author | paulson <lp15@cam.ac.uk> |
Wed, 23 Aug 2017 19:54:11 +0100 | |
changeset 66495 | 0b46bd081228 |
parent 65274 | db2de50de28e |
child 68499 | d4312962161a |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/NSComplex.thy |
41959 | 2 |
Author: Jacques D. Fleuriot, University of Edinburgh |
3 |
Author: Lawrence C Paulson |
|
27468 | 4 |
*) |
5 |
||
64435 | 6 |
section \<open>Nonstandard Complex Numbers\<close> |
27468 | 7 |
|
8 |
theory NSComplex |
|
64435 | 9 |
imports NSA |
27468 | 10 |
begin |
11 |
||
42463 | 12 |
type_synonym hcomplex = "complex star" |
27468 | 13 |
|
64435 | 14 |
abbreviation hcomplex_of_complex :: "complex \<Rightarrow> complex star" |
15 |
where "hcomplex_of_complex \<equiv> star_of" |
|
27468 | 16 |
|
64435 | 17 |
abbreviation hcmod :: "complex star \<Rightarrow> real star" |
18 |
where "hcmod \<equiv> hnorm" |
|
27468 | 19 |
|
20 |
||
64435 | 21 |
subsubsection \<open>Real and Imaginary parts\<close> |
22 |
||
23 |
definition hRe :: "hcomplex \<Rightarrow> hypreal" |
|
24 |
where "hRe = *f* Re" |
|
25 |
||
26 |
definition hIm :: "hcomplex \<Rightarrow> hypreal" |
|
27 |
where "hIm = *f* Im" |
|
28 |
||
27468 | 29 |
|
64435 | 30 |
subsubsection \<open>Imaginary unit\<close> |
31 |
||
32 |
definition iii :: hcomplex |
|
33 |
where "iii = star_of \<i>" |
|
27468 | 34 |
|
64435 | 35 |
|
36 |
subsubsection \<open>Complex conjugate\<close> |
|
37 |
||
38 |
definition hcnj :: "hcomplex \<Rightarrow> hcomplex" |
|
39 |
where "hcnj = *f* cnj" |
|
27468 | 40 |
|
41 |
||
64435 | 42 |
subsubsection \<open>Argand\<close> |
27468 | 43 |
|
64435 | 44 |
definition hsgn :: "hcomplex \<Rightarrow> hcomplex" |
45 |
where "hsgn = *f* sgn" |
|
27468 | 46 |
|
64435 | 47 |
definition harg :: "hcomplex \<Rightarrow> hypreal" |
48 |
where "harg = *f* arg" |
|
27468 | 49 |
|
64435 | 50 |
definition \<comment> \<open>abbreviation for \<open>cos a + i sin a\<close>\<close> |
51 |
hcis :: "hypreal \<Rightarrow> hcomplex" |
|
52 |
where "hcis = *f* cis" |
|
27468 | 53 |
|
64435 | 54 |
|
55 |
subsubsection \<open>Injection from hyperreals\<close> |
|
27468 | 56 |
|
64435 | 57 |
abbreviation hcomplex_of_hypreal :: "hypreal \<Rightarrow> hcomplex" |
58 |
where "hcomplex_of_hypreal \<equiv> of_hypreal" |
|
27468 | 59 |
|
64435 | 60 |
definition \<comment> \<open>abbreviation for \<open>r * (cos a + i sin a)\<close>\<close> |
61 |
hrcis :: "hypreal \<Rightarrow> hypreal \<Rightarrow> hcomplex" |
|
62 |
where "hrcis = *f2* rcis" |
|
27468 | 63 |
|
64 |
||
64435 | 65 |
subsubsection \<open>\<open>e ^ (x + iy)\<close>\<close> |
27468 | 66 |
|
64435 | 67 |
definition hExp :: "hcomplex \<Rightarrow> hcomplex" |
68 |
where "hExp = *f* exp" |
|
27468 | 69 |
|
64435 | 70 |
definition HComplex :: "hypreal \<Rightarrow> hypreal \<Rightarrow> hcomplex" |
71 |
where "HComplex = *f2* Complex" |
|
27468 | 72 |
|
73 |
lemmas hcomplex_defs [transfer_unfold] = |
|
74 |
hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def |
|
59658
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
75 |
hrcis_def hExp_def HComplex_def |
27468 | 76 |
|
77 |
lemma Standard_hRe [simp]: "x \<in> Standard \<Longrightarrow> hRe x \<in> Standard" |
|
64435 | 78 |
by (simp add: hcomplex_defs) |
27468 | 79 |
|
80 |
lemma Standard_hIm [simp]: "x \<in> Standard \<Longrightarrow> hIm x \<in> Standard" |
|
64435 | 81 |
by (simp add: hcomplex_defs) |
27468 | 82 |
|
83 |
lemma Standard_iii [simp]: "iii \<in> Standard" |
|
64435 | 84 |
by (simp add: hcomplex_defs) |
27468 | 85 |
|
86 |
lemma Standard_hcnj [simp]: "x \<in> Standard \<Longrightarrow> hcnj x \<in> Standard" |
|
64435 | 87 |
by (simp add: hcomplex_defs) |
27468 | 88 |
|
89 |
lemma Standard_hsgn [simp]: "x \<in> Standard \<Longrightarrow> hsgn x \<in> Standard" |
|
64435 | 90 |
by (simp add: hcomplex_defs) |
27468 | 91 |
|
92 |
lemma Standard_harg [simp]: "x \<in> Standard \<Longrightarrow> harg x \<in> Standard" |
|
64435 | 93 |
by (simp add: hcomplex_defs) |
27468 | 94 |
|
95 |
lemma Standard_hcis [simp]: "r \<in> Standard \<Longrightarrow> hcis r \<in> Standard" |
|
64435 | 96 |
by (simp add: hcomplex_defs) |
27468 | 97 |
|
59658
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
98 |
lemma Standard_hExp [simp]: "x \<in> Standard \<Longrightarrow> hExp x \<in> Standard" |
64435 | 99 |
by (simp add: hcomplex_defs) |
27468 | 100 |
|
64435 | 101 |
lemma Standard_hrcis [simp]: "r \<in> Standard \<Longrightarrow> s \<in> Standard \<Longrightarrow> hrcis r s \<in> Standard" |
102 |
by (simp add: hcomplex_defs) |
|
27468 | 103 |
|
64435 | 104 |
lemma Standard_HComplex [simp]: "r \<in> Standard \<Longrightarrow> s \<in> Standard \<Longrightarrow> HComplex r s \<in> Standard" |
105 |
by (simp add: hcomplex_defs) |
|
27468 | 106 |
|
107 |
lemma hcmod_def: "hcmod = *f* cmod" |
|
64435 | 108 |
by (rule hnorm_def) |
27468 | 109 |
|
110 |
||
64435 | 111 |
subsection \<open>Properties of Nonstandard Real and Imaginary Parts\<close> |
27468 | 112 |
|
64435 | 113 |
lemma hcomplex_hRe_hIm_cancel_iff: "\<And>w z. w = z \<longleftrightarrow> hRe w = hRe z \<and> hIm w = hIm z" |
114 |
by transfer (rule complex_Re_Im_cancel_iff) |
|
27468 | 115 |
|
64435 | 116 |
lemma hcomplex_equality [intro?]: "\<And>z w. hRe z = hRe w \<Longrightarrow> hIm z = hIm w \<Longrightarrow> z = w" |
117 |
by transfer (rule complex_equality) |
|
27468 | 118 |
|
119 |
lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0" |
|
64435 | 120 |
by transfer simp |
27468 | 121 |
|
122 |
lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0" |
|
64435 | 123 |
by transfer simp |
27468 | 124 |
|
125 |
lemma hcomplex_hRe_one [simp]: "hRe 1 = 1" |
|
64435 | 126 |
by transfer simp |
27468 | 127 |
|
128 |
lemma hcomplex_hIm_one [simp]: "hIm 1 = 0" |
|
64435 | 129 |
by transfer simp |
130 |
||
131 |
||
132 |
subsection \<open>Addition for Nonstandard Complex Numbers\<close> |
|
133 |
||
134 |
lemma hRe_add: "\<And>x y. hRe (x + y) = hRe x + hRe y" |
|
135 |
by transfer simp |
|
136 |
||
137 |
lemma hIm_add: "\<And>x y. hIm (x + y) = hIm x + hIm y" |
|
138 |
by transfer simp |
|
27468 | 139 |
|
140 |
||
64435 | 141 |
subsection \<open>More Minus Laws\<close> |
27468 | 142 |
|
64435 | 143 |
lemma hRe_minus: "\<And>z. hRe (- z) = - hRe z" |
144 |
by transfer (rule uminus_complex.sel) |
|
27468 | 145 |
|
64435 | 146 |
lemma hIm_minus: "\<And>z. hIm (- z) = - hIm z" |
147 |
by transfer (rule uminus_complex.sel) |
|
27468 | 148 |
|
64435 | 149 |
lemma hcomplex_add_minus_eq_minus: "x + y = 0 \<Longrightarrow> x = - y" |
150 |
for x y :: hcomplex |
|
151 |
apply (drule minus_unique) |
|
152 |
apply (simp add: minus_equation_iff [of x y]) |
|
153 |
done |
|
27468 | 154 |
|
64435 | 155 |
lemma hcomplex_i_mult_eq [simp]: "iii * iii = - 1" |
156 |
by transfer (rule i_squared) |
|
27468 | 157 |
|
64435 | 158 |
lemma hcomplex_i_mult_left [simp]: "\<And>z. iii * (iii * z) = - z" |
159 |
by transfer (rule complex_i_mult_minus) |
|
27468 | 160 |
|
161 |
lemma hcomplex_i_not_zero [simp]: "iii \<noteq> 0" |
|
64435 | 162 |
by transfer (rule complex_i_not_zero) |
27468 | 163 |
|
164 |
||
64435 | 165 |
subsection \<open>More Multiplication Laws\<close> |
27468 | 166 |
|
64435 | 167 |
lemma hcomplex_mult_minus_one: "- 1 * z = - z" |
168 |
for z :: hcomplex |
|
169 |
by simp |
|
27468 | 170 |
|
64435 | 171 |
lemma hcomplex_mult_minus_one_right: "z * - 1 = - z" |
172 |
for z :: hcomplex |
|
173 |
by simp |
|
27468 | 174 |
|
64435 | 175 |
lemma hcomplex_mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" |
176 |
for a b c :: hcomplex |
|
177 |
by simp |
|
178 |
||
179 |
lemma hcomplex_mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" |
|
180 |
for a b c :: hcomplex |
|
181 |
by simp |
|
27468 | 182 |
|
183 |
||
64435 | 184 |
subsection \<open>Subtraction and Division\<close> |
27468 | 185 |
|
186 |
(* TODO: delete *) |
|
64435 | 187 |
lemma hcomplex_diff_eq_eq [simp]: "x - y = z \<longleftrightarrow> x = z + y" |
188 |
for x y z :: hcomplex |
|
189 |
by (rule diff_eq_eq) |
|
27468 | 190 |
|
191 |
||
64435 | 192 |
subsection \<open>Embedding Properties for @{term hcomplex_of_hypreal} Map\<close> |
193 |
||
194 |
lemma hRe_hcomplex_of_hypreal [simp]: "\<And>z. hRe (hcomplex_of_hypreal z) = z" |
|
195 |
by transfer (rule Re_complex_of_real) |
|
27468 | 196 |
|
64435 | 197 |
lemma hIm_hcomplex_of_hypreal [simp]: "\<And>z. hIm (hcomplex_of_hypreal z) = 0" |
198 |
by transfer (rule Im_complex_of_real) |
|
27468 | 199 |
|
64435 | 200 |
lemma hcomplex_of_hypreal_epsilon_not_zero [simp]: "hcomplex_of_hypreal \<epsilon> \<noteq> 0" |
201 |
by (simp add: hypreal_epsilon_not_zero) |
|
27468 | 202 |
|
64435 | 203 |
|
204 |
subsection \<open>\<open>HComplex\<close> theorems\<close> |
|
27468 | 205 |
|
64435 | 206 |
lemma hRe_HComplex [simp]: "\<And>x y. hRe (HComplex x y) = x" |
207 |
by transfer simp |
|
27468 | 208 |
|
64435 | 209 |
lemma hIm_HComplex [simp]: "\<And>x y. hIm (HComplex x y) = y" |
210 |
by transfer simp |
|
27468 | 211 |
|
64435 | 212 |
lemma hcomplex_surj [simp]: "\<And>z. HComplex (hRe z) (hIm z) = z" |
213 |
by transfer (rule complex_surj) |
|
27468 | 214 |
|
215 |
lemma hcomplex_induct [case_names rect(*, induct type: hcomplex*)]: |
|
64435 | 216 |
"(\<And>x y. P (HComplex x y)) \<Longrightarrow> P z" |
217 |
by (rule hcomplex_surj [THEN subst]) blast |
|
27468 | 218 |
|
219 |
||
64435 | 220 |
subsection \<open>Modulus (Absolute Value) of Nonstandard Complex Number\<close> |
27468 | 221 |
|
222 |
lemma hcomplex_of_hypreal_abs: |
|
64435 | 223 |
"hcomplex_of_hypreal \<bar>x\<bar> = hcomplex_of_hypreal (hcmod (hcomplex_of_hypreal x))" |
224 |
by simp |
|
27468 | 225 |
|
64435 | 226 |
lemma HComplex_inject [simp]: "\<And>x y x' y'. HComplex x y = HComplex x' y' \<longleftrightarrow> x = x' \<and> y = y'" |
227 |
by transfer (rule complex.inject) |
|
27468 | 228 |
|
229 |
lemma HComplex_add [simp]: |
|
64435 | 230 |
"\<And>x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1 + x2) (y1 + y2)" |
231 |
by transfer (rule complex_add) |
|
27468 | 232 |
|
64435 | 233 |
lemma HComplex_minus [simp]: "\<And>x y. - HComplex x y = HComplex (- x) (- y)" |
234 |
by transfer (rule complex_minus) |
|
27468 | 235 |
|
236 |
lemma HComplex_diff [simp]: |
|
64435 | 237 |
"\<And>x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1 - x2) (y1 - y2)" |
238 |
by transfer (rule complex_diff) |
|
27468 | 239 |
|
240 |
lemma HComplex_mult [simp]: |
|
64435 | 241 |
"\<And>x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 = HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" |
242 |
by transfer (rule complex_mult) |
|
27468 | 243 |
|
64435 | 244 |
text \<open>\<open>HComplex_inverse\<close> is proved below.\<close> |
27468 | 245 |
|
64435 | 246 |
lemma hcomplex_of_hypreal_eq: "\<And>r. hcomplex_of_hypreal r = HComplex r 0" |
247 |
by transfer (rule complex_of_real_def) |
|
27468 | 248 |
|
249 |
lemma HComplex_add_hcomplex_of_hypreal [simp]: |
|
64435 | 250 |
"\<And>x y r. HComplex x y + hcomplex_of_hypreal r = HComplex (x + r) y" |
251 |
by transfer (rule Complex_add_complex_of_real) |
|
27468 | 252 |
|
253 |
lemma hcomplex_of_hypreal_add_HComplex [simp]: |
|
64435 | 254 |
"\<And>r x y. hcomplex_of_hypreal r + HComplex x y = HComplex (r + x) y" |
255 |
by transfer (rule complex_of_real_add_Complex) |
|
27468 | 256 |
|
257 |
lemma HComplex_mult_hcomplex_of_hypreal: |
|
64435 | 258 |
"\<And>x y r. HComplex x y * hcomplex_of_hypreal r = HComplex (x * r) (y * r)" |
259 |
by transfer (rule Complex_mult_complex_of_real) |
|
27468 | 260 |
|
261 |
lemma hcomplex_of_hypreal_mult_HComplex: |
|
64435 | 262 |
"\<And>r x y. hcomplex_of_hypreal r * HComplex x y = HComplex (r * x) (r * y)" |
263 |
by transfer (rule complex_of_real_mult_Complex) |
|
27468 | 264 |
|
64435 | 265 |
lemma i_hcomplex_of_hypreal [simp]: "\<And>r. iii * hcomplex_of_hypreal r = HComplex 0 r" |
266 |
by transfer (rule i_complex_of_real) |
|
27468 | 267 |
|
64435 | 268 |
lemma hcomplex_of_hypreal_i [simp]: "\<And>r. hcomplex_of_hypreal r * iii = HComplex 0 r" |
269 |
by transfer (rule complex_of_real_i) |
|
27468 | 270 |
|
271 |
||
64435 | 272 |
subsection \<open>Conjugation\<close> |
27468 | 273 |
|
64435 | 274 |
lemma hcomplex_hcnj_cancel_iff [iff]: "\<And>x y. hcnj x = hcnj y \<longleftrightarrow> x = y" |
275 |
by transfer (rule complex_cnj_cancel_iff) |
|
27468 | 276 |
|
64435 | 277 |
lemma hcomplex_hcnj_hcnj [simp]: "\<And>z. hcnj (hcnj z) = z" |
278 |
by transfer (rule complex_cnj_cnj) |
|
27468 | 279 |
|
280 |
lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]: |
|
64435 | 281 |
"\<And>x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x" |
282 |
by transfer (rule complex_cnj_complex_of_real) |
|
27468 | 283 |
|
64435 | 284 |
lemma hcomplex_hmod_hcnj [simp]: "\<And>z. hcmod (hcnj z) = hcmod z" |
285 |
by transfer (rule complex_mod_cnj) |
|
27468 | 286 |
|
64435 | 287 |
lemma hcomplex_hcnj_minus: "\<And>z. hcnj (- z) = - hcnj z" |
288 |
by transfer (rule complex_cnj_minus) |
|
27468 | 289 |
|
64435 | 290 |
lemma hcomplex_hcnj_inverse: "\<And>z. hcnj (inverse z) = inverse (hcnj z)" |
291 |
by transfer (rule complex_cnj_inverse) |
|
27468 | 292 |
|
64435 | 293 |
lemma hcomplex_hcnj_add: "\<And>w z. hcnj (w + z) = hcnj w + hcnj z" |
294 |
by transfer (rule complex_cnj_add) |
|
27468 | 295 |
|
64435 | 296 |
lemma hcomplex_hcnj_diff: "\<And>w z. hcnj (w - z) = hcnj w - hcnj z" |
297 |
by transfer (rule complex_cnj_diff) |
|
27468 | 298 |
|
64435 | 299 |
lemma hcomplex_hcnj_mult: "\<And>w z. hcnj (w * z) = hcnj w * hcnj z" |
300 |
by transfer (rule complex_cnj_mult) |
|
27468 | 301 |
|
64435 | 302 |
lemma hcomplex_hcnj_divide: "\<And>w z. hcnj (w / z) = hcnj w / hcnj z" |
303 |
by transfer (rule complex_cnj_divide) |
|
27468 | 304 |
|
305 |
lemma hcnj_one [simp]: "hcnj 1 = 1" |
|
64435 | 306 |
by transfer (rule complex_cnj_one) |
27468 | 307 |
|
308 |
lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0" |
|
64435 | 309 |
by transfer (rule complex_cnj_zero) |
27468 | 310 |
|
64435 | 311 |
lemma hcomplex_hcnj_zero_iff [iff]: "\<And>z. hcnj z = 0 \<longleftrightarrow> z = 0" |
312 |
by transfer (rule complex_cnj_zero_iff) |
|
27468 | 313 |
|
64435 | 314 |
lemma hcomplex_mult_hcnj: "\<And>z. z * hcnj z = hcomplex_of_hypreal ((hRe z)\<^sup>2 + (hIm z)\<^sup>2)" |
315 |
by transfer (rule complex_mult_cnj) |
|
27468 | 316 |
|
317 |
||
64435 | 318 |
subsection \<open>More Theorems about the Function @{term hcmod}\<close> |
319 |
||
320 |
lemma hcmod_hcomplex_of_hypreal_of_nat [simp]: |
|
321 |
"hcmod (hcomplex_of_hypreal (hypreal_of_nat n)) = hypreal_of_nat n" |
|
322 |
by simp |
|
323 |
||
324 |
lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]: |
|
325 |
"hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n" |
|
326 |
by simp |
|
327 |
||
328 |
lemma hcmod_mult_hcnj: "\<And>z. hcmod (z * hcnj z) = (hcmod z)\<^sup>2" |
|
329 |
by transfer (rule complex_mod_mult_cnj) |
|
27468 | 330 |
|
64435 | 331 |
lemma hcmod_triangle_ineq2 [simp]: "\<And>a b. hcmod (b + a) - hcmod b \<le> hcmod a" |
332 |
by transfer (rule complex_mod_triangle_ineq2) |
|
333 |
||
334 |
lemma hcmod_diff_ineq [simp]: "\<And>a b. hcmod a - hcmod b \<le> hcmod (a + b)" |
|
335 |
by transfer (rule norm_diff_ineq) |
|
336 |
||
27468 | 337 |
|
64435 | 338 |
subsection \<open>Exponentiation\<close> |
339 |
||
340 |
lemma hcomplexpow_0 [simp]: "z ^ 0 = 1" |
|
341 |
for z :: hcomplex |
|
342 |
by (rule power_0) |
|
343 |
||
344 |
lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = z * (z ^ n)" |
|
345 |
for z :: hcomplex |
|
346 |
by (rule power_Suc) |
|
27468 | 347 |
|
53077 | 348 |
lemma hcomplexpow_i_squared [simp]: "iii\<^sup>2 = -1" |
64435 | 349 |
by transfer (rule power2_i) |
27468 | 350 |
|
64435 | 351 |
lemma hcomplex_of_hypreal_pow: "\<And>x. hcomplex_of_hypreal (x ^ n) = hcomplex_of_hypreal x ^ n" |
352 |
by transfer (rule of_real_power) |
|
27468 | 353 |
|
64435 | 354 |
lemma hcomplex_hcnj_pow: "\<And>z. hcnj (z ^ n) = hcnj z ^ n" |
355 |
by transfer (rule complex_cnj_power) |
|
27468 | 356 |
|
64435 | 357 |
lemma hcmod_hcomplexpow: "\<And>x. hcmod (x ^ n) = hcmod x ^ n" |
358 |
by transfer (rule norm_power) |
|
27468 | 359 |
|
360 |
lemma hcpow_minus: |
|
64435 | 361 |
"\<And>x n. (- x :: hcomplex) pow n = (if ( *p* even) n then (x pow n) else - (x pow n))" |
362 |
by transfer simp |
|
27468 | 363 |
|
64435 | 364 |
lemma hcpow_mult: "(r * s) pow n = (r pow n) * (s pow n)" |
365 |
for r s :: hcomplex |
|
58787 | 366 |
by (fact hyperpow_mult) |
27468 | 367 |
|
64435 | 368 |
lemma hcpow_zero2 [simp]: "\<And>n. 0 pow (hSuc n) = (0::'a::semiring_1 star)" |
60867 | 369 |
by transfer (rule power_0_Suc) |
27468 | 370 |
|
64435 | 371 |
lemma hcpow_not_zero [simp,intro]: "\<And>r n. r \<noteq> 0 \<Longrightarrow> r pow n \<noteq> (0::hcomplex)" |
60867 | 372 |
by (fact hyperpow_not_zero) |
27468 | 373 |
|
64435 | 374 |
lemma hcpow_zero_zero: "r pow n = 0 \<Longrightarrow> r = 0" |
375 |
for r :: hcomplex |
|
60867 | 376 |
by (blast intro: ccontr dest: hcpow_not_zero) |
27468 | 377 |
|
64435 | 378 |
|
379 |
subsection \<open>The Function @{term hsgn}\<close> |
|
27468 | 380 |
|
381 |
lemma hsgn_zero [simp]: "hsgn 0 = 0" |
|
64435 | 382 |
by transfer (rule sgn_zero) |
27468 | 383 |
|
384 |
lemma hsgn_one [simp]: "hsgn 1 = 1" |
|
64435 | 385 |
by transfer (rule sgn_one) |
27468 | 386 |
|
64435 | 387 |
lemma hsgn_minus: "\<And>z. hsgn (- z) = - hsgn z" |
388 |
by transfer (rule sgn_minus) |
|
27468 | 389 |
|
64435 | 390 |
lemma hsgn_eq: "\<And>z. hsgn z = z / hcomplex_of_hypreal (hcmod z)" |
391 |
by transfer (rule sgn_eq) |
|
27468 | 392 |
|
64435 | 393 |
lemma hcmod_i: "\<And>x y. hcmod (HComplex x y) = ( *f* sqrt) (x\<^sup>2 + y\<^sup>2)" |
394 |
by transfer (rule complex_norm) |
|
27468 | 395 |
|
396 |
lemma hcomplex_eq_cancel_iff1 [simp]: |
|
64435 | 397 |
"hcomplex_of_hypreal xa = HComplex x y \<longleftrightarrow> xa = x \<and> y = 0" |
398 |
by (simp add: hcomplex_of_hypreal_eq) |
|
27468 | 399 |
|
400 |
lemma hcomplex_eq_cancel_iff2 [simp]: |
|
64435 | 401 |
"HComplex x y = hcomplex_of_hypreal xa \<longleftrightarrow> x = xa \<and> y = 0" |
402 |
by (simp add: hcomplex_of_hypreal_eq) |
|
27468 | 403 |
|
64435 | 404 |
lemma HComplex_eq_0 [simp]: "\<And>x y. HComplex x y = 0 \<longleftrightarrow> x = 0 \<and> y = 0" |
405 |
by transfer (rule Complex_eq_0) |
|
27468 | 406 |
|
64435 | 407 |
lemma HComplex_eq_1 [simp]: "\<And>x y. HComplex x y = 1 \<longleftrightarrow> x = 1 \<and> y = 0" |
408 |
by transfer (rule Complex_eq_1) |
|
27468 | 409 |
|
410 |
lemma i_eq_HComplex_0_1: "iii = HComplex 0 1" |
|
64435 | 411 |
by transfer (simp add: complex_eq_iff) |
27468 | 412 |
|
64435 | 413 |
lemma HComplex_eq_i [simp]: "\<And>x y. HComplex x y = iii \<longleftrightarrow> x = 0 \<and> y = 1" |
414 |
by transfer (rule Complex_eq_i) |
|
27468 | 415 |
|
64435 | 416 |
lemma hRe_hsgn [simp]: "\<And>z. hRe (hsgn z) = hRe z / hcmod z" |
417 |
by transfer (rule Re_sgn) |
|
27468 | 418 |
|
64435 | 419 |
lemma hIm_hsgn [simp]: "\<And>z. hIm (hsgn z) = hIm z / hcmod z" |
420 |
by transfer (rule Im_sgn) |
|
27468 | 421 |
|
64435 | 422 |
lemma HComplex_inverse: "\<And>x y. inverse (HComplex x y) = HComplex (x / (x\<^sup>2 + y\<^sup>2)) (- y / (x\<^sup>2 + y\<^sup>2))" |
423 |
by transfer (rule complex_inverse) |
|
27468 | 424 |
|
64435 | 425 |
lemma hRe_mult_i_eq[simp]: "\<And>y. hRe (iii * hcomplex_of_hypreal y) = 0" |
426 |
by transfer simp |
|
27468 | 427 |
|
64435 | 428 |
lemma hIm_mult_i_eq [simp]: "\<And>y. hIm (iii * hcomplex_of_hypreal y) = y" |
429 |
by transfer simp |
|
27468 | 430 |
|
64435 | 431 |
lemma hcmod_mult_i [simp]: "\<And>y. hcmod (iii * hcomplex_of_hypreal y) = \<bar>y\<bar>" |
432 |
by transfer (simp add: norm_complex_def) |
|
27468 | 433 |
|
64435 | 434 |
lemma hcmod_mult_i2 [simp]: "\<And>y. hcmod (hcomplex_of_hypreal y * iii) = \<bar>y\<bar>" |
435 |
by transfer (simp add: norm_complex_def) |
|
27468 | 436 |
|
437 |
||
64435 | 438 |
subsubsection \<open>\<open>harg\<close>\<close> |
439 |
||
440 |
lemma cos_harg_i_mult_zero [simp]: "\<And>y. y \<noteq> 0 \<Longrightarrow> ( *f* cos) (harg (HComplex 0 y)) = 0" |
|
65274
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents:
64435
diff
changeset
|
441 |
by transfer (simp add: Complex_eq) |
64435 | 442 |
|
443 |
||
444 |
subsection \<open>Polar Form for Nonstandard Complex Numbers\<close> |
|
445 |
||
446 |
lemma complex_split_polar2: "\<forall>n. \<exists>r a. (z n) = complex_of_real r * Complex (cos a) (sin a)" |
|
65274
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents:
64435
diff
changeset
|
447 |
unfolding Complex_eq by (auto intro: complex_split_polar) |
27468 | 448 |
|
449 |
lemma hcomplex_split_polar: |
|
64435 | 450 |
"\<And>z. \<exists>r a. z = hcomplex_of_hypreal r * (HComplex (( *f* cos) a) (( *f* sin) a))" |
65274
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents:
64435
diff
changeset
|
451 |
by transfer (simp add: Complex_eq complex_split_polar) |
27468 | 452 |
|
453 |
lemma hcis_eq: |
|
64435 | 454 |
"\<And>a. hcis a = hcomplex_of_hypreal (( *f* cos) a) + iii * hcomplex_of_hypreal (( *f* sin) a)" |
455 |
by transfer (simp add: complex_eq_iff) |
|
27468 | 456 |
|
64435 | 457 |
lemma hrcis_Ex: "\<And>z. \<exists>r a. z = hrcis r a" |
458 |
by transfer (rule rcis_Ex) |
|
27468 | 459 |
|
460 |
lemma hRe_hcomplex_polar [simp]: |
|
64435 | 461 |
"\<And>r a. hRe (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* cos) a" |
462 |
by transfer simp |
|
27468 | 463 |
|
64435 | 464 |
lemma hRe_hrcis [simp]: "\<And>r a. hRe (hrcis r a) = r * ( *f* cos) a" |
465 |
by transfer (rule Re_rcis) |
|
27468 | 466 |
|
467 |
lemma hIm_hcomplex_polar [simp]: |
|
64435 | 468 |
"\<And>r a. hIm (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = r * ( *f* sin) a" |
469 |
by transfer simp |
|
27468 | 470 |
|
64435 | 471 |
lemma hIm_hrcis [simp]: "\<And>r a. hIm (hrcis r a) = r * ( *f* sin) a" |
472 |
by transfer (rule Im_rcis) |
|
27468 | 473 |
|
64435 | 474 |
lemma hcmod_unit_one [simp]: "\<And>a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1" |
475 |
by transfer (simp add: cmod_unit_one) |
|
27468 | 476 |
|
477 |
lemma hcmod_complex_polar [simp]: |
|
64435 | 478 |
"\<And>r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = \<bar>r\<bar>" |
65274
db2de50de28e
Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents:
64435
diff
changeset
|
479 |
by transfer (simp add: Complex_eq cmod_complex_polar) |
27468 | 480 |
|
64435 | 481 |
lemma hcmod_hrcis [simp]: "\<And>r a. hcmod(hrcis r a) = \<bar>r\<bar>" |
482 |
by transfer (rule complex_mod_rcis) |
|
27468 | 483 |
|
64435 | 484 |
text \<open>\<open>(r1 * hrcis a) * (r2 * hrcis b) = r1 * r2 * hrcis (a + b)\<close>\<close> |
485 |
||
486 |
lemma hcis_hrcis_eq: "\<And>a. hcis a = hrcis 1 a" |
|
487 |
by transfer (rule cis_rcis_eq) |
|
27468 | 488 |
declare hcis_hrcis_eq [symmetric, simp] |
489 |
||
64435 | 490 |
lemma hrcis_mult: "\<And>a b r1 r2. hrcis r1 a * hrcis r2 b = hrcis (r1 * r2) (a + b)" |
491 |
by transfer (rule rcis_mult) |
|
27468 | 492 |
|
64435 | 493 |
lemma hcis_mult: "\<And>a b. hcis a * hcis b = hcis (a + b)" |
494 |
by transfer (rule cis_mult) |
|
27468 | 495 |
|
496 |
lemma hcis_zero [simp]: "hcis 0 = 1" |
|
64435 | 497 |
by transfer (rule cis_zero) |
27468 | 498 |
|
64435 | 499 |
lemma hrcis_zero_mod [simp]: "\<And>a. hrcis 0 a = 0" |
500 |
by transfer (rule rcis_zero_mod) |
|
27468 | 501 |
|
64435 | 502 |
lemma hrcis_zero_arg [simp]: "\<And>r. hrcis r 0 = hcomplex_of_hypreal r" |
503 |
by transfer (rule rcis_zero_arg) |
|
27468 | 504 |
|
64435 | 505 |
lemma hcomplex_i_mult_minus [simp]: "\<And>x. iii * (iii * x) = - x" |
506 |
by transfer (rule complex_i_mult_minus) |
|
27468 | 507 |
|
508 |
lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x" |
|
64435 | 509 |
by simp |
27468 | 510 |
|
511 |
lemma hcis_hypreal_of_nat_Suc_mult: |
|
64435 | 512 |
"\<And>a. hcis (hypreal_of_nat (Suc n) * a) = hcis a * hcis (hypreal_of_nat n * a)" |
513 |
by transfer (simp add: distrib_right cis_mult) |
|
27468 | 514 |
|
64435 | 515 |
lemma NSDeMoivre: "\<And>a. (hcis a) ^ n = hcis (hypreal_of_nat n * a)" |
516 |
by transfer (rule DeMoivre) |
|
27468 | 517 |
|
518 |
lemma hcis_hypreal_of_hypnat_Suc_mult: |
|
64435 | 519 |
"\<And>a n. hcis (hypreal_of_hypnat (n + 1) * a) = hcis a * hcis (hypreal_of_hypnat n * a)" |
520 |
by transfer (simp add: distrib_right cis_mult) |
|
27468 | 521 |
|
64435 | 522 |
lemma NSDeMoivre_ext: "\<And>a n. (hcis a) pow n = hcis (hypreal_of_hypnat n * a)" |
523 |
by transfer (rule DeMoivre) |
|
524 |
||
525 |
lemma NSDeMoivre2: "\<And>a r. (hrcis r a) ^ n = hrcis (r ^ n) (hypreal_of_nat n * a)" |
|
526 |
by transfer (rule DeMoivre2) |
|
27468 | 527 |
|
64435 | 528 |
lemma DeMoivre2_ext: "\<And>a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal_of_hypnat n * a)" |
529 |
by transfer (rule DeMoivre2) |
|
27468 | 530 |
|
64435 | 531 |
lemma hcis_inverse [simp]: "\<And>a. inverse (hcis a) = hcis (- a)" |
532 |
by transfer (rule cis_inverse) |
|
27468 | 533 |
|
64435 | 534 |
lemma hrcis_inverse: "\<And>a r. inverse (hrcis r a) = hrcis (inverse r) (- a)" |
535 |
by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric]) |
|
27468 | 536 |
|
64435 | 537 |
lemma hRe_hcis [simp]: "\<And>a. hRe (hcis a) = ( *f* cos) a" |
538 |
by transfer simp |
|
27468 | 539 |
|
64435 | 540 |
lemma hIm_hcis [simp]: "\<And>a. hIm (hcis a) = ( *f* sin) a" |
541 |
by transfer simp |
|
27468 | 542 |
|
64435 | 543 |
lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe (hcis a ^ n)" |
544 |
by (simp add: NSDeMoivre) |
|
27468 | 545 |
|
64435 | 546 |
lemma sin_n_hIm_hcis_pow_n: "( *f* sin) (hypreal_of_nat n * a) = hIm (hcis a ^ n)" |
547 |
by (simp add: NSDeMoivre) |
|
27468 | 548 |
|
64435 | 549 |
lemma cos_n_hRe_hcis_hcpow_n: "( *f* cos) (hypreal_of_hypnat n * a) = hRe (hcis a pow n)" |
550 |
by (simp add: NSDeMoivre_ext) |
|
27468 | 551 |
|
64435 | 552 |
lemma sin_n_hIm_hcis_hcpow_n: "( *f* sin) (hypreal_of_hypnat n * a) = hIm (hcis a pow n)" |
553 |
by (simp add: NSDeMoivre_ext) |
|
27468 | 554 |
|
64435 | 555 |
lemma hExp_add: "\<And>a b. hExp (a + b) = hExp a * hExp b" |
556 |
by transfer (rule exp_add) |
|
27468 | 557 |
|
558 |
||
64435 | 559 |
subsection \<open>@{term hcomplex_of_complex}: the Injection from type @{typ complex} to to @{typ hcomplex}\<close> |
27468 | 560 |
|
63589 | 561 |
lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex \<i>" |
64435 | 562 |
by (rule iii_def) |
27468 | 563 |
|
64435 | 564 |
lemma hRe_hcomplex_of_complex: "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)" |
565 |
by transfer (rule refl) |
|
27468 | 566 |
|
64435 | 567 |
lemma hIm_hcomplex_of_complex: "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)" |
568 |
by transfer (rule refl) |
|
27468 | 569 |
|
64435 | 570 |
lemma hcmod_hcomplex_of_complex: "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)" |
571 |
by transfer (rule refl) |
|
27468 | 572 |
|
573 |
||
64435 | 574 |
subsection \<open>Numerals and Arithmetic\<close> |
27468 | 575 |
|
60017
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents:
59730
diff
changeset
|
576 |
lemma hcomplex_of_hypreal_eq_hcomplex_of_complex: |
64435 | 577 |
"hcomplex_of_hypreal (hypreal_of_real x) = hcomplex_of_complex (complex_of_real x)" |
578 |
by transfer (rule refl) |
|
27468 | 579 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44846
diff
changeset
|
580 |
lemma hcomplex_hypreal_numeral: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44846
diff
changeset
|
581 |
"hcomplex_of_complex (numeral w) = hcomplex_of_hypreal(numeral w)" |
64435 | 582 |
by transfer (rule of_real_numeral [symmetric]) |
27468 | 583 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44846
diff
changeset
|
584 |
lemma hcomplex_hypreal_neg_numeral: |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
53077
diff
changeset
|
585 |
"hcomplex_of_complex (- numeral w) = hcomplex_of_hypreal(- numeral w)" |
64435 | 586 |
by transfer (rule of_real_neg_numeral [symmetric]) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44846
diff
changeset
|
587 |
|
64435 | 588 |
lemma hcomplex_numeral_hcnj [simp]: "hcnj (numeral v :: hcomplex) = numeral v" |
589 |
by transfer (rule complex_cnj_numeral) |
|
27468 | 590 |
|
64435 | 591 |
lemma hcomplex_numeral_hcmod [simp]: "hcmod (numeral v :: hcomplex) = (numeral v :: hypreal)" |
592 |
by transfer (rule norm_numeral) |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
44846
diff
changeset
|
593 |
|
64435 | 594 |
lemma hcomplex_neg_numeral_hcmod [simp]: "hcmod (- numeral v :: hcomplex) = (numeral v :: hypreal)" |
595 |
by transfer (rule norm_neg_numeral) |
|
27468 | 596 |
|
64435 | 597 |
lemma hcomplex_numeral_hRe [simp]: "hRe (numeral v :: hcomplex) = numeral v" |
598 |
by transfer (rule complex_Re_numeral) |
|
27468 | 599 |
|
64435 | 600 |
lemma hcomplex_numeral_hIm [simp]: "hIm (numeral v :: hcomplex) = 0" |
601 |
by transfer (rule complex_Im_numeral) |
|
27468 | 602 |
|
603 |
end |