd c" "s dvd c" | |
| 1321 | by (auto intro: dvd_mult_left dvd_mult_right) | |
| 1322 | from \<open>coprime a c\<close> \<open>r dvd a\<close> \<open>r dvd c\<close> | |
| 1323 | have "is_unit r" | |
| 1324 | by (rule coprime_common_divisor) | |
| 1325 | moreover from \<open>coprime b c\<close> \<open>s dvd b\<close> \<open>s dvd c\<close> | |
| 1326 | have "is_unit s" | |
| 1327 | by (rule coprime_common_divisor) | |
| 1328 | ultimately show "is_unit d" | |
| 1329 | by (simp add: d is_unit_mult_iff) | |
| 1330 | qed | |
| 1331 | qed | |
| 1332 | ||
| 1333 | lemma coprime_mult_right_iff [simp]: | |
| 1334 | "coprime c (a * b) \<longleftrightarrow> coprime c a \<and> coprime c b" | |
| 1335 | using coprime_mult_left_iff [of a b c] by (simp add: ac_simps) | |
| 1336 | ||
| 1337 | lemma coprime_power_left_iff [simp]: | |
| 1338 | "coprime (a ^ n) b \<longleftrightarrow> coprime a b \<or> n = 0" | |
| 1339 | proof (cases "n = 0") | |
| 1340 | case True | |
| 1341 | then show ?thesis | |
| 1342 | by simp | |
| 1343 | next | |
| 1344 | case False | |
| 1345 | then have "n > 0" | |
| 1346 | by simp | |
| 1347 | then show ?thesis | |
| 1348 | by (induction n rule: nat_induct_non_zero) simp_all | |
| 1349 | qed | |
| 1350 | ||
| 1351 | lemma coprime_power_right_iff [simp]: | |
| 1352 | "coprime a (b ^ n) \<longleftrightarrow> coprime a b \<or> n = 0" | |
| 1353 | using coprime_power_left_iff [of b n a] by (simp add: ac_simps) | |
| 1354 | ||
| 1355 | lemma prod_coprime_left: | |
| 1356 | "coprime (\<Prod>i\<in>A. f i) a" if "\<And>i. i \<in> A \<Longrightarrow> coprime (f i) a" | |
| 1357 | using that by (induct A rule: infinite_finite_induct) simp_all | |
| 1358 | ||
| 1359 | lemma prod_coprime_right: | |
| 1360 | "coprime a (\<Prod>i\<in>A. f i)" if "\<And>i. i \<in> A \<Longrightarrow> coprime a (f i)" | |
| 1361 | using that prod_coprime_left [of A f a] by (simp add: ac_simps) | |
| 1362 | ||
| 1363 | lemma prod_list_coprime_left: | |
| 1364 | "coprime (prod_list xs) a" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime x a" | |
| 1365 | using that by (induct xs) simp_all | |
| 1366 | ||
| 1367 | lemma prod_list_coprime_right: | |
| 1368 | "coprime a (prod_list xs)" if "\<And>x. x \<in> set xs \<Longrightarrow> coprime a x" | |
| 1369 | using that prod_list_coprime_left [of xs a] by (simp add: ac_simps) | |
| 1370 | ||
| 1371 | lemma coprime_dvd_mult_left_iff: | |
| 1372 | "a dvd b * c \<longleftrightarrow> a dvd b" if "coprime a c" | |
| 1373 | proof | |
| 1374 | assume "a dvd b" | |
| 1375 | then show "a dvd b * c" | |
| 1376 | by simp | |
| 1377 | next | |
| 1378 | assume "a dvd b * c" | |
| 1379 | show "a dvd b" | |
| 1380 | proof (cases "b = 0") | |
| 1381 | case True | |
| 1382 | then show ?thesis | |
| 1383 | by simp | |
| 1384 | next | |
| 1385 | case False | |
| 1386 | then have unit: "is_unit (unit_factor b)" | |
| 1387 | by simp | |
| 1388 | from \<open>coprime a c\<close> mult_gcd_left [of b a c] | |
| 1389 | have "gcd (b * a) (b * c) * unit_factor b = b" | |
| 1390 | by (simp add: ac_simps) | |
| 1391 | moreover from \<open>a dvd b * c\<close> | |
| 1392 | have "a dvd gcd (b * a) (b * c) * unit_factor b" | |
| 1393 | by (simp add: dvd_mult_unit_iff unit) | |
| 1394 | ultimately show ?thesis | |
| 1395 | by simp | |
| 1396 | qed | |
| 1397 | qed | |
| 1398 | ||
| 1399 | lemma coprime_dvd_mult_right_iff: | |
| 1400 | "a dvd c * b \<longleftrightarrow> a dvd b" if "coprime a c" | |
| 1401 | using that coprime_dvd_mult_left_iff [of a c b] by (simp add: ac_simps) | |
| 1402 | ||
| 1403 | lemma divides_mult: | |
| 1404 | "a * b dvd c" if "a dvd c" and "b dvd c" and "coprime a b" | |
| 1405 | proof - | |
| 1406 | from \<open>b dvd c\<close> obtain b' where "c = b * b'" .. | |
| 1407 | with \<open>a dvd c\<close> have "a dvd b' * b" | |
| 1408 | by (simp add: ac_simps) | |
| 1409 | with \<open>coprime a b\<close> have "a dvd b'" | |
| 1410 | by (simp add: coprime_dvd_mult_left_iff) | |
| 1411 | then obtain a' where "b' = a * a'" .. | |
| 1412 | with \<open>c = b * b'\<close> have "c = (a * b) * a'" | |
| 1413 | by (simp add: ac_simps) | |
| 1414 | then show ?thesis .. | |
| 1415 | qed | |
| 1416 | ||
| 1417 | lemma div_gcd_coprime: | |
| 1418 | assumes "a \<noteq> 0 \<or> b \<noteq> 0" | |
| 1419 | shows "coprime (a div gcd a b) (b div gcd a b)" | |
| 1420 | proof - | |
| 1421 | let ?g = "gcd a b" | |
| 1422 | let ?a' = "a div ?g" | |
| 1423 | let ?b' = "b div ?g" | |
| 1424 | let ?g' = "gcd ?a' ?b'" | |
| 1425 | have dvdg: "?g dvd a" "?g dvd b" | |
| 1426 | by simp_all | |
| 1427 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" | |
| 1428 | by simp_all | |
| 1429 | from dvdg dvdg' obtain ka kb ka' kb' where | |
| 1430 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | |
| 1431 | unfolding dvd_def by blast | |
| 1432 | from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" | |
| 1433 | by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) | |
| 1434 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | |
| 68708 | 1435 | by (auto simp: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | 
| 67051 | 1436 | have "?g \<noteq> 0" | 
| 1437 | using assms by simp | |
| 1438 | moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | |
| 1439 | ultimately show ?thesis | |
| 1440 | using dvd_times_left_cancel_iff [of "gcd a b" _ 1] | |
| 1441 | by simp (simp only: coprime_iff_gcd_eq_1) | |
| 1442 | qed | |
| 1443 | ||
| 1444 | lemma gcd_coprime: | |
| 1445 | assumes c: "gcd a b \<noteq> 0" | |
| 1446 | and a: "a = a' * gcd a b" | |
| 1447 | and b: "b = b' * gcd a b" | |
| 1448 | shows "coprime a' b'" | |
| 1449 | proof - | |
| 1450 | from c have "a \<noteq> 0 \<or> b \<noteq> 0" | |
| 1451 | by simp | |
| 1452 | with div_gcd_coprime have "coprime (a div gcd a b) (b div gcd a b)" . | |
| 1453 | also from assms have "a div gcd a b = a'" | |
| 1454 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 1455 | also from assms have "b div gcd a b = b'" | |
| 1456 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 1457 | finally show ?thesis . | |
| 1458 | qed | |
| 1459 | ||
| 1460 | lemma gcd_coprime_exists: | |
| 1461 | assumes "gcd a b \<noteq> 0" | |
| 1462 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" | |
| 68708 | 1463 | proof - | 
| 1464 | have "coprime (a div gcd a b) (b div gcd a b)" | |
| 1465 | using assms div_gcd_coprime by auto | |
| 1466 | then show ?thesis | |
| 1467 | by force | |
| 1468 | qed | |
| 67051 | 1469 | |
| 1470 | lemma pow_divides_pow_iff [simp]: | |
| 1471 | "a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0" | |
| 1472 | proof (cases "gcd a b = 0") | |
| 1473 | case True | |
| 1474 | then show ?thesis | |
| 1475 | by simp | |
| 1476 | next | |
| 1477 | case False | |
| 1478 | show ?thesis | |
| 1479 | proof | |
| 1480 | let ?d = "gcd a b" | |
| 1481 | from \<open>n > 0\<close> obtain m where m: "n = Suc m" | |
| 1482 | by (cases n) simp_all | |
| 1483 | from False have zn: "?d ^ n \<noteq> 0" | |
| 1484 | by (rule power_not_zero) | |
| 1485 | from gcd_coprime_exists [OF False] | |
| 1486 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" | |
| 1487 | by blast | |
| 1488 | assume "a ^ n dvd b ^ n" | |
| 1489 | then have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" | |
| 1490 | by (simp add: ab'(1,2)[symmetric]) | |
| 1491 | then have "?d^n * a'^n dvd ?d^n * b'^n" | |
| 1492 | by (simp only: power_mult_distrib ac_simps) | |
| 1493 | with zn have "a' ^ n dvd b' ^ n" | |
| 1494 | by simp | |
| 1495 | then have "a' dvd b' ^ n" | |
| 1496 | using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) | |
| 1497 | then have "a' dvd b' ^ m * b'" | |
| 1498 | by (simp add: m ac_simps) | |
| 1499 | moreover have "coprime a' (b' ^ n)" | |
| 1500 | using \<open>coprime a' b'\<close> by simp | |
| 1501 | then have "a' dvd b'" | |
| 1502 | using \<open>a' dvd b' ^ n\<close> coprime_dvd_mult_left_iff dvd_mult by blast | |
| 1503 | then have "a' * ?d dvd b' * ?d" | |
| 1504 | by (rule mult_dvd_mono) simp | |
| 1505 | with ab'(1,2) show "a dvd b" | |
| 1506 | by simp | |
| 1507 | next | |
| 1508 | assume "a dvd b" | |
| 1509 | with \<open>n > 0\<close> show "a ^ n dvd b ^ n" | |
| 1510 | by (induction rule: nat_induct_non_zero) | |
| 1511 | (simp_all add: mult_dvd_mono) | |
| 1512 | qed | |
| 1513 | qed | |
| 1514 | ||
| 1515 | lemma coprime_crossproduct: | |
| 1516 | fixes a b c d :: 'a | |
| 1517 | assumes "coprime a d" and "coprime b c" | |
| 1518 | shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> | |
| 1519 | normalize a = normalize b \<and> normalize c = normalize d" | |
| 1520 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1521 | proof | |
| 1522 | assume ?rhs | |
| 1523 | then show ?lhs by simp | |
| 1524 | next | |
| 1525 | assume ?lhs | |
| 1526 | from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" | |
| 1527 | by (auto intro: dvdI dest: sym) | |
| 1528 | with \<open>coprime a d\<close> have "a dvd b" | |
| 1529 | by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) | |
| 1530 | from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" | |
| 1531 | by (auto intro: dvdI dest: sym) | |
| 1532 | with \<open>coprime b c\<close> have "b dvd a" | |
| 1533 | by (simp add: coprime_dvd_mult_left_iff normalize_mult [symmetric]) | |
| 1534 | from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" | |
| 1535 | by (auto intro: dvdI dest: sym simp add: mult.commute) | |
| 1536 | with \<open>coprime b c\<close> have "c dvd d" | |
| 1537 | by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) | |
| 1538 | from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" | |
| 1539 | by (auto intro: dvdI dest: sym simp add: mult.commute) | |
| 1540 | with \<open>coprime a d\<close> have "d dvd c" | |
| 1541 | by (simp add: coprime_dvd_mult_left_iff coprime_commute normalize_mult [symmetric]) | |
| 1542 | from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" | |
| 1543 | by (rule associatedI) | |
| 1544 | moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" | |
| 1545 | by (rule associatedI) | |
| 1546 | ultimately show ?rhs .. | |
| 1547 | qed | |
| 1548 | ||
| 1549 | lemma coprime_crossproduct': | |
| 1550 | fixes a b c d | |
| 1551 | assumes "b \<noteq> 0" | |
| 1552 | assumes unit_factors: "unit_factor b = unit_factor d" | |
| 1553 | assumes coprime: "coprime a b" "coprime c d" | |
| 1554 | shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d" | |
| 1555 | proof safe | |
| 1556 | assume eq: "a * d = b * c" | |
| 1557 | hence "normalize a * normalize d = normalize c * normalize b" | |
| 1558 | by (simp only: normalize_mult [symmetric] mult_ac) | |
| 1559 | with coprime have "normalize b = normalize d" | |
| 1560 | by (subst (asm) coprime_crossproduct) simp_all | |
| 1561 | from this and unit_factors show "b = d" | |
| 1562 | by (rule normalize_unit_factor_eqI) | |
| 1563 | from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac) | |
| 1564 | with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp | |
| 1565 | qed (simp_all add: mult_ac) | |
| 1566 | ||
| 1567 | lemma gcd_mult_left_left_cancel: | |
| 1568 | "gcd (c * a) b = gcd a b" if "coprime b c" | |
| 1569 | proof - | |
| 1570 | have "coprime (gcd b (a * c)) c" | |
| 1571 | by (rule coprimeI) (auto intro: that coprime_common_divisor) | |
| 1572 | then have "gcd b (a * c) dvd a" | |
| 1573 | using coprime_dvd_mult_left_iff [of "gcd b (a * c)" c a] | |
| 1574 | by simp | |
| 1575 | then show ?thesis | |
| 1576 | by (auto intro: associated_eqI simp add: ac_simps) | |
| 1577 | qed | |
| 1578 | ||
| 1579 | lemma gcd_mult_left_right_cancel: | |
| 1580 | "gcd (a * c) b = gcd a b" if "coprime b c" | |
| 1581 | using that gcd_mult_left_left_cancel [of b c a] | |
| 1582 | by (simp add: ac_simps) | |
| 1583 | ||
| 1584 | lemma gcd_mult_right_left_cancel: | |
| 1585 | "gcd a (c * b) = gcd a b" if "coprime a c" | |
| 1586 | using that gcd_mult_left_left_cancel [of a c b] | |
| 1587 | by (simp add: ac_simps) | |
| 1588 | ||
| 1589 | lemma gcd_mult_right_right_cancel: | |
| 1590 | "gcd a (b * c) = gcd a b" if "coprime a c" | |
| 1591 | using that gcd_mult_right_left_cancel [of a c b] | |
| 1592 | by (simp add: ac_simps) | |
| 1593 | ||
| 1594 | lemma gcd_exp [simp]: | |
| 1595 | "gcd (a ^ n) (b ^ n) = gcd a b ^ n" | |
| 1596 | proof (cases "a = 0 \<and> b = 0 \<or> n = 0") | |
| 1597 | case True | |
| 1598 | then show ?thesis | |
| 1599 | by (cases n) simp_all | |
| 1600 | next | |
| 1601 | case False | |
| 1602 | then have "coprime (a div gcd a b) (b div gcd a b)" and "n > 0" | |
| 1603 | by (auto intro: div_gcd_coprime) | |
| 1604 | then have "coprime ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" | |
| 1605 | by simp | |
| 1606 | then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" | |
| 1607 | by simp | |
| 1608 | then have "gcd a b ^ n = gcd a b ^ n * \<dots>" | |
| 1609 | by simp | |
| 1610 | also note gcd_mult_distrib | |
| 1611 | also have "unit_factor (gcd a b ^ n) = 1" | |
| 68708 | 1612 | using False by (auto simp: unit_factor_power unit_factor_gcd) | 
| 67051 | 1613 | also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n" | 
| 1614 | by (simp add: ac_simps div_power dvd_power_same) | |
| 1615 | also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n" | |
| 1616 | by (simp add: ac_simps div_power dvd_power_same) | |
| 1617 | finally show ?thesis by simp | |
| 1618 | qed | |
| 1619 | ||
| 1620 | lemma division_decomp: | |
| 1621 | assumes "a dvd b * c" | |
| 1622 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | |
| 1623 | proof (cases "gcd a b = 0") | |
| 1624 | case True | |
| 1625 | then have "a = 0 \<and> b = 0" | |
| 1626 | by simp | |
| 1627 | then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" | |
| 1628 | by simp | |
| 1629 | then show ?thesis by blast | |
| 1630 | next | |
| 1631 | case False | |
| 1632 | let ?d = "gcd a b" | |
| 1633 | from gcd_coprime_exists [OF False] | |
| 1634 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "coprime a' b'" | |
| 1635 | by blast | |
| 1636 | from ab'(1) have "a' dvd a" .. | |
| 1637 | with assms have "a' dvd b * c" | |
| 1638 | using dvd_trans [of a' a "b * c"] by simp | |
| 1639 | from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" | |
| 1640 | by simp | |
| 1641 | then have "?d * a' dvd ?d * (b' * c)" | |
| 1642 | by (simp add: mult_ac) | |
| 1643 | with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" | |
| 1644 | by simp | |
| 1645 | then have "a' dvd c" | |
| 1646 | using \<open>coprime a' b'\<close> by (simp add: coprime_dvd_mult_right_iff) | |
| 1647 | with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" | |
| 1648 | by (simp add: ac_simps) | |
| 1649 | then show ?thesis by blast | |
| 1650 | qed | |
| 1651 | ||
| 1652 | lemma lcm_coprime: "coprime a b \<Longrightarrow> lcm a b = normalize (a * b)" | |
| 1653 | by (subst lcm_gcd) simp | |
| 1654 | ||
| 1655 | end | |
| 1656 | ||
| 1657 | context ring_gcd | |
| 1658 | begin | |
| 1659 | ||
| 1660 | lemma coprime_minus_left_iff [simp]: | |
| 1661 | "coprime (- a) b \<longleftrightarrow> coprime a b" | |
| 1662 | by (rule; rule coprimeI) (auto intro: coprime_common_divisor) | |
| 1663 | ||
| 1664 | lemma coprime_minus_right_iff [simp]: | |
| 1665 | "coprime a (- b) \<longleftrightarrow> coprime a b" | |
| 1666 | using coprime_minus_left_iff [of b a] by (simp add: ac_simps) | |
| 1667 | ||
| 1668 | lemma coprime_diff_one_left [simp]: "coprime (a - 1) a" | |
| 1669 | using coprime_add_one_right [of "a - 1"] by simp | |
| 1670 | ||
| 1671 | lemma coprime_doff_one_right [simp]: "coprime a (a - 1)" | |
| 1672 | using coprime_diff_one_left [of a] by (simp add: ac_simps) | |
| 1673 | ||
| 1674 | end | |
| 1675 | ||
| 1676 | context semiring_Gcd | |
| 1677 | begin | |
| 1678 | ||
| 1679 | lemma Lcm_coprime: | |
| 1680 | assumes "finite A" | |
| 1681 |     and "A \<noteq> {}"
 | |
| 1682 | and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b" | |
| 1683 | shows "Lcm A = normalize (\<Prod>A)" | |
| 1684 | using assms | |
| 1685 | proof (induct rule: finite_ne_induct) | |
| 1686 | case singleton | |
| 1687 | then show ?case by simp | |
| 1688 | next | |
| 1689 | case (insert a A) | |
| 1690 | have "Lcm (insert a A) = lcm a (Lcm A)" | |
| 1691 | by simp | |
| 1692 | also from insert have "Lcm A = normalize (\<Prod>A)" | |
| 1693 | by blast | |
| 1694 | also have "lcm a \<dots> = lcm a (\<Prod>A)" | |
| 1695 | by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) | |
| 1696 | also from insert have "coprime a (\<Prod>A)" | |
| 1697 | by (subst coprime_commute, intro prod_coprime_left) auto | |
| 1698 | with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" | |
| 1699 | by (simp add: lcm_coprime) | |
| 1700 | finally show ?case . | |
| 1701 | qed | |
| 1702 | ||
| 1703 | lemma Lcm_coprime': | |
| 1704 | "card A \<noteq> 0 \<Longrightarrow> | |
| 1705 | (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime a b) \<Longrightarrow> | |
| 1706 | Lcm A = normalize (\<Prod>A)" | |
| 1707 | by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) | |
| 1708 | ||
| 1709 | end | |
| 1710 | ||
| 1711 | ||
| 62345 | 1712 | subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close>
 | 
| 59008 | 1713 | |
| 31706 | 1714 | instantiation nat :: gcd | 
| 1715 | begin | |
| 21256 | 1716 | |
| 62345 | 1717 | fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1718 | where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" | 
| 31706 | 1719 | |
| 62345 | 1720 | definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1721 | where "lcm_nat x y = x * y div (gcd x y)" | 
| 1722 | ||
| 1723 | instance .. | |
| 31706 | 1724 | |
| 1725 | end | |
| 1726 | ||
| 1727 | instantiation int :: gcd | |
| 1728 | begin | |
| 21256 | 1729 | |
| 62345 | 1730 | definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1731 | where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1732 | |
| 62345 | 1733 | definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1734 | where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1735 | |
| 61944 | 1736 | instance .. | 
| 31706 | 1737 | |
| 1738 | end | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1739 | |
| 67118 | 1740 | lemma gcd_int_int_eq [simp]: | 
| 1741 | "gcd (int m) (int n) = int (gcd m n)" | |
| 1742 | by (simp add: gcd_int_def) | |
| 1743 | ||
| 1744 | lemma gcd_nat_abs_left_eq [simp]: | |
| 1745 | "gcd (nat \<bar>k\<bar>) n = nat (gcd k (int n))" | |
| 1746 | by (simp add: gcd_int_def) | |
| 1747 | ||
| 1748 | lemma gcd_nat_abs_right_eq [simp]: | |
| 1749 | "gcd n (nat \<bar>k\<bar>) = nat (gcd (int n) k)" | |
| 1750 | by (simp add: gcd_int_def) | |
| 1751 | ||
| 1752 | lemma abs_gcd_int [simp]: | |
| 1753 | "\<bar>gcd x y\<bar> = gcd x y" | |
| 1754 | for x y :: int | |
| 1755 | by (simp only: gcd_int_def) | |
| 1756 | ||
| 1757 | lemma gcd_abs1_int [simp]: | |
| 1758 | "gcd \<bar>x\<bar> y = gcd x y" | |
| 1759 | for x y :: int | |
| 1760 | by (simp only: gcd_int_def) simp | |
| 1761 | ||
| 1762 | lemma gcd_abs2_int [simp]: | |
| 1763 | "gcd x \<bar>y\<bar> = gcd x y" | |
| 1764 | for x y :: int | |
| 1765 | by (simp only: gcd_int_def) simp | |
| 1766 | ||
| 1767 | lemma lcm_int_int_eq [simp]: | |
| 1768 | "lcm (int m) (int n) = int (lcm m n)" | |
| 1769 | by (simp add: lcm_int_def) | |
| 1770 | ||
| 1771 | lemma lcm_nat_abs_left_eq [simp]: | |
| 1772 | "lcm (nat \<bar>k\<bar>) n = nat (lcm k (int n))" | |
| 1773 | by (simp add: lcm_int_def) | |
| 1774 | ||
| 1775 | lemma lcm_nat_abs_right_eq [simp]: | |
| 1776 | "lcm n (nat \<bar>k\<bar>) = nat (lcm (int n) k)" | |
| 1777 | by (simp add: lcm_int_def) | |
| 1778 | ||
| 1779 | lemma lcm_abs1_int [simp]: | |
| 1780 | "lcm \<bar>x\<bar> y = lcm x y" | |
| 1781 | for x y :: int | |
| 1782 | by (simp only: lcm_int_def) simp | |
| 1783 | ||
| 1784 | lemma lcm_abs2_int [simp]: | |
| 1785 | "lcm x \<bar>y\<bar> = lcm x y" | |
| 1786 | for x y :: int | |
| 1787 | by (simp only: lcm_int_def) simp | |
| 1788 | ||
| 1789 | lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" | |
| 1790 | for i j :: int | |
| 1791 | by (simp only: lcm_int_def) | |
| 1792 | ||
| 68708 | 1793 | lemma gcd_nat_induct [case_names base step]: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1794 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1795 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1796 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1797 | shows "P m n" | 
| 68708 | 1798 | proof (induction m n rule: gcd_nat.induct) | 
| 1799 | case (1 x y) | |
| 1800 | then show ?case | |
| 1801 | using assms neq0_conv by blast | |
| 1802 | qed | |
| 63489 | 1803 | |
| 1804 | lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" | |
| 1805 | for x y :: int | |
| 67118 | 1806 | by (simp only: gcd_int_def) simp | 
| 31706 | 1807 | |
| 63489 | 1808 | lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" | 
| 1809 | for x y :: int | |
| 67118 | 1810 | by (simp only: gcd_int_def) simp | 
| 31706 | 1811 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1812 | lemma gcd_cases_int: | 
| 63489 | 1813 | fixes x y :: int | 
| 1814 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" | |
| 1815 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" | |
| 1816 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" | |
| 1817 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" | |
| 31706 | 1818 | shows "P (gcd x y)" | 
| 63489 | 1819 | using assms by auto arith | 
| 21256 | 1820 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1821 | lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" | 
| 63489 | 1822 | for x y :: int | 
| 31706 | 1823 | by (simp add: gcd_int_def) | 
| 1824 | ||
| 63489 | 1825 | lemma lcm_neg1_int: "lcm (- x) y = lcm x y" | 
| 1826 | for x y :: int | |
| 67118 | 1827 | by (simp only: lcm_int_def) simp | 
| 31706 | 1828 | |
| 63489 | 1829 | lemma lcm_neg2_int: "lcm x (- y) = lcm x y" | 
| 1830 | for x y :: int | |
| 67118 | 1831 | by (simp only: lcm_int_def) simp | 
| 31814 | 1832 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1833 | lemma lcm_cases_int: | 
| 63489 | 1834 | fixes x y :: int | 
| 1835 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" | |
| 1836 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" | |
| 1837 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" | |
| 1838 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" | |
| 31706 | 1839 | shows "P (lcm x y)" | 
| 68708 | 1840 | using assms by (auto simp: lcm_neg1_int lcm_neg2_int) arith | 
| 31706 | 1841 | |
| 63489 | 1842 | lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" | 
| 1843 | for x y :: int | |
| 67118 | 1844 | by (simp only: lcm_int_def) | 
| 31706 | 1845 | |
| 63489 | 1846 | lemma gcd_0_nat: "gcd x 0 = x" | 
| 1847 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1848 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1849 | |
| 63489 | 1850 | lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" | 
| 1851 | for x :: int | |
| 1852 | by (auto simp: gcd_int_def) | |
| 1853 | ||
| 1854 | lemma gcd_0_left_nat: "gcd 0 x = x" | |
| 1855 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1856 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1857 | |
| 63489 | 1858 | lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" | 
| 1859 | for x :: int | |
| 67118 | 1860 | by (auto simp: gcd_int_def) | 
| 63489 | 1861 | |
| 1862 | lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" | |
| 1863 | for x y :: nat | |
| 1864 | by (cases "y = 0") auto | |
| 1865 | ||
| 1866 | ||
| 1867 | text \<open>Weaker, but useful for the simplifier.\<close> | |
| 1868 | ||
| 1869 | lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | |
| 1870 | for x y :: nat | |
| 21263 | 1871 | by simp | 
| 21256 | 1872 | |
| 63489 | 1873 | lemma gcd_1_nat [simp]: "gcd m 1 = 1" | 
| 1874 | for m :: nat | |
| 60690 | 1875 | by simp | 
| 31706 | 1876 | |
| 63489 | 1877 | lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" | 
| 1878 | for m :: nat | |
| 1879 | by simp | |
| 1880 | ||
| 1881 | lemma gcd_1_int [simp]: "gcd m 1 = 1" | |
| 1882 | for m :: int | |
| 31706 | 1883 | by (simp add: gcd_int_def) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1884 | |
| 63489 | 1885 | lemma gcd_idem_nat: "gcd x x = x" | 
| 1886 | for x :: nat | |
| 1887 | by simp | |
| 1888 | ||
| 1889 | lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" | |
| 1890 | for x :: int | |
| 68708 | 1891 | by (auto simp: gcd_int_def) | 
| 31706 | 1892 | |
| 1893 | declare gcd_nat.simps [simp del] | |
| 21256 | 1894 | |
| 60758 | 1895 | text \<open> | 
| 63489 | 1896 |   \<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>.
 | 
| 1897 | The conjunctions don't seem provable separately. | |
| 60758 | 1898 | \<close> | 
| 21256 | 1899 | |
| 59008 | 1900 | instance nat :: semiring_gcd | 
| 1901 | proof | |
| 1902 | fix m n :: nat | |
| 1903 | show "gcd m n dvd m" and "gcd m n dvd n" | |
| 1904 | proof (induct m n rule: gcd_nat_induct) | |
| 68708 | 1905 | case (step m n) | 
| 59008 | 1906 | then have "gcd n (m mod n) dvd m" | 
| 68708 | 1907 | by (metis dvd_mod_imp_dvd) | 
| 1908 | with step show "gcd m n dvd m" | |
| 59008 | 1909 | by (simp add: gcd_non_0_nat) | 
| 1910 | qed (simp_all add: gcd_0_nat gcd_non_0_nat) | |
| 1911 | next | |
| 1912 | fix m n k :: nat | |
| 1913 | assume "k dvd m" and "k dvd n" | |
| 1914 | then show "k dvd gcd m n" | |
| 1915 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) | |
| 60686 | 1916 | qed (simp_all add: lcm_nat_def) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1917 | |
| 59008 | 1918 | instance int :: ring_gcd | 
| 67118 | 1919 | proof | 
| 1920 | fix k l r :: int | |
| 1921 | show "gcd k l dvd k" "gcd k l dvd l" | |
| 1922 | using gcd_dvd1 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] | |
| 1923 | gcd_dvd2 [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] | |
| 1924 | by simp_all | |
| 1925 | show "lcm k l = normalize (k * l) div gcd k l" | |
| 1926 | using lcm_gcd [of "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] | |
| 1927 | by (simp add: nat_eq_iff of_nat_div abs_mult) | |
| 1928 | assume "r dvd k" "r dvd l" | |
| 1929 | then show "r dvd gcd k l" | |
| 1930 | using gcd_greatest [of "nat \<bar>r\<bar>" "nat \<bar>k\<bar>" "nat \<bar>l\<bar>"] | |
| 1931 | by simp | |
| 1932 | qed simp | |
| 63489 | 1933 | |
| 1934 | lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1935 | for a b :: nat | |
| 1936 | by (rule dvd_imp_le) auto | |
| 1937 | ||
| 1938 | lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1939 | for a b :: nat | |
| 1940 | by (rule dvd_imp_le) auto | |
| 1941 | ||
| 1942 | lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1943 | for a b :: int | |
| 1944 | by (rule zdvd_imp_le) auto | |
| 1945 | ||
| 1946 | lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1947 | for a b :: int | |
| 1948 | by (rule zdvd_imp_le) auto | |
| 1949 | ||
| 1950 | lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1951 | for m n :: nat | |
| 1952 | using gcd_eq_0_iff [of m n] by arith | |
| 1953 | ||
| 1954 | lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1955 | for m n :: int | |
| 1956 | using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith | |
| 1957 | ||
| 1958 | lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1959 | for d a :: nat | |
| 68708 | 1960 | using gcd_unique by fastforce | 
| 63489 | 1961 | |
| 1962 | lemma gcd_unique_int: | |
| 1963 | "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1964 | for d a :: int | |
| 68708 | 1965 | using zdvd_antisym_nonneg by auto | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1966 | |
| 61913 | 1967 | interpretation gcd_nat: | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1968 | semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" | 
| 68708 | 1969 | by standard (auto simp: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) | 
| 31798 | 1970 | |
| 63489 | 1971 | lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" | 
| 1972 | for x y :: int | |
| 67118 | 1973 | by (metis abs_dvd_iff gcd_0_left_int gcd_unique_int) | 
| 31798 | 1974 | |
| 63489 | 1975 | lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" | 
| 1976 | for x y :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1977 | by (metis gcd_proj1_if_dvd_int gcd.commute) | 
| 31798 | 1978 | |
| 63489 | 1979 | |
| 1980 | text \<open>\<^medskip> Multiplication laws.\<close> | |
| 1981 | ||
| 1982 | lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" | |
| 1983 | for k m n :: nat | |
| 1984 |   \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
 | |
| 68708 | 1985 | proof (induct m n rule: gcd_nat_induct) | 
| 1986 | case (step m n) | |
| 1987 | then show ?case | |
| 1988 | by (metis gcd_mult_distrib' gcd_red_nat) | |
| 1989 | qed auto | |
| 63489 | 1990 | |
| 1991 | lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" | |
| 1992 | for k m n :: int | |
| 67118 | 1993 | using gcd_mult_distrib' [of k m n] by simp | 
| 21256 | 1994 | |
| 63489 | 1995 | text \<open>\medskip Addition laws.\<close> | 
| 1996 | ||
| 1997 | (* TODO: add the other variations? *) | |
| 1998 | ||
| 1999 | lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" | |
| 2000 | for m n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2001 | by (subst gcd_add1 [symmetric]) auto | 
| 31706 | 2002 | |
| 63489 | 2003 | lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" | 
| 2004 | for m n :: nat | |
| 68708 | 2005 | by (metis gcd.commute gcd_add2 gcd_diff1_nat le_add_diff_inverse2) | 
| 2006 | ||
| 2007 | lemma gcd_non_0_int: | |
| 2008 | fixes x y :: int | |
| 2009 | assumes "y > 0" shows "gcd x y = gcd y (x mod y)" | |
| 2010 | proof (cases "x mod y = 0") | |
| 2011 | case False | |
| 2012 | then have neg: "x mod y = y - (- x) mod y" | |
| 2013 | by (simp add: zmod_zminus1_eq_if) | |
| 2014 | have xy: "0 \<le> x mod y" | |
| 2015 | by (simp add: assms) | |
| 2016 | show ?thesis | |
| 2017 | proof (cases "x < 0") | |
| 2018 | case True | |
| 2019 | have "nat (- x mod y) \<le> nat y" | |
| 2020 | by (simp add: assms dual_order.order_iff_strict) | |
| 2021 | moreover have "gcd (nat (- x)) (nat y) = gcd (nat (- x mod y)) (nat y)" | |
| 2022 | using True assms gcd_non_0_nat nat_mod_distrib by auto | |
| 2023 | ultimately have "gcd (nat (- x)) (nat y) = gcd (nat y) (nat (x mod y))" | |
| 2024 | using assms | |
| 2025 | by (simp add: neg nat_diff_distrib') (metis gcd.commute gcd_diff2_nat) | |
| 2026 | with assms \<open>0 \<le> x mod y\<close> show ?thesis | |
| 2027 | by (simp add: True dual_order.order_iff_strict gcd_int_def) | |
| 2028 | next | |
| 2029 | case False | |
| 2030 | with assms xy have "gcd (nat x) (nat y) = gcd (nat y) (nat x mod nat y)" | |
| 2031 | using gcd_red_nat by blast | |
| 2032 | with False assms show ?thesis | |
| 2033 | by (simp add: gcd_int_def nat_mod_distrib) | |
| 2034 | qed | |
| 2035 | qed (use assms in auto) | |
| 21256 | 2036 | |
| 63489 | 2037 | lemma gcd_red_int: "gcd x y = gcd y (x mod y)" | 
| 2038 | for x y :: int | |
| 68708 | 2039 | proof (cases y "0::int" rule: linorder_cases) | 
| 2040 | case less | |
| 2041 | with gcd_non_0_int [of "- y" "- x"] show ?thesis | |
| 2042 | by auto | |
| 2043 | next | |
| 2044 | case greater | |
| 2045 | with gcd_non_0_int [of y x] show ?thesis | |
| 2046 | by auto | |
| 2047 | qed auto | |
| 63489 | 2048 | |
| 2049 | (* TODO: differences, and all variations of addition rules | |
| 31706 | 2050 | as simplification rules for nat and int *) | 
| 2051 | ||
| 63489 | 2052 | (* TODO: add the three variations of these, and for ints? *) | 
| 2053 | ||
| 2054 | lemma finite_divisors_nat [simp]: (* FIXME move *) | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2055 | fixes m :: nat | 
| 63489 | 2056 | assumes "m > 0" | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2057 |   shows "finite {d. d dvd m}"
 | 
| 31734 | 2058 | proof- | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2059 |   from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2060 | by (auto dest: dvd_imp_le) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2061 | then show ?thesis | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2062 | using finite_Collect_le_nat by (rule finite_subset) | 
| 31734 | 2063 | qed | 
| 2064 | ||
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2065 | lemma finite_divisors_int [simp]: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2066 | fixes i :: int | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2067 | assumes "i \<noteq> 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2068 |   shows "finite {d. d dvd i}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2069 | proof - | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2070 |   have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2071 | by (auto simp: abs_if) | 
| 63489 | 2072 |   then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}"
 | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2073 | by simp | 
| 63489 | 2074 | from finite_subset [OF _ this] show ?thesis | 
| 2075 | using assms by (simp add: dvd_imp_le_int subset_iff) | |
| 31734 | 2076 | qed | 
| 2077 | ||
| 63489 | 2078 | lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
 | 
| 68708 | 2079 | by (fastforce intro: antisym Max_le_iff[THEN iffD2] simp: dvd_imp_le) | 
| 2080 | ||
| 2081 | lemma Max_divisors_self_int [simp]: | |
| 2082 |   assumes "n \<noteq> 0" shows "Max {d::int. d dvd n} = \<bar>n\<bar>"
 | |
| 2083 | proof (rule antisym) | |
| 2084 |   show "Max {d. d dvd n} \<le> \<bar>n\<bar>"
 | |
| 2085 | using assms by (auto intro: abs_le_D1 dvd_imp_le_int intro!: Max_le_iff [THEN iffD2]) | |
| 2086 | qed (simp add: assms) | |
| 2087 | ||
| 2088 | lemma gcd_is_Max_divisors_nat: | |
| 2089 | fixes m n :: nat | |
| 2090 |   assumes "n > 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 2091 | proof (rule Max_eqI[THEN sym], simp_all) | |
| 2092 |   show "finite {d. d dvd m \<and> d dvd n}"
 | |
| 2093 | by (simp add: \<open>n > 0\<close>) | |
| 2094 | show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" | |
| 2095 | by (simp add: \<open>n > 0\<close> dvd_imp_le) | |
| 2096 | qed | |
| 2097 | ||
| 2098 | lemma gcd_is_Max_divisors_int: | |
| 2099 | fixes m n :: int | |
| 2100 |   assumes "n \<noteq> 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 2101 | proof (rule Max_eqI[THEN sym], simp_all) | |
| 2102 |   show "finite {d. d dvd m \<and> d dvd n}"
 | |
| 2103 | by (simp add: \<open>n \<noteq> 0\<close>) | |
| 2104 | show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n" | |
| 2105 | by (simp add: \<open>n \<noteq> 0\<close> zdvd_imp_le) | |
| 2106 | qed | |
| 63489 | 2107 | |
| 2108 | lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | |
| 2109 | for k l :: int | |
| 67118 | 2110 | using gcd_red_int [of "\<bar>k\<bar>" "\<bar>l\<bar>"] by simp | 
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2111 | |
| 67051 | 2112 | lemma coprime_Suc_left_nat [simp]: | 
| 2113 | "coprime (Suc n) n" | |
| 2114 | using coprime_add_one_left [of n] by simp | |
| 2115 | ||
| 2116 | lemma coprime_Suc_right_nat [simp]: | |
| 2117 | "coprime n (Suc n)" | |
| 2118 | using coprime_Suc_left_nat [of n] by (simp add: ac_simps) | |
| 2119 | ||
| 2120 | lemma coprime_diff_one_left_nat [simp]: | |
| 2121 | "coprime (n - 1) n" if "n > 0" for n :: nat | |
| 2122 | using that coprime_Suc_right_nat [of "n - 1"] by simp | |
| 2123 | ||
| 2124 | lemma coprime_diff_one_right_nat [simp]: | |
| 2125 | "coprime n (n - 1)" if "n > 0" for n :: nat | |
| 2126 | using that coprime_diff_one_left_nat [of n] by (simp add: ac_simps) | |
| 2127 | ||
| 2128 | lemma coprime_crossproduct_nat: | |
| 2129 | fixes a b c d :: nat | |
| 2130 | assumes "coprime a d" and "coprime b c" | |
| 2131 | shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" | |
| 2132 | using assms coprime_crossproduct [of a d b c] by simp | |
| 2133 | ||
| 2134 | lemma coprime_crossproduct_int: | |
| 2135 | fixes a b c d :: int | |
| 2136 | assumes "coprime a d" and "coprime b c" | |
| 2137 | shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" | |
| 2138 | using assms coprime_crossproduct [of a d b c] by simp | |
| 31706 | 2139 | |
| 2140 | ||
| 60758 | 2141 | subsection \<open>Bezout's theorem\<close> | 
| 31706 | 2142 | |
| 63489 | 2143 | text \<open> | 
| 2144 | Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- | |
| 2145 | see the theorems that follow the definition. | |
| 2146 | \<close> | |
| 2147 | ||
| 2148 | fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" | |
| 2149 | where "bezw x y = | |
| 2150 | (if y = 0 then (1, 0) | |
| 2151 | else | |
| 31706 | 2152 | (snd (bezw y (x mod y)), | 
| 2153 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" | |
| 2154 | ||
| 63489 | 2155 | lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" | 
| 2156 | by simp | |
| 2157 | ||
| 2158 | lemma bezw_non_0: | |
| 2159 | "y > 0 \<Longrightarrow> bezw x y = | |
| 2160 | (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" | |
| 31706 | 2161 | by simp | 
| 2162 | ||
| 2163 | declare bezw.simps [simp del] | |
| 2164 | ||
| 68708 | 2165 | |
| 2166 | lemma bezw_aux: "int (gcd x y) = fst (bezw x y) * int x + snd (bezw x y) * int y" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2167 | proof (induct x y rule: gcd_nat_induct) | 
| 68708 | 2168 | case (step m n) | 
| 2169 | then have "fst (bezw m n) * int m + snd (bezw m n) * int n - int (gcd m n) | |
| 2170 | = int m * snd (bezw n (m mod n)) - | |
| 2171 | (int (m mod n) * snd (bezw n (m mod n)) + int n * (int (m div n) * snd (bezw n (m mod n))))" | |
| 2172 | by (simp add: bezw_non_0 gcd_non_0_nat field_simps) | |
| 2173 | also have "\<dots> = int m * snd (bezw n (m mod n)) - (int (m mod n) + int (n * (m div n))) * snd (bezw n (m mod n))" | |
| 2174 | by (simp add: distrib_right) | |
| 2175 | also have "\<dots> = 0" | |
| 2176 | by (metis cancel_comm_monoid_add_class.diff_cancel mod_mult_div_eq of_nat_add) | |
| 2177 | finally show ?case | |
| 2178 | by simp | |
| 2179 | qed auto | |
| 2180 | ||
| 31706 | 2181 | |
| 63489 | 2182 | lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" | 
| 2183 | for x y :: int | |
| 31706 | 2184 | proof - | 
| 63489 | 2185 | have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int | 
| 31706 | 2186 | apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) | 
| 2187 | apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) | |
| 68708 | 2188 | by (simp add: bezw_aux gcd_int_def) | 
| 63489 | 2189 | consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" | 
| 68708 | 2190 | using linear by blast | 
| 63489 | 2191 | then show ?thesis | 
| 2192 | proof cases | |
| 2193 | case 1 | |
| 2194 | then show ?thesis by (rule aux) | |
| 2195 | next | |
| 2196 | case 2 | |
| 2197 | then show ?thesis | |
| 68708 | 2198 | using aux [of x "-y"] | 
| 2199 | by (metis gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) | |
| 63489 | 2200 | next | 
| 2201 | case 3 | |
| 2202 | then show ?thesis | |
| 68708 | 2203 | using aux [of "-x" y] | 
| 2204 | by (metis gcd.commute gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le) | |
| 63489 | 2205 | next | 
| 2206 | case 4 | |
| 2207 | then show ?thesis | |
| 68708 | 2208 | using aux [of "-x" "-y"] | 
| 2209 | by (metis diff_0 diff_ge_0_iff_ge gcd_neg1_int gcd_neg2_int mult.commute mult_minus_right) | |
| 63489 | 2210 | qed | 
| 31706 | 2211 | qed | 
| 2212 | ||
| 63489 | 2213 | |
| 2214 | text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> | |
| 31706 | 2215 | |
| 68708 | 2216 | lemma Euclid_induct [case_names swap zero add]: | 
| 63489 | 2217 | fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" | 
| 68708 | 2218 | assumes c: "\<And>a b. P a b \<longleftrightarrow> P b a" | 
| 2219 | and z: "\<And>a. P a 0" | |
| 2220 | and add: "\<And>a b. P a b \<longrightarrow> P a (a + b)" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2221 | shows "P a b" | 
| 63489 | 2222 | proof (induct "a + b" arbitrary: a b rule: less_induct) | 
| 34915 | 2223 | case less | 
| 63489 | 2224 | consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" | 
| 2225 | by arith | |
| 2226 | show ?case | |
| 2227 | proof (cases a b rule: linorder_cases) | |
| 2228 | case equal | |
| 2229 | with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp | |
| 2230 | next | |
| 2231 | case lt: less | |
| 2232 | then consider "a = 0" | "a + b - a < a + b" by arith | |
| 2233 | then show ?thesis | |
| 2234 | proof cases | |
| 2235 | case 1 | |
| 2236 | with z c show ?thesis by blast | |
| 2237 | next | |
| 2238 | case 2 | |
| 2239 | also have *: "a + b - a = a + (b - a)" using lt by arith | |
| 34915 | 2240 | finally have "a + (b - a) < a + b" . | 
| 63489 | 2241 | then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) | 
| 2242 | then show ?thesis by (simp add: *[symmetric]) | |
| 2243 | qed | |
| 2244 | next | |
| 2245 | case gt: greater | |
| 2246 | then consider "b = 0" | "b + a - b < a + b" by arith | |
| 2247 | then show ?thesis | |
| 2248 | proof cases | |
| 2249 | case 1 | |
| 2250 | with z c show ?thesis by blast | |
| 2251 | next | |
| 2252 | case 2 | |
| 2253 | also have *: "b + a - b = b + (a - b)" using gt by arith | |
| 34915 | 2254 | finally have "b + (a - b) < a + b" . | 
| 63489 | 2255 | then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) | 
| 2256 | then have "P b a" by (simp add: *[symmetric]) | |
| 2257 | with c show ?thesis by blast | |
| 2258 | qed | |
| 2259 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2260 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2261 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2262 | lemma bezout_lemma_nat: | 
| 68708 | 2263 | fixes d::nat | 
| 2264 | shows "\<lbrakk>d dvd a; d dvd b; a * x = b * y + d \<or> b * x = a * y + d\<rbrakk> | |
| 2265 | \<Longrightarrow> \<exists>x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" | |
| 31706 | 2266 | apply auto | 
| 68708 | 2267 | apply (metis add_mult_distrib2 left_add_mult_distrib) | 
| 2268 | apply (rule_tac x=x in exI) | |
| 2269 | by (metis add_mult_distrib2 mult.commute add.assoc) | |
| 2270 | ||
| 2271 | lemma bezout_add_nat: | |
| 2272 | "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)" | |
| 2273 | proof (induct a b rule: Euclid_induct) | |
| 2274 | case (swap a b) | |
| 2275 | then show ?case | |
| 2276 | by blast | |
| 2277 | next | |
| 2278 | case (zero a) | |
| 2279 | then show ?case | |
| 2280 | by fastforce | |
| 2281 | next | |
| 2282 | case (add a b) | |
| 2283 | then show ?case | |
| 2284 | by (meson bezout_lemma_nat) | |
| 2285 | qed | |
| 2286 | ||
| 2287 | lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)" | |
| 2288 | using bezout_add_nat[of a b] by (metis add_diff_cancel_left') | |
| 63489 | 2289 | |
| 2290 | lemma bezout_add_strong_nat: | |
| 2291 | fixes a b :: nat | |
| 2292 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2293 | shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" | 
| 63489 | 2294 | proof - | 
| 2295 | consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" | |
| 68708 | 2296 | | d x y where "d dvd a" "d dvd b" "b * x = a * y + d" | 
| 63489 | 2297 | using bezout_add_nat [of a b] by blast | 
| 2298 | then show ?thesis | |
| 2299 | proof cases | |
| 2300 | case 1 | |
| 2301 | then show ?thesis by blast | |
| 2302 | next | |
| 2303 | case H: 2 | |
| 2304 | show ?thesis | |
| 2305 | proof (cases "b = 0") | |
| 2306 | case True | |
| 2307 | with H show ?thesis by simp | |
| 2308 | next | |
| 2309 | case False | |
| 2310 | then have bp: "b > 0" by simp | |
| 2311 | with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" | |
| 2312 | by atomize_elim auto | |
| 2313 | then show ?thesis | |
| 2314 | proof cases | |
| 2315 | case 1 | |
| 2316 | with a H show ?thesis | |
| 68708 | 2317 | by (metis Suc_pred add.commute mult.commute mult_Suc_right neq0_conv) | 
| 63489 | 2318 | next | 
| 2319 | case 2 | |
| 2320 | show ?thesis | |
| 2321 | proof (cases "x = 0") | |
| 2322 | case True | |
| 2323 | with a H show ?thesis by simp | |
| 2324 | next | |
| 2325 | case x0: False | |
| 2326 | then have xp: "x > 0" by simp | |
| 2327 | from \<open>d < b\<close> have "d \<le> b - 1" by simp | |
| 2328 | then have "d * b \<le> b * (b - 1)" by simp | |
| 2329 | with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] | |
| 2330 | have dble: "d * b \<le> x * b * (b - 1)" using bp by simp | |
| 2331 | from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" | |
| 31706 | 2332 | by simp | 
| 63489 | 2333 | then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 2334 | by (simp only: mult.assoc distrib_left) | 
| 63489 | 2335 | then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" | 
| 31706 | 2336 | by algebra | 
| 63489 | 2337 | then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" | 
| 2338 | using bp by simp | |
| 2339 | then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 2340 | by (simp only: diff_add_assoc[OF dble, of d, symmetric]) | 
| 63489 | 2341 | then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" | 
| 59008 | 2342 | by (simp only: diff_mult_distrib2 ac_simps) | 
| 63489 | 2343 | with H(1,2) show ?thesis | 
| 68708 | 2344 | by blast | 
| 63489 | 2345 | qed | 
| 2346 | qed | |
| 2347 | qed | |
| 2348 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2349 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2350 | |
| 63489 | 2351 | lemma bezout_nat: | 
| 2352 | fixes a :: nat | |
| 2353 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2354 | shows "\<exists>x y. a * x = b * y + gcd a b" | 
| 63489 | 2355 | proof - | 
| 2356 | obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" | |
| 2357 | using bezout_add_strong_nat [OF a, of b] by blast | |
| 2358 | from d have "d dvd gcd a b" | |
| 2359 | by simp | |
| 2360 | then obtain k where k: "gcd a b = d * k" | |
| 2361 | unfolding dvd_def by blast | |
| 2362 | from eq have "a * x * k = (b * y + d) * k" | |
| 2363 | by auto | |
| 2364 | then have "a * (x * k) = b * (y * k) + gcd a b" | |
| 2365 | by (algebra add: k) | |
| 2366 | then show ?thesis | |
| 2367 | by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2368 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2369 | |
| 31706 | 2370 | |
| 63489 | 2371 | subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close>
 | 
| 2372 | ||
| 2373 | lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | |
| 2374 | for a b :: int | |
| 67118 | 2375 | by (simp add: abs_mult lcm_gcd) | 
| 2376 | ||
| 63489 | 2377 | lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" | 
| 2378 | for m n :: nat | |
| 68708 | 2379 | by simp | 
| 31706 | 2380 | |
| 63489 | 2381 | lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" | 
| 2382 | for m n :: int | |
| 68708 | 2383 | by simp | 
| 63489 | 2384 | |
| 2385 | lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" | |
| 2386 | for m n :: nat | |
| 67118 | 2387 | using lcm_eq_0_iff [of m n] by auto | 
| 63489 | 2388 | |
| 2389 | lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" | |
| 2390 | for m n :: int | |
| 67118 | 2391 | by (simp add: less_le lcm_eq_0_iff) | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 2392 | |
| 63489 | 2393 | lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) | 
| 2394 | for m n :: nat | |
| 68708 | 2395 | by auto | 
| 63489 | 2396 | |
| 2397 | lemma lcm_unique_nat: | |
| 2398 | "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2399 | for a b d :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2400 | by (auto intro: dvd_antisym lcm_least) | 
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 2401 | |
| 63489 | 2402 | lemma lcm_unique_int: | 
| 2403 | "d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2404 | for a b d :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2405 | using lcm_least zdvd_antisym_nonneg by auto | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 2406 | |
| 63489 | 2407 | lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" | 
| 2408 | for x y :: nat | |
| 68708 | 2409 | by (simp add: lcm_proj2_if_dvd) | 
| 63489 | 2410 | |
| 2411 | lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" | |
| 2412 | for x y :: int | |
| 68708 | 2413 | by (simp add: lcm_proj2_if_dvd) | 
| 63489 | 2414 | |
| 2415 | lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" | |
| 2416 | for x y :: nat | |
| 2417 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) | |
| 2418 | ||
| 2419 | lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" | |
| 2420 | for x y :: int | |
| 2421 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) | |
| 2422 | ||
| 2423 | lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" | |
| 2424 | for m n :: nat | |
| 2425 | by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) | |
| 2426 | ||
| 2427 | lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" | |
| 2428 | for m n :: nat | |
| 2429 | by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) | |
| 2430 | ||
| 2431 | lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" | |
| 2432 | for m n :: int | |
| 2433 | by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) | |
| 2434 | ||
| 2435 | lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" | |
| 2436 | for m n :: int | |
| 2437 | by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) | |
| 2438 | ||
| 2439 | lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" | |
| 2440 | for m n :: nat | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2441 | using lcm_eq_1_iff [of m n] by simp | 
| 63489 | 2442 | |
| 2443 | lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" | |
| 2444 | for m n :: int | |
| 61913 | 2445 | by auto | 
| 31995 | 2446 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2447 | |
| 62345 | 2448 | subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close>
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2449 | |
| 63489 | 2450 | text \<open> | 
| 2451 | Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). | |
| 2452 | \<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. | |
| 60758 | 2453 | \<close> | 
| 45264 | 2454 | |
| 62345 | 2455 | instantiation nat :: semiring_Gcd | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2456 | begin | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2457 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2458 | interpretation semilattice_neutr_set lcm "1::nat" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2459 | by standard simp_all | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 2460 | |
| 63489 | 2461 | definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" | 
| 2462 | ||
| 2463 | lemma Lcm_nat_empty: "Lcm {} = (1::nat)"
 | |
| 60690 | 2464 | by (simp add: Lcm_nat_def del: One_nat_def) | 
| 51489 | 2465 | |
| 63489 | 2466 | lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat | 
| 68708 | 2467 | by (cases "finite M") (auto simp: Lcm_nat_def simp del: One_nat_def) | 
| 61929 | 2468 | |
| 63489 | 2469 | lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" | 
| 61929 | 2470 | by (simp add: Lcm_nat_def) | 
| 2471 | ||
| 2472 | lemma dvd_Lcm_nat [simp]: | |
| 2473 | fixes M :: "nat set" | |
| 2474 | assumes "m \<in> M" | |
| 2475 | shows "m dvd Lcm M" | |
| 2476 | proof - | |
| 63489 | 2477 | from assms have "insert m M = M" | 
| 2478 | by auto | |
| 61929 | 2479 | moreover have "m dvd Lcm (insert m M)" | 
| 2480 | by (simp add: Lcm_nat_insert) | |
| 63489 | 2481 | ultimately show ?thesis | 
| 2482 | by simp | |
| 61929 | 2483 | qed | 
| 2484 | ||
| 2485 | lemma Lcm_dvd_nat [simp]: | |
| 2486 | fixes M :: "nat set" | |
| 2487 | assumes "\<forall>m\<in>M. m dvd n" | |
| 2488 | shows "Lcm M dvd n" | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2489 | proof (cases "n > 0") | 
| 63489 | 2490 | case False | 
| 2491 | then show ?thesis by simp | |
| 61929 | 2492 | next | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2493 | case True | 
| 63489 | 2494 |   then have "finite {d. d dvd n}"
 | 
| 2495 | by (rule finite_divisors_nat) | |
| 2496 |   moreover have "M \<subseteq> {d. d dvd n}"
 | |
| 2497 | using assms by fast | |
| 2498 | ultimately have "finite M" | |
| 2499 | by (rule rev_finite_subset) | |
| 2500 | then show ?thesis | |
| 2501 | using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) | |
| 61929 | 2502 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2503 | |
| 63489 | 2504 | definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set"
 | 
| 2505 | ||
| 2506 | instance | |
| 2507 | proof | |
| 2508 | fix N :: "nat set" | |
| 2509 | fix n :: nat | |
| 2510 | show "Gcd N dvd n" if "n \<in> N" | |
| 68708 | 2511 | using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) | 
| 63489 | 2512 | show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" | 
| 68708 | 2513 | using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def) | 
| 63489 | 2514 | show "n dvd Lcm N" if "n \<in> N" | 
| 2515 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2516 | show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" | |
| 2517 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2518 | show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" | |
| 2519 | by simp_all | |
| 2520 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2521 | |
| 62345 | 2522 | end | 
| 61913 | 2523 | |
| 63489 | 2524 | lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" | 
| 2525 | for N :: "nat set" | |
| 62346 | 2526 | by (rule Gcd_eq_1_I) auto | 
| 2527 | ||
| 63489 | 2528 | |
| 2529 | text \<open>Alternative characterizations of Gcd:\<close> | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2530 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2531 | lemma Gcd_eq_Max: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2532 | fixes M :: "nat set" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2533 |   assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2534 |   shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2535 | proof (rule antisym) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2536 | from assms obtain m where "m \<in> M" and "m > 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2537 | by auto | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2538 |   from \<open>m > 0\<close> have "finite {d. d dvd m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2539 | by (blast intro: finite_divisors_nat) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2540 |   with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2541 | by blast | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2542 |   from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2543 | by (auto intro: Max_ge Gcd_dvd) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2544 |   from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
 | 
| 68708 | 2545 | proof (rule Max.boundedI, simp_all) | 
| 2546 |     show "(\<Inter>m\<in>M. {d. d dvd m}) \<noteq> {}"
 | |
| 2547 | by auto | |
| 2548 | show "\<And>a. \<forall>x\<in>M. a dvd x \<Longrightarrow> a \<le> Gcd M" | |
| 2549 | by (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) | |
| 2550 | qed | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2551 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2552 | |
| 63489 | 2553 | lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
 | 
| 2554 | for M :: "nat set" | |
| 68708 | 2555 | proof (induct pred: finite) | 
| 2556 | case (insert x M) | |
| 2557 | then show ?case | |
| 2558 | by (simp add: insert_Diff_if) | |
| 2559 | qed auto | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2560 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2561 | lemma Lcm_in_lcm_closed_set_nat: | 
| 68708 | 2562 | fixes M :: "nat set" | 
| 2563 |   assumes "finite M" "M \<noteq> {}" "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M"
 | |
| 2564 | shows "Lcm M \<in> M" | |
| 2565 | using assms | |
| 2566 | proof (induction M rule: finite_linorder_min_induct) | |
| 2567 | case (insert x M) | |
| 2568 | then have "\<And>m n. m \<in> M \<Longrightarrow> n \<in> M \<Longrightarrow> lcm m n \<in> M" | |
| 2569 | by (metis dvd_lcm1 gr0I insert_iff lcm_pos_nat nat_dvd_not_less) | |
| 2570 | with insert show ?case | |
| 2571 | by simp (metis Lcm_nat_empty One_nat_def dvd_1_left dvd_lcm2) | |
| 2572 | qed auto | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2573 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2574 | lemma Lcm_eq_Max_nat: | 
| 68708 | 2575 | fixes M :: "nat set" | 
| 2576 |   assumes M: "finite M" "M \<noteq> {}" "0 \<notin> M" and lcm: "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M"
 | |
| 2577 | shows "Lcm M = Max M" | |
| 2578 | proof (rule antisym) | |
| 2579 | show "Lcm M \<le> Max M" | |
| 2580 |     by (simp add: Lcm_in_lcm_closed_set_nat \<open>finite M\<close> \<open>M \<noteq> {}\<close> lcm)
 | |
| 2581 | show "Max M \<le> Lcm M" | |
| 2582 | by (meson Lcm_0_iff Max_in M dvd_Lcm dvd_imp_le le_0_eq not_le) | |
| 2583 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2584 | |
| 34222 | 2585 | lemma mult_inj_if_coprime_nat: | 
| 68708 | 2586 | "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> (\<And>a b. \<lbrakk>a\<in>A; b\<in>B\<rbrakk> \<Longrightarrow> coprime (f a) (g b)) \<Longrightarrow> | 
| 63489 | 2587 | inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" | 
| 2588 | for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" | |
| 68708 | 2589 | by (auto simp: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) | 
| 34222 | 2590 | |
| 63489 | 2591 | |
| 2592 | subsubsection \<open>Setwise GCD and LCM for integers\<close> | |
| 45264 | 2593 | |
| 67118 | 2594 | instantiation int :: Gcd | 
| 45264 | 2595 | begin | 
| 2596 | ||
| 67118 | 2597 | definition Gcd_int :: "int set \<Rightarrow> int" | 
| 2598 | where "Gcd K = int (GCD k\<in>K. (nat \<circ> abs) k)" | |
| 2599 | ||
| 2600 | definition Lcm_int :: "int set \<Rightarrow> int" | |
| 2601 | where "Lcm K = int (LCM k\<in>K. (nat \<circ> abs) k)" | |
| 2602 | ||
| 2603 | instance .. | |
| 62345 | 2604 | |
| 2605 | end | |
| 2606 | ||
| 67118 | 2607 | lemma Gcd_int_eq [simp]: | 
| 2608 | "(GCD n\<in>N. int n) = int (Gcd N)" | |
| 2609 | by (simp add: Gcd_int_def image_image) | |
| 2610 | ||
| 2611 | lemma Gcd_nat_abs_eq [simp]: | |
| 2612 | "(GCD k\<in>K. nat \<bar>k\<bar>) = nat (Gcd K)" | |
| 2613 | by (simp add: Gcd_int_def) | |
| 2614 | ||
| 2615 | lemma abs_Gcd_eq [simp]: | |
| 2616 | "\<bar>Gcd K\<bar> = Gcd K" for K :: "int set" | |
| 2617 | by (simp only: Gcd_int_def) | |
| 2618 | ||
| 2619 | lemma Gcd_int_greater_eq_0 [simp]: | |
| 2620 | "Gcd K \<ge> 0" | |
| 63489 | 2621 | for K :: "int set" | 
| 67118 | 2622 | using abs_ge_zero [of "Gcd K"] by simp | 
| 2623 | ||
| 2624 | lemma Gcd_abs_eq [simp]: | |
| 2625 | "(GCD k\<in>K. \<bar>k\<bar>) = Gcd K" | |
| 63489 | 2626 | for K :: "int set" | 
| 67118 | 2627 | by (simp only: Gcd_int_def image_image) simp | 
| 2628 | ||
| 2629 | lemma Lcm_int_eq [simp]: | |
| 2630 | "(LCM n\<in>N. int n) = int (Lcm N)" | |
| 2631 | by (simp add: Lcm_int_def image_image) | |
| 2632 | ||
| 2633 | lemma Lcm_nat_abs_eq [simp]: | |
| 2634 | "(LCM k\<in>K. nat \<bar>k\<bar>) = nat (Lcm K)" | |
| 2635 | by (simp add: Lcm_int_def) | |
| 2636 | ||
| 2637 | lemma abs_Lcm_eq [simp]: | |
| 2638 | "\<bar>Lcm K\<bar> = Lcm K" for K :: "int set" | |
| 2639 | by (simp only: Lcm_int_def) | |
| 2640 | ||
| 2641 | lemma Lcm_int_greater_eq_0 [simp]: | |
| 2642 | "Lcm K \<ge> 0" | |
| 2643 | for K :: "int set" | |
| 2644 | using abs_ge_zero [of "Lcm K"] by simp | |
| 2645 | ||
| 2646 | lemma Lcm_abs_eq [simp]: | |
| 2647 | "(LCM k\<in>K. \<bar>k\<bar>) = Lcm K" | |
| 2648 | for K :: "int set" | |
| 2649 | by (simp only: Lcm_int_def image_image) simp | |
| 2650 | ||
| 2651 | instance int :: semiring_Gcd | |
| 2652 | proof | |
| 2653 | fix K :: "int set" and k :: int | |
| 2654 | show "Gcd K dvd k" and "k dvd Lcm K" if "k \<in> K" | |
| 2655 | using that Gcd_dvd [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] | |
| 2656 | dvd_Lcm [of "nat \<bar>k\<bar>" "(nat \<circ> abs) ` K"] | |
| 2657 | by (simp_all add: comp_def) | |
| 2658 | show "k dvd Gcd K" if "\<And>l. l \<in> K \<Longrightarrow> k dvd l" | |
| 2659 | proof - | |
| 2660 | have "nat \<bar>k\<bar> dvd (GCD k\<in>K. nat \<bar>k\<bar>)" | |
| 2661 | by (rule Gcd_greatest) (use that in auto) | |
| 2662 | then show ?thesis by simp | |
| 2663 | qed | |
| 2664 | show "Lcm K dvd k" if "\<And>l. l \<in> K \<Longrightarrow> l dvd k" | |
| 2665 | proof - | |
| 2666 | have "(LCM k\<in>K. nat \<bar>k\<bar>) dvd nat \<bar>k\<bar>" | |
| 2667 | by (rule Lcm_least) (use that in auto) | |
| 2668 | then show ?thesis by simp | |
| 2669 | qed | |
| 2670 | qed simp_all | |
| 62346 | 2671 | |
| 62345 | 2672 | |
| 2673 | subsection \<open>GCD and LCM on @{typ integer}\<close>
 | |
| 2674 | ||
| 2675 | instantiation integer :: gcd | |
| 2676 | begin | |
| 2677 | ||
| 2678 | context | |
| 2679 | includes integer.lifting | |
| 2680 | begin | |
| 2681 | ||
| 63489 | 2682 | lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . | 
| 2683 | ||
| 2684 | lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . | |
| 62345 | 2685 | |
| 2686 | end | |
| 63489 | 2687 | |
| 45264 | 2688 | instance .. | 
| 60686 | 2689 | |
| 21256 | 2690 | end | 
| 45264 | 2691 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2692 | lifting_update integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2693 | lifting_forget integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2694 | |
| 62345 | 2695 | context | 
| 2696 | includes integer.lifting | |
| 2697 | begin | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2698 | |
| 63489 | 2699 | lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | 
| 62345 | 2700 | by transfer (fact gcd_code_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2701 | |
| 63489 | 2702 | lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | 
| 2703 | for a b :: integer | |
| 62345 | 2704 | by transfer (fact lcm_altdef_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2705 | |
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2706 | end | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2707 | |
| 63489 | 2708 | code_printing | 
| 2709 | constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> | |
| 2710 | (OCaml) "Big'_int.gcd'_big'_int" | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2711 | and (Haskell) "Prelude.gcd" | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2712 | and (Scala) "_.gcd'((_)')" | 
| 61975 | 2713 | \<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2714 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2715 | text \<open>Some code equations\<close> | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2716 | |
| 64850 | 2717 | lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat] | 
| 2718 | lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat] | |
| 2719 | lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int] | |
| 2720 | lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int] | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2721 | |
| 63489 | 2722 | text \<open>Fact aliases.\<close> | 
| 2723 | ||
| 2724 | lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | |
| 2725 | for m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2726 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2727 | |
| 63489 | 2728 | lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | 
| 2729 | for m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2730 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2731 | |
| 63489 | 2732 | lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" | 
| 2733 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2734 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2735 | |
| 63489 | 2736 | lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" | 
| 2737 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2738 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2739 | |
| 63489 | 2740 | lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" | 
| 2741 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2742 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2743 | |
| 63489 | 2744 | lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" | 
| 2745 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2746 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2747 | |
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2748 | lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2749 | lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2750 | lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2751 | lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2752 | |
| 63489 | 2753 | lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" | 
| 2754 | for M :: "int set" | |
| 2755 | by (fact dvd_Lcm) | |
| 2756 | ||
| 2757 | lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2758 | by (fact gcd_neg1_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2759 | |
| 63489 | 2760 | lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2761 | by (fact gcd_neg2_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2762 | |
| 63489 | 2763 | lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" | 
| 2764 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2765 | by (fact gcd_nat.absorb1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2766 | |
| 63489 | 2767 | lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" | 
| 2768 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2769 | by (fact gcd_nat.absorb2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2770 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2771 | lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2772 | lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2773 | lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] | 
| 62345 | 2774 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2775 | end |