clarified session;
authorwenzelm
Mon, 29 Feb 2016 22:34:36 +0100
changeset 62479 716336f19aa9
parent 62478 a62c86d25024
child 62480 f2e8984adef7
clarified session; tuned headers;
NEWS
src/HOL/NSA/CLim.thy
src/HOL/NSA/CStar.thy
src/HOL/NSA/Examples/NSPrimes.thy
src/HOL/NSA/Free_Ultrafilter.thy
src/HOL/NSA/HDeriv.thy
src/HOL/NSA/HLim.thy
src/HOL/NSA/HLog.thy
src/HOL/NSA/HSEQ.thy
src/HOL/NSA/HSeries.thy
src/HOL/NSA/HTranscendental.thy
src/HOL/NSA/HyperDef.thy
src/HOL/NSA/HyperNat.thy
src/HOL/NSA/Hypercomplex.thy
src/HOL/NSA/Hyperreal.thy
src/HOL/NSA/NSA.thy
src/HOL/NSA/NSCA.thy
src/HOL/NSA/NSComplex.thy
src/HOL/NSA/NatStar.thy
src/HOL/NSA/Star.thy
src/HOL/NSA/StarDef.thy
src/HOL/NSA/document/root.tex
src/HOL/NSA/transfer.ML
src/HOL/Nonstandard_Analysis/CLim.thy
src/HOL/Nonstandard_Analysis/CStar.thy
src/HOL/Nonstandard_Analysis/Examples/NSPrimes.thy
src/HOL/Nonstandard_Analysis/Free_Ultrafilter.thy
src/HOL/Nonstandard_Analysis/HDeriv.thy
src/HOL/Nonstandard_Analysis/HLim.thy
src/HOL/Nonstandard_Analysis/HLog.thy
src/HOL/Nonstandard_Analysis/HSEQ.thy
src/HOL/Nonstandard_Analysis/HSeries.thy
src/HOL/Nonstandard_Analysis/HTranscendental.thy
src/HOL/Nonstandard_Analysis/HyperDef.thy
src/HOL/Nonstandard_Analysis/HyperNat.thy
src/HOL/Nonstandard_Analysis/Hypercomplex.thy
src/HOL/Nonstandard_Analysis/Hyperreal.thy
src/HOL/Nonstandard_Analysis/NSA.thy
src/HOL/Nonstandard_Analysis/NSCA.thy
src/HOL/Nonstandard_Analysis/NSComplex.thy
src/HOL/Nonstandard_Analysis/NatStar.thy
src/HOL/Nonstandard_Analysis/Star.thy
src/HOL/Nonstandard_Analysis/StarDef.thy
src/HOL/Nonstandard_Analysis/document/root.tex
src/HOL/Nonstandard_Analysis/transfer.ML
src/HOL/ROOT
--- a/NEWS	Mon Feb 29 22:32:04 2016 +0100
+++ b/NEWS	Mon Feb 29 22:34:36 2016 +0100
@@ -178,6 +178,8 @@
   dvd_Gcd, dvd_Gcd_nat, dvd_Gcd_int removed in favour of Gcd_greatest
 INCOMPATIBILITY.
 
+* Session HOL-NSA has been renamed to HOL-Nonstandard_Analysis.
+
 
 *** System ***
 
--- a/src/HOL/NSA/CLim.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,201 +0,0 @@
-(*  Title       : CLim.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2001 University of Edinburgh
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-*)
-
-section\<open>Limits, Continuity and Differentiation for Complex Functions\<close>
-
-theory CLim
-imports CStar
-begin
-
-(*not in simpset?*)
-declare hypreal_epsilon_not_zero [simp]
-
-(*??generalize*)
-lemma lemma_complex_mult_inverse_squared [simp]:
-     "x \<noteq> (0::complex) \<Longrightarrow> x * (inverse x)\<^sup>2 = inverse x"
-by (simp add: numeral_2_eq_2)
-
-text\<open>Changing the quantified variable. Install earlier?\<close>
-lemma all_shift: "(\<forall>x::'a::comm_ring_1. P x) = (\<forall>x. P (x-a))"
-apply auto 
-apply (drule_tac x="x+a" in spec) 
-apply (simp add: add.assoc) 
-done
-
-lemma complex_add_minus_iff [simp]: "(x + - a = (0::complex)) = (x=a)"
-by (simp add: diff_eq_eq)
-
-lemma complex_add_eq_0_iff [iff]: "(x+y = (0::complex)) = (y = -x)"
-apply auto
-apply (drule sym [THEN diff_eq_eq [THEN iffD2]], auto)
-done
-
-
-subsection\<open>Limit of Complex to Complex Function\<close>
-
-lemma NSLIM_Re: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L ==> (%x. Re(f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Re(L)"
-by (simp add: NSLIM_def starfunC_approx_Re_Im_iff 
-              hRe_hcomplex_of_complex)
-
-lemma NSLIM_Im: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L ==> (%x. Im(f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Im(L)"
-by (simp add: NSLIM_def starfunC_approx_Re_Im_iff 
-              hIm_hcomplex_of_complex)
-
-(** get this result easily now **)
-lemma LIM_Re:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "f \<midarrow>a\<rightarrow> L ==> (%x. Re(f x)) \<midarrow>a\<rightarrow> Re(L)"
-by (simp add: LIM_NSLIM_iff NSLIM_Re)
-
-lemma LIM_Im:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "f \<midarrow>a\<rightarrow> L ==> (%x. Im(f x)) \<midarrow>a\<rightarrow> Im(L)"
-by (simp add: LIM_NSLIM_iff NSLIM_Im)
-
-lemma LIM_cnj:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "f \<midarrow>a\<rightarrow> L ==> (%x. cnj (f x)) \<midarrow>a\<rightarrow> cnj L"
-by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
-
-lemma LIM_cnj_iff:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "((%x. cnj (f x)) \<midarrow>a\<rightarrow> cnj L) = (f \<midarrow>a\<rightarrow> L)"
-by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
-
-lemma starfun_norm: "( *f* (\<lambda>x. norm (f x))) = (\<lambda>x. hnorm (( *f* f) x))"
-by transfer (rule refl)
-
-lemma star_of_Re [simp]: "star_of (Re x) = hRe (star_of x)"
-by transfer (rule refl)
-
-lemma star_of_Im [simp]: "star_of (Im x) = hIm (star_of x)"
-by transfer (rule refl)
-
-text""
-(** another equivalence result **)
-lemma NSCLIM_NSCRLIM_iff:
-   "(f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L) = ((%y. cmod(f y - L)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0)"
-by (simp add: NSLIM_def starfun_norm
-    approx_approx_zero_iff [symmetric] approx_minus_iff [symmetric])
-
-(** much, much easier standard proof **)
-lemma CLIM_CRLIM_iff:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "(f \<midarrow>x\<rightarrow> L) = ((%y. cmod(f y - L)) \<midarrow>x\<rightarrow> 0)"
-by (simp add: LIM_eq)
-
-(* so this is nicer nonstandard proof *)
-lemma NSCLIM_NSCRLIM_iff2:
-     "(f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L) = ((%y. cmod(f y - L)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0)"
-by (simp add: LIM_NSLIM_iff [symmetric] CLIM_CRLIM_iff)
-
-lemma NSLIM_NSCRLIM_Re_Im_iff:
-     "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L) = ((%x. Re(f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Re(L) &
-                            (%x. Im(f x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S Im(L))"
-apply (auto intro: NSLIM_Re NSLIM_Im)
-apply (auto simp add: NSLIM_def starfun_Re starfun_Im)
-apply (auto dest!: spec)
-apply (simp add: hcomplex_approx_iff)
-done
-
-lemma LIM_CRLIM_Re_Im_iff:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "(f \<midarrow>a\<rightarrow> L) = ((%x. Re(f x)) \<midarrow>a\<rightarrow> Re(L) &
-                         (%x. Im(f x)) \<midarrow>a\<rightarrow> Im(L))"
-by (simp add: LIM_NSLIM_iff NSLIM_NSCRLIM_Re_Im_iff)
-
-
-subsection\<open>Continuity\<close>
-
-lemma NSLIM_isContc_iff:
-     "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S f a) = ((%h. f(a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S f a)"
-by (rule NSLIM_h_iff)
-
-subsection\<open>Functions from Complex to Reals\<close>
-
-lemma isNSContCR_cmod [simp]: "isNSCont cmod (a)"
-by (auto intro: approx_hnorm
-         simp add: starfunCR_cmod hcmod_hcomplex_of_complex [symmetric] 
-                    isNSCont_def)
-
-lemma isContCR_cmod [simp]: "isCont cmod (a)"
-by (simp add: isNSCont_isCont_iff [symmetric])
-
-lemma isCont_Re:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "isCont f a ==> isCont (%x. Re (f x)) a"
-by (simp add: isCont_def LIM_Re)
-
-lemma isCont_Im:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
-  shows "isCont f a ==> isCont (%x. Im (f x)) a"
-by (simp add: isCont_def LIM_Im)
-
-subsection\<open>Differentiation of Natural Number Powers\<close>
-
-lemma CDERIV_pow [simp]:
-     "DERIV (%x. x ^ n) x :> (complex_of_real (real n)) * (x ^ (n - Suc 0))"
-apply (induct n)
-apply (drule_tac [2] DERIV_ident [THEN DERIV_mult])
-apply (auto simp add: distrib_right of_nat_Suc)
-apply (case_tac "n")
-apply (auto simp add: ac_simps)
-done
-
-text\<open>Nonstandard version\<close>
-lemma NSCDERIV_pow: "NSDERIV (%x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - 1))"
-    by (metis CDERIV_pow NSDERIV_DERIV_iff One_nat_def)
-
-text\<open>Can't relax the premise @{term "x \<noteq> 0"}: it isn't continuous at zero\<close>
-lemma NSCDERIV_inverse:
-     "(x::complex) \<noteq> 0 ==> NSDERIV (%x. inverse(x)) x :> (- ((inverse x)\<^sup>2))"
-unfolding numeral_2_eq_2
-by (rule NSDERIV_inverse)
-
-lemma CDERIV_inverse:
-     "(x::complex) \<noteq> 0 ==> DERIV (%x. inverse(x)) x :> (- ((inverse x)\<^sup>2))"
-unfolding numeral_2_eq_2
-by (rule DERIV_inverse)
-
-
-subsection\<open>Derivative of Reciprocals (Function @{term inverse})\<close>
-
-lemma CDERIV_inverse_fun:
-     "[| DERIV f x :> d; f(x) \<noteq> (0::complex) |]
-      ==> DERIV (%x. inverse(f x)) x :> (- (d * inverse ((f x)\<^sup>2)))"
-unfolding numeral_2_eq_2
-by (rule DERIV_inverse_fun)
-
-lemma NSCDERIV_inverse_fun:
-     "[| NSDERIV f x :> d; f(x) \<noteq> (0::complex) |]
-      ==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse ((f x)\<^sup>2)))"
-unfolding numeral_2_eq_2
-by (rule NSDERIV_inverse_fun)
-
-
-subsection\<open>Derivative of Quotient\<close>
-
-lemma CDERIV_quotient:
-     "[| DERIV f x :> d; DERIV g x :> e; g(x) \<noteq> (0::complex) |]
-       ==> DERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / ((g x)\<^sup>2)"
-unfolding numeral_2_eq_2
-by (rule DERIV_quotient)
-
-lemma NSCDERIV_quotient:
-     "[| NSDERIV f x :> d; NSDERIV g x :> e; g(x) \<noteq> (0::complex) |]
-       ==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x) - (e*f(x))) / ((g x)\<^sup>2)"
-unfolding numeral_2_eq_2
-by (rule NSDERIV_quotient)
-
-
-subsection\<open>Caratheodory Formulation of Derivative at a Point: Standard Proof\<close>
-
-lemma CARAT_CDERIVD:
-     "(\<forall>z. f z - f x = g z * (z - x)) & isNSCont g x & g x = l
-      ==> NSDERIV f x :> l"
-by clarify (rule CARAT_DERIVD)
-
-end
--- a/src/HOL/NSA/CStar.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,59 +0,0 @@
-(*  Title       : CStar.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2001 University of Edinburgh
-*)
-
-section\<open>Star-transforms in NSA, Extending Sets of Complex Numbers
-      and Complex Functions\<close>
-
-theory CStar
-imports NSCA
-begin
-
-subsection\<open>Properties of the *-Transform Applied to Sets of Reals\<close>
-
-lemma STARC_hcomplex_of_complex_Int:
-     "*s* X Int SComplex = hcomplex_of_complex ` X"
-by (auto simp add: Standard_def)
-
-lemma lemma_not_hcomplexA:
-     "x \<notin> hcomplex_of_complex ` A ==> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
-by auto
-
-subsection\<open>Theorems about Nonstandard Extensions of Functions\<close>
-
-lemma starfunC_hcpow: "!!Z. ( *f* (%z. z ^ n)) Z = Z pow hypnat_of_nat n"
-by transfer (rule refl)
-
-lemma starfunCR_cmod: "*f* cmod = hcmod"
-by transfer (rule refl)
-
-subsection\<open>Internal Functions - Some Redundancy With *f* Now\<close>
-
-(** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
-(*
-lemma starfun_n_diff:
-   "( *fn* f) z - ( *fn* g) z = ( *fn* (%i x. f i x - g i x)) z"
-apply (cases z)
-apply (simp add: starfun_n star_n_diff)
-done
-*)
-(** composition: ( *fn) o ( *gn) = *(fn o gn) **)
-
-lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
-by transfer (rule refl)
-
-lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
-by transfer (rule refl)
-
-lemma starfunC_eq_Re_Im_iff:
-    "(( *f* f) x = z) = ((( *f* (%x. Re(f x))) x = hRe (z)) &
-                          (( *f* (%x. Im(f x))) x = hIm (z)))"
-by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
-
-lemma starfunC_approx_Re_Im_iff:
-    "(( *f* f) x \<approx> z) = ((( *f* (%x. Re(f x))) x \<approx> hRe (z)) &
-                            (( *f* (%x. Im(f x))) x \<approx> hIm (z)))"
-by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
-
-end
--- a/src/HOL/NSA/Examples/NSPrimes.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,282 +0,0 @@
-(*  Title       : NSPrimes.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2002 University of Edinburgh
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-*)
-
-section\<open>The Nonstandard Primes as an Extension of the Prime Numbers\<close>
-
-theory NSPrimes
-imports "~~/src/HOL/Number_Theory/UniqueFactorization" "../Hyperreal"
-begin
-
-text\<open>These can be used to derive an alternative proof of the infinitude of
-primes by considering a property of nonstandard sets.\<close>
-
-definition
-  starprime :: "hypnat set" where
-  [transfer_unfold]: "starprime = ( *s* {p. prime p})"
-
-definition
-  choicefun :: "'a set => 'a" where
-  "choicefun E = (@x. \<exists>X \<in> Pow(E) -{{}}. x : X)"
-
-primrec injf_max :: "nat => ('a::{order} set) => 'a"
-where
-  injf_max_zero: "injf_max 0 E = choicefun E"
-| injf_max_Suc:  "injf_max (Suc n) E = choicefun({e. e:E & injf_max n E < e})"
-
-
-lemma dvd_by_all2:
-  fixes M :: nat
-  shows "\<exists>N>0. \<forall>m. 0 < m \<and> m \<le> M \<longrightarrow> m dvd N"
-apply (induct M)
-apply auto
-apply (rule_tac x = "N * (Suc M) " in exI)
-apply auto
-apply (metis dvdI dvd_add_times_triv_left_iff dvd_add_triv_right_iff dvd_refl dvd_trans le_Suc_eq mult_Suc_right)
-done
-
-lemma dvd_by_all:
-  "\<forall>M::nat. \<exists>N>0. \<forall>m. 0 < m \<and> m \<le> M \<longrightarrow> m dvd N"
-  using dvd_by_all2 by blast
-
-lemma hypnat_of_nat_le_zero_iff [simp]: "(hypnat_of_nat n <= 0) = (n = 0)"
-by (transfer, simp)
-
-(* Goldblatt: Exercise 5.11(2) - p. 57 *)
-lemma hdvd_by_all: "\<forall>M. \<exists>N. 0 < N & (\<forall>m. 0 < m & (m::hypnat) <= M --> m dvd N)"
-by (transfer, rule dvd_by_all)
-
-lemmas hdvd_by_all2 = hdvd_by_all [THEN spec]
-
-(* Goldblatt: Exercise 5.11(2) - p. 57 *)
-lemma hypnat_dvd_all_hypnat_of_nat:
-     "\<exists>(N::hypnat). 0 < N & (\<forall>n \<in> -{0::nat}. hypnat_of_nat(n) dvd N)"
-apply (cut_tac hdvd_by_all)
-apply (drule_tac x = whn in spec, auto)
-apply (rule exI, auto)
-apply (drule_tac x = "hypnat_of_nat n" in spec)
-apply (auto simp add: linorder_not_less)
-done
-
-
-text\<open>The nonstandard extension of the set prime numbers consists of precisely
-those hypernaturals exceeding 1 that have no nontrivial factors\<close>
-
-(* Goldblatt: Exercise 5.11(3a) - p 57  *)
-lemma starprime:
-  "starprime = {p. 1 < p & (\<forall>m. m dvd p --> m = 1 | m = p)}"
-by (transfer, auto simp add: prime_def)
-
-(* Goldblatt Exercise 5.11(3b) - p 57  *)
-lemma hyperprime_factor_exists [rule_format]:
-  "!!n. 1 < n ==> (\<exists>k \<in> starprime. k dvd n)"
-by (transfer, simp add: prime_factor_nat)
-
-(* Goldblatt Exercise 3.10(1) - p. 29 *)
-lemma NatStar_hypnat_of_nat: "finite A ==> *s* A = hypnat_of_nat ` A"
-by (rule starset_finite)
-
-
-subsection\<open>Another characterization of infinite set of natural numbers\<close>
-
-lemma finite_nat_set_bounded: "finite N ==> \<exists>n. (\<forall>i \<in> N. i<(n::nat))"
-apply (erule_tac F = N in finite_induct, auto)
-apply (rule_tac x = "Suc n + x" in exI, auto)
-done
-
-lemma finite_nat_set_bounded_iff: "finite N = (\<exists>n. (\<forall>i \<in> N. i<(n::nat)))"
-by (blast intro: finite_nat_set_bounded bounded_nat_set_is_finite)
-
-lemma not_finite_nat_set_iff: "(~ finite N) = (\<forall>n. \<exists>i \<in> N. n <= (i::nat))"
-by (auto simp add: finite_nat_set_bounded_iff not_less)
-
-lemma bounded_nat_set_is_finite2: "(\<forall>i \<in> N. i<=(n::nat)) ==> finite N"
-apply (rule finite_subset)
- apply (rule_tac [2] finite_atMost, auto)
-done
-
-lemma finite_nat_set_bounded2: "finite N ==> \<exists>n. (\<forall>i \<in> N. i<=(n::nat))"
-apply (erule_tac F = N in finite_induct, auto)
-apply (rule_tac x = "n + x" in exI, auto)
-done
-
-lemma finite_nat_set_bounded_iff2: "finite N = (\<exists>n. (\<forall>i \<in> N. i<=(n::nat)))"
-by (blast intro: finite_nat_set_bounded2 bounded_nat_set_is_finite2)
-
-lemma not_finite_nat_set_iff2: "(~ finite N) = (\<forall>n. \<exists>i \<in> N. n < (i::nat))"
-by (auto simp add: finite_nat_set_bounded_iff2 not_le)
-
-
-subsection\<open>An injective function cannot define an embedded natural number\<close>
-
-lemma lemma_infinite_set_singleton: "\<forall>m n. m \<noteq> n --> f n \<noteq> f m
-      ==>  {n. f n = N} = {} |  (\<exists>m. {n. f n = N} = {m})"
-apply auto
-apply (drule_tac x = x in spec, auto)
-apply (subgoal_tac "\<forall>n. (f n = f x) = (x = n) ")
-apply auto
-done
-
-lemma inj_fun_not_hypnat_in_SHNat:
-  assumes inj_f: "inj (f::nat=>nat)"
-  shows "starfun f whn \<notin> Nats"
-proof
-  from inj_f have inj_f': "inj (starfun f)"
-    by (transfer inj_on_def Ball_def UNIV_def)
-  assume "starfun f whn \<in> Nats"
-  then obtain N where N: "starfun f whn = hypnat_of_nat N"
-    by (auto simp add: Nats_def)
-  hence "\<exists>n. starfun f n = hypnat_of_nat N" ..
-  hence "\<exists>n. f n = N" by transfer
-  then obtain n where n: "f n = N" ..
-  hence "starfun f (hypnat_of_nat n) = hypnat_of_nat N"
-    by transfer
-  with N have "starfun f whn = starfun f (hypnat_of_nat n)"
-    by simp
-  with inj_f' have "whn = hypnat_of_nat n"
-    by (rule injD)
-  thus "False"
-    by (simp add: whn_neq_hypnat_of_nat)
-qed
-
-lemma range_subset_mem_starsetNat:
-   "range f <= A ==> starfun f whn \<in> *s* A"
-apply (rule_tac x="whn" in spec)
-apply (transfer, auto)
-done
-
-(*--------------------------------------------------------------------------------*)
-(* Gleason Proposition 11-5.5. pg 149, pg 155 (ex. 3) and pg. 360                 *)
-(* Let E be a nonvoid ordered set with no maximal elements (note: effectively an  *)
-(* infinite set if we take E = N (Nats)). Then there exists an order-preserving   *)
-(* injection from N to E. Of course, (as some doofus will undoubtedly point out!  *)
-(* :-)) can use notion of least element in proof (i.e. no need for choice) if     *)
-(* dealing with nats as we have well-ordering property                            *)
-(*--------------------------------------------------------------------------------*)
-
-lemma lemmaPow3: "E \<noteq> {} ==> \<exists>x. \<exists>X \<in> (Pow E - {{}}). x: X"
-by auto
-
-lemma choicefun_mem_set [simp]: "E \<noteq> {} ==> choicefun E \<in> E"
-apply (unfold choicefun_def)
-apply (rule lemmaPow3 [THEN someI2_ex], auto)
-done
-
-lemma injf_max_mem_set: "[| E \<noteq>{}; \<forall>x. \<exists>y \<in> E. x < y |] ==> injf_max n E \<in> E"
-apply (induct_tac "n", force)
-apply (simp (no_asm) add: choicefun_def)
-apply (rule lemmaPow3 [THEN someI2_ex], auto)
-done
-
-lemma injf_max_order_preserving: "\<forall>x. \<exists>y \<in> E. x < y ==> injf_max n E < injf_max (Suc n) E"
-apply (simp (no_asm) add: choicefun_def)
-apply (rule lemmaPow3 [THEN someI2_ex], auto)
-done
-
-lemma injf_max_order_preserving2: "\<forall>x. \<exists>y \<in> E. x < y
-      ==> \<forall>n m. m < n --> injf_max m E < injf_max n E"
-apply (rule allI)
-apply (induct_tac "n", auto)
-apply (simp (no_asm) add: choicefun_def)
-apply (rule lemmaPow3 [THEN someI2_ex])
-apply (auto simp add: less_Suc_eq)
-apply (drule_tac x = m in spec)
-apply (drule subsetD, auto)
-apply (drule_tac x = "injf_max m E" in order_less_trans, auto)
-done
-
-lemma inj_injf_max: "\<forall>x. \<exists>y \<in> E. x < y ==> inj (%n. injf_max n E)"
-apply (rule inj_onI)
-apply (rule ccontr, auto)
-apply (drule injf_max_order_preserving2)
-apply (metis linorder_antisym_conv3 order_less_le)
-done
-
-lemma infinite_set_has_order_preserving_inj:
-     "[| (E::('a::{order} set)) \<noteq> {}; \<forall>x. \<exists>y \<in> E. x < y |]
-      ==> \<exists>f. range f <= E & inj (f::nat => 'a) & (\<forall>m. f m < f(Suc m))"
-apply (rule_tac x = "%n. injf_max n E" in exI, safe)
-apply (rule injf_max_mem_set)
-apply (rule_tac [3] inj_injf_max)
-apply (rule_tac [4] injf_max_order_preserving, auto)
-done
-
-text\<open>Only need the existence of an injective function from N to A for proof\<close>
-
-lemma hypnat_infinite_has_nonstandard:
-     "~ finite A ==> hypnat_of_nat ` A < ( *s* A)"
-apply auto
-apply (subgoal_tac "A \<noteq> {}")
-prefer 2 apply force
-apply (drule infinite_set_has_order_preserving_inj)
-apply (erule not_finite_nat_set_iff2 [THEN iffD1], auto)
-apply (drule inj_fun_not_hypnat_in_SHNat)
-apply (drule range_subset_mem_starsetNat)
-apply (auto simp add: SHNat_eq)
-done
-
-lemma starsetNat_eq_hypnat_of_nat_image_finite: "*s* A =  hypnat_of_nat ` A ==> finite A"
-by (metis hypnat_infinite_has_nonstandard less_irrefl)
-
-lemma finite_starsetNat_iff: "( *s* A = hypnat_of_nat ` A) = (finite A)"
-by (blast intro!: starsetNat_eq_hypnat_of_nat_image_finite NatStar_hypnat_of_nat)
-
-lemma hypnat_infinite_has_nonstandard_iff: "(~ finite A) = (hypnat_of_nat ` A < *s* A)"
-apply (rule iffI)
-apply (blast intro!: hypnat_infinite_has_nonstandard)
-apply (auto simp add: finite_starsetNat_iff [symmetric])
-done
-
-subsection\<open>Existence of Infinitely Many Primes: a Nonstandard Proof\<close>
-
-lemma lemma_not_dvd_hypnat_one [simp]: "~ (\<forall>n \<in> - {0}. hypnat_of_nat n dvd 1)"
-apply auto
-apply (rule_tac x = 2 in bexI)
-apply (transfer, auto)
-done
-
-lemma lemma_not_dvd_hypnat_one2 [simp]: "\<exists>n \<in> - {0}. ~ hypnat_of_nat n dvd 1"
-apply (cut_tac lemma_not_dvd_hypnat_one)
-apply (auto simp del: lemma_not_dvd_hypnat_one)
-done
-
-lemma hypnat_add_one_gt_one:
-    "!!N. 0 < N ==> 1 < (N::hypnat) + 1"
-by (transfer, simp)
-
-lemma hypnat_of_nat_zero_not_prime [simp]: "hypnat_of_nat 0 \<notin> starprime"
-by (transfer, simp)
-
-lemma hypnat_zero_not_prime [simp]:
-   "0 \<notin> starprime"
-by (cut_tac hypnat_of_nat_zero_not_prime, simp)
-
-lemma hypnat_of_nat_one_not_prime [simp]: "hypnat_of_nat 1 \<notin> starprime"
-by (transfer, simp)
-
-lemma hypnat_one_not_prime [simp]: "1 \<notin> starprime"
-by (cut_tac hypnat_of_nat_one_not_prime, simp)
-
-lemma hdvd_diff: "!!k m n :: hypnat. [| k dvd m; k dvd n |] ==> k dvd (m - n)"
-by (transfer, rule dvd_diff_nat)
-
-lemma hdvd_one_eq_one:
-  "\<And>x::hypnat. is_unit x \<Longrightarrow> x = 1"
-  by transfer simp
-
-text\<open>Already proved as \<open>primes_infinite\<close>, but now using non-standard naturals.\<close>
-theorem not_finite_prime: "~ finite {p::nat. prime p}"
-apply (rule hypnat_infinite_has_nonstandard_iff [THEN iffD2])
-using hypnat_dvd_all_hypnat_of_nat
-apply clarify
-apply (drule hypnat_add_one_gt_one)
-apply (drule hyperprime_factor_exists)
-apply clarify
-apply (subgoal_tac "k \<notin> hypnat_of_nat ` {p. prime p}")
-apply (force simp add: starprime_def)
-apply (metis Compl_iff add.commute dvd_add_left_iff empty_iff hdvd_one_eq_one hypnat_one_not_prime imageE insert_iff mem_Collect_eq zero_not_prime_nat)
-done
-
-end
--- a/src/HOL/NSA/Free_Ultrafilter.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,200 +0,0 @@
-(*  Title:      HOL/NSA/Free_Ultrafilter.thy
-    Author:     Jacques D. Fleuriot, University of Cambridge
-    Author:     Lawrence C Paulson
-    Author:     Brian Huffman
-*) 
-
-section \<open>Filters and Ultrafilters\<close>
-
-theory Free_Ultrafilter
-imports "~~/src/HOL/Library/Infinite_Set"
-begin
-
-subsection \<open>Definitions and basic properties\<close>
-
-subsubsection \<open>Ultrafilters\<close>
-
-locale ultrafilter =
-  fixes F :: "'a filter"
-  assumes proper: "F \<noteq> bot"
-  assumes ultra: "eventually P F \<or> eventually (\<lambda>x. \<not> P x) F"
-begin
-
-lemma eventually_imp_frequently: "frequently P F \<Longrightarrow> eventually P F"
-  using ultra[of P] by (simp add: frequently_def)
-
-lemma frequently_eq_eventually: "frequently P F = eventually P F"
-  using eventually_imp_frequently eventually_frequently[OF proper] ..
-
-lemma eventually_disj_iff: "eventually (\<lambda>x. P x \<or> Q x) F \<longleftrightarrow> eventually P F \<or> eventually Q F"
-  unfolding frequently_eq_eventually[symmetric] frequently_disj_iff ..
-
-lemma eventually_all_iff: "eventually (\<lambda>x. \<forall>y. P x y) F = (\<forall>Y. eventually (\<lambda>x. P x (Y x)) F)"
-  using frequently_all[of P F] by (simp add: frequently_eq_eventually)
-
-lemma eventually_imp_iff: "eventually (\<lambda>x. P x \<longrightarrow> Q x) F \<longleftrightarrow> (eventually P F \<longrightarrow> eventually Q F)"
-  using frequently_imp_iff[of P Q F] by (simp add: frequently_eq_eventually)
-
-lemma eventually_iff_iff: "eventually (\<lambda>x. P x \<longleftrightarrow> Q x) F \<longleftrightarrow> (eventually P F \<longleftrightarrow> eventually Q F)"
-  unfolding iff_conv_conj_imp eventually_conj_iff eventually_imp_iff by simp
-
-lemma eventually_not_iff: "eventually (\<lambda>x. \<not> P x) F \<longleftrightarrow> \<not> eventually P F"
-  unfolding not_eventually frequently_eq_eventually ..
-
-end
-
-subsection \<open>Maximal filter = Ultrafilter\<close>
-
-text \<open>
-   A filter F is an ultrafilter iff it is a maximal filter,
-   i.e. whenever G is a filter and @{term "F \<subseteq> G"} then @{term "F = G"}
-\<close>
-text \<open>
-  Lemmas that shows existence of an extension to what was assumed to
-  be a maximal filter. Will be used to derive contradiction in proof of
-  property of ultrafilter.
-\<close>
-
-lemma extend_filter:
-  "frequently P F \<Longrightarrow> inf F (principal {x. P x}) \<noteq> bot"
-  unfolding trivial_limit_def eventually_inf_principal by (simp add: not_eventually)
-
-lemma max_filter_ultrafilter:
-  assumes proper: "F \<noteq> bot"
-  assumes max: "\<And>G. G \<noteq> bot \<Longrightarrow> G \<le> F \<Longrightarrow> F = G"
-  shows "ultrafilter F"
-proof
-  fix P show "eventually P F \<or> (\<forall>\<^sub>Fx in F. \<not> P x)"
-  proof (rule disjCI)
-    assume "\<not> (\<forall>\<^sub>Fx in F. \<not> P x)"
-    then have "inf F (principal {x. P x}) \<noteq> bot"
-      by (simp add: not_eventually extend_filter)
-    then have F: "F = inf F (principal {x. P x})"
-      by (rule max) simp
-    show "eventually P F"
-      by (subst F) (simp add: eventually_inf_principal)
-  qed
-qed fact
-
-lemma le_filter_frequently: "F \<le> G \<longleftrightarrow> (\<forall>P. frequently P F \<longrightarrow> frequently P G)"
-  unfolding frequently_def le_filter_def
-  apply auto
-  apply (erule_tac x="\<lambda>x. \<not> P x" in allE)
-  apply auto
-  done
-
-lemma (in ultrafilter) max_filter:
-  assumes G: "G \<noteq> bot" and sub: "G \<le> F" shows "F = G"
-proof (rule antisym)
-  show "F \<le> G"
-    using sub
-    by (auto simp: le_filter_frequently[of F] frequently_eq_eventually le_filter_def[of G]
-             intro!: eventually_frequently G proper)
-qed fact
-
-subsection \<open>Ultrafilter Theorem\<close>
-
-text "A local context makes proof of ultrafilter Theorem more modular"
-
-lemma ex_max_ultrafilter:
-  fixes F :: "'a filter"
-  assumes F: "F \<noteq> bot"
-  shows "\<exists>U\<le>F. ultrafilter U"
-proof -
-  let ?X = "{G. G \<noteq> bot \<and> G \<le> F}"
-  let ?R = "{(b, a). a \<noteq> bot \<and> a \<le> b \<and> b \<le> F}"
-
-  have bot_notin_R: "\<And>c. c \<in> Chains ?R \<Longrightarrow> bot \<notin> c"
-    by (auto simp: Chains_def)
-
-  have [simp]: "Field ?R = ?X"
-    by (auto simp: Field_def bot_unique)
-
-  have "\<exists>m\<in>Field ?R. \<forall>a\<in>Field ?R. (m, a) \<in> ?R \<longrightarrow> a = m"
-  proof (rule Zorns_po_lemma)
-    show "Partial_order ?R"
-      unfolding partial_order_on_def preorder_on_def
-      by (auto simp: antisym_def refl_on_def trans_def Field_def bot_unique)
-    show "\<forall>C\<in>Chains ?R. \<exists>u\<in>Field ?R. \<forall>a\<in>C. (a, u) \<in> ?R"
-    proof (safe intro!: bexI del: notI)
-      fix c x assume c: "c \<in> Chains ?R"
-
-      { assume "c \<noteq> {}"
-        with c have "Inf c = bot \<longleftrightarrow> (\<exists>x\<in>c. x = bot)"
-          unfolding trivial_limit_def by (intro eventually_Inf_base) (auto simp: Chains_def)
-        with c have 1: "Inf c \<noteq> bot"
-          by (simp add: bot_notin_R)
-        from \<open>c \<noteq> {}\<close> obtain x where "x \<in> c" by auto
-        with c have 2: "Inf c \<le> F"
-          by (auto intro!: Inf_lower2[of x] simp: Chains_def)
-        note 1 2 }
-      note Inf_c = this
-      then have [simp]: "inf F (Inf c) = (if c = {} then F else Inf c)"
-        using c by (auto simp add: inf_absorb2)
-
-      show "inf F (Inf c) \<noteq> bot"
-        using c by (simp add: F Inf_c)
-
-      show "inf F (Inf c) \<in> Field ?R"
-        using c by (simp add: Chains_def Inf_c F)
-
-      assume x: "x \<in> c"
-      with c show "inf F (Inf c) \<le> x" "x \<le> F"
-        by (auto intro: Inf_lower simp: Chains_def)
-    qed
-  qed
-  then guess U ..
-  then show ?thesis
-    by (intro exI[of _ U] conjI max_filter_ultrafilter) auto
-qed
-
-subsubsection \<open>Free Ultrafilters\<close>
-
-text \<open>There exists a free ultrafilter on any infinite set\<close>
-
-locale freeultrafilter = ultrafilter +
-  assumes infinite: "eventually P F \<Longrightarrow> infinite {x. P x}"
-begin
-
-lemma finite: "finite {x. P x} \<Longrightarrow> \<not> eventually P F"
-  by (erule contrapos_pn, erule infinite)
-
-lemma finite': "finite {x. \<not> P x} \<Longrightarrow> eventually P F"
-  by (drule finite) (simp add: not_eventually frequently_eq_eventually)
-
-lemma le_cofinite: "F \<le> cofinite"
-  by (intro filter_leI)
-     (auto simp add: eventually_cofinite not_eventually frequently_eq_eventually dest!: finite)
-
-lemma singleton: "\<not> eventually (\<lambda>x. x = a) F"
-by (rule finite, simp)
-
-lemma singleton': "\<not> eventually (op = a) F"
-by (rule finite, simp)
-
-lemma ultrafilter: "ultrafilter F" ..
-
-end
-
-lemma freeultrafilter_Ex:
-  assumes [simp]: "infinite (UNIV :: 'a set)"
-  shows "\<exists>U::'a filter. freeultrafilter U"
-proof -
-  from ex_max_ultrafilter[of "cofinite :: 'a filter"]
-  obtain U :: "'a filter" where "U \<le> cofinite" "ultrafilter U"
-    by auto
-  interpret ultrafilter U by fact
-  have "freeultrafilter U"
-  proof
-    fix P assume "eventually P U"
-    with proper have "frequently P U"
-      by (rule eventually_frequently)
-    then have "frequently P cofinite"
-      using \<open>U \<le> cofinite\<close> by (simp add: le_filter_frequently)
-    then show "infinite {x. P x}"
-      by (simp add: frequently_cofinite)
-  qed
-  then show ?thesis ..
-qed
-
-end
--- a/src/HOL/NSA/HDeriv.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,475 +0,0 @@
-(*  Title       : Deriv.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-*)
-
-section\<open>Differentiation (Nonstandard)\<close>
-
-theory HDeriv
-imports HLim
-begin
-
-text\<open>Nonstandard Definitions\<close>
-
-definition
-  nsderiv :: "['a::real_normed_field \<Rightarrow> 'a, 'a, 'a] \<Rightarrow> bool"
-          ("(NSDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60) where
-  "NSDERIV f x :> D = (\<forall>h \<in> Infinitesimal - {0}.
-      (( *f* f)(star_of x + h)
-       - star_of (f x))/h \<approx> star_of D)"
-
-definition
-  NSdifferentiable :: "['a::real_normed_field \<Rightarrow> 'a, 'a] \<Rightarrow> bool"
-    (infixl "NSdifferentiable" 60) where
-  "f NSdifferentiable x = (\<exists>D. NSDERIV f x :> D)"
-
-definition
-  increment :: "[real=>real,real,hypreal] => hypreal" where
-  "increment f x h = (@inc. f NSdifferentiable x &
-           inc = ( *f* f)(hypreal_of_real x + h) - hypreal_of_real (f x))"
-
-
-subsection \<open>Derivatives\<close>
-
-lemma DERIV_NS_iff:
-      "(DERIV f x :> D) = ((%h. (f(x + h) - f(x))/h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S D)"
-by (simp add: DERIV_def LIM_NSLIM_iff)
-
-lemma NS_DERIV_D: "DERIV f x :> D ==> (%h. (f(x + h) - f(x))/h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S D"
-by (simp add: DERIV_def LIM_NSLIM_iff)
-
-lemma hnorm_of_hypreal:
-  "\<And>r. hnorm (( *f* of_real) r::'a::real_normed_div_algebra star) = \<bar>r\<bar>"
-by transfer (rule norm_of_real)
-
-lemma Infinitesimal_of_hypreal:
-  "x \<in> Infinitesimal \<Longrightarrow>
-   (( *f* of_real) x::'a::real_normed_div_algebra star) \<in> Infinitesimal"
-apply (rule InfinitesimalI2)
-apply (drule (1) InfinitesimalD2)
-apply (simp add: hnorm_of_hypreal)
-done
-
-lemma of_hypreal_eq_0_iff:
-  "\<And>x. (( *f* of_real) x = (0::'a::real_algebra_1 star)) = (x = 0)"
-by transfer (rule of_real_eq_0_iff)
-
-lemma NSDeriv_unique:
-     "[| NSDERIV f x :> D; NSDERIV f x :> E |] ==> D = E"
-apply (subgoal_tac "( *f* of_real) \<epsilon> \<in> Infinitesimal - {0::'a star}")
-apply (simp only: nsderiv_def)
-apply (drule (1) bspec)+
-apply (drule (1) approx_trans3)
-apply simp
-apply (simp add: Infinitesimal_of_hypreal Infinitesimal_epsilon)
-apply (simp add: of_hypreal_eq_0_iff hypreal_epsilon_not_zero)
-done
-
-text \<open>First NSDERIV in terms of NSLIM\<close>
-
-text\<open>first equivalence\<close>
-lemma NSDERIV_NSLIM_iff:
-      "(NSDERIV f x :> D) = ((%h. (f(x + h) - f(x))/h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S D)"
-apply (simp add: nsderiv_def NSLIM_def, auto)
-apply (drule_tac x = xa in bspec)
-apply (rule_tac [3] ccontr)
-apply (drule_tac [3] x = h in spec)
-apply (auto simp add: mem_infmal_iff starfun_lambda_cancel)
-done
-
-text\<open>second equivalence\<close>
-lemma NSDERIV_NSLIM_iff2:
-     "(NSDERIV f x :> D) = ((%z. (f(z) - f(x)) / (z-x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S D)"
-  by (simp add: NSDERIV_NSLIM_iff DERIV_LIM_iff LIM_NSLIM_iff [symmetric])
-
-(* while we're at it! *)
-
-lemma NSDERIV_iff2:
-     "(NSDERIV f x :> D) =
-      (\<forall>w.
-        w \<noteq> star_of x & w \<approx> star_of x -->
-        ( *f* (%z. (f z - f x) / (z-x))) w \<approx> star_of D)"
-by (simp add: NSDERIV_NSLIM_iff2 NSLIM_def)
-
-(*FIXME DELETE*)
-lemma hypreal_not_eq_minus_iff:
-  "(x \<noteq> a) = (x - a \<noteq> (0::'a::ab_group_add))"
-by auto
-
-lemma NSDERIVD5:
-  "(NSDERIV f x :> D) ==>
-   (\<forall>u. u \<approx> hypreal_of_real x -->
-     ( *f* (%z. f z - f x)) u \<approx> hypreal_of_real D * (u - hypreal_of_real x))"
-apply (auto simp add: NSDERIV_iff2)
-apply (case_tac "u = hypreal_of_real x", auto)
-apply (drule_tac x = u in spec, auto)
-apply (drule_tac c = "u - hypreal_of_real x" and b = "hypreal_of_real D" in approx_mult1)
-apply (drule_tac [!] hypreal_not_eq_minus_iff [THEN iffD1])
-apply (subgoal_tac [2] "( *f* (%z. z-x)) u \<noteq> (0::hypreal) ")
-apply (auto simp add:
-         approx_minus_iff [THEN iffD1, THEN mem_infmal_iff [THEN iffD2]]
-         Infinitesimal_subset_HFinite [THEN subsetD])
-done
-
-lemma NSDERIVD4:
-     "(NSDERIV f x :> D) ==>
-      (\<forall>h \<in> Infinitesimal.
-               (( *f* f)(hypreal_of_real x + h) -
-                 hypreal_of_real (f x))\<approx> (hypreal_of_real D) * h)"
-apply (auto simp add: nsderiv_def)
-apply (case_tac "h = (0::hypreal) ")
-apply auto
-apply (drule_tac x = h in bspec)
-apply (drule_tac [2] c = h in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD])
-done
-
-lemma NSDERIVD3:
-     "(NSDERIV f x :> D) ==>
-      (\<forall>h \<in> Infinitesimal - {0}.
-               (( *f* f)(hypreal_of_real x + h) -
-                 hypreal_of_real (f x))\<approx> (hypreal_of_real D) * h)"
-apply (auto simp add: nsderiv_def)
-apply (rule ccontr, drule_tac x = h in bspec)
-apply (drule_tac [2] c = h in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] simp add: mult.assoc)
-done
-
-text\<open>Differentiability implies continuity
-         nice and simple "algebraic" proof\<close>
-lemma NSDERIV_isNSCont: "NSDERIV f x :> D ==> isNSCont f x"
-apply (auto simp add: nsderiv_def isNSCont_NSLIM_iff NSLIM_def)
-apply (drule approx_minus_iff [THEN iffD1])
-apply (drule hypreal_not_eq_minus_iff [THEN iffD1])
-apply (drule_tac x = "xa - star_of x" in bspec)
- prefer 2 apply (simp add: add.assoc [symmetric])
-apply (auto simp add: mem_infmal_iff [symmetric] add.commute)
-apply (drule_tac c = "xa - star_of x" in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-            simp add: mult.assoc nonzero_mult_divide_cancel_right)
-apply (drule_tac x3=D in
-           HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult,
-             THEN mem_infmal_iff [THEN iffD1]])
-apply (auto simp add: mult.commute
-            intro: approx_trans approx_minus_iff [THEN iffD2])
-done
-
-text\<open>Differentiation rules for combinations of functions
-      follow from clear, straightforard, algebraic
-      manipulations\<close>
-text\<open>Constant function\<close>
-
-(* use simple constant nslimit theorem *)
-lemma NSDERIV_const [simp]: "(NSDERIV (%x. k) x :> 0)"
-by (simp add: NSDERIV_NSLIM_iff)
-
-text\<open>Sum of functions- proved easily\<close>
-
-lemma NSDERIV_add: "[| NSDERIV f x :> Da;  NSDERIV g x :> Db |]
-      ==> NSDERIV (%x. f x + g x) x :> Da + Db"
-apply (auto simp add: NSDERIV_NSLIM_iff NSLIM_def)
-apply (auto simp add: add_divide_distrib diff_divide_distrib dest!: spec)
-apply (drule_tac b = "star_of Da" and d = "star_of Db" in approx_add)
-apply (auto simp add: ac_simps algebra_simps)
-done
-
-text\<open>Product of functions - Proof is trivial but tedious
-  and long due to rearrangement of terms\<close>
-
-lemma lemma_nsderiv1:
-  fixes a b c d :: "'a::comm_ring star"
-  shows "(a*b) - (c*d) = (b*(a - c)) + (c*(b - d))"
-by (simp add: right_diff_distrib ac_simps)
-
-lemma lemma_nsderiv2:
-  fixes x y z :: "'a::real_normed_field star"
-  shows "[| (x - y) / z = star_of D + yb; z \<noteq> 0;
-         z \<in> Infinitesimal; yb \<in> Infinitesimal |]
-      ==> x - y \<approx> 0"
-apply (simp add: nonzero_divide_eq_eq)
-apply (auto intro!: Infinitesimal_HFinite_mult2 HFinite_add
-            simp add: mult.assoc mem_infmal_iff [symmetric])
-apply (erule Infinitesimal_subset_HFinite [THEN subsetD])
-done
-
-lemma NSDERIV_mult: "[| NSDERIV f x :> Da; NSDERIV g x :> Db |]
-      ==> NSDERIV (%x. f x * g x) x :> (Da * g(x)) + (Db * f(x))"
-apply (auto simp add: NSDERIV_NSLIM_iff NSLIM_def)
-apply (auto dest!: spec
-      simp add: starfun_lambda_cancel lemma_nsderiv1)
-apply (simp (no_asm) add: add_divide_distrib diff_divide_distrib)
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2])+
-apply (auto simp add: times_divide_eq_right [symmetric]
-            simp del: times_divide_eq_right times_divide_eq_left)
-apply (drule_tac D = Db in lemma_nsderiv2, assumption+)
-apply (drule_tac
-     approx_minus_iff [THEN iffD2, THEN bex_Infinitesimal_iff2 [THEN iffD2]])
-apply (auto intro!: approx_add_mono1
-            simp add: distrib_right distrib_left mult.commute add.assoc)
-apply (rule_tac b1 = "star_of Db * star_of (f x)"
-         in add.commute [THEN subst])
-apply (auto intro!: Infinitesimal_add_approx_self2 [THEN approx_sym]
-                    Infinitesimal_add Infinitesimal_mult
-                    Infinitesimal_star_of_mult
-                    Infinitesimal_star_of_mult2
-          simp add: add.assoc [symmetric])
-done
-
-text\<open>Multiplying by a constant\<close>
-lemma NSDERIV_cmult: "NSDERIV f x :> D
-      ==> NSDERIV (%x. c * f x) x :> c*D"
-apply (simp only: times_divide_eq_right [symmetric] NSDERIV_NSLIM_iff
-                  minus_mult_right right_diff_distrib [symmetric])
-apply (erule NSLIM_const [THEN NSLIM_mult])
-done
-
-text\<open>Negation of function\<close>
-lemma NSDERIV_minus: "NSDERIV f x :> D ==> NSDERIV (%x. -(f x)) x :> -D"
-proof (simp add: NSDERIV_NSLIM_iff)
-  assume "(\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S D"
-  hence deriv: "(\<lambda>h. - ((f(x+h) - f x) / h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S - D"
-    by (rule NSLIM_minus)
-  have "\<forall>h. - ((f (x + h) - f x) / h) = (- f (x + h) + f x) / h"
-    by (simp add: minus_divide_left)
-  with deriv
-  have "(\<lambda>h. (- f (x + h) + f x) / h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S - D" by simp
-  then show "(\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S D \<Longrightarrow>
-    (\<lambda>h. (f x - f (x + h)) / h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S - D" by simp
-qed
-
-text\<open>Subtraction\<close>
-lemma NSDERIV_add_minus: "[| NSDERIV f x :> Da; NSDERIV g x :> Db |] ==> NSDERIV (%x. f x + -g x) x :> Da + -Db"
-by (blast dest: NSDERIV_add NSDERIV_minus)
-
-lemma NSDERIV_diff:
-  "NSDERIV f x :> Da \<Longrightarrow> NSDERIV g x :> Db \<Longrightarrow> NSDERIV (\<lambda>x. f x - g x) x :> Da-Db"
-  using NSDERIV_add_minus [of f x Da g Db] by simp
-
-text\<open>Similarly to the above, the chain rule admits an entirely
-   straightforward derivation. Compare this with Harrison's
-   HOL proof of the chain rule, which proved to be trickier and
-   required an alternative characterisation of differentiability-
-   the so-called Carathedory derivative. Our main problem is
-   manipulation of terms.\<close>
-
-(* lemmas *)
-
-lemma NSDERIV_zero:
-      "[| NSDERIV g x :> D;
-               ( *f* g) (star_of x + xa) = star_of (g x);
-               xa \<in> Infinitesimal;
-               xa \<noteq> 0
-            |] ==> D = 0"
-apply (simp add: nsderiv_def)
-apply (drule bspec, auto)
-done
-
-(* can be proved differently using NSLIM_isCont_iff *)
-lemma NSDERIV_approx:
-     "[| NSDERIV f x :> D;  h \<in> Infinitesimal;  h \<noteq> 0 |]
-      ==> ( *f* f) (star_of x + h) - star_of (f x) \<approx> 0"
-apply (simp add: nsderiv_def)
-apply (simp add: mem_infmal_iff [symmetric])
-apply (rule Infinitesimal_ratio)
-apply (rule_tac [3] approx_star_of_HFinite, auto)
-done
-
-(*---------------------------------------------------------------
-   from one version of differentiability
-
-                f(x) - f(a)
-              --------------- \<approx> Db
-                  x - a
- ---------------------------------------------------------------*)
-
-lemma NSDERIVD1: "[| NSDERIV f (g x) :> Da;
-         ( *f* g) (star_of(x) + xa) \<noteq> star_of (g x);
-         ( *f* g) (star_of(x) + xa) \<approx> star_of (g x)
-      |] ==> (( *f* f) (( *f* g) (star_of(x) + xa))
-                   - star_of (f (g x)))
-              / (( *f* g) (star_of(x) + xa) - star_of (g x))
-             \<approx> star_of(Da)"
-by (auto simp add: NSDERIV_NSLIM_iff2 NSLIM_def)
-
-(*--------------------------------------------------------------
-   from other version of differentiability
-
-                f(x + h) - f(x)
-               ----------------- \<approx> Db
-                       h
- --------------------------------------------------------------*)
-
-lemma NSDERIVD2: "[| NSDERIV g x :> Db; xa \<in> Infinitesimal; xa \<noteq> 0 |]
-      ==> (( *f* g) (star_of(x) + xa) - star_of(g x)) / xa
-          \<approx> star_of(Db)"
-by (auto simp add: NSDERIV_NSLIM_iff NSLIM_def mem_infmal_iff starfun_lambda_cancel)
-
-lemma lemma_chain: "(z::'a::real_normed_field star) \<noteq> 0 ==> x*y = (x*inverse(z))*(z*y)"
-proof -
-  assume z: "z \<noteq> 0"
-  have "x * y = x * (inverse z * z) * y" by (simp add: z)
-  thus ?thesis by (simp add: mult.assoc)
-qed
-
-text\<open>This proof uses both definitions of differentiability.\<close>
-lemma NSDERIV_chain: "[| NSDERIV f (g x) :> Da; NSDERIV g x :> Db |]
-      ==> NSDERIV (f o g) x :> Da * Db"
-apply (simp (no_asm_simp) add: NSDERIV_NSLIM_iff NSLIM_def
-                mem_infmal_iff [symmetric])
-apply clarify
-apply (frule_tac f = g in NSDERIV_approx)
-apply (auto simp add: starfun_lambda_cancel2 starfun_o [symmetric])
-apply (case_tac "( *f* g) (star_of (x) + xa) = star_of (g x) ")
-apply (drule_tac g = g in NSDERIV_zero)
-apply (auto simp add: divide_inverse)
-apply (rule_tac z1 = "( *f* g) (star_of (x) + xa) - star_of (g x) " and y1 = "inverse xa" in lemma_chain [THEN ssubst])
-apply (erule hypreal_not_eq_minus_iff [THEN iffD1])
-apply (rule approx_mult_star_of)
-apply (simp_all add: divide_inverse [symmetric])
-apply (blast intro: NSDERIVD1 approx_minus_iff [THEN iffD2])
-apply (blast intro: NSDERIVD2)
-done
-
-text\<open>Differentiation of natural number powers\<close>
-lemma NSDERIV_Id [simp]: "NSDERIV (%x. x) x :> 1"
-by (simp add: NSDERIV_NSLIM_iff NSLIM_def del: divide_self_if)
-
-lemma NSDERIV_cmult_Id [simp]: "NSDERIV (op * c) x :> c"
-by (cut_tac c = c and x = x in NSDERIV_Id [THEN NSDERIV_cmult], simp)
-
-lemma NSDERIV_inverse:
-  fixes x :: "'a::real_normed_field"
-  assumes "x \<noteq> 0" \<comment> \<open>can't get rid of @{term "x \<noteq> 0"} because it isn't continuous at zero\<close>
-  shows "NSDERIV (\<lambda>x. inverse x) x :> - (inverse x ^ Suc (Suc 0))"
-proof -
-  { fix h :: "'a star"
-    assume h_Inf: "h \<in> Infinitesimal"
-    from this assms have not_0: "star_of x + h \<noteq> 0" by (rule Infinitesimal_add_not_zero)
-    assume "h \<noteq> 0"
-    from h_Inf have "h * star_of x \<in> Infinitesimal" by (rule Infinitesimal_HFinite_mult) simp
-    with assms have "inverse (- (h * star_of x) + - (star_of x * star_of x)) \<approx>
-      inverse (- (star_of x * star_of x))"
-      apply - apply (rule inverse_add_Infinitesimal_approx2)
-      apply (auto
-        dest!: hypreal_of_real_HFinite_diff_Infinitesimal
-        simp add: inverse_minus_eq [symmetric] HFinite_minus_iff)
-      done
-    moreover from not_0 \<open>h \<noteq> 0\<close> assms
-      have "inverse (- (h * star_of x) + - (star_of x * star_of x)) =
-        (inverse (star_of x + h) - inverse (star_of x)) / h"
-      apply (simp add: division_ring_inverse_diff nonzero_inverse_mult_distrib [symmetric]
-        nonzero_inverse_minus_eq [symmetric] ac_simps ring_distribs)
-      apply (subst nonzero_inverse_minus_eq [symmetric])
-      using distrib_right [symmetric, of h "star_of x" "star_of x"] apply simp
-      apply (simp add: field_simps)
-      done
-    ultimately have "(inverse (star_of x + h) - inverse (star_of x)) / h \<approx>
-      - (inverse (star_of x) * inverse (star_of x))"
-      using assms by simp 
-  } then show ?thesis by (simp add: nsderiv_def)
-qed
-
-subsubsection \<open>Equivalence of NS and Standard definitions\<close>
-
-lemma divideR_eq_divide: "x /\<^sub>R y = x / y"
-by (simp add: divide_inverse mult.commute)
-
-text\<open>Now equivalence between NSDERIV and DERIV\<close>
-lemma NSDERIV_DERIV_iff: "(NSDERIV f x :> D) = (DERIV f x :> D)"
-by (simp add: DERIV_def NSDERIV_NSLIM_iff LIM_NSLIM_iff)
-
-(* NS version *)
-lemma NSDERIV_pow: "NSDERIV (%x. x ^ n) x :> real n * (x ^ (n - Suc 0))"
-by (simp add: NSDERIV_DERIV_iff DERIV_pow)
-
-text\<open>Derivative of inverse\<close>
-
-lemma NSDERIV_inverse_fun:
-  fixes x :: "'a::{real_normed_field}"
-  shows "[| NSDERIV f x :> d; f(x) \<noteq> 0 |]
-      ==> NSDERIV (%x. inverse(f x)) x :> (- (d * inverse(f(x) ^ Suc (Suc 0))))"
-by (simp add: NSDERIV_DERIV_iff DERIV_inverse_fun del: power_Suc)
-
-text\<open>Derivative of quotient\<close>
-
-lemma NSDERIV_quotient:
-  fixes x :: "'a::{real_normed_field}"
-  shows "[| NSDERIV f x :> d; NSDERIV g x :> e; g(x) \<noteq> 0 |]
-       ==> NSDERIV (%y. f(y) / (g y)) x :> (d*g(x)
-                            - (e*f(x))) / (g(x) ^ Suc (Suc 0))"
-by (simp add: NSDERIV_DERIV_iff DERIV_quotient del: power_Suc)
-
-lemma CARAT_NSDERIV: "NSDERIV f x :> l ==>
-      \<exists>g. (\<forall>z. f z - f x = g z * (z-x)) & isNSCont g x & g x = l"
-by (auto simp add: NSDERIV_DERIV_iff isNSCont_isCont_iff CARAT_DERIV
-                   mult.commute)
-
-lemma hypreal_eq_minus_iff3: "(x = y + z) = (x + -z = (y::hypreal))"
-by auto
-
-lemma CARAT_DERIVD:
-  assumes all: "\<forall>z. f z - f x = g z * (z-x)"
-      and nsc: "isNSCont g x"
-  shows "NSDERIV f x :> g x"
-proof -
-  from nsc
-  have "\<forall>w. w \<noteq> star_of x \<and> w \<approx> star_of x \<longrightarrow>
-         ( *f* g) w * (w - star_of x) / (w - star_of x) \<approx>
-         star_of (g x)"
-    by (simp add: isNSCont_def nonzero_mult_divide_cancel_right)
-  thus ?thesis using all
-    by (simp add: NSDERIV_iff2 starfun_if_eq cong: if_cong)
-qed
-
-subsubsection \<open>Differentiability predicate\<close>
-
-lemma NSdifferentiableD: "f NSdifferentiable x ==> \<exists>D. NSDERIV f x :> D"
-by (simp add: NSdifferentiable_def)
-
-lemma NSdifferentiableI: "NSDERIV f x :> D ==> f NSdifferentiable x"
-by (force simp add: NSdifferentiable_def)
-
-
-subsection \<open>(NS) Increment\<close>
-lemma incrementI:
-      "f NSdifferentiable x ==>
-      increment f x h = ( *f* f) (hypreal_of_real(x) + h) -
-      hypreal_of_real (f x)"
-by (simp add: increment_def)
-
-lemma incrementI2: "NSDERIV f x :> D ==>
-     increment f x h = ( *f* f) (hypreal_of_real(x) + h) -
-     hypreal_of_real (f x)"
-apply (erule NSdifferentiableI [THEN incrementI])
-done
-
-(* The Increment theorem -- Keisler p. 65 *)
-lemma increment_thm: "[| NSDERIV f x :> D; h \<in> Infinitesimal; h \<noteq> 0 |]
-      ==> \<exists>e \<in> Infinitesimal. increment f x h = hypreal_of_real(D)*h + e*h"
-apply (frule_tac h = h in incrementI2, simp add: nsderiv_def)
-apply (drule bspec, auto)
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2], clarify)
-apply (frule_tac b1 = "hypreal_of_real (D) + y"
-        in mult_right_cancel [THEN iffD2])
-apply (erule_tac [2] V = "(( *f* f) (hypreal_of_real (x) + h) - hypreal_of_real (f x)) / h = hypreal_of_real (D) + y" in thin_rl)
-apply assumption
-apply (simp add: times_divide_eq_right [symmetric])
-apply (auto simp add: distrib_right)
-done
-
-lemma increment_thm2:
-     "[| NSDERIV f x :> D; h \<approx> 0; h \<noteq> 0 |]
-      ==> \<exists>e \<in> Infinitesimal. increment f x h =
-              hypreal_of_real(D)*h + e*h"
-by (blast dest!: mem_infmal_iff [THEN iffD2] intro!: increment_thm)
-
-
-lemma increment_approx_zero: "[| NSDERIV f x :> D; h \<approx> 0; h \<noteq> 0 |]
-      ==> increment f x h \<approx> 0"
-apply (drule increment_thm2,
-       auto intro!: Infinitesimal_HFinite_mult2 HFinite_add simp add: distrib_right [symmetric] mem_infmal_iff [symmetric])
-apply (erule Infinitesimal_subset_HFinite [THEN subsetD])
-done
-
-end
--- a/src/HOL/NSA/HLim.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,332 +0,0 @@
-(*  Title:      HOL/NSA/HLim.thy
-    Author:     Jacques D. Fleuriot, University of Cambridge
-    Author:     Lawrence C Paulson
-*)
-
-section\<open>Limits and Continuity (Nonstandard)\<close>
-
-theory HLim
-imports Star
-begin
-
-text\<open>Nonstandard Definitions\<close>
-
-definition
-  NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool"
-            ("((_)/ \<midarrow>(_)/\<rightarrow>\<^sub>N\<^sub>S (_))" [60, 0, 60] 60) where
-  "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L =
-    (\<forall>x. (x \<noteq> star_of a & x \<approx> star_of a --> ( *f* f) x \<approx> star_of L))"
-
-definition
-  isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where
-    \<comment>\<open>NS definition dispenses with limit notions\<close>
-  "isNSCont f a = (\<forall>y. y \<approx> star_of a -->
-         ( *f* f) y \<approx> star_of (f a))"
-
-definition
-  isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where
-  "isNSUCont f = (\<forall>x y. x \<approx> y --> ( *f* f) x \<approx> ( *f* f) y)"
-
-
-subsection \<open>Limits of Functions\<close>
-
-lemma NSLIM_I:
-  "(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L)
-   \<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
-by (simp add: NSLIM_def)
-
-lemma NSLIM_D:
-  "\<lbrakk>f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk>
-   \<Longrightarrow> starfun f x \<approx> star_of L"
-by (simp add: NSLIM_def)
-
-text\<open>Proving properties of limits using nonstandard definition.
-      The properties hold for standard limits as well!\<close>
-
-lemma NSLIM_mult:
-  fixes l m :: "'a::real_normed_algebra"
-  shows "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |]
-      ==> (%x. f(x) * g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l * m)"
-by (auto simp add: NSLIM_def intro!: approx_mult_HFinite)
-
-lemma starfun_scaleR [simp]:
-  "starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))"
-by transfer (rule refl)
-
-lemma NSLIM_scaleR:
-  "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |]
-      ==> (%x. f(x) *\<^sub>R g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l *\<^sub>R m)"
-by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite)
-
-lemma NSLIM_add:
-     "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |]
-      ==> (%x. f(x) + g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + m)"
-by (auto simp add: NSLIM_def intro!: approx_add)
-
-lemma NSLIM_const [simp]: "(%x. k) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S k"
-by (simp add: NSLIM_def)
-
-lemma NSLIM_minus: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L ==> (%x. -f(x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S -L"
-by (simp add: NSLIM_def)
-
-lemma NSLIM_diff:
-  "\<lbrakk>f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l - m)"
-  by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus)
-
-lemma NSLIM_add_minus: "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |] ==> (%x. f(x) + -g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + -m)"
-by (simp only: NSLIM_add NSLIM_minus)
-
-lemma NSLIM_inverse:
-  fixes L :: "'a::real_normed_div_algebra"
-  shows "[| f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L;  L \<noteq> 0 |]
-      ==> (%x. inverse(f(x))) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (inverse L)"
-apply (simp add: NSLIM_def, clarify)
-apply (drule spec)
-apply (auto simp add: star_of_approx_inverse)
-done
-
-lemma NSLIM_zero:
-  assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" shows "(%x. f(x) - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0"
-proof -
-  have "(\<lambda>x. f x - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l - l"
-    by (rule NSLIM_diff [OF f NSLIM_const])
-  thus ?thesis by simp
-qed
-
-lemma NSLIM_zero_cancel: "(%x. f(x) - l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 ==> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l"
-apply (drule_tac g = "%x. l" and m = l in NSLIM_add)
-apply (auto simp add: add.assoc)
-done
-
-lemma NSLIM_const_not_eq:
-  fixes a :: "'a::real_normed_algebra_1"
-  shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
-apply (simp add: NSLIM_def)
-apply (rule_tac x="star_of a + of_hypreal \<epsilon>" in exI)
-apply (simp add: hypreal_epsilon_not_zero approx_def)
-done
-
-lemma NSLIM_not_zero:
-  fixes a :: "'a::real_normed_algebra_1"
-  shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0"
-by (rule NSLIM_const_not_eq)
-
-lemma NSLIM_const_eq:
-  fixes a :: "'a::real_normed_algebra_1"
-  shows "(\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> k = L"
-apply (rule ccontr)
-apply (blast dest: NSLIM_const_not_eq)
-done
-
-lemma NSLIM_unique:
-  fixes a :: "'a::real_normed_algebra_1"
-  shows "\<lbrakk>f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L; f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S M\<rbrakk> \<Longrightarrow> L = M"
-apply (drule (1) NSLIM_diff)
-apply (auto dest!: NSLIM_const_eq)
-done
-
-lemma NSLIM_mult_zero:
-  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
-  shows "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 |] ==> (%x. f(x)*g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0"
-by (drule NSLIM_mult, auto)
-
-lemma NSLIM_self: "(%x. x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S a"
-by (simp add: NSLIM_def)
-
-subsubsection \<open>Equivalence of @{term filterlim} and @{term NSLIM}\<close>
-
-lemma LIM_NSLIM:
-  assumes f: "f \<midarrow>a\<rightarrow> L" shows "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L"
-proof (rule NSLIM_I)
-  fix x
-  assume neq: "x \<noteq> star_of a"
-  assume approx: "x \<approx> star_of a"
-  have "starfun f x - star_of L \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r::real assume r: "0 < r"
-    from LIM_D [OF f r]
-    obtain s where s: "0 < s" and
-      less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r"
-      by fast
-    from less_r have less_r':
-       "\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk>
-        \<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
-      by transfer
-    from approx have "x - star_of a \<in> Infinitesimal"
-      by (unfold approx_def)
-    hence "hnorm (x - star_of a) < star_of s"
-      using s by (rule InfinitesimalD2)
-    with neq show "hnorm (starfun f x - star_of L) < star_of r"
-      by (rule less_r')
-  qed
-  thus "starfun f x \<approx> star_of L"
-    by (unfold approx_def)
-qed
-
-lemma NSLIM_LIM:
-  assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" shows "f \<midarrow>a\<rightarrow> L"
-proof (rule LIM_I)
-  fix r::real assume r: "0 < r"
-  have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s
-        \<longrightarrow> hnorm (starfun f x - star_of L) < star_of r"
-  proof (rule exI, safe)
-    show "0 < \<epsilon>" by (rule hypreal_epsilon_gt_zero)
-  next
-    fix x assume neq: "x \<noteq> star_of a"
-    assume "hnorm (x - star_of a) < \<epsilon>"
-    with Infinitesimal_epsilon
-    have "x - star_of a \<in> Infinitesimal"
-      by (rule hnorm_less_Infinitesimal)
-    hence "x \<approx> star_of a"
-      by (unfold approx_def)
-    with f neq have "starfun f x \<approx> star_of L"
-      by (rule NSLIM_D)
-    hence "starfun f x - star_of L \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun f x - star_of L) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
-    by transfer
-qed
-
-theorem LIM_NSLIM_iff: "(f \<midarrow>x\<rightarrow> L) = (f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L)"
-by (blast intro: LIM_NSLIM NSLIM_LIM)
-
-
-subsection \<open>Continuity\<close>
-
-lemma isNSContD:
-  "\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)"
-by (simp add: isNSCont_def)
-
-lemma isNSCont_NSLIM: "isNSCont f a ==> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) "
-by (simp add: isNSCont_def NSLIM_def)
-
-lemma NSLIM_isNSCont: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) ==> isNSCont f a"
-apply (simp add: isNSCont_def NSLIM_def, auto)
-apply (case_tac "y = star_of a", auto)
-done
-
-text\<open>NS continuity can be defined using NS Limit in
-    similar fashion to standard def of continuity\<close>
-lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a))"
-by (blast intro: isNSCont_NSLIM NSLIM_isNSCont)
-
-text\<open>Hence, NS continuity can be given
-  in terms of standard limit\<close>
-lemma isNSCont_LIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow> (f a))"
-by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff)
-
-text\<open>Moreover, it's trivial now that NS continuity
-  is equivalent to standard continuity\<close>
-lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)"
-apply (simp add: isCont_def)
-apply (rule isNSCont_LIM_iff)
-done
-
-text\<open>Standard continuity ==> NS continuity\<close>
-lemma isCont_isNSCont: "isCont f a ==> isNSCont f a"
-by (erule isNSCont_isCont_iff [THEN iffD2])
-
-text\<open>NS continuity ==> Standard continuity\<close>
-lemma isNSCont_isCont: "isNSCont f a ==> isCont f a"
-by (erule isNSCont_isCont_iff [THEN iffD1])
-
-text\<open>Alternative definition of continuity\<close>
-
-(* Prove equivalence between NS limits - *)
-(* seems easier than using standard def  *)
-lemma NSLIM_h_iff: "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L) = ((%h. f(a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L)"
-apply (simp add: NSLIM_def, auto)
-apply (drule_tac x = "star_of a + x" in spec)
-apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp)
-apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]])
-apply (erule_tac [3] approx_minus_iff2 [THEN iffD1])
- prefer 2 apply (simp add: add.commute)
-apply (rule_tac x = x in star_cases)
-apply (rule_tac [2] x = x in star_cases)
-apply (auto simp add: starfun star_of_def star_n_minus star_n_add add.assoc star_n_zero_num)
-done
-
-lemma NSLIM_isCont_iff: "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S f a) = ((%h. f(a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S f a)"
-  by (fact NSLIM_h_iff)
-
-lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a"
-by (simp add: isNSCont_def)
-
-lemma isNSCont_inverse:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra"
-  shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x"
-by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff)
-
-lemma isNSCont_const [simp]: "isNSCont (%x. k) a"
-by (simp add: isNSCont_def)
-
-lemma isNSCont_abs [simp]: "isNSCont abs (a::real)"
-apply (simp add: isNSCont_def)
-apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs)
-done
-
-
-subsection \<open>Uniform Continuity\<close>
-
-lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y"
-by (simp add: isNSUCont_def)
-
-lemma isUCont_isNSUCont:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
-  assumes f: "isUCont f" shows "isNSUCont f"
-proof (unfold isNSUCont_def, safe)
-  fix x y :: "'a star"
-  assume approx: "x \<approx> y"
-  have "starfun f x - starfun f y \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r::real assume r: "0 < r"
-    with f obtain s where s: "0 < s" and
-      less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r"
-      by (auto simp add: isUCont_def dist_norm)
-    from less_r have less_r':
-       "\<And>x y. hnorm (x - y) < star_of s
-        \<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
-      by transfer
-    from approx have "x - y \<in> Infinitesimal"
-      by (unfold approx_def)
-    hence "hnorm (x - y) < star_of s"
-      using s by (rule InfinitesimalD2)
-    thus "hnorm (starfun f x - starfun f y) < star_of r"
-      by (rule less_r')
-  qed
-  thus "starfun f x \<approx> starfun f y"
-    by (unfold approx_def)
-qed
-
-lemma isNSUCont_isUCont:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
-  assumes f: "isNSUCont f" shows "isUCont f"
-proof (unfold isUCont_def dist_norm, safe)
-  fix r::real assume r: "0 < r"
-  have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s
-        \<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r"
-  proof (rule exI, safe)
-    show "0 < \<epsilon>" by (rule hypreal_epsilon_gt_zero)
-  next
-    fix x y :: "'a star"
-    assume "hnorm (x - y) < \<epsilon>"
-    with Infinitesimal_epsilon
-    have "x - y \<in> Infinitesimal"
-      by (rule hnorm_less_Infinitesimal)
-    hence "x \<approx> y"
-      by (unfold approx_def)
-    with f have "starfun f x \<approx> starfun f y"
-      by (simp add: isNSUCont_def)
-    hence "starfun f x - starfun f y \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun f x - starfun f y) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
-    by transfer
-qed
-
-end
--- a/src/HOL/NSA/HLog.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,156 +0,0 @@
-(*  Title       : HLog.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2000,2001 University of Edinburgh
-*)
-
-section\<open>Logarithms: Non-Standard Version\<close>
-
-theory HLog
-imports HTranscendental
-begin
-
-
-(* should be in NSA.ML *)
-lemma epsilon_ge_zero [simp]: "0 \<le> \<epsilon>"
-by (simp add: epsilon_def star_n_zero_num star_n_le)
-
-lemma hpfinite_witness: "\<epsilon> : {x. 0 \<le> x & x : HFinite}"
-by auto
-
-
-definition
-  powhr  :: "[hypreal,hypreal] => hypreal"     (infixr "powhr" 80) where
-  [transfer_unfold]: "x powhr a = starfun2 (op powr) x a"
-  
-definition
-  hlog :: "[hypreal,hypreal] => hypreal" where
-  [transfer_unfold]: "hlog a x = starfun2 log a x"
-
-lemma powhr: "(star_n X) powhr (star_n Y) = star_n (%n. (X n) powr (Y n))"
-by (simp add: powhr_def starfun2_star_n)
-
-lemma powhr_one_eq_one [simp]: "!!a. 1 powhr a = 1"
-by (transfer, simp)
-
-lemma powhr_mult:
-  "!!a x y. [| 0 < x; 0 < y |] ==> (x * y) powhr a = (x powhr a) * (y powhr a)"
-by (transfer, simp add: powr_mult)
-
-lemma powhr_gt_zero [simp]: "!!a x. 0 < x powhr a \<longleftrightarrow> x \<noteq> 0"
-by (transfer, simp)
-
-lemma powhr_not_zero [simp]: "\<And>a x. x powhr a \<noteq> 0 \<longleftrightarrow> x \<noteq> 0"
-by transfer simp
-
-lemma powhr_divide:
-  "!!a x y. [| 0 < x; 0 < y |] ==> (x / y) powhr a = (x powhr a)/(y powhr a)"
-by (transfer, rule powr_divide)
-
-lemma powhr_add: "!!a b x. x powhr (a + b) = (x powhr a) * (x powhr b)"
-by (transfer, rule powr_add)
-
-lemma powhr_powhr: "!!a b x. (x powhr a) powhr b = x powhr (a * b)"
-by (transfer, rule powr_powr)
-
-lemma powhr_powhr_swap: "!!a b x. (x powhr a) powhr b = (x powhr b) powhr a"
-by (transfer, rule powr_powr_swap)
-
-lemma powhr_minus: "!!a x. x powhr (-a) = inverse (x powhr a)"
-by (transfer, rule powr_minus)
-
-lemma powhr_minus_divide: "x powhr (-a) = 1/(x powhr a)"
-by (simp add: divide_inverse powhr_minus)
-
-lemma powhr_less_mono: "!!a b x. [| a < b; 1 < x |] ==> x powhr a < x powhr b"
-by (transfer, simp)
-
-lemma powhr_less_cancel: "!!a b x. [| x powhr a < x powhr b; 1 < x |] ==> a < b"
-by (transfer, simp)
-
-lemma powhr_less_cancel_iff [simp]:
-     "1 < x ==> (x powhr a < x powhr b) = (a < b)"
-by (blast intro: powhr_less_cancel powhr_less_mono)
-
-lemma powhr_le_cancel_iff [simp]:
-     "1 < x ==> (x powhr a \<le> x powhr b) = (a \<le> b)"
-by (simp add: linorder_not_less [symmetric])
-
-lemma hlog:
-     "hlog (star_n X) (star_n Y) =  
-      star_n (%n. log (X n) (Y n))"
-by (simp add: hlog_def starfun2_star_n)
-
-lemma hlog_starfun_ln: "!!x. ( *f* ln) x = hlog (( *f* exp) 1) x"
-by (transfer, rule log_ln)
-
-lemma powhr_hlog_cancel [simp]:
-     "!!a x. [| 0 < a; a \<noteq> 1; 0 < x |] ==> a powhr (hlog a x) = x"
-by (transfer, simp)
-
-lemma hlog_powhr_cancel [simp]:
-     "!!a y. [| 0 < a; a \<noteq> 1 |] ==> hlog a (a powhr y) = y"
-by (transfer, simp)
-
-lemma hlog_mult:
-     "!!a x y. [| 0 < a; a \<noteq> 1; 0 < x; 0 < y  |]  
-      ==> hlog a (x * y) = hlog a x + hlog a y"
-by (transfer, rule log_mult)
-
-lemma hlog_as_starfun:
-     "!!a x. [| 0 < a; a \<noteq> 1 |] ==> hlog a x = ( *f* ln) x / ( *f* ln) a"
-by (transfer, simp add: log_def)
-
-lemma hlog_eq_div_starfun_ln_mult_hlog:
-     "!!a b x. [| 0 < a; a \<noteq> 1; 0 < b; b \<noteq> 1; 0 < x |]  
-      ==> hlog a x = (( *f* ln) b/( *f*ln) a) * hlog b x"
-by (transfer, rule log_eq_div_ln_mult_log)
-
-lemma powhr_as_starfun: "!!a x. x powhr a = (if x=0 then 0 else ( *f* exp) (a * ( *f* real_ln) x))"
-  by (transfer, simp add: powr_def)
-
-lemma HInfinite_powhr:
-     "[| x : HInfinite; 0 < x; a : HFinite - Infinitesimal;  
-         0 < a |] ==> x powhr a : HInfinite"
-apply (auto intro!: starfun_ln_ge_zero starfun_ln_HInfinite HInfinite_HFinite_not_Infinitesimal_mult2 starfun_exp_HInfinite 
-       simp add: order_less_imp_le HInfinite_gt_zero_gt_one powhr_as_starfun zero_le_mult_iff)
-done
-
-lemma hlog_hrabs_HInfinite_Infinitesimal:
-     "[| x : HFinite - Infinitesimal; a : HInfinite; 0 < a |]  
-      ==> hlog a \<bar>x\<bar> : Infinitesimal"
-apply (frule HInfinite_gt_zero_gt_one)
-apply (auto intro!: starfun_ln_HFinite_not_Infinitesimal
-            HInfinite_inverse_Infinitesimal Infinitesimal_HFinite_mult2 
-        simp add: starfun_ln_HInfinite not_Infinitesimal_not_zero 
-          hlog_as_starfun divide_inverse)
-done
-
-lemma hlog_HInfinite_as_starfun:
-     "[| a : HInfinite; 0 < a |] ==> hlog a x = ( *f* ln) x / ( *f* ln) a"
-by (rule hlog_as_starfun, auto)
-
-lemma hlog_one [simp]: "!!a. hlog a 1 = 0"
-by (transfer, simp)
-
-lemma hlog_eq_one [simp]: "!!a. [| 0 < a; a \<noteq> 1 |] ==> hlog a a = 1"
-by (transfer, rule log_eq_one)
-
-lemma hlog_inverse:
-     "[| 0 < a; a \<noteq> 1; 0 < x |] ==> hlog a (inverse x) = - hlog a x"
-apply (rule add_left_cancel [of "hlog a x", THEN iffD1])
-apply (simp add: hlog_mult [symmetric])
-done
-
-lemma hlog_divide:
-     "[| 0 < a; a \<noteq> 1; 0 < x; 0 < y|] ==> hlog a (x/y) = hlog a x - hlog a y"
-by (simp add: hlog_mult hlog_inverse divide_inverse)
-
-lemma hlog_less_cancel_iff [simp]:
-     "!!a x y. [| 1 < a; 0 < x; 0 < y |] ==> (hlog a x < hlog a y) = (x < y)"
-by (transfer, simp)
-
-lemma hlog_le_cancel_iff [simp]:
-     "[| 1 < a; 0 < x; 0 < y |] ==> (hlog a x \<le> hlog a y) = (x \<le> y)"
-by (simp add: linorder_not_less [symmetric])
-
-end
--- a/src/HOL/NSA/HSEQ.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,526 +0,0 @@
-(*  Title       : HSEQ.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Description : Convergence of sequences and series
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-    Additional contributions by Jeremy Avigad and Brian Huffman
-*)
-
-section \<open>Sequences and Convergence (Nonstandard)\<close>
-
-theory HSEQ
-imports Limits NatStar
-begin
-
-definition
-  NSLIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
-    ("((_)/ \<longlonglongrightarrow>\<^sub>N\<^sub>S (_))" [60, 60] 60) where
-    \<comment>\<open>Nonstandard definition of convergence of sequence\<close>
-  "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
-
-definition
-  nslim :: "(nat => 'a::real_normed_vector) => 'a" where
-    \<comment>\<open>Nonstandard definition of limit using choice operator\<close>
-  "nslim X = (THE L. X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
-
-definition
-  NSconvergent :: "(nat => 'a::real_normed_vector) => bool" where
-    \<comment>\<open>Nonstandard definition of convergence\<close>
-  "NSconvergent X = (\<exists>L. X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
-
-definition
-  NSBseq :: "(nat => 'a::real_normed_vector) => bool" where
-    \<comment>\<open>Nonstandard definition for bounded sequence\<close>
-  "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
-
-definition
-  NSCauchy :: "(nat => 'a::real_normed_vector) => bool" where
-    \<comment>\<open>Nonstandard definition\<close>
-  "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
-
-subsection \<open>Limits of Sequences\<close>
-
-lemma NSLIMSEQ_iff:
-    "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S L) = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_I:
-  "(\<And>N. N \<in> HNatInfinite \<Longrightarrow> starfun X N \<approx> star_of L) \<Longrightarrow> X \<longlonglongrightarrow>\<^sub>N\<^sub>S L"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_D:
-  "\<lbrakk>X \<longlonglongrightarrow>\<^sub>N\<^sub>S L; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X N \<approx> star_of L"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_const: "(%n. k) \<longlonglongrightarrow>\<^sub>N\<^sub>S k"
-by (simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_add:
-      "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n + Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + b"
-by (auto intro: approx_add simp add: NSLIMSEQ_def starfun_add [symmetric])
-
-lemma NSLIMSEQ_add_const: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n.(f n + b)) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + b"
-by (simp only: NSLIMSEQ_add NSLIMSEQ_const)
-
-lemma NSLIMSEQ_mult:
-  fixes a b :: "'a::real_normed_algebra"
-  shows "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n * Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a * b"
-by (auto intro!: approx_mult_HFinite simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_minus: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n. -(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S -a"
-by (auto simp add: NSLIMSEQ_def)
-
-lemma NSLIMSEQ_minus_cancel: "(%n. -(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S -a ==> X \<longlonglongrightarrow>\<^sub>N\<^sub>S a"
-by (drule NSLIMSEQ_minus, simp)
-
-lemma NSLIMSEQ_diff:
-     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n - Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a - b"
-  using NSLIMSEQ_add [of X a "- Y" "- b"] by (simp add: NSLIMSEQ_minus fun_Compl_def)
-
-(* FIXME: delete *)
-lemma NSLIMSEQ_add_minus:
-     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n + -Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + -b"
-  by (simp add: NSLIMSEQ_diff)
-
-lemma NSLIMSEQ_diff_const: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n.(f n - b)) \<longlonglongrightarrow>\<^sub>N\<^sub>S a - b"
-by (simp add: NSLIMSEQ_diff NSLIMSEQ_const)
-
-lemma NSLIMSEQ_inverse:
-  fixes a :: "'a::real_normed_div_algebra"
-  shows "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a;  a ~= 0 |] ==> (%n. inverse(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S inverse(a)"
-by (simp add: NSLIMSEQ_def star_of_approx_inverse)
-
-lemma NSLIMSEQ_mult_inverse:
-  fixes a b :: "'a::real_normed_field"
-  shows
-     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a;  Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b;  b ~= 0 |] ==> (%n. X n / Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a/b"
-by (simp add: NSLIMSEQ_mult NSLIMSEQ_inverse divide_inverse)
-
-lemma starfun_hnorm: "\<And>x. hnorm (( *f* f) x) = ( *f* (\<lambda>x. norm (f x))) x"
-by transfer simp
-
-lemma NSLIMSEQ_norm: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S a \<Longrightarrow> (\<lambda>n. norm (X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S norm a"
-by (simp add: NSLIMSEQ_def starfun_hnorm [symmetric] approx_hnorm)
-
-text\<open>Uniqueness of limit\<close>
-lemma NSLIMSEQ_unique: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; X \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> a = b"
-apply (simp add: NSLIMSEQ_def)
-apply (drule HNatInfinite_whn [THEN [2] bspec])+
-apply (auto dest: approx_trans3)
-done
-
-lemma NSLIMSEQ_pow [rule_format]:
-  fixes a :: "'a::{real_normed_algebra,power}"
-  shows "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S a) --> ((%n. (X n) ^ m) \<longlonglongrightarrow>\<^sub>N\<^sub>S a ^ m)"
-apply (induct "m")
-apply (auto simp add: power_Suc intro: NSLIMSEQ_mult NSLIMSEQ_const)
-done
-
-text\<open>We can now try and derive a few properties of sequences,
-     starting with the limit comparison property for sequences.\<close>
-
-lemma NSLIMSEQ_le:
-       "[| f \<longlonglongrightarrow>\<^sub>N\<^sub>S l; g \<longlonglongrightarrow>\<^sub>N\<^sub>S m;
-           \<exists>N. \<forall>n \<ge> N. f(n) \<le> g(n)
-        |] ==> l \<le> (m::real)"
-apply (simp add: NSLIMSEQ_def, safe)
-apply (drule starfun_le_mono)
-apply (drule HNatInfinite_whn [THEN [2] bspec])+
-apply (drule_tac x = whn in spec)
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2])+
-apply clarify
-apply (auto intro: hypreal_of_real_le_add_Infininitesimal_cancel2)
-done
-
-lemma NSLIMSEQ_le_const: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S (r::real); \<forall>n. a \<le> X n |] ==> a \<le> r"
-by (erule NSLIMSEQ_le [OF NSLIMSEQ_const], auto)
-
-lemma NSLIMSEQ_le_const2: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S (r::real); \<forall>n. X n \<le> a |] ==> r \<le> a"
-by (erule NSLIMSEQ_le [OF _ NSLIMSEQ_const], auto)
-
-text\<open>Shift a convergent series by 1:
-  By the equivalence between Cauchiness and convergence and because
-  the successor of an infinite hypernatural is also infinite.\<close>
-
-lemma NSLIMSEQ_Suc: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S l ==> (%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l"
-apply (unfold NSLIMSEQ_def, safe)
-apply (drule_tac x="N + 1" in bspec)
-apply (erule HNatInfinite_add)
-apply (simp add: starfun_shift_one)
-done
-
-lemma NSLIMSEQ_imp_Suc: "(%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l ==> f \<longlonglongrightarrow>\<^sub>N\<^sub>S l"
-apply (unfold NSLIMSEQ_def, safe)
-apply (drule_tac x="N - 1" in bspec) 
-apply (erule Nats_1 [THEN [2] HNatInfinite_diff])
-apply (simp add: starfun_shift_one one_le_HNatInfinite)
-done
-
-lemma NSLIMSEQ_Suc_iff: "((%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S l)"
-by (blast intro: NSLIMSEQ_imp_Suc NSLIMSEQ_Suc)
-
-subsubsection \<open>Equivalence of @{term LIMSEQ} and @{term NSLIMSEQ}\<close>
-
-lemma LIMSEQ_NSLIMSEQ:
-  assumes X: "X \<longlonglongrightarrow> L" shows "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L"
-proof (rule NSLIMSEQ_I)
-  fix N assume N: "N \<in> HNatInfinite"
-  have "starfun X N - star_of L \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r::real assume r: "0 < r"
-    from LIMSEQ_D [OF X r]
-    obtain no where "\<forall>n\<ge>no. norm (X n - L) < r" ..
-    hence "\<forall>n\<ge>star_of no. hnorm (starfun X n - star_of L) < star_of r"
-      by transfer
-    thus "hnorm (starfun X N - star_of L) < star_of r"
-      using N by (simp add: star_of_le_HNatInfinite)
-  qed
-  thus "starfun X N \<approx> star_of L"
-    by (unfold approx_def)
-qed
-
-lemma NSLIMSEQ_LIMSEQ:
-  assumes X: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L" shows "X \<longlonglongrightarrow> L"
-proof (rule LIMSEQ_I)
-  fix r::real assume r: "0 < r"
-  have "\<exists>no. \<forall>n\<ge>no. hnorm (starfun X n - star_of L) < star_of r"
-  proof (intro exI allI impI)
-    fix n assume "whn \<le> n"
-    with HNatInfinite_whn have "n \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    with X have "starfun X n \<approx> star_of L"
-      by (rule NSLIMSEQ_D)
-    hence "starfun X n - star_of L \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun X n - star_of L) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
-    by transfer
-qed
-
-theorem LIMSEQ_NSLIMSEQ_iff: "(f \<longlonglongrightarrow> L) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
-by (blast intro: LIMSEQ_NSLIMSEQ NSLIMSEQ_LIMSEQ)
-
-subsubsection \<open>Derived theorems about @{term NSLIMSEQ}\<close>
-
-text\<open>We prove the NS version from the standard one, since the NS proof
-   seems more complicated than the standard one above!\<close>
-lemma NSLIMSEQ_norm_zero: "((\<lambda>n. norm (X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0) = (X \<longlonglongrightarrow>\<^sub>N\<^sub>S 0)"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] tendsto_norm_zero_iff)
-
-lemma NSLIMSEQ_rabs_zero: "((%n. \<bar>f n\<bar>) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S (0::real))"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] tendsto_rabs_zero_iff)
-
-text\<open>Generalization to other limits\<close>
-lemma NSLIMSEQ_imp_rabs: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S (l::real) ==> (%n. \<bar>f n\<bar>) \<longlonglongrightarrow>\<^sub>N\<^sub>S \<bar>l\<bar>"
-apply (simp add: NSLIMSEQ_def)
-apply (auto intro: approx_hrabs 
-            simp add: starfun_abs)
-done
-
-lemma NSLIMSEQ_inverse_zero:
-     "\<forall>y::real. \<exists>N. \<forall>n \<ge> N. y < f(n)
-      ==> (%n. inverse(f n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_zero)
-
-lemma NSLIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat del: of_nat_Suc)
-
-lemma NSLIMSEQ_inverse_real_of_nat_add:
-     "(%n. r + inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
-by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add del: of_nat_Suc)
-
-lemma NSLIMSEQ_inverse_real_of_nat_add_minus:
-     "(%n. r + -inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
-  using LIMSEQ_inverse_real_of_nat_add_minus by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-lemma NSLIMSEQ_inverse_real_of_nat_add_minus_mult:
-     "(%n. r*( 1 + -inverse(real(Suc n)))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
-  using LIMSEQ_inverse_real_of_nat_add_minus_mult by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-
-subsection \<open>Convergence\<close>
-
-lemma nslimI: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L ==> nslim X = L"
-apply (simp add: nslim_def)
-apply (blast intro: NSLIMSEQ_unique)
-done
-
-lemma lim_nslim_iff: "lim X = nslim X"
-by (simp add: lim_def nslim_def LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSconvergentD: "NSconvergent X ==> \<exists>L. (X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
-by (simp add: NSconvergent_def)
-
-lemma NSconvergentI: "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S L) ==> NSconvergent X"
-by (auto simp add: NSconvergent_def)
-
-lemma convergent_NSconvergent_iff: "convergent X = NSconvergent X"
-by (simp add: convergent_def NSconvergent_def LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSconvergent_NSLIMSEQ_iff: "NSconvergent X = (X \<longlonglongrightarrow>\<^sub>N\<^sub>S nslim X)"
-by (auto intro: theI NSLIMSEQ_unique simp add: NSconvergent_def nslim_def)
-
-
-subsection \<open>Bounded Monotonic Sequences\<close>
-
-lemma NSBseqD: "[| NSBseq X;  N: HNatInfinite |] ==> ( *f* X) N : HFinite"
-by (simp add: NSBseq_def)
-
-lemma Standard_subset_HFinite: "Standard \<subseteq> HFinite"
-unfolding Standard_def by auto
-
-lemma NSBseqD2: "NSBseq X \<Longrightarrow> ( *f* X) N \<in> HFinite"
-apply (cases "N \<in> HNatInfinite")
-apply (erule (1) NSBseqD)
-apply (rule subsetD [OF Standard_subset_HFinite])
-apply (simp add: HNatInfinite_def Nats_eq_Standard)
-done
-
-lemma NSBseqI: "\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite ==> NSBseq X"
-by (simp add: NSBseq_def)
-
-text\<open>The standard definition implies the nonstandard definition\<close>
-
-lemma Bseq_NSBseq: "Bseq X ==> NSBseq X"
-proof (unfold NSBseq_def, safe)
-  assume X: "Bseq X"
-  fix N assume N: "N \<in> HNatInfinite"
-  from BseqD [OF X] obtain K where "\<forall>n. norm (X n) \<le> K" by fast
-  hence "\<forall>N. hnorm (starfun X N) \<le> star_of K" by transfer
-  hence "hnorm (starfun X N) \<le> star_of K" by simp
-  also have "star_of K < star_of (K + 1)" by simp
-  finally have "\<exists>x\<in>Reals. hnorm (starfun X N) < x" by (rule bexI, simp)
-  thus "starfun X N \<in> HFinite" by (simp add: HFinite_def)
-qed
-
-text\<open>The nonstandard definition implies the standard definition\<close>
-
-lemma SReal_less_omega: "r \<in> \<real> \<Longrightarrow> r < \<omega>"
-apply (insert HInfinite_omega)
-apply (simp add: HInfinite_def)
-apply (simp add: order_less_imp_le)
-done
-
-lemma NSBseq_Bseq: "NSBseq X \<Longrightarrow> Bseq X"
-proof (rule ccontr)
-  let ?n = "\<lambda>K. LEAST n. K < norm (X n)"
-  assume "NSBseq X"
-  hence finite: "( *f* X) (( *f* ?n) \<omega>) \<in> HFinite"
-    by (rule NSBseqD2)
-  assume "\<not> Bseq X"
-  hence "\<forall>K>0. \<exists>n. K < norm (X n)"
-    by (simp add: Bseq_def linorder_not_le)
-  hence "\<forall>K>0. K < norm (X (?n K))"
-    by (auto intro: LeastI_ex)
-  hence "\<forall>K>0. K < hnorm (( *f* X) (( *f* ?n) K))"
-    by transfer
-  hence "\<omega> < hnorm (( *f* X) (( *f* ?n) \<omega>))"
-    by simp
-  hence "\<forall>r\<in>\<real>. r < hnorm (( *f* X) (( *f* ?n) \<omega>))"
-    by (simp add: order_less_trans [OF SReal_less_omega])
-  hence "( *f* X) (( *f* ?n) \<omega>) \<in> HInfinite"
-    by (simp add: HInfinite_def)
-  with finite show "False"
-    by (simp add: HFinite_HInfinite_iff)
-qed
-
-text\<open>Equivalence of nonstandard and standard definitions
-  for a bounded sequence\<close>
-lemma Bseq_NSBseq_iff: "(Bseq X) = (NSBseq X)"
-by (blast intro!: NSBseq_Bseq Bseq_NSBseq)
-
-text\<open>A convergent sequence is bounded: 
- Boundedness as a necessary condition for convergence. 
- The nonstandard version has no existential, as usual\<close>
-
-lemma NSconvergent_NSBseq: "NSconvergent X ==> NSBseq X"
-apply (simp add: NSconvergent_def NSBseq_def NSLIMSEQ_def)
-apply (blast intro: HFinite_star_of approx_sym approx_HFinite)
-done
-
-text\<open>Standard Version: easily now proved using equivalence of NS and
- standard definitions\<close>
-
-lemma convergent_Bseq: "convergent X ==> Bseq (X::nat \<Rightarrow> _::real_normed_vector)"
-by (simp add: NSconvergent_NSBseq convergent_NSconvergent_iff Bseq_NSBseq_iff)
-
-subsubsection\<open>Upper Bounds and Lubs of Bounded Sequences\<close>
-
-lemma NSBseq_isUb: "NSBseq X ==> \<exists>U::real. isUb UNIV {x. \<exists>n. X n = x} U"
-by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isUb)
-
-lemma NSBseq_isLub: "NSBseq X ==> \<exists>U::real. isLub UNIV {x. \<exists>n. X n = x} U"
-by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isLub)
-
-subsubsection\<open>A Bounded and Monotonic Sequence Converges\<close>
-
-text\<open>The best of both worlds: Easier to prove this result as a standard
-   theorem and then use equivalence to "transfer" it into the
-   equivalent nonstandard form if needed!\<close>
-
-lemma Bmonoseq_NSLIMSEQ: "\<forall>n \<ge> m. X n = X m ==> \<exists>L. (X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
-by (auto dest!: Bmonoseq_LIMSEQ simp add: LIMSEQ_NSLIMSEQ_iff)
-
-lemma NSBseq_mono_NSconvergent:
-     "[| NSBseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> NSconvergent (X::nat=>real)"
-by (auto intro: Bseq_mono_convergent 
-         simp add: convergent_NSconvergent_iff [symmetric] 
-                   Bseq_NSBseq_iff [symmetric])
-
-
-subsection \<open>Cauchy Sequences\<close>
-
-lemma NSCauchyI:
-  "(\<And>M N. \<lbrakk>M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X M \<approx> starfun X N)
-   \<Longrightarrow> NSCauchy X"
-by (simp add: NSCauchy_def)
-
-lemma NSCauchyD:
-  "\<lbrakk>NSCauchy X; M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk>
-   \<Longrightarrow> starfun X M \<approx> starfun X N"
-by (simp add: NSCauchy_def)
-
-subsubsection\<open>Equivalence Between NS and Standard\<close>
-
-lemma Cauchy_NSCauchy:
-  assumes X: "Cauchy X" shows "NSCauchy X"
-proof (rule NSCauchyI)
-  fix M assume M: "M \<in> HNatInfinite"
-  fix N assume N: "N \<in> HNatInfinite"
-  have "starfun X M - starfun X N \<in> Infinitesimal"
-  proof (rule InfinitesimalI2)
-    fix r :: real assume r: "0 < r"
-    from CauchyD [OF X r]
-    obtain k where "\<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r" ..
-    hence "\<forall>m\<ge>star_of k. \<forall>n\<ge>star_of k.
-           hnorm (starfun X m - starfun X n) < star_of r"
-      by transfer
-    thus "hnorm (starfun X M - starfun X N) < star_of r"
-      using M N by (simp add: star_of_le_HNatInfinite)
-  qed
-  thus "starfun X M \<approx> starfun X N"
-    by (unfold approx_def)
-qed
-
-lemma NSCauchy_Cauchy:
-  assumes X: "NSCauchy X" shows "Cauchy X"
-proof (rule CauchyI)
-  fix r::real assume r: "0 < r"
-  have "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. hnorm (starfun X m - starfun X n) < star_of r"
-  proof (intro exI allI impI)
-    fix M assume "whn \<le> M"
-    with HNatInfinite_whn have M: "M \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    fix N assume "whn \<le> N"
-    with HNatInfinite_whn have N: "N \<in> HNatInfinite"
-      by (rule HNatInfinite_upward_closed)
-    from X M N have "starfun X M \<approx> starfun X N"
-      by (rule NSCauchyD)
-    hence "starfun X M - starfun X N \<in> Infinitesimal"
-      by (unfold approx_def)
-    thus "hnorm (starfun X M - starfun X N) < star_of r"
-      using r by (rule InfinitesimalD2)
-  qed
-  thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r"
-    by transfer
-qed
-
-theorem NSCauchy_Cauchy_iff: "NSCauchy X = Cauchy X"
-by (blast intro!: NSCauchy_Cauchy Cauchy_NSCauchy)
-
-subsubsection \<open>Cauchy Sequences are Bounded\<close>
-
-text\<open>A Cauchy sequence is bounded -- nonstandard version\<close>
-
-lemma NSCauchy_NSBseq: "NSCauchy X ==> NSBseq X"
-by (simp add: Cauchy_Bseq Bseq_NSBseq_iff [symmetric] NSCauchy_Cauchy_iff)
-
-subsubsection \<open>Cauchy Sequences are Convergent\<close>
-
-text\<open>Equivalence of Cauchy criterion and convergence:
-  We will prove this using our NS formulation which provides a
-  much easier proof than using the standard definition. We do not
-  need to use properties of subsequences such as boundedness,
-  monotonicity etc... Compare with Harrison's corresponding proof
-  in HOL which is much longer and more complicated. Of course, we do
-  not have problems which he encountered with guessing the right
-  instantiations for his 'espsilon-delta' proof(s) in this case
-  since the NS formulations do not involve existential quantifiers.\<close>
-
-lemma NSconvergent_NSCauchy: "NSconvergent X \<Longrightarrow> NSCauchy X"
-apply (simp add: NSconvergent_def NSLIMSEQ_def NSCauchy_def, safe)
-apply (auto intro: approx_trans2)
-done
-
-lemma real_NSCauchy_NSconvergent:
-  fixes X :: "nat \<Rightarrow> real"
-  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
-apply (simp add: NSconvergent_def NSLIMSEQ_def)
-apply (frule NSCauchy_NSBseq)
-apply (simp add: NSBseq_def NSCauchy_def)
-apply (drule HNatInfinite_whn [THEN [2] bspec])
-apply (drule HNatInfinite_whn [THEN [2] bspec])
-apply (auto dest!: st_part_Ex simp add: SReal_iff)
-apply (blast intro: approx_trans3)
-done
-
-lemma NSCauchy_NSconvergent:
-  fixes X :: "nat \<Rightarrow> 'a::banach"
-  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
-apply (drule NSCauchy_Cauchy [THEN Cauchy_convergent])
-apply (erule convergent_NSconvergent_iff [THEN iffD1])
-done
-
-lemma NSCauchy_NSconvergent_iff:
-  fixes X :: "nat \<Rightarrow> 'a::banach"
-  shows "NSCauchy X = NSconvergent X"
-by (fast intro: NSCauchy_NSconvergent NSconvergent_NSCauchy)
-
-
-subsection \<open>Power Sequences\<close>
-
-text\<open>The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
-"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
-  also fact that bounded and monotonic sequence converges.\<close>
-
-text\<open>We now use NS criterion to bring proof of theorem through\<close>
-
-lemma NSLIMSEQ_realpow_zero:
-  "[| 0 \<le> (x::real); x < 1 |] ==> (%n. x ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-apply (simp add: NSLIMSEQ_def)
-apply (auto dest!: convergent_realpow simp add: convergent_NSconvergent_iff)
-apply (frule NSconvergentD)
-apply (auto simp add: NSLIMSEQ_def NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfun_pow)
-apply (frule HNatInfinite_add_one)
-apply (drule bspec, assumption)
-apply (drule bspec, assumption)
-apply (drule_tac x = "N + (1::hypnat) " in bspec, assumption)
-apply (simp add: hyperpow_add)
-apply (drule approx_mult_subst_star_of, assumption)
-apply (drule approx_trans3, assumption)
-apply (auto simp del: star_of_mult simp add: star_of_mult [symmetric])
-done
-
-lemma NSLIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-by (simp add: LIMSEQ_rabs_realpow_zero LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-lemma NSLIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-by (simp add: LIMSEQ_rabs_realpow_zero2 LIMSEQ_NSLIMSEQ_iff [symmetric])
-
-(***---------------------------------------------------------------
-    Theorems proved by Harrison in HOL that we do not need
-    in order to prove equivalence between Cauchy criterion
-    and convergence:
- -- Show that every sequence contains a monotonic subsequence
-Goal "\<exists>f. subseq f & monoseq (%n. s (f n))"
- -- Show that a subsequence of a bounded sequence is bounded
-Goal "Bseq X ==> Bseq (%n. X (f n))";
- -- Show we can take subsequential terms arbitrarily far
-    up a sequence
-Goal "subseq f ==> n \<le> f(n)";
-Goal "subseq f ==> \<exists>n. N1 \<le> n & N2 \<le> f(n)";
- ---------------------------------------------------------------***)
-
-end
--- a/src/HOL/NSA/HSeries.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,204 +0,0 @@
-(*  Title       : HSeries.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-
-Converted to Isar and polished by lcp
-*)
-
-section\<open>Finite Summation and Infinite Series for Hyperreals\<close>
-
-theory HSeries
-imports HSEQ
-begin
-
-definition
-  sumhr :: "(hypnat * hypnat * (nat=>real)) => hypreal" where
-  "sumhr =
-      (%(M,N,f). starfun2 (%m n. setsum f {m..<n}) M N)"
-
-definition
-  NSsums  :: "[nat=>real,real] => bool"     (infixr "NSsums" 80) where
-  "f NSsums s = (%n. setsum f {..<n}) \<longlonglongrightarrow>\<^sub>N\<^sub>S s"
-
-definition
-  NSsummable :: "(nat=>real) => bool" where
-  "NSsummable f = (\<exists>s. f NSsums s)"
-
-definition
-  NSsuminf   :: "(nat=>real) => real" where
-  "NSsuminf f = (THE s. f NSsums s)"
-
-lemma sumhr_app: "sumhr(M,N,f) = ( *f2* (\<lambda>m n. setsum f {m..<n})) M N"
-by (simp add: sumhr_def)
-
-text\<open>Base case in definition of @{term sumr}\<close>
-lemma sumhr_zero [simp]: "!!m. sumhr (m,0,f) = 0"
-unfolding sumhr_app by transfer simp
-
-text\<open>Recursive case in definition of @{term sumr}\<close>
-lemma sumhr_if:
-     "!!m n. sumhr(m,n+1,f) =
-      (if n + 1 \<le> m then 0 else sumhr(m,n,f) + ( *f* f) n)"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_Suc_zero [simp]: "!!n. sumhr (n + 1, n, f) = 0"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_eq_bounds [simp]: "!!n. sumhr (n,n,f) = 0"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_Suc [simp]: "!!m. sumhr (m,m + 1,f) = ( *f* f) m"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_add_lbound_zero [simp]: "!!k m. sumhr(m+k,k,f) = 0"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_add:
-  "!!m n. sumhr (m,n,f) + sumhr(m,n,g) = sumhr(m,n,%i. f i + g i)"
-unfolding sumhr_app by transfer (rule setsum.distrib [symmetric])
-
-lemma sumhr_mult:
-  "!!m n. hypreal_of_real r * sumhr(m,n,f) = sumhr(m,n,%n. r * f n)"
-unfolding sumhr_app by transfer (rule setsum_right_distrib)
-
-lemma sumhr_split_add:
-  "!!n p. n < p ==> sumhr(0,n,f) + sumhr(n,p,f) = sumhr(0,p,f)"
-unfolding sumhr_app by transfer (simp add: setsum_add_nat_ivl)
-
-lemma sumhr_split_diff: "n<p ==> sumhr(0,p,f) - sumhr(0,n,f) = sumhr(n,p,f)"
-by (drule_tac f = f in sumhr_split_add [symmetric], simp)
-
-lemma sumhr_hrabs: "!!m n. \<bar>sumhr(m,n,f)\<bar> \<le> sumhr(m,n,%i. \<bar>f i\<bar>)"
-unfolding sumhr_app by transfer (rule setsum_abs)
-
-text\<open>other general version also needed\<close>
-lemma sumhr_fun_hypnat_eq:
-   "(\<forall>r. m \<le> r & r < n --> f r = g r) -->
-      sumhr(hypnat_of_nat m, hypnat_of_nat n, f) =
-      sumhr(hypnat_of_nat m, hypnat_of_nat n, g)"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_const:
-     "!!n. sumhr(0, n, %i. r) = hypreal_of_hypnat n * hypreal_of_real r"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_less_bounds_zero [simp]: "!!m n. n < m ==> sumhr(m,n,f) = 0"
-unfolding sumhr_app by transfer simp
-
-lemma sumhr_minus: "!!m n. sumhr(m, n, %i. - f i) = - sumhr(m, n, f)"
-unfolding sumhr_app by transfer (rule setsum_negf)
-
-lemma sumhr_shift_bounds:
-  "!!m n. sumhr(m+hypnat_of_nat k,n+hypnat_of_nat k,f) =
-          sumhr(m,n,%i. f(i + k))"
-unfolding sumhr_app by transfer (rule setsum_shift_bounds_nat_ivl)
-
-
-subsection\<open>Nonstandard Sums\<close>
-
-text\<open>Infinite sums are obtained by summing to some infinite hypernatural
- (such as @{term whn})\<close>
-lemma sumhr_hypreal_of_hypnat_omega:
-      "sumhr(0,whn,%i. 1) = hypreal_of_hypnat whn"
-by (simp add: sumhr_const)
-
-lemma sumhr_hypreal_omega_minus_one: "sumhr(0, whn, %i. 1) = \<omega> - 1"
-apply (simp add: sumhr_const)
-(* FIXME: need lemma: hypreal_of_hypnat whn = \<omega> - 1 *)
-(* maybe define \<omega> = hypreal_of_hypnat whn + 1 *)
-apply (unfold star_class_defs omega_def hypnat_omega_def
-              of_hypnat_def star_of_def)
-apply (simp add: starfun_star_n starfun2_star_n)
-done
-
-lemma sumhr_minus_one_realpow_zero [simp]:
-     "!!N. sumhr(0, N + N, %i. (-1) ^ (i+1)) = 0"
-unfolding sumhr_app
-apply transfer
-apply (simp del: power_Suc add: mult_2 [symmetric])
-apply (induct_tac N)
-apply simp_all
-done
-
-lemma sumhr_interval_const:
-     "(\<forall>n. m \<le> Suc n --> f n = r) & m \<le> na
-      ==> sumhr(hypnat_of_nat m,hypnat_of_nat na,f) =
-          (hypreal_of_nat (na - m) * hypreal_of_real r)"
-unfolding sumhr_app by transfer simp
-
-lemma starfunNat_sumr: "!!N. ( *f* (%n. setsum f {0..<n})) N = sumhr(0,N,f)"
-unfolding sumhr_app by transfer (rule refl)
-
-lemma sumhr_hrabs_approx [simp]: "sumhr(0, M, f) \<approx> sumhr(0, N, f)
-      ==> \<bar>sumhr(M, N, f)\<bar> \<approx> 0"
-apply (cut_tac x = M and y = N in linorder_less_linear)
-apply (auto simp add: approx_refl)
-apply (drule approx_sym [THEN approx_minus_iff [THEN iffD1]])
-apply (auto dest: approx_hrabs
-            simp add: sumhr_split_diff)
-done
-
-(*----------------------------------------------------------------
-      infinite sums: Standard and NS theorems
- ----------------------------------------------------------------*)
-lemma sums_NSsums_iff: "(f sums l) = (f NSsums l)"
-by (simp add: sums_def NSsums_def LIMSEQ_NSLIMSEQ_iff)
-
-lemma summable_NSsummable_iff: "(summable f) = (NSsummable f)"
-by (simp add: summable_def NSsummable_def sums_NSsums_iff)
-
-lemma suminf_NSsuminf_iff: "(suminf f) = (NSsuminf f)"
-by (simp add: suminf_def NSsuminf_def sums_NSsums_iff)
-
-lemma NSsums_NSsummable: "f NSsums l ==> NSsummable f"
-by (simp add: NSsums_def NSsummable_def, blast)
-
-lemma NSsummable_NSsums: "NSsummable f ==> f NSsums (NSsuminf f)"
-apply (simp add: NSsummable_def NSsuminf_def NSsums_def)
-apply (blast intro: theI NSLIMSEQ_unique)
-done
-
-lemma NSsums_unique: "f NSsums s ==> (s = NSsuminf f)"
-by (simp add: suminf_NSsuminf_iff [symmetric] sums_NSsums_iff sums_unique)
-
-lemma NSseries_zero:
-  "\<forall>m. n \<le> Suc m --> f(m) = 0 ==> f NSsums (setsum f {..<n})"
-by (auto simp add: sums_NSsums_iff [symmetric] not_le[symmetric] intro!: sums_finite)
-
-lemma NSsummable_NSCauchy:
-     "NSsummable f =
-      (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. \<bar>sumhr(M,N,f)\<bar> \<approx> 0)"
-apply (auto simp add: summable_NSsummable_iff [symmetric]
-       summable_iff_convergent convergent_NSconvergent_iff atLeast0LessThan[symmetric]
-       NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfunNat_sumr)
-apply (cut_tac x = M and y = N in linorder_less_linear)
-apply auto
-apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
-apply (rule_tac [2] approx_minus_iff [THEN iffD2])
-apply (auto dest: approx_hrabs_zero_cancel
-            simp add: sumhr_split_diff atLeast0LessThan[symmetric])
-done
-
-text\<open>Terms of a convergent series tend to zero\<close>
-lemma NSsummable_NSLIMSEQ_zero: "NSsummable f ==> f \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
-apply (auto simp add: NSLIMSEQ_def NSsummable_NSCauchy)
-apply (drule bspec, auto)
-apply (drule_tac x = "N + 1 " in bspec)
-apply (auto intro: HNatInfinite_add_one approx_hrabs_zero_cancel)
-done
-
-text\<open>Nonstandard comparison test\<close>
-lemma NSsummable_comparison_test:
-     "[| \<exists>N. \<forall>n. N \<le> n --> \<bar>f n\<bar> \<le> g n; NSsummable g |] ==> NSsummable f"
-apply (fold summable_NSsummable_iff)
-apply (rule summable_comparison_test, simp, assumption)
-done
-
-lemma NSsummable_rabs_comparison_test:
-     "[| \<exists>N. \<forall>n. N \<le> n --> \<bar>f n\<bar> \<le> g n; NSsummable g |]
-      ==> NSsummable (%k. \<bar>f k\<bar>)"
-apply (rule NSsummable_comparison_test)
-apply (auto)
-done
-
-end
--- a/src/HOL/NSA/HTranscendental.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,613 +0,0 @@
-(*  Title       : HTranscendental.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2001 University of Edinburgh
-
-Converted to Isar and polished by lcp
-*)
-
-section\<open>Nonstandard Extensions of Transcendental Functions\<close>
-
-theory HTranscendental
-imports Transcendental HSeries HDeriv
-begin
-
-definition
-  exphr :: "real => hypreal" where
-    \<comment>\<open>define exponential function using standard part\<close>
-  "exphr x =  st(sumhr (0, whn, %n. inverse (fact n) * (x ^ n)))"
-
-definition
-  sinhr :: "real => hypreal" where
-  "sinhr x = st(sumhr (0, whn, %n. sin_coeff n * x ^ n))"
-  
-definition
-  coshr :: "real => hypreal" where
-  "coshr x = st(sumhr (0, whn, %n. cos_coeff n * x ^ n))"
-
-
-subsection\<open>Nonstandard Extension of Square Root Function\<close>
-
-lemma STAR_sqrt_zero [simp]: "( *f* sqrt) 0 = 0"
-by (simp add: starfun star_n_zero_num)
-
-lemma STAR_sqrt_one [simp]: "( *f* sqrt) 1 = 1"
-by (simp add: starfun star_n_one_num)
-
-lemma hypreal_sqrt_pow2_iff: "(( *f* sqrt)(x) ^ 2 = x) = (0 \<le> x)"
-apply (cases x)
-apply (auto simp add: star_n_le star_n_zero_num starfun hrealpow star_n_eq_iff
-            simp del: hpowr_Suc power_Suc)
-done
-
-lemma hypreal_sqrt_gt_zero_pow2: "!!x. 0 < x ==> ( *f* sqrt) (x) ^ 2 = x"
-by (transfer, simp)
-
-lemma hypreal_sqrt_pow2_gt_zero: "0 < x ==> 0 < ( *f* sqrt) (x) ^ 2"
-by (frule hypreal_sqrt_gt_zero_pow2, auto)
-
-lemma hypreal_sqrt_not_zero: "0 < x ==> ( *f* sqrt) (x) \<noteq> 0"
-apply (frule hypreal_sqrt_pow2_gt_zero)
-apply (auto simp add: numeral_2_eq_2)
-done
-
-lemma hypreal_inverse_sqrt_pow2:
-     "0 < x ==> inverse (( *f* sqrt)(x)) ^ 2 = inverse x"
-apply (cut_tac n = 2 and a = "( *f* sqrt) x" in power_inverse [symmetric])
-apply (auto dest: hypreal_sqrt_gt_zero_pow2)
-done
-
-lemma hypreal_sqrt_mult_distrib: 
-    "!!x y. [|0 < x; 0 <y |] ==>
-      ( *f* sqrt)(x*y) = ( *f* sqrt)(x) * ( *f* sqrt)(y)"
-apply transfer
-apply (auto intro: real_sqrt_mult_distrib) 
-done
-
-lemma hypreal_sqrt_mult_distrib2:
-     "[|0\<le>x; 0\<le>y |] ==>  
-     ( *f* sqrt)(x*y) =  ( *f* sqrt)(x) * ( *f* sqrt)(y)"
-by (auto intro: hypreal_sqrt_mult_distrib simp add: order_le_less)
-
-lemma hypreal_sqrt_approx_zero [simp]:
-     "0 < x ==> (( *f* sqrt)(x) \<approx> 0) = (x \<approx> 0)"
-apply (auto simp add: mem_infmal_iff [symmetric])
-apply (rule hypreal_sqrt_gt_zero_pow2 [THEN subst])
-apply (auto intro: Infinitesimal_mult 
-            dest!: hypreal_sqrt_gt_zero_pow2 [THEN ssubst] 
-            simp add: numeral_2_eq_2)
-done
-
-lemma hypreal_sqrt_approx_zero2 [simp]:
-     "0 \<le> x ==> (( *f* sqrt)(x) \<approx> 0) = (x \<approx> 0)"
-by (auto simp add: order_le_less)
-
-lemma hypreal_sqrt_sum_squares [simp]:
-     "(( *f* sqrt)(x*x + y*y + z*z) \<approx> 0) = (x*x + y*y + z*z \<approx> 0)"
-apply (rule hypreal_sqrt_approx_zero2)
-apply (rule add_nonneg_nonneg)+
-apply (auto)
-done
-
-lemma hypreal_sqrt_sum_squares2 [simp]:
-     "(( *f* sqrt)(x*x + y*y) \<approx> 0) = (x*x + y*y \<approx> 0)"
-apply (rule hypreal_sqrt_approx_zero2)
-apply (rule add_nonneg_nonneg)
-apply (auto)
-done
-
-lemma hypreal_sqrt_gt_zero: "!!x. 0 < x ==> 0 < ( *f* sqrt)(x)"
-apply transfer
-apply (auto intro: real_sqrt_gt_zero)
-done
-
-lemma hypreal_sqrt_ge_zero: "0 \<le> x ==> 0 \<le> ( *f* sqrt)(x)"
-by (auto intro: hypreal_sqrt_gt_zero simp add: order_le_less)
-
-lemma hypreal_sqrt_hrabs [simp]: "!!x. ( *f* sqrt)(x\<^sup>2) = \<bar>x\<bar>"
-by (transfer, simp)
-
-lemma hypreal_sqrt_hrabs2 [simp]: "!!x. ( *f* sqrt)(x*x) = \<bar>x\<bar>"
-by (transfer, simp)
-
-lemma hypreal_sqrt_hyperpow_hrabs [simp]:
-     "!!x. ( *f* sqrt)(x pow (hypnat_of_nat 2)) = \<bar>x\<bar>"
-by (transfer, simp)
-
-lemma star_sqrt_HFinite: "\<lbrakk>x \<in> HFinite; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> HFinite"
-apply (rule HFinite_square_iff [THEN iffD1])
-apply (simp only: hypreal_sqrt_mult_distrib2 [symmetric], simp) 
-done
-
-lemma st_hypreal_sqrt:
-     "[| x \<in> HFinite; 0 \<le> x |] ==> st(( *f* sqrt) x) = ( *f* sqrt)(st x)"
-apply (rule power_inject_base [where n=1])
-apply (auto intro!: st_zero_le hypreal_sqrt_ge_zero)
-apply (rule st_mult [THEN subst])
-apply (rule_tac [3] hypreal_sqrt_mult_distrib2 [THEN subst])
-apply (rule_tac [5] hypreal_sqrt_mult_distrib2 [THEN subst])
-apply (auto simp add: st_hrabs st_zero_le star_sqrt_HFinite)
-done
-
-lemma hypreal_sqrt_sum_squares_ge1 [simp]: "!!x y. x \<le> ( *f* sqrt)(x\<^sup>2 + y\<^sup>2)"
-by transfer (rule real_sqrt_sum_squares_ge1)
-
-lemma HFinite_hypreal_sqrt:
-     "[| 0 \<le> x; x \<in> HFinite |] ==> ( *f* sqrt) x \<in> HFinite"
-apply (auto simp add: order_le_less)
-apply (rule HFinite_square_iff [THEN iffD1])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2)
-done
-
-lemma HFinite_hypreal_sqrt_imp_HFinite:
-     "[| 0 \<le> x; ( *f* sqrt) x \<in> HFinite |] ==> x \<in> HFinite"
-apply (auto simp add: order_le_less)
-apply (drule HFinite_square_iff [THEN iffD2])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2 del: HFinite_square_iff)
-done
-
-lemma HFinite_hypreal_sqrt_iff [simp]:
-     "0 \<le> x ==> (( *f* sqrt) x \<in> HFinite) = (x \<in> HFinite)"
-by (blast intro: HFinite_hypreal_sqrt HFinite_hypreal_sqrt_imp_HFinite)
-
-lemma HFinite_sqrt_sum_squares [simp]:
-     "(( *f* sqrt)(x*x + y*y) \<in> HFinite) = (x*x + y*y \<in> HFinite)"
-apply (rule HFinite_hypreal_sqrt_iff)
-apply (rule add_nonneg_nonneg)
-apply (auto)
-done
-
-lemma Infinitesimal_hypreal_sqrt:
-     "[| 0 \<le> x; x \<in> Infinitesimal |] ==> ( *f* sqrt) x \<in> Infinitesimal"
-apply (auto simp add: order_le_less)
-apply (rule Infinitesimal_square_iff [THEN iffD2])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2)
-done
-
-lemma Infinitesimal_hypreal_sqrt_imp_Infinitesimal:
-     "[| 0 \<le> x; ( *f* sqrt) x \<in> Infinitesimal |] ==> x \<in> Infinitesimal"
-apply (auto simp add: order_le_less)
-apply (drule Infinitesimal_square_iff [THEN iffD1])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2 del: Infinitesimal_square_iff [symmetric])
-done
-
-lemma Infinitesimal_hypreal_sqrt_iff [simp]:
-     "0 \<le> x ==> (( *f* sqrt) x \<in> Infinitesimal) = (x \<in> Infinitesimal)"
-by (blast intro: Infinitesimal_hypreal_sqrt_imp_Infinitesimal Infinitesimal_hypreal_sqrt)
-
-lemma Infinitesimal_sqrt_sum_squares [simp]:
-     "(( *f* sqrt)(x*x + y*y) \<in> Infinitesimal) = (x*x + y*y \<in> Infinitesimal)"
-apply (rule Infinitesimal_hypreal_sqrt_iff)
-apply (rule add_nonneg_nonneg)
-apply (auto)
-done
-
-lemma HInfinite_hypreal_sqrt:
-     "[| 0 \<le> x; x \<in> HInfinite |] ==> ( *f* sqrt) x \<in> HInfinite"
-apply (auto simp add: order_le_less)
-apply (rule HInfinite_square_iff [THEN iffD1])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2)
-done
-
-lemma HInfinite_hypreal_sqrt_imp_HInfinite:
-     "[| 0 \<le> x; ( *f* sqrt) x \<in> HInfinite |] ==> x \<in> HInfinite"
-apply (auto simp add: order_le_less)
-apply (drule HInfinite_square_iff [THEN iffD2])
-apply (drule hypreal_sqrt_gt_zero_pow2)
-apply (simp add: numeral_2_eq_2 del: HInfinite_square_iff)
-done
-
-lemma HInfinite_hypreal_sqrt_iff [simp]:
-     "0 \<le> x ==> (( *f* sqrt) x \<in> HInfinite) = (x \<in> HInfinite)"
-by (blast intro: HInfinite_hypreal_sqrt HInfinite_hypreal_sqrt_imp_HInfinite)
-
-lemma HInfinite_sqrt_sum_squares [simp]:
-     "(( *f* sqrt)(x*x + y*y) \<in> HInfinite) = (x*x + y*y \<in> HInfinite)"
-apply (rule HInfinite_hypreal_sqrt_iff)
-apply (rule add_nonneg_nonneg)
-apply (auto)
-done
-
-lemma HFinite_exp [simp]:
-     "sumhr (0, whn, %n. inverse (fact n) * x ^ n) \<in> HFinite"
-unfolding sumhr_app
-apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan)
-apply (rule NSBseqD2)
-apply (rule NSconvergent_NSBseq)
-apply (rule convergent_NSconvergent_iff [THEN iffD1])
-apply (rule summable_iff_convergent [THEN iffD1])
-apply (rule summable_exp)
-done
-
-lemma exphr_zero [simp]: "exphr 0 = 1"
-apply (simp add: exphr_def sumhr_split_add [OF hypnat_one_less_hypnat_omega, symmetric])
-apply (rule st_unique, simp)
-apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
-apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
-apply (rule_tac x="whn" in spec)
-apply (unfold sumhr_app, transfer, simp add: power_0_left)
-done
-
-lemma coshr_zero [simp]: "coshr 0 = 1"
-apply (simp add: coshr_def sumhr_split_add
-                   [OF hypnat_one_less_hypnat_omega, symmetric]) 
-apply (rule st_unique, simp)
-apply (rule subst [where P="\<lambda>x. 1 \<approx> x", OF _ approx_refl])
-apply (rule rev_mp [OF hypnat_one_less_hypnat_omega])
-apply (rule_tac x="whn" in spec)
-apply (unfold sumhr_app, transfer, simp add: cos_coeff_def power_0_left)
-done
-
-lemma STAR_exp_zero_approx_one [simp]: "( *f* exp) (0::hypreal) \<approx> 1"
-apply (subgoal_tac "( *f* exp) (0::hypreal) = 1", simp)
-apply (transfer, simp)
-done
-
-lemma STAR_exp_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* exp) (x::hypreal) \<approx> 1"
-apply (case_tac "x = 0")
-apply (cut_tac [2] x = 0 in DERIV_exp)
-apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
-apply (drule_tac x = x in bspec, auto)
-apply (drule_tac c = x in approx_mult1)
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD] 
-            simp add: mult.assoc)
-apply (rule approx_add_right_cancel [where d="-1"])
-apply (rule approx_sym [THEN [2] approx_trans2])
-apply (auto simp add: mem_infmal_iff)
-done
-
-lemma STAR_exp_epsilon [simp]: "( *f* exp) \<epsilon> \<approx> 1"
-by (auto intro: STAR_exp_Infinitesimal)
-
-lemma STAR_exp_add:
-  "!!(x::'a:: {banach,real_normed_field} star) y. ( *f* exp)(x + y) = ( *f* exp) x * ( *f* exp) y"
-by transfer (rule exp_add)
-
-lemma exphr_hypreal_of_real_exp_eq: "exphr x = hypreal_of_real (exp x)"
-apply (simp add: exphr_def)
-apply (rule st_unique, simp)
-apply (subst starfunNat_sumr [symmetric])
-unfolding atLeast0LessThan
-apply (rule NSLIMSEQ_D [THEN approx_sym])
-apply (rule LIMSEQ_NSLIMSEQ)
-apply (subst sums_def [symmetric])
-apply (cut_tac exp_converges [where x=x], simp)
-apply (rule HNatInfinite_whn)
-done
-
-lemma starfun_exp_ge_add_one_self [simp]: "!!x::hypreal. 0 \<le> x ==> (1 + x) \<le> ( *f* exp) x"
-by transfer (rule exp_ge_add_one_self_aux)
-
-(* exp (oo) is infinite *)
-lemma starfun_exp_HInfinite:
-     "[| x \<in> HInfinite; 0 \<le> x |] ==> ( *f* exp) (x::hypreal) \<in> HInfinite"
-apply (frule starfun_exp_ge_add_one_self)
-apply (rule HInfinite_ge_HInfinite, assumption)
-apply (rule order_trans [of _ "1+x"], auto) 
-done
-
-lemma starfun_exp_minus:
-  "!!x::'a:: {banach,real_normed_field} star. ( *f* exp) (-x) = inverse(( *f* exp) x)"
-by transfer (rule exp_minus)
-
-(* exp (-oo) is infinitesimal *)
-lemma starfun_exp_Infinitesimal:
-     "[| x \<in> HInfinite; x \<le> 0 |] ==> ( *f* exp) (x::hypreal) \<in> Infinitesimal"
-apply (subgoal_tac "\<exists>y. x = - y")
-apply (rule_tac [2] x = "- x" in exI)
-apply (auto intro!: HInfinite_inverse_Infinitesimal starfun_exp_HInfinite
-            simp add: starfun_exp_minus HInfinite_minus_iff)
-done
-
-lemma starfun_exp_gt_one [simp]: "!!x::hypreal. 0 < x ==> 1 < ( *f* exp) x"
-by transfer (rule exp_gt_one)
-
-abbreviation real_ln :: "real \<Rightarrow> real" where 
-  "real_ln \<equiv> ln"
-
-lemma starfun_ln_exp [simp]: "!!x. ( *f* real_ln) (( *f* exp) x) = x"
-by transfer (rule ln_exp)
-
-lemma starfun_exp_ln_iff [simp]: "!!x. (( *f* exp)(( *f* real_ln) x) = x) = (0 < x)"
-by transfer (rule exp_ln_iff)
-
-lemma starfun_exp_ln_eq: "!!u x. ( *f* exp) u = x ==> ( *f* real_ln) x = u"
-by transfer (rule ln_unique)
-
-lemma starfun_ln_less_self [simp]: "!!x. 0 < x ==> ( *f* real_ln) x < x"
-by transfer (rule ln_less_self)
-
-lemma starfun_ln_ge_zero [simp]: "!!x. 1 \<le> x ==> 0 \<le> ( *f* real_ln) x"
-by transfer (rule ln_ge_zero)
-
-lemma starfun_ln_gt_zero [simp]: "!!x .1 < x ==> 0 < ( *f* real_ln) x"
-by transfer (rule ln_gt_zero)
-
-lemma starfun_ln_not_eq_zero [simp]: "!!x. [| 0 < x; x \<noteq> 1 |] ==> ( *f* real_ln) x \<noteq> 0"
-by transfer simp
-
-lemma starfun_ln_HFinite: "[| x \<in> HFinite; 1 \<le> x |] ==> ( *f* real_ln) x \<in> HFinite"
-apply (rule HFinite_bounded)
-apply assumption 
-apply (simp_all add: starfun_ln_less_self order_less_imp_le)
-done
-
-lemma starfun_ln_inverse: "!!x. 0 < x ==> ( *f* real_ln) (inverse x) = -( *f* ln) x"
-by transfer (rule ln_inverse)
-
-lemma starfun_abs_exp_cancel: "\<And>x. \<bar>( *f* exp) (x::hypreal)\<bar> = ( *f* exp) x"
-by transfer (rule abs_exp_cancel)
-
-lemma starfun_exp_less_mono: "\<And>x y::hypreal. x < y \<Longrightarrow> ( *f* exp) x < ( *f* exp) y"
-by transfer (rule exp_less_mono)
-
-lemma starfun_exp_HFinite: "x \<in> HFinite ==> ( *f* exp) (x::hypreal) \<in> HFinite"
-apply (auto simp add: HFinite_def, rename_tac u)
-apply (rule_tac x="( *f* exp) u" in rev_bexI)
-apply (simp add: Reals_eq_Standard)
-apply (simp add: starfun_abs_exp_cancel)
-apply (simp add: starfun_exp_less_mono)
-done
-
-lemma starfun_exp_add_HFinite_Infinitesimal_approx:
-     "[|x \<in> Infinitesimal; z \<in> HFinite |] ==> ( *f* exp) (z + x::hypreal) \<approx> ( *f* exp) z"
-apply (simp add: STAR_exp_add)
-apply (frule STAR_exp_Infinitesimal)
-apply (drule approx_mult2)
-apply (auto intro: starfun_exp_HFinite)
-done
-
-(* using previous result to get to result *)
-lemma starfun_ln_HInfinite:
-     "[| x \<in> HInfinite; 0 < x |] ==> ( *f* real_ln) x \<in> HInfinite"
-apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
-apply (drule starfun_exp_HFinite)
-apply (simp add: starfun_exp_ln_iff [THEN iffD2] HFinite_HInfinite_iff)
-done
-
-lemma starfun_exp_HInfinite_Infinitesimal_disj:
- "x \<in> HInfinite ==> ( *f* exp) x \<in> HInfinite | ( *f* exp) (x::hypreal) \<in> Infinitesimal"
-apply (insert linorder_linear [of x 0]) 
-apply (auto intro: starfun_exp_HInfinite starfun_exp_Infinitesimal)
-done
-
-(* check out this proof!!! *)
-lemma starfun_ln_HFinite_not_Infinitesimal:
-     "[| x \<in> HFinite - Infinitesimal; 0 < x |] ==> ( *f* real_ln) x \<in> HFinite"
-apply (rule ccontr, drule HInfinite_HFinite_iff [THEN iffD2])
-apply (drule starfun_exp_HInfinite_Infinitesimal_disj)
-apply (simp add: starfun_exp_ln_iff [symmetric] HInfinite_HFinite_iff
-            del: starfun_exp_ln_iff)
-done
-
-(* we do proof by considering ln of 1/x *)
-lemma starfun_ln_Infinitesimal_HInfinite:
-     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* real_ln) x \<in> HInfinite"
-apply (drule Infinitesimal_inverse_HInfinite)
-apply (frule positive_imp_inverse_positive)
-apply (drule_tac [2] starfun_ln_HInfinite)
-apply (auto simp add: starfun_ln_inverse HInfinite_minus_iff)
-done
-
-lemma starfun_ln_less_zero: "!!x. [| 0 < x; x < 1 |] ==> ( *f* real_ln) x < 0"
-by transfer (rule ln_less_zero)
-
-lemma starfun_ln_Infinitesimal_less_zero:
-     "[| x \<in> Infinitesimal; 0 < x |] ==> ( *f* real_ln) x < 0"
-by (auto intro!: starfun_ln_less_zero simp add: Infinitesimal_def)
-
-lemma starfun_ln_HInfinite_gt_zero:
-     "[| x \<in> HInfinite; 0 < x |] ==> 0 < ( *f* real_ln) x"
-by (auto intro!: starfun_ln_gt_zero simp add: HInfinite_def)
-
-
-(*
-Goalw [NSLIM_def] "(%h. ((x powr h) - 1) / h) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S ln x"
-*)
-
-lemma HFinite_sin [simp]: "sumhr (0, whn, %n. sin_coeff n * x ^ n) \<in> HFinite"
-unfolding sumhr_app
-apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan)
-apply (rule NSBseqD2)
-apply (rule NSconvergent_NSBseq)
-apply (rule convergent_NSconvergent_iff [THEN iffD1])
-apply (rule summable_iff_convergent [THEN iffD1])
-using summable_norm_sin [of x]
-apply (simp add: summable_rabs_cancel)
-done
-
-lemma STAR_sin_zero [simp]: "( *f* sin) 0 = 0"
-by transfer (rule sin_zero)
-
-lemma STAR_sin_Infinitesimal [simp]:
-  fixes x :: "'a::{real_normed_field,banach} star"
-  shows "x \<in> Infinitesimal ==> ( *f* sin) x \<approx> x"
-apply (case_tac "x = 0")
-apply (cut_tac [2] x = 0 in DERIV_sin)
-apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
-apply (drule bspec [where x = x], auto)
-apply (drule approx_mult1 [where c = x])
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-           simp add: mult.assoc)
-done
-
-lemma HFinite_cos [simp]: "sumhr (0, whn, %n. cos_coeff n * x ^ n) \<in> HFinite"
-unfolding sumhr_app
-apply (simp only: star_zero_def starfun2_star_of atLeast0LessThan)
-apply (rule NSBseqD2)
-apply (rule NSconvergent_NSBseq)
-apply (rule convergent_NSconvergent_iff [THEN iffD1])
-apply (rule summable_iff_convergent [THEN iffD1])
-using summable_norm_cos [of x]
-apply (simp add: summable_rabs_cancel)
-done
-
-lemma STAR_cos_zero [simp]: "( *f* cos) 0 = 1"
-by transfer (rule cos_zero)
-
-lemma STAR_cos_Infinitesimal [simp]:
-  fixes x :: "'a::{real_normed_field,banach} star"
-  shows "x \<in> Infinitesimal ==> ( *f* cos) x \<approx> 1"
-apply (case_tac "x = 0")
-apply (cut_tac [2] x = 0 in DERIV_cos)
-apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
-apply (drule bspec [where x = x])
-apply auto
-apply (drule approx_mult1 [where c = x])
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-            simp add: mult.assoc)
-apply (rule approx_add_right_cancel [where d = "-1"])
-apply simp
-done
-
-lemma STAR_tan_zero [simp]: "( *f* tan) 0 = 0"
-by transfer (rule tan_zero)
-
-lemma STAR_tan_Infinitesimal: "x \<in> Infinitesimal ==> ( *f* tan) x \<approx> x"
-apply (case_tac "x = 0")
-apply (cut_tac [2] x = 0 in DERIV_tan)
-apply (auto simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
-apply (drule bspec [where x = x], auto)
-apply (drule approx_mult1 [where c = x])
-apply (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]
-             simp add: mult.assoc)
-done
-
-lemma STAR_sin_cos_Infinitesimal_mult:
-  fixes x :: "'a::{real_normed_field,banach} star"
-  shows "x \<in> Infinitesimal ==> ( *f* sin) x * ( *f* cos) x \<approx> x"
-using approx_mult_HFinite [of "( *f* sin) x" _ "( *f* cos) x" 1] 
-by (simp add: Infinitesimal_subset_HFinite [THEN subsetD])
-
-lemma HFinite_pi: "hypreal_of_real pi \<in> HFinite"
-by simp
-
-(* lemmas *)
-
-lemma lemma_split_hypreal_of_real:
-     "N \<in> HNatInfinite  
-      ==> hypreal_of_real a =  
-          hypreal_of_hypnat N * (inverse(hypreal_of_hypnat N) * hypreal_of_real a)"
-by (simp add: mult.assoc [symmetric] zero_less_HNatInfinite)
-
-lemma STAR_sin_Infinitesimal_divide:
-  fixes x :: "'a::{real_normed_field,banach} star"
-  shows "[|x \<in> Infinitesimal; x \<noteq> 0 |] ==> ( *f* sin) x/x \<approx> 1"
-using DERIV_sin [of "0::'a"]
-by (simp add: NSDERIV_DERIV_iff [symmetric] nsderiv_def)
-
-(*------------------------------------------------------------------------*) 
-(* sin* (1/n) * 1/(1/n) \<approx> 1 for n = oo                                   *)
-(*------------------------------------------------------------------------*)
-
-lemma lemma_sin_pi:
-     "n \<in> HNatInfinite  
-      ==> ( *f* sin) (inverse (hypreal_of_hypnat n))/(inverse (hypreal_of_hypnat n)) \<approx> 1"
-apply (rule STAR_sin_Infinitesimal_divide)
-apply (auto simp add: zero_less_HNatInfinite)
-done
-
-lemma STAR_sin_inverse_HNatInfinite:
-     "n \<in> HNatInfinite  
-      ==> ( *f* sin) (inverse (hypreal_of_hypnat n)) * hypreal_of_hypnat n \<approx> 1"
-apply (frule lemma_sin_pi)
-apply (simp add: divide_inverse)
-done
-
-lemma Infinitesimal_pi_divide_HNatInfinite: 
-     "N \<in> HNatInfinite  
-      ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<in> Infinitesimal"
-apply (simp add: divide_inverse)
-apply (auto intro: Infinitesimal_HFinite_mult2)
-done
-
-lemma pi_divide_HNatInfinite_not_zero [simp]:
-     "N \<in> HNatInfinite ==> hypreal_of_real pi/(hypreal_of_hypnat N) \<noteq> 0"
-by (simp add: zero_less_HNatInfinite)
-
-lemma STAR_sin_pi_divide_HNatInfinite_approx_pi:
-     "n \<in> HNatInfinite  
-      ==> ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n)) * hypreal_of_hypnat n  
-          \<approx> hypreal_of_real pi"
-apply (frule STAR_sin_Infinitesimal_divide
-               [OF Infinitesimal_pi_divide_HNatInfinite 
-                   pi_divide_HNatInfinite_not_zero])
-apply (auto)
-apply (rule approx_SReal_mult_cancel [of "inverse (hypreal_of_real pi)"])
-apply (auto intro: Reals_inverse simp add: divide_inverse ac_simps)
-done
-
-lemma STAR_sin_pi_divide_HNatInfinite_approx_pi2:
-     "n \<in> HNatInfinite  
-      ==> hypreal_of_hypnat n *  
-          ( *f* sin) (hypreal_of_real pi/(hypreal_of_hypnat n))  
-          \<approx> hypreal_of_real pi"
-apply (rule mult.commute [THEN subst])
-apply (erule STAR_sin_pi_divide_HNatInfinite_approx_pi)
-done
-
-lemma starfunNat_pi_divide_n_Infinitesimal: 
-     "N \<in> HNatInfinite ==> ( *f* (%x. pi / real x)) N \<in> Infinitesimal"
-by (auto intro!: Infinitesimal_HFinite_mult2 
-         simp add: starfun_mult [symmetric] divide_inverse
-                   starfun_inverse [symmetric] starfunNat_real_of_nat)
-
-lemma STAR_sin_pi_divide_n_approx:
-     "N \<in> HNatInfinite ==>  
-      ( *f* sin) (( *f* (%x. pi / real x)) N) \<approx>  
-      hypreal_of_real pi/(hypreal_of_hypnat N)"
-apply (simp add: starfunNat_real_of_nat [symmetric])
-apply (rule STAR_sin_Infinitesimal)
-apply (simp add: divide_inverse)
-apply (rule Infinitesimal_HFinite_mult2)
-apply (subst starfun_inverse)
-apply (erule starfunNat_inverse_real_of_nat_Infinitesimal)
-apply simp
-done
-
-lemma NSLIMSEQ_sin_pi: "(%n. real n * sin (pi / real n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S pi"
-apply (auto simp add: NSLIMSEQ_def starfun_mult [symmetric] starfunNat_real_of_nat)
-apply (rule_tac f1 = sin in starfun_o2 [THEN subst])
-apply (auto simp add: starfun_mult [symmetric] starfunNat_real_of_nat divide_inverse)
-apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
-apply (auto dest: STAR_sin_pi_divide_HNatInfinite_approx_pi 
-            simp add: starfunNat_real_of_nat mult.commute divide_inverse)
-done
-
-lemma NSLIMSEQ_cos_one: "(%n. cos (pi / real n))\<longlonglongrightarrow>\<^sub>N\<^sub>S 1"
-apply (simp add: NSLIMSEQ_def, auto)
-apply (rule_tac f1 = cos in starfun_o2 [THEN subst])
-apply (rule STAR_cos_Infinitesimal)
-apply (auto intro!: Infinitesimal_HFinite_mult2 
-            simp add: starfun_mult [symmetric] divide_inverse
-                      starfun_inverse [symmetric] starfunNat_real_of_nat)
-done
-
-lemma NSLIMSEQ_sin_cos_pi:
-     "(%n. real n * sin (pi / real n) * cos (pi / real n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S pi"
-by (insert NSLIMSEQ_mult [OF NSLIMSEQ_sin_pi NSLIMSEQ_cos_one], simp)
-
-
-text\<open>A familiar approximation to @{term "cos x"} when @{term x} is small\<close>
-
-lemma STAR_cos_Infinitesimal_approx:
-  fixes x :: "'a::{real_normed_field,banach} star"
-  shows "x \<in> Infinitesimal ==> ( *f* cos) x \<approx> 1 - x\<^sup>2"
-apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
-apply (auto simp add: Infinitesimal_approx_minus [symmetric] 
-            add.assoc [symmetric] numeral_2_eq_2)
-done
-
-lemma STAR_cos_Infinitesimal_approx2:
-  fixes x :: hypreal  \<comment>\<open>perhaps could be generalised, like many other hypreal results\<close>
-  shows "x \<in> Infinitesimal ==> ( *f* cos) x \<approx> 1 - (x\<^sup>2)/2"
-apply (rule STAR_cos_Infinitesimal [THEN approx_trans])
-apply (auto intro: Infinitesimal_SReal_divide Infinitesimal_mult
-            simp add: Infinitesimal_approx_minus [symmetric] numeral_2_eq_2)
-done
-
-end
--- a/src/HOL/NSA/HyperDef.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,540 +0,0 @@
-(*  Title       : HOL/NSA/HyperDef.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-*)
-
-section\<open>Construction of Hyperreals Using Ultrafilters\<close>
-
-theory HyperDef
-imports Complex_Main HyperNat
-begin
-
-type_synonym hypreal = "real star"
-
-abbreviation
-  hypreal_of_real :: "real => real star" where
-  "hypreal_of_real == star_of"
-
-abbreviation
-  hypreal_of_hypnat :: "hypnat \<Rightarrow> hypreal" where
-  "hypreal_of_hypnat \<equiv> of_hypnat"
-
-definition
-  omega :: hypreal  ("\<omega>") where
-   \<comment> \<open>an infinite number \<open>= [<1,2,3,...>]\<close>\<close>
-  "\<omega> = star_n (\<lambda>n. real (Suc n))"
-
-definition
-  epsilon :: hypreal  ("\<epsilon>") where
-   \<comment> \<open>an infinitesimal number \<open>= [<1,1/2,1/3,...>]\<close>\<close>
-  "\<epsilon> = star_n (\<lambda>n. inverse (real (Suc n)))"
-
-
-subsection \<open>Real vector class instances\<close>
-
-instantiation star :: (scaleR) scaleR
-begin
-
-definition
-  star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)"
-
-instance ..
-
-end
-
-lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard"
-by (simp add: star_scaleR_def)
-
-lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)"
-by transfer (rule refl)
-
-instance star :: (real_vector) real_vector
-proof
-  fix a b :: real
-  show "\<And>x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y"
-    by transfer (rule scaleR_right_distrib)
-  show "\<And>x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x"
-    by transfer (rule scaleR_left_distrib)
-  show "\<And>x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x"
-    by transfer (rule scaleR_scaleR)
-  show "\<And>x::'a star. scaleR 1 x = x"
-    by transfer (rule scaleR_one)
-qed
-
-instance star :: (real_algebra) real_algebra
-proof
-  fix a :: real
-  show "\<And>x y::'a star. scaleR a x * y = scaleR a (x * y)"
-    by transfer (rule mult_scaleR_left)
-  show "\<And>x y::'a star. x * scaleR a y = scaleR a (x * y)"
-    by transfer (rule mult_scaleR_right)
-qed
-
-instance star :: (real_algebra_1) real_algebra_1 ..
-
-instance star :: (real_div_algebra) real_div_algebra ..
-
-instance star :: (field_char_0) field_char_0 ..
-
-instance star :: (real_field) real_field ..
-
-lemma star_of_real_def [transfer_unfold]: "of_real r = star_of (of_real r)"
-by (unfold of_real_def, transfer, rule refl)
-
-lemma Standard_of_real [simp]: "of_real r \<in> Standard"
-by (simp add: star_of_real_def)
-
-lemma star_of_of_real [simp]: "star_of (of_real r) = of_real r"
-by transfer (rule refl)
-
-lemma of_real_eq_star_of [simp]: "of_real = star_of"
-proof
-  fix r :: real
-  show "of_real r = star_of r"
-    by transfer simp
-qed
-
-lemma Reals_eq_Standard: "(\<real> :: hypreal set) = Standard"
-by (simp add: Reals_def Standard_def)
-
-
-subsection \<open>Injection from @{typ hypreal}\<close>
-
-definition
-  of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" where
-  [transfer_unfold]: "of_hypreal = *f* of_real"
-
-lemma Standard_of_hypreal [simp]:
-  "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard"
-by (simp add: of_hypreal_def)
-
-lemma of_hypreal_0 [simp]: "of_hypreal 0 = 0"
-by transfer (rule of_real_0)
-
-lemma of_hypreal_1 [simp]: "of_hypreal 1 = 1"
-by transfer (rule of_real_1)
-
-lemma of_hypreal_add [simp]:
-  "\<And>x y. of_hypreal (x + y) = of_hypreal x + of_hypreal y"
-by transfer (rule of_real_add)
-
-lemma of_hypreal_minus [simp]: "\<And>x. of_hypreal (- x) = - of_hypreal x"
-by transfer (rule of_real_minus)
-
-lemma of_hypreal_diff [simp]:
-  "\<And>x y. of_hypreal (x - y) = of_hypreal x - of_hypreal y"
-by transfer (rule of_real_diff)
-
-lemma of_hypreal_mult [simp]:
-  "\<And>x y. of_hypreal (x * y) = of_hypreal x * of_hypreal y"
-by transfer (rule of_real_mult)
-
-lemma of_hypreal_inverse [simp]:
-  "\<And>x. of_hypreal (inverse x) =
-   inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring} star)"
-by transfer (rule of_real_inverse)
-
-lemma of_hypreal_divide [simp]:
-  "\<And>x y. of_hypreal (x / y) =
-   (of_hypreal x / of_hypreal y :: 'a::{real_field, field} star)"
-by transfer (rule of_real_divide)
-
-lemma of_hypreal_eq_iff [simp]:
-  "\<And>x y. (of_hypreal x = of_hypreal y) = (x = y)"
-by transfer (rule of_real_eq_iff)
-
-lemma of_hypreal_eq_0_iff [simp]:
-  "\<And>x. (of_hypreal x = 0) = (x = 0)"
-by transfer (rule of_real_eq_0_iff)
-
-
-subsection\<open>Properties of @{term starrel}\<close>
-
-lemma lemma_starrel_refl [simp]: "x \<in> starrel `` {x}"
-by (simp add: starrel_def)
-
-lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
-by (simp add: star_def starrel_def quotient_def, blast)
-
-declare Abs_star_inject [simp] Abs_star_inverse [simp]
-declare equiv_starrel [THEN eq_equiv_class_iff, simp]
-
-subsection\<open>@{term hypreal_of_real}:
-            the Injection from @{typ real} to @{typ hypreal}\<close>
-
-lemma inj_star_of: "inj star_of"
-by (rule inj_onI, simp)
-
-lemma mem_Rep_star_iff: "(X \<in> Rep_star x) = (x = star_n X)"
-by (cases x, simp add: star_n_def)
-
-lemma Rep_star_star_n_iff [simp]:
-  "(X \<in> Rep_star (star_n Y)) = (eventually (\<lambda>n. Y n = X n) \<U>)"
-by (simp add: star_n_def)
-
-lemma Rep_star_star_n: "X \<in> Rep_star (star_n X)"
-by simp
-
-subsection\<open>Properties of @{term star_n}\<close>
-
-lemma star_n_add:
-  "star_n X + star_n Y = star_n (%n. X n + Y n)"
-by (simp only: star_add_def starfun2_star_n)
-
-lemma star_n_minus:
-   "- star_n X = star_n (%n. -(X n))"
-by (simp only: star_minus_def starfun_star_n)
-
-lemma star_n_diff:
-     "star_n X - star_n Y = star_n (%n. X n - Y n)"
-by (simp only: star_diff_def starfun2_star_n)
-
-lemma star_n_mult:
-  "star_n X * star_n Y = star_n (%n. X n * Y n)"
-by (simp only: star_mult_def starfun2_star_n)
-
-lemma star_n_inverse:
-      "inverse (star_n X) = star_n (%n. inverse(X n))"
-by (simp only: star_inverse_def starfun_star_n)
-
-lemma star_n_le:
-      "star_n X \<le> star_n Y = (eventually (\<lambda>n. X n \<le> Y n) FreeUltrafilterNat)"
-by (simp only: star_le_def starP2_star_n)
-
-lemma star_n_less:
-      "star_n X < star_n Y = (eventually (\<lambda>n. X n < Y n) FreeUltrafilterNat)"
-by (simp only: star_less_def starP2_star_n)
-
-lemma star_n_zero_num: "0 = star_n (%n. 0)"
-by (simp only: star_zero_def star_of_def)
-
-lemma star_n_one_num: "1 = star_n (%n. 1)"
-by (simp only: star_one_def star_of_def)
-
-lemma star_n_abs: "\<bar>star_n X\<bar> = star_n (%n. \<bar>X n\<bar>)"
-by (simp only: star_abs_def starfun_star_n)
-
-lemma hypreal_omega_gt_zero [simp]: "0 < \<omega>"
-by (simp add: omega_def star_n_zero_num star_n_less)
-
-subsection\<open>Existence of Infinite Hyperreal Number\<close>
-
-text\<open>Existence of infinite number not corresponding to any real number.
-Use assumption that member @{term FreeUltrafilterNat} is not finite.\<close>
-
-
-text\<open>A few lemmas first\<close>
-
-lemma lemma_omega_empty_singleton_disj:
-  "{n::nat. x = real n} = {} \<or> (\<exists>y. {n::nat. x = real n} = {y})"
-by force
-
-lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
-  using lemma_omega_empty_singleton_disj [of x] by auto
-
-lemma not_ex_hypreal_of_real_eq_omega:
-      "~ (\<exists>x. hypreal_of_real x = \<omega>)"
-apply (simp add: omega_def star_of_def star_n_eq_iff)
-apply clarify
-apply (rule_tac x2="x-1" in lemma_finite_omega_set [THEN FreeUltrafilterNat.finite, THEN notE])
-apply (erule eventually_mono)
-apply auto
-done
-
-lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> \<omega>"
-by (insert not_ex_hypreal_of_real_eq_omega, auto)
-
-text\<open>Existence of infinitesimal number also not corresponding to any
- real number\<close>
-
-lemma lemma_epsilon_empty_singleton_disj:
-     "{n::nat. x = inverse(real(Suc n))} = {} |
-      (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
-by auto
-
-lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
-by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)
-
-lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = \<epsilon>)"
-by (auto simp add: epsilon_def star_of_def star_n_eq_iff
-                   lemma_finite_epsilon_set [THEN FreeUltrafilterNat.finite] simp del: of_nat_Suc)
-
-lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> \<epsilon>"
-by (insert not_ex_hypreal_of_real_eq_epsilon, auto)
-
-lemma hypreal_epsilon_not_zero: "\<epsilon> \<noteq> 0"
-by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff FreeUltrafilterNat.proper
-         del: star_of_zero)
-
-lemma hypreal_epsilon_inverse_omega: "\<epsilon> = inverse \<omega>"
-by (simp add: epsilon_def omega_def star_n_inverse)
-
-lemma hypreal_epsilon_gt_zero: "0 < \<epsilon>"
-by (simp add: hypreal_epsilon_inverse_omega)
-
-subsection\<open>Absolute Value Function for the Hyperreals\<close>
-
-lemma hrabs_add_less: "[| \<bar>x\<bar> < r; \<bar>y\<bar> < s |] ==> \<bar>x + y\<bar> < r + (s::hypreal)"
-by (simp add: abs_if split: if_split_asm)
-
-lemma hrabs_less_gt_zero: "\<bar>x\<bar> < r ==> (0::hypreal) < r"
-by (blast intro!: order_le_less_trans abs_ge_zero)
-
-lemma hrabs_disj: "\<bar>x\<bar> = (x::'a::abs_if) \<or> \<bar>x\<bar> = -x"
-by (simp add: abs_if)
-
-lemma hrabs_add_lemma_disj: "(y::hypreal) + - x + (y + - z) = \<bar>x + - z\<bar> ==> y = z | x = y"
-by (simp add: abs_if split add: if_split_asm)
-
-
-subsection\<open>Embedding the Naturals into the Hyperreals\<close>
-
-abbreviation
-  hypreal_of_nat :: "nat => hypreal" where
-  "hypreal_of_nat == of_nat"
-
-lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}"
-by (simp add: Nats_def image_def)
-
-(*------------------------------------------------------------*)
-(* naturals embedded in hyperreals                            *)
-(* is a hyperreal c.f. NS extension                           *)
-(*------------------------------------------------------------*)
-
-lemma hypreal_of_nat: "hypreal_of_nat m = star_n (%n. real m)"
-by (simp add: star_of_def [symmetric])
-
-declaration \<open>
-  K (Lin_Arith.add_inj_thms [@{thm star_of_le} RS iffD2,
-    @{thm star_of_less} RS iffD2, @{thm star_of_eq} RS iffD2]
-  #> Lin_Arith.add_simps [@{thm star_of_zero}, @{thm star_of_one},
-      @{thm star_of_numeral}, @{thm star_of_add},
-      @{thm star_of_minus}, @{thm star_of_diff}, @{thm star_of_mult}]
-  #> Lin_Arith.add_inj_const (@{const_name "StarDef.star_of"}, @{typ "real \<Rightarrow> hypreal"}))
-\<close>
-
-simproc_setup fast_arith_hypreal ("(m::hypreal) < n" | "(m::hypreal) <= n" | "(m::hypreal) = n") =
-  \<open>K Lin_Arith.simproc\<close>
-
-
-subsection \<open>Exponentials on the Hyperreals\<close>
-
-lemma hpowr_0 [simp]:   "r ^ 0       = (1::hypreal)"
-by (rule power_0)
-
-lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)"
-by (rule power_Suc)
-
-lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r"
-by simp
-
-lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)"
-by (auto simp add: zero_le_mult_iff)
-
-lemma hrealpow_two_le_add_order [simp]:
-     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hrealpow_two_le_add_order2 [simp]:
-     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hypreal_add_nonneg_eq_0_iff:
-     "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))"
-by arith
-
-
-text\<open>FIXME: DELETE THESE\<close>
-lemma hypreal_three_squares_add_zero_iff:
-     "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"
-apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto)
-done
-
-lemma hrealpow_three_squares_add_zero_iff [simp]:
-     "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) =
-      (x = 0 & y = 0 & z = 0)"
-by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two)
-
-(*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract
-  result proved in Rings or Fields*)
-lemma hrabs_hrealpow_two [simp]: "\<bar>x ^ Suc (Suc 0)\<bar> = (x::hypreal) ^ Suc (Suc 0)"
-by (simp add: abs_mult)
-
-lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
-by (insert power_increasing [of 0 n "2::hypreal"], simp)
-
-lemma hrealpow:
-    "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
-apply (induct_tac "m")
-apply (auto simp add: star_n_one_num star_n_mult power_0)
-done
-
-lemma hrealpow_sum_square_expand:
-     "(x + (y::hypreal)) ^ Suc (Suc 0) =
-      x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
-by (simp add: distrib_left distrib_right)
-
-lemma power_hypreal_of_real_numeral:
-     "(numeral v :: hypreal) ^ n = hypreal_of_real ((numeral v) ^ n)"
-by simp
-declare power_hypreal_of_real_numeral [of _ "numeral w", simp] for w
-
-lemma power_hypreal_of_real_neg_numeral:
-     "(- numeral v :: hypreal) ^ n = hypreal_of_real ((- numeral v) ^ n)"
-by simp
-declare power_hypreal_of_real_neg_numeral [of _ "numeral w", simp] for w
-(*
-lemma hrealpow_HFinite:
-  fixes x :: "'a::{real_normed_algebra,power} star"
-  shows "x \<in> HFinite ==> x ^ n \<in> HFinite"
-apply (induct_tac "n")
-apply (auto simp add: power_Suc intro: HFinite_mult)
-done
-*)
-
-subsection\<open>Powers with Hypernatural Exponents\<close>
-
-definition pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where
-  hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N"
-  (* hypernatural powers of hyperreals *)
-
-lemma Standard_hyperpow [simp]:
-  "\<lbrakk>r \<in> Standard; n \<in> Standard\<rbrakk> \<Longrightarrow> r pow n \<in> Standard"
-unfolding hyperpow_def by simp
-
-lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)"
-by (simp add: hyperpow_def starfun2_star_n)
-
-lemma hyperpow_zero [simp]:
-  "\<And>n. (0::'a::{power,semiring_0} star) pow (n + (1::hypnat)) = 0"
-by transfer simp
-
-lemma hyperpow_not_zero:
-  "\<And>r n. r \<noteq> (0::'a::{field} star) ==> r pow n \<noteq> 0"
-by transfer (rule power_not_zero)
-
-lemma hyperpow_inverse:
-  "\<And>r n. r \<noteq> (0::'a::field star)
-   \<Longrightarrow> inverse (r pow n) = (inverse r) pow n"
-by transfer (rule power_inverse [symmetric])
-
-lemma hyperpow_hrabs:
-  "\<And>r n. \<bar>r::'a::{linordered_idom} star\<bar> pow n = \<bar>r pow n\<bar>"
-by transfer (rule power_abs [symmetric])
-
-lemma hyperpow_add:
-  "\<And>r n m. (r::'a::monoid_mult star) pow (n + m) = (r pow n) * (r pow m)"
-by transfer (rule power_add)
-
-lemma hyperpow_one [simp]:
-  "\<And>r. (r::'a::monoid_mult star) pow (1::hypnat) = r"
-by transfer (rule power_one_right)
-
-lemma hyperpow_two:
-  "\<And>r. (r::'a::monoid_mult star) pow (2::hypnat) = r * r"
-by transfer (rule power2_eq_square)
-
-lemma hyperpow_gt_zero:
-  "\<And>r n. (0::'a::{linordered_semidom} star) < r \<Longrightarrow> 0 < r pow n"
-by transfer (rule zero_less_power)
-
-lemma hyperpow_ge_zero:
-  "\<And>r n. (0::'a::{linordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n"
-by transfer (rule zero_le_power)
-
-lemma hyperpow_le:
-  "\<And>x y n. \<lbrakk>(0::'a::{linordered_semidom} star) < x; x \<le> y\<rbrakk>
-   \<Longrightarrow> x pow n \<le> y pow n"
-by transfer (rule power_mono [OF _ order_less_imp_le])
-
-lemma hyperpow_eq_one [simp]:
-  "\<And>n. 1 pow n = (1::'a::monoid_mult star)"
-by transfer (rule power_one)
-
-lemma hrabs_hyperpow_minus [simp]:
-  "\<And>(a::'a::{linordered_idom} star) n. \<bar>(-a) pow n\<bar> = \<bar>a pow n\<bar>"
-by transfer (rule abs_power_minus)
-
-lemma hyperpow_mult:
-  "\<And>r s n. (r * s::'a::{comm_monoid_mult} star) pow n
-   = (r pow n) * (s pow n)"
-by transfer (rule power_mult_distrib)
-
-lemma hyperpow_two_le [simp]:
-  "\<And>r. (0::'a::{monoid_mult,linordered_ring_strict} star) \<le> r pow 2"
-by (auto simp add: hyperpow_two zero_le_mult_iff)
-
-lemma hrabs_hyperpow_two [simp]:
-  "\<bar>x pow 2\<bar> =
-   (x::'a::{monoid_mult,linordered_ring_strict} star) pow 2"
-by (simp only: abs_of_nonneg hyperpow_two_le)
-
-lemma hyperpow_two_hrabs [simp]:
-  "\<bar>x::'a::{linordered_idom} star\<bar> pow 2 = x pow 2"
-by (simp add: hyperpow_hrabs)
-
-text\<open>The precondition could be weakened to @{term "0\<le>x"}\<close>
-lemma hypreal_mult_less_mono:
-     "[| u<v;  x<y;  (0::hypreal) < v;  0 < x |] ==> u*x < v* y"
- by (simp add: mult_strict_mono order_less_imp_le)
-
-lemma hyperpow_two_gt_one:
-  "\<And>r::'a::{linordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow 2"
-by transfer simp
-
-lemma hyperpow_two_ge_one:
-  "\<And>r::'a::{linordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow 2"
-by transfer (rule one_le_power)
-
-lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
-apply (rule_tac y = "1 pow n" in order_trans)
-apply (rule_tac [2] hyperpow_le, auto)
-done
-
-lemma hyperpow_minus_one2 [simp]:
-     "\<And>n. (- 1) pow (2*n) = (1::hypreal)"
-by transfer (rule power_minus1_even)
-
-lemma hyperpow_less_le:
-     "!!r n N. [|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n"
-by transfer (rule power_decreasing [OF order_less_imp_le])
-
-lemma hyperpow_SHNat_le:
-     "[| 0 \<le> r;  r \<le> (1::hypreal);  N \<in> HNatInfinite |]
-      ==> ALL n: Nats. r pow N \<le> r pow n"
-by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff)
-
-lemma hyperpow_realpow:
-      "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)"
-by transfer (rule refl)
-
-lemma hyperpow_SReal [simp]:
-     "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma hyperpow_zero_HNatInfinite [simp]:
-     "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0"
-by (drule HNatInfinite_is_Suc, auto)
-
-lemma hyperpow_le_le:
-     "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n"
-apply (drule order_le_less [of n, THEN iffD1])
-apply (auto intro: hyperpow_less_le)
-done
-
-lemma hyperpow_Suc_le_self2:
-     "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r"
-apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le)
-apply auto
-done
-
-lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n"
-by transfer (rule refl)
-
-lemma of_hypreal_hyperpow:
-  "\<And>x n. of_hypreal (x pow n) =
-   (of_hypreal x::'a::{real_algebra_1} star) pow n"
-by transfer (rule of_real_power)
-
-end
--- a/src/HOL/NSA/HyperNat.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,414 +0,0 @@
-(*  Title       : HyperNat.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-
-Converted to Isar and polished by lcp
-*)
-
-section\<open>Hypernatural numbers\<close>
-
-theory HyperNat
-imports StarDef
-begin
-
-type_synonym hypnat = "nat star"
-
-abbreviation
-  hypnat_of_nat :: "nat => nat star" where
-  "hypnat_of_nat == star_of"
-
-definition
-  hSuc :: "hypnat => hypnat" where
-  hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
-
-subsection\<open>Properties Transferred from Naturals\<close>
-
-lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
-by transfer (rule Suc_not_Zero)
-
-lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
-by transfer (rule Zero_not_Suc)
-
-lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)"
-by transfer (rule nat.inject)
-
-lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
-by transfer (rule zero_less_Suc)
-
-lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)"
-by transfer (rule diff_self_eq_0)
-
-lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0"
-by transfer (rule diff_0_eq_0)
-
-lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)"
-by transfer (rule add_is_0)
-
-lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)"
-by transfer (rule diff_diff_left)
-
-lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j"
-by transfer (rule diff_commute)
-
-lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m"
-by transfer (rule diff_add_inverse)
-
-lemma hypnat_diff_add_inverse2 [simp]:  "!!m n. ((m::hypnat) + n) - n = m"
-by transfer (rule diff_add_inverse2)
-
-lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n"
-by transfer (rule diff_cancel)
-
-lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n"
-by transfer (rule diff_cancel2)
-
-lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)"
-by transfer (rule diff_add_0)
-
-lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)"
-by transfer (rule diff_mult_distrib)
-
-lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)"
-by transfer (rule diff_mult_distrib2)
-
-lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)"
-by transfer (rule le_0_eq)
-
-lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)"
-by transfer (rule mult_is_0)
-
-lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)"
-by transfer (rule diff_is_0_eq)
-
-lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)"
-by transfer (rule not_less0)
-
-lemma hypnat_less_one [iff]:
-      "!!n. (n < (1::hypnat)) = (n=0)"
-by transfer (rule less_one)
-
-lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)"
-by transfer (rule add_diff_inverse)
-
-lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)"
-by transfer (rule le_add_diff_inverse)
-
-lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)"
-by transfer (rule le_add_diff_inverse2)
-
-declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
-
-lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n"
-by transfer (rule le0)
-
-lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n"
-by transfer (rule le_add1)
-
-lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x"
-by transfer (rule le_add2)
-
-lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
-  by (fact less_add_one)
-
-lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))"
-by transfer (rule neq0_conv)
-
-lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
-by (auto simp add: linorder_not_less [symmetric])
-
-lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
-  by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)
-
-lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
-by (simp add: linorder_not_le [symmetric] add.commute [of x])
-
-lemma hypnat_diff_split:
-    "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
-    \<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close>
-proof (cases "a<b" rule: case_split)
-  case True
-    thus ?thesis
-      by (auto simp add: hypnat_add_self_not_less order_less_imp_le
-                         hypnat_diff_is_0_eq [THEN iffD2])
-next
-  case False
-    thus ?thesis
-      by (auto simp add: linorder_not_less dest: order_le_less_trans)
-qed
-
-subsection\<open>Properties of the set of embedded natural numbers\<close>
-
-lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
-proof
-  fix n :: nat
-  show "of_nat n = star_of n" by transfer simp
-qed
-
-lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
-by (auto simp add: Nats_def Standard_def)
-
-lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
-by (simp add: Nats_eq_Standard)
-
-lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
-by transfer simp
-
-lemma hypnat_of_nat_Suc [simp]:
-     "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
-by transfer simp
-
-lemma of_nat_eq_add [rule_format]:
-     "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
-apply (induct n)
-apply (auto simp add: add.assoc)
-apply (case_tac x)
-apply (auto simp add: add.commute [of 1])
-done
-
-lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
-by (simp add: Nats_eq_Standard)
-
-
-subsection\<open>Infinite Hypernatural Numbers -- @{term HNatInfinite}\<close>
-
-definition
-  (* the set of infinite hypernatural numbers *)
-  HNatInfinite :: "hypnat set" where
-  "HNatInfinite = {n. n \<notin> Nats}"
-
-lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
-by (simp add: HNatInfinite_def)
-
-lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
-by (simp add: HNatInfinite_def)
-
-lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
-by (auto simp add: HNatInfinite_def Nats_eq_Standard)
-
-lemma star_of_Suc_lessI:
-  "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N"
-by transfer (rule Suc_lessI)
-
-lemma star_of_less_HNatInfinite:
-  assumes N: "N \<in> HNatInfinite"
-  shows "star_of n < N"
-proof (induct n)
-  case 0
-  from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite)
-  thus "star_of 0 < N" by simp
-next
-  case (Suc n)
-  from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite)
-  with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI)
-qed
-
-lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
-by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
-
-subsubsection \<open>Closure Rules\<close>
-
-lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y"
-by (auto simp add: Nats_def star_of_less_HNatInfinite)
-
-lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y"
-by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
-
-lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
-by (simp add: Nats_less_HNatInfinite)
-
-lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
-by (simp add: Nats_less_HNatInfinite)
-
-lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
-by (simp add: Nats_le_HNatInfinite)
-
-lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
-by (simp add: HNatInfinite_def)
-
-lemma Nats_downward_closed:
-  "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats"
-apply (simp only: linorder_not_less [symmetric])
-apply (erule contrapos_np)
-apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])
-apply (erule (1) Nats_less_HNatInfinite)
-done
-
-lemma HNatInfinite_upward_closed:
-  "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite"
-apply (simp only: HNatInfinite_not_Nats_iff)
-apply (erule contrapos_nn)
-apply (erule (1) Nats_downward_closed)
-done
-
-lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
-apply (erule HNatInfinite_upward_closed)
-apply (rule hypnat_le_add1)
-done
-
-lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"
-by (rule HNatInfinite_add)
-
-lemma HNatInfinite_diff:
-  "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
-apply (frule (1) Nats_le_HNatInfinite)
-apply (simp only: HNatInfinite_not_Nats_iff)
-apply (erule contrapos_nn)
-apply (drule (1) Nats_add, simp)
-done
-
-lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
-apply (rule_tac x = "x - (1::hypnat) " in exI)
-apply (simp add: Nats_le_HNatInfinite)
-done
-
-
-subsection\<open>Existence of an infinite hypernatural number\<close>
-
-definition
-  (* \<omega> is in fact an infinite hypernatural number = [<1,2,3,...>] *)
-  whn :: hypnat where
-  hypnat_omega_def: "whn = star_n (%n::nat. n)"
-
-lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
-by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)
-
-lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
-by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)
-
-lemma whn_not_Nats [simp]: "whn \<notin> Nats"
-by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
-
-lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
-by (simp add: HNatInfinite_def)
-
-lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>"
-  by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])
-     (auto simp add: cofinite_eq_sequentially eventually_at_top_dense)
-
-lemma hypnat_of_nat_eq:
-     "hypnat_of_nat m  = star_n (%n::nat. m)"
-by (simp add: star_of_def)
-
-lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
-by (simp add: Nats_def image_def)
-
-lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
-by (simp add: Nats_less_HNatInfinite)
-
-lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
-by (simp add: Nats_le_HNatInfinite)
-
-lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
-by (simp add: Nats_less_whn)
-
-lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
-by (simp add: Nats_le_whn)
-
-lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
-by (simp add: Nats_less_whn)
-
-lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
-by (simp add: Nats_less_whn)
-
-
-subsubsection\<open>Alternative characterization of the set of infinite hypernaturals\<close>
-
-text\<open>@{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}\<close>
-
-(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
-lemma HNatInfinite_FreeUltrafilterNat_lemma:
-  assumes "\<forall>N::nat. eventually (\<lambda>n. f n \<noteq> N) \<U>"
-  shows "eventually (\<lambda>n. N < f n) \<U>"
-apply (induct N)
-using assms
-apply (drule_tac x = 0 in spec, simp)
-using assms
-apply (drule_tac x = "Suc N" in spec)
-apply (auto elim: eventually_elim2)
-done
-
-lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
-apply (safe intro!: Nats_less_HNatInfinite)
-apply (auto simp add: HNatInfinite_def)
-done
-
-
-subsubsection\<open>Alternative Characterization of @{term HNatInfinite} using
-Free Ultrafilter\<close>
-
-lemma HNatInfinite_FreeUltrafilterNat:
-     "star_n X \<in> HNatInfinite ==> \<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat"
-apply (auto simp add: HNatInfinite_iff SHNat_eq)
-apply (drule_tac x="star_of u" in spec, simp)
-apply (simp add: star_of_def star_less_def starP2_star_n)
-done
-
-lemma FreeUltrafilterNat_HNatInfinite:
-     "\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
-by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
-
-lemma HNatInfinite_FreeUltrafilterNat_iff:
-     "(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat)"
-by (rule iffI [OF HNatInfinite_FreeUltrafilterNat
-                 FreeUltrafilterNat_HNatInfinite])
-
-subsection \<open>Embedding of the Hypernaturals into other types\<close>
-
-definition
-  of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
-  of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
-
-lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
-by transfer (rule of_nat_0)
-
-lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
-by transfer (rule of_nat_1)
-
-lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
-by transfer (rule of_nat_Suc)
-
-lemma of_hypnat_add [simp]:
-  "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
-by transfer (rule of_nat_add)
-
-lemma of_hypnat_mult [simp]:
-  "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
-by transfer (rule of_nat_mult)
-
-lemma of_hypnat_less_iff [simp]:
-  "\<And>m n. (of_hypnat m < (of_hypnat n::'a::linordered_semidom star)) = (m < n)"
-by transfer (rule of_nat_less_iff)
-
-lemma of_hypnat_0_less_iff [simp]:
-  "\<And>n. (0 < (of_hypnat n::'a::linordered_semidom star)) = (0 < n)"
-by transfer (rule of_nat_0_less_iff)
-
-lemma of_hypnat_less_0_iff [simp]:
-  "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"
-by transfer (rule of_nat_less_0_iff)
-
-lemma of_hypnat_le_iff [simp]:
-  "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star)) = (m \<le> n)"
-by transfer (rule of_nat_le_iff)
-
-lemma of_hypnat_0_le_iff [simp]:
-  "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"
-by transfer (rule of_nat_0_le_iff)
-
-lemma of_hypnat_le_0_iff [simp]:
-  "\<And>m. ((of_hypnat m::'a::linordered_semidom star) \<le> 0) = (m = 0)"
-by transfer (rule of_nat_le_0_iff)
-
-lemma of_hypnat_eq_iff [simp]:
-  "\<And>m n. (of_hypnat m = (of_hypnat n::'a::linordered_semidom star)) = (m = n)"
-by transfer (rule of_nat_eq_iff)
-
-lemma of_hypnat_eq_0_iff [simp]:
-  "\<And>m. ((of_hypnat m::'a::linordered_semidom star) = 0) = (m = 0)"
-by transfer (rule of_nat_eq_0_iff)
-
-lemma HNatInfinite_of_hypnat_gt_zero:
-  "N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"
-by (rule ccontr, simp add: linorder_not_less)
-
-end
--- a/src/HOL/NSA/Hypercomplex.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,5 +0,0 @@
-theory Hypercomplex
-imports CLim Hyperreal
-begin
-
-end
--- a/src/HOL/NSA/Hyperreal.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,13 +0,0 @@
-(*  Title:      HOL/NSA/Hyperreal.thy
-    Author:     Jacques Fleuriot, Cambridge University Computer Laboratory
-    Copyright   1998  University of Cambridge
-
-Construction of the Hyperreals by the Ultrapower Construction
-and mechanization of Nonstandard Real Analysis
-*)
-
-theory Hyperreal
-imports HLog
-begin
-
-end
--- a/src/HOL/NSA/NSA.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2219 +0,0 @@
-(*  Title:      HOL/NSA/NSA.thy
-    Author:     Jacques D. Fleuriot, University of Cambridge
-    Author:     Lawrence C Paulson, University of Cambridge
-*)
-
-section\<open>Infinite Numbers, Infinitesimals, Infinitely Close Relation\<close>
-
-theory NSA
-imports HyperDef "~~/src/HOL/Library/Lub_Glb"
-begin
-
-definition
-  hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" where
-  [transfer_unfold]: "hnorm = *f* norm"
-
-definition
-  Infinitesimal  :: "('a::real_normed_vector) star set" where
-  "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}"
-
-definition
-  HFinite :: "('a::real_normed_vector) star set" where
-  "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
-
-definition
-  HInfinite :: "('a::real_normed_vector) star set" where
-  "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
-
-definition
-  approx :: "['a::real_normed_vector star, 'a star] => bool"  (infixl "\<approx>" 50) where
-    \<comment>\<open>the `infinitely close' relation\<close>
-  "(x \<approx> y) = ((x - y) \<in> Infinitesimal)"
-
-definition
-  st        :: "hypreal => hypreal" where
-    \<comment>\<open>the standard part of a hyperreal\<close>
-  "st = (%x. @r. x \<in> HFinite & r \<in> \<real> & r \<approx> x)"
-
-definition
-  monad     :: "'a::real_normed_vector star => 'a star set" where
-  "monad x = {y. x \<approx> y}"
-
-definition
-  galaxy    :: "'a::real_normed_vector star => 'a star set" where
-  "galaxy x = {y. (x + -y) \<in> HFinite}"
-
-lemma SReal_def: "\<real> == {x. \<exists>r. x = hypreal_of_real r}"
-by (simp add: Reals_def image_def)
-
-subsection \<open>Nonstandard Extension of the Norm Function\<close>
-
-definition
-  scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" where
-  [transfer_unfold]: "scaleHR = starfun2 scaleR"
-
-lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard"
-by (simp add: hnorm_def)
-
-lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)"
-by transfer (rule refl)
-
-lemma hnorm_ge_zero [simp]:
-  "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x"
-by transfer (rule norm_ge_zero)
-
-lemma hnorm_eq_zero [simp]:
-  "\<And>x::'a::real_normed_vector star. (hnorm x = 0) = (x = 0)"
-by transfer (rule norm_eq_zero)
-
-lemma hnorm_triangle_ineq:
-  "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y"
-by transfer (rule norm_triangle_ineq)
-
-lemma hnorm_triangle_ineq3:
-  "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)"
-by transfer (rule norm_triangle_ineq3)
-
-lemma hnorm_scaleR:
-  "\<And>x::'a::real_normed_vector star.
-   hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x"
-by transfer (rule norm_scaleR)
-
-lemma hnorm_scaleHR:
-  "\<And>a (x::'a::real_normed_vector star).
-   hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x"
-by transfer (rule norm_scaleR)
-
-lemma hnorm_mult_ineq:
-  "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y"
-by transfer (rule norm_mult_ineq)
-
-lemma hnorm_mult:
-  "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y"
-by transfer (rule norm_mult)
-
-lemma hnorm_hyperpow:
-  "\<And>(x::'a::{real_normed_div_algebra} star) n.
-   hnorm (x pow n) = hnorm x pow n"
-by transfer (rule norm_power)
-
-lemma hnorm_one [simp]:
-  "hnorm (1::'a::real_normed_div_algebra star) = 1"
-by transfer (rule norm_one)
-
-lemma hnorm_zero [simp]:
-  "hnorm (0::'a::real_normed_vector star) = 0"
-by transfer (rule norm_zero)
-
-lemma zero_less_hnorm_iff [simp]:
-  "\<And>x::'a::real_normed_vector star. (0 < hnorm x) = (x \<noteq> 0)"
-by transfer (rule zero_less_norm_iff)
-
-lemma hnorm_minus_cancel [simp]:
-  "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x"
-by transfer (rule norm_minus_cancel)
-
-lemma hnorm_minus_commute:
-  "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)"
-by transfer (rule norm_minus_commute)
-
-lemma hnorm_triangle_ineq2:
-  "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)"
-by transfer (rule norm_triangle_ineq2)
-
-lemma hnorm_triangle_ineq4:
-  "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b"
-by transfer (rule norm_triangle_ineq4)
-
-lemma abs_hnorm_cancel [simp]:
-  "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a"
-by transfer (rule abs_norm_cancel)
-
-lemma hnorm_of_hypreal [simp]:
-  "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>"
-by transfer (rule norm_of_real)
-
-lemma nonzero_hnorm_inverse:
-  "\<And>a::'a::real_normed_div_algebra star.
-   a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)"
-by transfer (rule nonzero_norm_inverse)
-
-lemma hnorm_inverse:
-  "\<And>a::'a::{real_normed_div_algebra, division_ring} star.
-   hnorm (inverse a) = inverse (hnorm a)"
-by transfer (rule norm_inverse)
-
-lemma hnorm_divide:
-  "\<And>a b::'a::{real_normed_field, field} star.
-   hnorm (a / b) = hnorm a / hnorm b"
-by transfer (rule norm_divide)
-
-lemma hypreal_hnorm_def [simp]:
-  "\<And>r::hypreal. hnorm r = \<bar>r\<bar>"
-by transfer (rule real_norm_def)
-
-lemma hnorm_add_less:
-  "\<And>(x::'a::real_normed_vector star) y r s.
-   \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x + y) < r + s"
-by transfer (rule norm_add_less)
-
-lemma hnorm_mult_less:
-  "\<And>(x::'a::real_normed_algebra star) y r s.
-   \<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x * y) < r * s"
-by transfer (rule norm_mult_less)
-
-lemma hnorm_scaleHR_less:
-  "\<lbrakk>\<bar>x\<bar> < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (scaleHR x y) < r * s"
-apply (simp only: hnorm_scaleHR)
-apply (simp add: mult_strict_mono')
-done
-
-subsection\<open>Closure Laws for the Standard Reals\<close>
-
-lemma Reals_minus_iff [simp]: "(-x \<in> \<real>) = (x \<in> \<real>)"
-apply auto
-apply (drule Reals_minus, auto)
-done
-
-lemma Reals_add_cancel: "\<lbrakk>x + y \<in> \<real>; y \<in> \<real>\<rbrakk> \<Longrightarrow> x \<in> \<real>"
-by (drule (1) Reals_diff, simp)
-
-lemma SReal_hrabs: "(x::hypreal) \<in> \<real> ==> \<bar>x\<bar> \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma SReal_divide_numeral: "r \<in> \<real> ==> r/(numeral w::hypreal) \<in> \<real>"
-by simp
-
-text \<open>\<open>\<epsilon>\<close> is not in Reals because it is an infinitesimal\<close>
-lemma SReal_epsilon_not_mem: "\<epsilon> \<notin> \<real>"
-apply (simp add: SReal_def)
-apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym])
-done
-
-lemma SReal_omega_not_mem: "\<omega> \<notin> \<real>"
-apply (simp add: SReal_def)
-apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym])
-done
-
-lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)"
-by simp
-
-lemma SReal_iff: "(x \<in> \<real>) = (\<exists>y. x = hypreal_of_real y)"
-by (simp add: SReal_def)
-
-lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>"
-by (simp add: Reals_eq_Standard Standard_def)
-
-lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV"
-apply (auto simp add: SReal_def)
-apply (rule inj_star_of [THEN inv_f_f, THEN subst], blast)
-done
-
-lemma SReal_hypreal_of_real_image:
-      "[| \<exists>x. x: P; P \<subseteq> \<real> |] ==> \<exists>Q. P = hypreal_of_real ` Q"
-by (simp add: SReal_def image_def, blast)
-
-lemma SReal_dense:
-     "[| (x::hypreal) \<in> \<real>; y \<in> \<real>;  x<y |] ==> \<exists>r \<in> Reals. x<r & r<y"
-apply (auto simp add: SReal_def)
-apply (drule dense, auto)
-done
-
-text\<open>Completeness of Reals, but both lemmas are unused.\<close>
-
-lemma SReal_sup_lemma:
-     "P \<subseteq> \<real> ==> ((\<exists>x \<in> P. y < x) =
-      (\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))"
-by (blast dest!: SReal_iff [THEN iffD1])
-
-lemma SReal_sup_lemma2:
-     "[| P \<subseteq> \<real>; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |]
-      ==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) &
-          (\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
-apply (rule conjI)
-apply (fast dest!: SReal_iff [THEN iffD1])
-apply (auto, frule subsetD, assumption)
-apply (drule SReal_iff [THEN iffD1])
-apply (auto, rule_tac x = ya in exI, auto)
-done
-
-
-subsection\<open>Set of Finite Elements is a Subring of the Extended Reals\<close>
-
-lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite"
-apply (simp add: HFinite_def)
-apply (blast intro!: Reals_add hnorm_add_less)
-done
-
-lemma HFinite_mult:
-  fixes x y :: "'a::real_normed_algebra star"
-  shows "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite"
-apply (simp add: HFinite_def)
-apply (blast intro!: Reals_mult hnorm_mult_less)
-done
-
-lemma HFinite_scaleHR:
-  "[|x \<in> HFinite; y \<in> HFinite|] ==> scaleHR x y \<in> HFinite"
-apply (simp add: HFinite_def)
-apply (blast intro!: Reals_mult hnorm_scaleHR_less)
-done
-
-lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)"
-by (simp add: HFinite_def)
-
-lemma HFinite_star_of [simp]: "star_of x \<in> HFinite"
-apply (simp add: HFinite_def)
-apply (rule_tac x="star_of (norm x) + 1" in bexI)
-apply (transfer, simp)
-apply (blast intro: Reals_add SReal_hypreal_of_real Reals_1)
-done
-
-lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite"
-by (auto simp add: SReal_def)
-
-lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. hnorm x < t"
-by (simp add: HFinite_def)
-
-lemma HFinite_hrabs_iff [iff]: "(\<bar>x::hypreal\<bar> \<in> HFinite) = (x \<in> HFinite)"
-by (simp add: HFinite_def)
-
-lemma HFinite_hnorm_iff [iff]:
-  "(hnorm (x::hypreal) \<in> HFinite) = (x \<in> HFinite)"
-by (simp add: HFinite_def)
-
-lemma HFinite_numeral [simp]: "numeral w \<in> HFinite"
-unfolding star_numeral_def by (rule HFinite_star_of)
-
-(** As always with numerals, 0 and 1 are special cases **)
-
-lemma HFinite_0 [simp]: "0 \<in> HFinite"
-unfolding star_zero_def by (rule HFinite_star_of)
-
-lemma HFinite_1 [simp]: "1 \<in> HFinite"
-unfolding star_one_def by (rule HFinite_star_of)
-
-lemma hrealpow_HFinite:
-  fixes x :: "'a::{real_normed_algebra,monoid_mult} star"
-  shows "x \<in> HFinite ==> x ^ n \<in> HFinite"
-apply (induct n)
-apply (auto simp add: power_Suc intro: HFinite_mult)
-done
-
-lemma HFinite_bounded:
-  "[|(x::hypreal) \<in> HFinite; y \<le> x; 0 \<le> y |] ==> y \<in> HFinite"
-apply (cases "x \<le> 0")
-apply (drule_tac y = x in order_trans)
-apply (drule_tac [2] order_antisym)
-apply (auto simp add: linorder_not_le)
-apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def)
-done
-
-
-subsection\<open>Set of Infinitesimals is a Subring of the Hyperreals\<close>
-
-lemma InfinitesimalI:
-  "(\<And>r. \<lbrakk>r \<in> \<real>; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal"
-by (simp add: Infinitesimal_def)
-
-lemma InfinitesimalD:
-      "x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> hnorm x < r"
-by (simp add: Infinitesimal_def)
-
-lemma InfinitesimalI2:
-  "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal"
-by (auto simp add: Infinitesimal_def SReal_def)
-
-lemma InfinitesimalD2:
-  "\<lbrakk>x \<in> Infinitesimal; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < star_of r"
-by (auto simp add: Infinitesimal_def SReal_def)
-
-lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal"
-by (simp add: Infinitesimal_def)
-
-lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x"
-by auto
-
-lemma Infinitesimal_add:
-     "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (rule hypreal_sum_of_halves [THEN subst])
-apply (drule half_gt_zero)
-apply (blast intro: hnorm_add_less SReal_divide_numeral dest: InfinitesimalD)
-done
-
-lemma Infinitesimal_minus_iff [simp]: "(-x:Infinitesimal) = (x:Infinitesimal)"
-by (simp add: Infinitesimal_def)
-
-lemma Infinitesimal_hnorm_iff:
-  "(hnorm x \<in> Infinitesimal) = (x \<in> Infinitesimal)"
-by (simp add: Infinitesimal_def)
-
-lemma Infinitesimal_hrabs_iff [iff]:
-  "(\<bar>x::hypreal\<bar> \<in> Infinitesimal) = (x \<in> Infinitesimal)"
-by (simp add: abs_if)
-
-lemma Infinitesimal_of_hypreal_iff [simp]:
-  "((of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal) =
-   (x \<in> Infinitesimal)"
-by (subst Infinitesimal_hnorm_iff [symmetric], simp)
-
-lemma Infinitesimal_diff:
-     "[| x \<in> Infinitesimal;  y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal"
-  using Infinitesimal_add [of x "- y"] by simp
-
-lemma Infinitesimal_mult:
-  fixes x y :: "'a::real_normed_algebra star"
-  shows "[|x \<in> Infinitesimal; y \<in> Infinitesimal|] ==> (x * y) \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (subgoal_tac "hnorm (x * y) < 1 * r", simp only: mult_1)
-apply (rule hnorm_mult_less)
-apply (simp_all add: InfinitesimalD)
-done
-
-lemma Infinitesimal_HFinite_mult:
-  fixes x y :: "'a::real_normed_algebra star"
-  shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (drule HFiniteD, clarify)
-apply (subgoal_tac "0 < t")
-apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp)
-apply (subgoal_tac "0 < r / t")
-apply (rule hnorm_mult_less)
-apply (simp add: InfinitesimalD)
-apply assumption
-apply simp
-apply (erule order_le_less_trans [OF hnorm_ge_zero])
-done
-
-lemma Infinitesimal_HFinite_scaleHR:
-  "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> scaleHR x y \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (drule HFiniteD, clarify)
-apply (drule InfinitesimalD)
-apply (simp add: hnorm_scaleHR)
-apply (subgoal_tac "0 < t")
-apply (subgoal_tac "\<bar>x\<bar> * hnorm y < (r / t) * t", simp)
-apply (subgoal_tac "0 < r / t")
-apply (rule mult_strict_mono', simp_all)
-apply (erule order_le_less_trans [OF hnorm_ge_zero])
-done
-
-lemma Infinitesimal_HFinite_mult2:
-  fixes x y :: "'a::real_normed_algebra star"
-  shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (drule HFiniteD, clarify)
-apply (subgoal_tac "0 < t")
-apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp)
-apply (subgoal_tac "0 < r / t")
-apply (rule hnorm_mult_less)
-apply assumption
-apply (simp add: InfinitesimalD)
-apply simp
-apply (erule order_le_less_trans [OF hnorm_ge_zero])
-done
-
-lemma Infinitesimal_scaleR2:
-  "x \<in> Infinitesimal ==> a *\<^sub>R x \<in> Infinitesimal"
-apply (case_tac "a = 0", simp)
-apply (rule InfinitesimalI)
-apply (drule InfinitesimalD)
-apply (drule_tac x="r / \<bar>star_of a\<bar>" in bspec)
-apply (simp add: Reals_eq_Standard)
-apply simp
-apply (simp add: hnorm_scaleR pos_less_divide_eq mult.commute)
-done
-
-lemma Compl_HFinite: "- HFinite = HInfinite"
-apply (auto simp add: HInfinite_def HFinite_def linorder_not_less)
-apply (rule_tac y="r + 1" in order_less_le_trans, simp)
-apply simp
-done
-
-lemma HInfinite_inverse_Infinitesimal:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "x \<in> HInfinite ==> inverse x \<in> Infinitesimal"
-apply (rule InfinitesimalI)
-apply (subgoal_tac "x \<noteq> 0")
-apply (rule inverse_less_imp_less)
-apply (simp add: nonzero_hnorm_inverse)
-apply (simp add: HInfinite_def Reals_inverse)
-apply assumption
-apply (clarify, simp add: Compl_HFinite [symmetric])
-done
-
-lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite"
-by (simp add: HInfinite_def)
-
-lemma HInfiniteD: "\<lbrakk>x \<in> HInfinite; r \<in> \<real>\<rbrakk> \<Longrightarrow> r < hnorm x"
-by (simp add: HInfinite_def)
-
-lemma HInfinite_mult:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "[|x \<in> HInfinite; y \<in> HInfinite|] ==> (x*y) \<in> HInfinite"
-apply (rule HInfiniteI, simp only: hnorm_mult)
-apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1)
-apply (case_tac "x = 0", simp add: HInfinite_def)
-apply (rule mult_strict_mono)
-apply (simp_all add: HInfiniteD)
-done
-
-lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y"
-by (auto dest: add_less_le_mono)
-
-lemma HInfinite_add_ge_zero:
-     "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (x + y): HInfinite"
-by (auto intro!: hypreal_add_zero_less_le_mono
-       simp add: abs_if add.commute add_nonneg_nonneg HInfinite_def)
-
-lemma HInfinite_add_ge_zero2:
-     "[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (y + x): HInfinite"
-by (auto intro!: HInfinite_add_ge_zero simp add: add.commute)
-
-lemma HInfinite_add_gt_zero:
-     "[|(x::hypreal) \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite"
-by (blast intro: HInfinite_add_ge_zero order_less_imp_le)
-
-lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)"
-by (simp add: HInfinite_def)
-
-lemma HInfinite_add_le_zero:
-     "[|(x::hypreal) \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite"
-apply (drule HInfinite_minus_iff [THEN iffD2])
-apply (rule HInfinite_minus_iff [THEN iffD1])
-apply (simp only: minus_add add.commute)
-apply (rule HInfinite_add_ge_zero)
-apply simp_all
-done
-
-lemma HInfinite_add_lt_zero:
-     "[|(x::hypreal) \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite"
-by (blast intro: HInfinite_add_le_zero order_less_imp_le)
-
-lemma HFinite_sum_squares:
-  fixes a b c :: "'a::real_normed_algebra star"
-  shows "[|a: HFinite; b: HFinite; c: HFinite|]
-      ==> a*a + b*b + c*c \<in> HFinite"
-by (auto intro: HFinite_mult HFinite_add)
-
-lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0"
-by auto
-
-lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0"
-by auto
-
-lemma HFinite_diff_Infinitesimal_hrabs:
-  "(x::hypreal) \<in> HFinite - Infinitesimal ==> \<bar>x\<bar> \<in> HFinite - Infinitesimal"
-by blast
-
-lemma hnorm_le_Infinitesimal:
-  "\<lbrakk>e \<in> Infinitesimal; hnorm x \<le> e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
-by (auto simp add: Infinitesimal_def abs_less_iff)
-
-lemma hnorm_less_Infinitesimal:
-  "\<lbrakk>e \<in> Infinitesimal; hnorm x < e\<rbrakk> \<Longrightarrow> x \<in> Infinitesimal"
-by (erule hnorm_le_Infinitesimal, erule order_less_imp_le)
-
-lemma hrabs_le_Infinitesimal:
-     "[| e \<in> Infinitesimal; \<bar>x::hypreal\<bar> \<le> e |] ==> x \<in> Infinitesimal"
-by (erule hnorm_le_Infinitesimal, simp)
-
-lemma hrabs_less_Infinitesimal:
-      "[| e \<in> Infinitesimal; \<bar>x::hypreal\<bar> < e |] ==> x \<in> Infinitesimal"
-by (erule hnorm_less_Infinitesimal, simp)
-
-lemma Infinitesimal_interval:
-      "[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |]
-       ==> (x::hypreal) \<in> Infinitesimal"
-by (auto simp add: Infinitesimal_def abs_less_iff)
-
-lemma Infinitesimal_interval2:
-     "[| e \<in> Infinitesimal; e' \<in> Infinitesimal;
-         e' \<le> x ; x \<le> e |] ==> (x::hypreal) \<in> Infinitesimal"
-by (auto intro: Infinitesimal_interval simp add: order_le_less)
-
-
-lemma lemma_Infinitesimal_hyperpow:
-     "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> \<bar>x pow N\<bar> \<le> \<bar>x\<bar>"
-apply (unfold Infinitesimal_def)
-apply (auto intro!: hyperpow_Suc_le_self2
-          simp add: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero)
-done
-
-lemma Infinitesimal_hyperpow:
-     "[| (x::hypreal) \<in> Infinitesimal; 0 < N |] ==> x pow N \<in> Infinitesimal"
-apply (rule hrabs_le_Infinitesimal)
-apply (rule_tac [2] lemma_Infinitesimal_hyperpow, auto)
-done
-
-lemma hrealpow_hyperpow_Infinitesimal_iff:
-     "(x ^ n \<in> Infinitesimal) = (x pow (hypnat_of_nat n) \<in> Infinitesimal)"
-by (simp only: hyperpow_hypnat_of_nat)
-
-lemma Infinitesimal_hrealpow:
-     "[| (x::hypreal) \<in> Infinitesimal; 0 < n |] ==> x ^ n \<in> Infinitesimal"
-by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow)
-
-lemma not_Infinitesimal_mult:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "[| x \<notin> Infinitesimal;  y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal"
-apply (unfold Infinitesimal_def, clarify, rename_tac r s)
-apply (simp only: linorder_not_less hnorm_mult)
-apply (drule_tac x = "r * s" in bspec)
-apply (fast intro: Reals_mult)
-apply (simp)
-apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono)
-apply (simp_all (no_asm_simp))
-done
-
-lemma Infinitesimal_mult_disj:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal"
-apply (rule ccontr)
-apply (drule de_Morgan_disj [THEN iffD1])
-apply (fast dest: not_Infinitesimal_mult)
-done
-
-lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0"
-by blast
-
-lemma HFinite_Infinitesimal_diff_mult:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "[| x \<in> HFinite - Infinitesimal;
-                   y \<in> HFinite - Infinitesimal
-                |] ==> (x*y) \<in> HFinite - Infinitesimal"
-apply clarify
-apply (blast dest: HFinite_mult not_Infinitesimal_mult)
-done
-
-lemma Infinitesimal_subset_HFinite:
-      "Infinitesimal \<subseteq> HFinite"
-apply (simp add: Infinitesimal_def HFinite_def, auto)
-apply (rule_tac x = 1 in bexI, auto)
-done
-
-lemma Infinitesimal_star_of_mult:
-  fixes x :: "'a::real_normed_algebra star"
-  shows "x \<in> Infinitesimal ==> x * star_of r \<in> Infinitesimal"
-by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult])
-
-lemma Infinitesimal_star_of_mult2:
-  fixes x :: "'a::real_normed_algebra star"
-  shows "x \<in> Infinitesimal ==> star_of r * x \<in> Infinitesimal"
-by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2])
-
-
-subsection\<open>The Infinitely Close Relation\<close>
-
-lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x \<approx> 0)"
-by (simp add: Infinitesimal_def approx_def)
-
-lemma approx_minus_iff: " (x \<approx> y) = (x - y \<approx> 0)"
-by (simp add: approx_def)
-
-lemma approx_minus_iff2: " (x \<approx> y) = (-y + x \<approx> 0)"
-by (simp add: approx_def add.commute)
-
-lemma approx_refl [iff]: "x \<approx> x"
-by (simp add: approx_def Infinitesimal_def)
-
-lemma hypreal_minus_distrib1: "-(y + -(x::'a::ab_group_add)) = x + -y"
-by (simp add: add.commute)
-
-lemma approx_sym: "x \<approx> y ==> y \<approx> x"
-apply (simp add: approx_def)
-apply (drule Infinitesimal_minus_iff [THEN iffD2])
-apply simp
-done
-
-lemma approx_trans: "[| x \<approx> y; y \<approx> z |] ==> x \<approx> z"
-apply (simp add: approx_def)
-apply (drule (1) Infinitesimal_add)
-apply simp
-done
-
-lemma approx_trans2: "[| r \<approx> x; s \<approx> x |] ==> r \<approx> s"
-by (blast intro: approx_sym approx_trans)
-
-lemma approx_trans3: "[| x \<approx> r; x \<approx> s|] ==> r \<approx> s"
-by (blast intro: approx_sym approx_trans)
-
-lemma approx_reorient: "(x \<approx> y) = (y \<approx> x)"
-by (blast intro: approx_sym)
-
-(*reorientation simplification procedure: reorients (polymorphic)
-  0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*)
-simproc_setup approx_reorient_simproc
-  ("0 \<approx> x" | "1 \<approx> y" | "numeral w \<approx> z" | "- 1 \<approx> y" | "- numeral w \<approx> r") =
-\<open>
-  let val rule = @{thm approx_reorient} RS eq_reflection
-      fun proc phi ss ct =
-        case Thm.term_of ct of
-          _ $ t $ u => if can HOLogic.dest_number u then NONE
-            else if can HOLogic.dest_number t then SOME rule else NONE
-        | _ => NONE
-  in proc end
-\<close>
-
-lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x \<approx> y)"
-by (simp add: approx_minus_iff [symmetric] mem_infmal_iff)
-
-lemma approx_monad_iff: "(x \<approx> y) = (monad(x)=monad(y))"
-apply (simp add: monad_def)
-apply (auto dest: approx_sym elim!: approx_trans equalityCE)
-done
-
-lemma Infinitesimal_approx:
-     "[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x \<approx> y"
-apply (simp add: mem_infmal_iff)
-apply (blast intro: approx_trans approx_sym)
-done
-
-lemma approx_add: "[| a \<approx> b; c \<approx> d |] ==> a+c \<approx> b+d"
-proof (unfold approx_def)
-  assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal"
-  have "a + c - (b + d) = (a - b) + (c - d)" by simp
-  also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add)
-  finally show "a + c - (b + d) \<in> Infinitesimal" .
-qed
-
-lemma approx_minus: "a \<approx> b ==> -a \<approx> -b"
-apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym])
-apply (drule approx_minus_iff [THEN iffD1])
-apply (simp add: add.commute)
-done
-
-lemma approx_minus2: "-a \<approx> -b ==> a \<approx> b"
-by (auto dest: approx_minus)
-
-lemma approx_minus_cancel [simp]: "(-a \<approx> -b) = (a \<approx> b)"
-by (blast intro: approx_minus approx_minus2)
-
-lemma approx_add_minus: "[| a \<approx> b; c \<approx> d |] ==> a + -c \<approx> b + -d"
-by (blast intro!: approx_add approx_minus)
-
-lemma approx_diff: "[| a \<approx> b; c \<approx> d |] ==> a - c \<approx> b - d"
-  using approx_add [of a b "- c" "- d"] by simp
-
-lemma approx_mult1:
-  fixes a b c :: "'a::real_normed_algebra star"
-  shows "[| a \<approx> b; c: HFinite|] ==> a*c \<approx> b*c"
-by (simp add: approx_def Infinitesimal_HFinite_mult
-              left_diff_distrib [symmetric])
-
-lemma approx_mult2:
-  fixes a b c :: "'a::real_normed_algebra star"
-  shows "[|a \<approx> b; c: HFinite|] ==> c*a \<approx> c*b"
-by (simp add: approx_def Infinitesimal_HFinite_mult2
-              right_diff_distrib [symmetric])
-
-lemma approx_mult_subst:
-  fixes u v x y :: "'a::real_normed_algebra star"
-  shows "[|u \<approx> v*x; x \<approx> y; v \<in> HFinite|] ==> u \<approx> v*y"
-by (blast intro: approx_mult2 approx_trans)
-
-lemma approx_mult_subst2:
-  fixes u v x y :: "'a::real_normed_algebra star"
-  shows "[| u \<approx> x*v; x \<approx> y; v \<in> HFinite |] ==> u \<approx> y*v"
-by (blast intro: approx_mult1 approx_trans)
-
-lemma approx_mult_subst_star_of:
-  fixes u x y :: "'a::real_normed_algebra star"
-  shows "[| u \<approx> x*star_of v; x \<approx> y |] ==> u \<approx> y*star_of v"
-by (auto intro: approx_mult_subst2)
-
-lemma approx_eq_imp: "a = b ==> a \<approx> b"
-by (simp add: approx_def)
-
-lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x \<approx> x"
-by (blast intro: Infinitesimal_minus_iff [THEN iffD2]
-                    mem_infmal_iff [THEN iffD1] approx_trans2)
-
-lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) = (x \<approx> z)"
-by (simp add: approx_def)
-
-lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x \<approx> z)"
-by (force simp add: bex_Infinitesimal_iff [symmetric])
-
-lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x \<approx> z"
-apply (rule bex_Infinitesimal_iff [THEN iffD1])
-apply (drule Infinitesimal_minus_iff [THEN iffD2])
-apply (auto simp add: add.assoc [symmetric])
-done
-
-lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x \<approx> x + y"
-apply (rule bex_Infinitesimal_iff [THEN iffD1])
-apply (drule Infinitesimal_minus_iff [THEN iffD2])
-apply (auto simp add: add.assoc [symmetric])
-done
-
-lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x \<approx> y + x"
-by (auto dest: Infinitesimal_add_approx_self simp add: add.commute)
-
-lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x \<approx> x + -y"
-by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2])
-
-lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y \<approx> z|] ==> x \<approx> z"
-apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym])
-apply (erule approx_trans3 [THEN approx_sym], assumption)
-done
-
-lemma Infinitesimal_add_right_cancel:
-     "[| y \<in> Infinitesimal; x \<approx> z + y|] ==> x \<approx> z"
-apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym])
-apply (erule approx_trans3 [THEN approx_sym])
-apply (simp add: add.commute)
-apply (erule approx_sym)
-done
-
-lemma approx_add_left_cancel: "d + b  \<approx> d + c ==> b \<approx> c"
-apply (drule approx_minus_iff [THEN iffD1])
-apply (simp add: approx_minus_iff [symmetric] ac_simps)
-done
-
-lemma approx_add_right_cancel: "b + d \<approx> c + d ==> b \<approx> c"
-apply (rule approx_add_left_cancel)
-apply (simp add: add.commute)
-done
-
-lemma approx_add_mono1: "b \<approx> c ==> d + b \<approx> d + c"
-apply (rule approx_minus_iff [THEN iffD2])
-apply (simp add: approx_minus_iff [symmetric] ac_simps)
-done
-
-lemma approx_add_mono2: "b \<approx> c ==> b + a \<approx> c + a"
-by (simp add: add.commute approx_add_mono1)
-
-lemma approx_add_left_iff [simp]: "(a + b \<approx> a + c) = (b \<approx> c)"
-by (fast elim: approx_add_left_cancel approx_add_mono1)
-
-lemma approx_add_right_iff [simp]: "(b + a \<approx> c + a) = (b \<approx> c)"
-by (simp add: add.commute)
-
-lemma approx_HFinite: "[| x \<in> HFinite; x \<approx> y |] ==> y \<in> HFinite"
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe)
-apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]])
-apply (drule HFinite_add)
-apply (auto simp add: add.assoc)
-done
-
-lemma approx_star_of_HFinite: "x \<approx> star_of D ==> x \<in> HFinite"
-by (rule approx_sym [THEN [2] approx_HFinite], auto)
-
-lemma approx_mult_HFinite:
-  fixes a b c d :: "'a::real_normed_algebra star"
-  shows "[|a \<approx> b; c \<approx> d; b: HFinite; d: HFinite|] ==> a*c \<approx> b*d"
-apply (rule approx_trans)
-apply (rule_tac [2] approx_mult2)
-apply (rule approx_mult1)
-prefer 2 apply (blast intro: approx_HFinite approx_sym, auto)
-done
-
-lemma scaleHR_left_diff_distrib:
-  "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x"
-by transfer (rule scaleR_left_diff_distrib)
-
-lemma approx_scaleR1:
-  "[| a \<approx> star_of b; c: HFinite|] ==> scaleHR a c \<approx> b *\<^sub>R c"
-apply (unfold approx_def)
-apply (drule (1) Infinitesimal_HFinite_scaleHR)
-apply (simp only: scaleHR_left_diff_distrib)
-apply (simp add: scaleHR_def star_scaleR_def [symmetric])
-done
-
-lemma approx_scaleR2:
-  "a \<approx> b ==> c *\<^sub>R a \<approx> c *\<^sub>R b"
-by (simp add: approx_def Infinitesimal_scaleR2
-              scaleR_right_diff_distrib [symmetric])
-
-lemma approx_scaleR_HFinite:
-  "[|a \<approx> star_of b; c \<approx> d; d: HFinite|] ==> scaleHR a c \<approx> b *\<^sub>R d"
-apply (rule approx_trans)
-apply (rule_tac [2] approx_scaleR2)
-apply (rule approx_scaleR1)
-prefer 2 apply (blast intro: approx_HFinite approx_sym, auto)
-done
-
-lemma approx_mult_star_of:
-  fixes a c :: "'a::real_normed_algebra star"
-  shows "[|a \<approx> star_of b; c \<approx> star_of d |]
-      ==> a*c \<approx> star_of b*star_of d"
-by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of)
-
-lemma approx_SReal_mult_cancel_zero:
-     "[| (a::hypreal) \<in> \<real>; a \<noteq> 0; a*x \<approx> 0 |] ==> x \<approx> 0"
-apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]])
-apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
-done
-
-lemma approx_mult_SReal1: "[| (a::hypreal) \<in> \<real>; x \<approx> 0 |] ==> x*a \<approx> 0"
-by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1)
-
-lemma approx_mult_SReal2: "[| (a::hypreal) \<in> \<real>; x \<approx> 0 |] ==> a*x \<approx> 0"
-by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2)
-
-lemma approx_mult_SReal_zero_cancel_iff [simp]:
-     "[|(a::hypreal) \<in> \<real>; a \<noteq> 0 |] ==> (a*x \<approx> 0) = (x \<approx> 0)"
-by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2)
-
-lemma approx_SReal_mult_cancel:
-     "[| (a::hypreal) \<in> \<real>; a \<noteq> 0; a* w \<approx> a*z |] ==> w \<approx> z"
-apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]])
-apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
-done
-
-lemma approx_SReal_mult_cancel_iff1 [simp]:
-     "[| (a::hypreal) \<in> \<real>; a \<noteq> 0|] ==> (a* w \<approx> a*z) = (w \<approx> z)"
-by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD]
-         intro: approx_SReal_mult_cancel)
-
-lemma approx_le_bound: "[| (z::hypreal) \<le> f; f \<approx> g; g \<le> z |] ==> f \<approx> z"
-apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto)
-apply (rule_tac x = "g+y-z" in bexI)
-apply (simp (no_asm))
-apply (rule Infinitesimal_interval2)
-apply (rule_tac [2] Infinitesimal_zero, auto)
-done
-
-lemma approx_hnorm:
-  fixes x y :: "'a::real_normed_vector star"
-  shows "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y"
-proof (unfold approx_def)
-  assume "x - y \<in> Infinitesimal"
-  hence 1: "hnorm (x - y) \<in> Infinitesimal"
-    by (simp only: Infinitesimal_hnorm_iff)
-  moreover have 2: "(0::real star) \<in> Infinitesimal"
-    by (rule Infinitesimal_zero)
-  moreover have 3: "0 \<le> \<bar>hnorm x - hnorm y\<bar>"
-    by (rule abs_ge_zero)
-  moreover have 4: "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)"
-    by (rule hnorm_triangle_ineq3)
-  ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal"
-    by (rule Infinitesimal_interval2)
-  thus "hnorm x - hnorm y \<in> Infinitesimal"
-    by (simp only: Infinitesimal_hrabs_iff)
-qed
-
-
-subsection\<open>Zero is the Only Infinitesimal that is also a Real\<close>
-
-lemma Infinitesimal_less_SReal:
-     "[| (x::hypreal) \<in> \<real>; y \<in> Infinitesimal; 0 < x |] ==> y < x"
-apply (simp add: Infinitesimal_def)
-apply (rule abs_ge_self [THEN order_le_less_trans], auto)
-done
-
-lemma Infinitesimal_less_SReal2:
-     "(y::hypreal) \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r"
-by (blast intro: Infinitesimal_less_SReal)
-
-lemma SReal_not_Infinitesimal:
-     "[| 0 < y;  (y::hypreal) \<in> \<real>|] ==> y \<notin> Infinitesimal"
-apply (simp add: Infinitesimal_def)
-apply (auto simp add: abs_if)
-done
-
-lemma SReal_minus_not_Infinitesimal:
-     "[| y < 0;  (y::hypreal) \<in> \<real> |] ==> y \<notin> Infinitesimal"
-apply (subst Infinitesimal_minus_iff [symmetric])
-apply (rule SReal_not_Infinitesimal, auto)
-done
-
-lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}"
-apply auto
-apply (cut_tac x = x and y = 0 in linorder_less_linear)
-apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal)
-done
-
-lemma SReal_Infinitesimal_zero:
-  "[| (x::hypreal) \<in> \<real>; x \<in> Infinitesimal|] ==> x = 0"
-by (cut_tac SReal_Int_Infinitesimal_zero, blast)
-
-lemma SReal_HFinite_diff_Infinitesimal:
-     "[| (x::hypreal) \<in> \<real>; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
-by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD])
-
-lemma hypreal_of_real_HFinite_diff_Infinitesimal:
-     "hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal"
-by (rule SReal_HFinite_diff_Infinitesimal, auto)
-
-lemma star_of_Infinitesimal_iff_0 [iff]:
-  "(star_of x \<in> Infinitesimal) = (x = 0)"
-apply (auto simp add: Infinitesimal_def)
-apply (drule_tac x="hnorm (star_of x)" in bspec)
-apply (simp add: SReal_def)
-apply (rule_tac x="norm x" in exI, simp)
-apply simp
-done
-
-lemma star_of_HFinite_diff_Infinitesimal:
-     "x \<noteq> 0 ==> star_of x \<in> HFinite - Infinitesimal"
-by simp
-
-lemma numeral_not_Infinitesimal [simp]:
-     "numeral w \<noteq> (0::hypreal) ==> (numeral w :: hypreal) \<notin> Infinitesimal"
-by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero])
-
-(*again: 1 is a special case, but not 0 this time*)
-lemma one_not_Infinitesimal [simp]:
-  "(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal"
-apply (simp only: star_one_def star_of_Infinitesimal_iff_0)
-apply simp
-done
-
-lemma approx_SReal_not_zero:
-  "[| (y::hypreal) \<in> \<real>; x \<approx> y; y\<noteq> 0 |] ==> x \<noteq> 0"
-apply (cut_tac x = 0 and y = y in linorder_less_linear, simp)
-apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal)
-done
-
-lemma HFinite_diff_Infinitesimal_approx:
-     "[| x \<approx> y; y \<in> HFinite - Infinitesimal |]
-      ==> x \<in> HFinite - Infinitesimal"
-apply (auto intro: approx_sym [THEN [2] approx_HFinite]
-            simp add: mem_infmal_iff)
-apply (drule approx_trans3, assumption)
-apply (blast dest: approx_sym)
-done
-
-(*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the
-  HFinite premise.*)
-lemma Infinitesimal_ratio:
-  fixes x y :: "'a::{real_normed_div_algebra,field} star"
-  shows "[| y \<noteq> 0;  y \<in> Infinitesimal;  x/y \<in> HFinite |]
-         ==> x \<in> Infinitesimal"
-apply (drule Infinitesimal_HFinite_mult2, assumption)
-apply (simp add: divide_inverse mult.assoc)
-done
-
-lemma Infinitesimal_SReal_divide:
-  "[| (x::hypreal) \<in> Infinitesimal; y \<in> \<real> |] ==> x/y \<in> Infinitesimal"
-apply (simp add: divide_inverse)
-apply (auto intro!: Infinitesimal_HFinite_mult
-            dest!: Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]])
-done
-
-(*------------------------------------------------------------------
-       Standard Part Theorem: Every finite x: R* is infinitely
-       close to a unique real number (i.e a member of Reals)
- ------------------------------------------------------------------*)
-
-subsection\<open>Uniqueness: Two Infinitely Close Reals are Equal\<close>
-
-lemma star_of_approx_iff [simp]: "(star_of x \<approx> star_of y) = (x = y)"
-apply safe
-apply (simp add: approx_def)
-apply (simp only: star_of_diff [symmetric])
-apply (simp only: star_of_Infinitesimal_iff_0)
-apply simp
-done
-
-lemma SReal_approx_iff:
-  "[|(x::hypreal) \<in> \<real>; y \<in> \<real>|] ==> (x \<approx> y) = (x = y)"
-apply auto
-apply (simp add: approx_def)
-apply (drule (1) Reals_diff)
-apply (drule (1) SReal_Infinitesimal_zero)
-apply simp
-done
-
-lemma numeral_approx_iff [simp]:
-     "(numeral v \<approx> (numeral w :: 'a::{numeral,real_normed_vector} star)) =
-      (numeral v = (numeral w :: 'a))"
-apply (unfold star_numeral_def)
-apply (rule star_of_approx_iff)
-done
-
-(*And also for 0 \<approx> #nn and 1 \<approx> #nn, #nn \<approx> 0 and #nn \<approx> 1.*)
-lemma [simp]:
-  "(numeral w \<approx> (0::'a::{numeral,real_normed_vector} star)) =
-   (numeral w = (0::'a))"
-  "((0::'a::{numeral,real_normed_vector} star) \<approx> numeral w) =
-   (numeral w = (0::'a))"
-  "(numeral w \<approx> (1::'b::{numeral,one,real_normed_vector} star)) =
-   (numeral w = (1::'b))"
-  "((1::'b::{numeral,one,real_normed_vector} star) \<approx> numeral w) =
-   (numeral w = (1::'b))"
-  "~ (0 \<approx> (1::'c::{zero_neq_one,real_normed_vector} star))"
-  "~ (1 \<approx> (0::'c::{zero_neq_one,real_normed_vector} star))"
-apply (unfold star_numeral_def star_zero_def star_one_def)
-apply (unfold star_of_approx_iff)
-by (auto intro: sym)
-
-lemma star_of_approx_numeral_iff [simp]:
-     "(star_of k \<approx> numeral w) = (k = numeral w)"
-by (subst star_of_approx_iff [symmetric], auto)
-
-lemma star_of_approx_zero_iff [simp]: "(star_of k \<approx> 0) = (k = 0)"
-by (simp_all add: star_of_approx_iff [symmetric])
-
-lemma star_of_approx_one_iff [simp]: "(star_of k \<approx> 1) = (k = 1)"
-by (simp_all add: star_of_approx_iff [symmetric])
-
-lemma approx_unique_real:
-     "[| (r::hypreal) \<in> \<real>; s \<in> \<real>; r \<approx> x; s \<approx> x|] ==> r = s"
-by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2)
-
-
-subsection\<open>Existence of Unique Real Infinitely Close\<close>
-
-subsubsection\<open>Lifting of the Ub and Lub Properties\<close>
-
-lemma hypreal_of_real_isUb_iff:
-      "(isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)) =
-       (isUb (UNIV :: real set) Q Y)"
-by (simp add: isUb_def setle_def)
-
-lemma hypreal_of_real_isLub1:
-     "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)
-      ==> isLub (UNIV :: real set) Q Y"
-apply (simp add: isLub_def leastP_def)
-apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2]
-            simp add: hypreal_of_real_isUb_iff setge_def)
-done
-
-lemma hypreal_of_real_isLub2:
-      "isLub (UNIV :: real set) Q Y
-       ==> isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)"
-apply (auto simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def)
-by (metis SReal_iff hypreal_of_real_isUb_iff isUbD2a star_of_le)
-
-lemma hypreal_of_real_isLub_iff:
-     "(isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)) =
-      (isLub (UNIV :: real set) Q Y)"
-by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2)
-
-lemma lemma_isUb_hypreal_of_real:
-     "isUb \<real> P Y ==> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)"
-by (auto simp add: SReal_iff isUb_def)
-
-lemma lemma_isLub_hypreal_of_real:
-     "isLub \<real> P Y ==> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)"
-by (auto simp add: isLub_def leastP_def isUb_def SReal_iff)
-
-lemma lemma_isLub_hypreal_of_real2:
-     "\<exists>Yo. isLub \<real> P (hypreal_of_real Yo) ==> \<exists>Y. isLub \<real> P Y"
-by (auto simp add: isLub_def leastP_def isUb_def)
-
-lemma SReal_complete:
-     "[| P \<subseteq> \<real>;  \<exists>x. x \<in> P;  \<exists>Y. isUb \<real> P Y |]
-      ==> \<exists>t::hypreal. isLub \<real> P t"
-apply (frule SReal_hypreal_of_real_image)
-apply (auto, drule lemma_isUb_hypreal_of_real)
-apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2
-            simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff)
-done
-
-(* lemma about lubs *)
-
-lemma lemma_st_part_ub:
-     "(x::hypreal) \<in> HFinite ==> \<exists>u. isUb \<real> {s. s \<in> \<real> & s < x} u"
-apply (drule HFiniteD, safe)
-apply (rule exI, rule isUbI)
-apply (auto intro: setleI isUbI simp add: abs_less_iff)
-done
-
-lemma lemma_st_part_nonempty:
-  "(x::hypreal) \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> \<real> & s < x}"
-apply (drule HFiniteD, safe)
-apply (drule Reals_minus)
-apply (rule_tac x = "-t" in exI)
-apply (auto simp add: abs_less_iff)
-done
-
-lemma lemma_st_part_lub:
-     "(x::hypreal) \<in> HFinite ==> \<exists>t. isLub \<real> {s. s \<in> \<real> & s < x} t"
-by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty Collect_restrict)
-
-lemma lemma_st_part_le1:
-     "[| (x::hypreal) \<in> HFinite;  isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>;  0 < r |] ==> x \<le> t + r"
-apply (frule isLubD1a)
-apply (rule ccontr, drule linorder_not_le [THEN iffD2])
-apply (drule (1) Reals_add)
-apply (drule_tac y = "r + t" in isLubD1 [THEN setleD], auto)
-done
-
-lemma hypreal_setle_less_trans:
-     "[| S *<= (x::hypreal); x < y |] ==> S *<= y"
-apply (simp add: setle_def)
-apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le)
-done
-
-lemma hypreal_gt_isUb:
-     "[| isUb R S (x::hypreal); x < y; y \<in> R |] ==> isUb R S y"
-apply (simp add: isUb_def)
-apply (blast intro: hypreal_setle_less_trans)
-done
-
-lemma lemma_st_part_gt_ub:
-     "[| (x::hypreal) \<in> HFinite; x < y; y \<in> \<real> |]
-      ==> isUb \<real> {s. s \<in> \<real> & s < x} y"
-by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI)
-
-lemma lemma_minus_le_zero: "t \<le> t + -r ==> r \<le> (0::hypreal)"
-apply (drule_tac c = "-t" in add_left_mono)
-apply (auto simp add: add.assoc [symmetric])
-done
-
-lemma lemma_st_part_le2:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>; 0 < r |]
-      ==> t + -r \<le> x"
-apply (frule isLubD1a)
-apply (rule ccontr, drule linorder_not_le [THEN iffD1])
-apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption)
-apply (drule lemma_st_part_gt_ub, assumption+)
-apply (drule isLub_le_isUb, assumption)
-apply (drule lemma_minus_le_zero)
-apply (auto dest: order_less_le_trans)
-done
-
-lemma lemma_st_part1a:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>; 0 < r |]
-      ==> x + -t \<le> r"
-apply (subgoal_tac "x \<le> t+r")
-apply (auto intro: lemma_st_part_le1)
-done
-
-lemma lemma_st_part2a:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>;  0 < r |]
-      ==> -(x + -t) \<le> r"
-apply (subgoal_tac "(t + -r \<le> x)")
-apply simp
-apply (rule lemma_st_part_le2)
-apply auto
-done
-
-lemma lemma_SReal_ub:
-     "(x::hypreal) \<in> \<real> ==> isUb \<real> {s. s \<in> \<real> & s < x} x"
-by (auto intro: isUbI setleI order_less_imp_le)
-
-lemma lemma_SReal_lub:
-     "(x::hypreal) \<in> \<real> ==> isLub \<real> {s. s \<in> \<real> & s < x} x"
-apply (auto intro!: isLubI2 lemma_SReal_ub setgeI)
-apply (frule isUbD2a)
-apply (rule_tac x = x and y = y in linorder_cases)
-apply (auto intro!: order_less_imp_le)
-apply (drule SReal_dense, assumption, assumption, safe)
-apply (drule_tac y = r in isUbD)
-apply (auto dest: order_less_le_trans)
-done
-
-lemma lemma_st_part_not_eq1:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>; 0 < r |]
-      ==> x + -t \<noteq> r"
-apply auto
-apply (frule isLubD1a [THEN Reals_minus])
-using Reals_add_cancel [of x "- t"] apply simp
-apply (drule_tac x = x in lemma_SReal_lub)
-apply (drule isLub_unique, assumption, auto)
-done
-
-lemma lemma_st_part_not_eq2:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>; 0 < r |]
-      ==> -(x + -t) \<noteq> r"
-apply (auto)
-apply (frule isLubD1a)
-using Reals_add_cancel [of "- x" t] apply simp
-apply (drule_tac x = x in lemma_SReal_lub)
-apply (drule isLub_unique, assumption, auto)
-done
-
-lemma lemma_st_part_major:
-     "[| (x::hypreal) \<in> HFinite;
-         isLub \<real> {s. s \<in> \<real> & s < x} t;
-         r \<in> \<real>; 0 < r |]
-      ==> \<bar>x - t\<bar> < r"
-apply (frule lemma_st_part1a)
-apply (frule_tac [4] lemma_st_part2a, auto)
-apply (drule order_le_imp_less_or_eq)+
-apply auto
-using lemma_st_part_not_eq2 apply fastforce
-using lemma_st_part_not_eq1 apply fastforce
-done
-
-lemma lemma_st_part_major2:
-     "[| (x::hypreal) \<in> HFinite; isLub \<real> {s. s \<in> \<real> & s < x} t |]
-      ==> \<forall>r \<in> Reals. 0 < r --> \<bar>x - t\<bar> < r"
-by (blast dest!: lemma_st_part_major)
-
-
-
-text\<open>Existence of real and Standard Part Theorem\<close>
-lemma lemma_st_part_Ex:
-     "(x::hypreal) \<in> HFinite
-       ==> \<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> \<bar>x - t\<bar> < r"
-apply (frule lemma_st_part_lub, safe)
-apply (frule isLubD1a)
-apply (blast dest: lemma_st_part_major2)
-done
-
-lemma st_part_Ex:
-     "(x::hypreal) \<in> HFinite ==> \<exists>t \<in> Reals. x \<approx> t"
-apply (simp add: approx_def Infinitesimal_def)
-apply (drule lemma_st_part_Ex, auto)
-done
-
-text\<open>There is a unique real infinitely close\<close>
-lemma st_part_Ex1: "x \<in> HFinite ==> EX! t::hypreal. t \<in> \<real> & x \<approx> t"
-apply (drule st_part_Ex, safe)
-apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
-apply (auto intro!: approx_unique_real)
-done
-
-subsection\<open>Finite, Infinite and Infinitesimal\<close>
-
-lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}"
-apply (simp add: HFinite_def HInfinite_def)
-apply (auto dest: order_less_trans)
-done
-
-lemma HFinite_not_HInfinite:
-  assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite"
-proof
-  assume x': "x \<in> HInfinite"
-  with x have "x \<in> HFinite \<inter> HInfinite" by blast
-  thus False by auto
-qed
-
-lemma not_HFinite_HInfinite: "x\<notin> HFinite ==> x \<in> HInfinite"
-apply (simp add: HInfinite_def HFinite_def, auto)
-apply (drule_tac x = "r + 1" in bspec)
-apply (auto)
-done
-
-lemma HInfinite_HFinite_disj: "x \<in> HInfinite | x \<in> HFinite"
-by (blast intro: not_HFinite_HInfinite)
-
-lemma HInfinite_HFinite_iff: "(x \<in> HInfinite) = (x \<notin> HFinite)"
-by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite)
-
-lemma HFinite_HInfinite_iff: "(x \<in> HFinite) = (x \<notin> HInfinite)"
-by (simp add: HInfinite_HFinite_iff)
-
-
-lemma HInfinite_diff_HFinite_Infinitesimal_disj:
-     "x \<notin> Infinitesimal ==> x \<in> HInfinite | x \<in> HFinite - Infinitesimal"
-by (fast intro: not_HFinite_HInfinite)
-
-lemma HFinite_inverse:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "[| x \<in> HFinite; x \<notin> Infinitesimal |] ==> inverse x \<in> HFinite"
-apply (subgoal_tac "x \<noteq> 0")
-apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj)
-apply (auto dest!: HInfinite_inverse_Infinitesimal
-            simp add: nonzero_inverse_inverse_eq)
-done
-
-lemma HFinite_inverse2:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite"
-by (blast intro: HFinite_inverse)
-
-(* stronger statement possible in fact *)
-lemma Infinitesimal_inverse_HFinite:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "x \<notin> Infinitesimal ==> inverse(x) \<in> HFinite"
-apply (drule HInfinite_diff_HFinite_Infinitesimal_disj)
-apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD])
-done
-
-lemma HFinite_not_Infinitesimal_inverse:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "x \<in> HFinite - Infinitesimal ==> inverse x \<in> HFinite - Infinitesimal"
-apply (auto intro: Infinitesimal_inverse_HFinite)
-apply (drule Infinitesimal_HFinite_mult2, assumption)
-apply (simp add: not_Infinitesimal_not_zero)
-done
-
-lemma approx_inverse:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows
-     "[| x \<approx> y; y \<in>  HFinite - Infinitesimal |]
-      ==> inverse x \<approx> inverse y"
-apply (frule HFinite_diff_Infinitesimal_approx, assumption)
-apply (frule not_Infinitesimal_not_zero2)
-apply (frule_tac x = x in not_Infinitesimal_not_zero2)
-apply (drule HFinite_inverse2)+
-apply (drule approx_mult2, assumption, auto)
-apply (drule_tac c = "inverse x" in approx_mult1, assumption)
-apply (auto intro: approx_sym simp add: mult.assoc)
-done
-
-(*Used for NSLIM_inverse, NSLIMSEQ_inverse*)
-lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
-lemmas hypreal_of_real_approx_inverse =  hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
-
-lemma inverse_add_Infinitesimal_approx:
-  fixes x h :: "'a::real_normed_div_algebra star"
-  shows
-     "[| x \<in> HFinite - Infinitesimal;
-         h \<in> Infinitesimal |] ==> inverse(x + h) \<approx> inverse x"
-apply (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self)
-done
-
-lemma inverse_add_Infinitesimal_approx2:
-  fixes x h :: "'a::real_normed_div_algebra star"
-  shows
-     "[| x \<in> HFinite - Infinitesimal;
-         h \<in> Infinitesimal |] ==> inverse(h + x) \<approx> inverse x"
-apply (rule add.commute [THEN subst])
-apply (blast intro: inverse_add_Infinitesimal_approx)
-done
-
-lemma inverse_add_Infinitesimal_approx_Infinitesimal:
-  fixes x h :: "'a::real_normed_div_algebra star"
-  shows
-     "[| x \<in> HFinite - Infinitesimal;
-         h \<in> Infinitesimal |] ==> inverse(x + h) - inverse x \<approx> h"
-apply (rule approx_trans2)
-apply (auto intro: inverse_add_Infinitesimal_approx
-            simp add: mem_infmal_iff approx_minus_iff [symmetric])
-done
-
-lemma Infinitesimal_square_iff:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "(x \<in> Infinitesimal) = (x*x \<in> Infinitesimal)"
-apply (auto intro: Infinitesimal_mult)
-apply (rule ccontr, frule Infinitesimal_inverse_HFinite)
-apply (frule not_Infinitesimal_not_zero)
-apply (auto dest: Infinitesimal_HFinite_mult simp add: mult.assoc)
-done
-declare Infinitesimal_square_iff [symmetric, simp]
-
-lemma HFinite_square_iff [simp]:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "(x*x \<in> HFinite) = (x \<in> HFinite)"
-apply (auto intro: HFinite_mult)
-apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff)
-done
-
-lemma HInfinite_square_iff [simp]:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "(x*x \<in> HInfinite) = (x \<in> HInfinite)"
-by (auto simp add: HInfinite_HFinite_iff)
-
-lemma approx_HFinite_mult_cancel:
-  fixes a w z :: "'a::real_normed_div_algebra star"
-  shows "[| a: HFinite-Infinitesimal; a* w \<approx> a*z |] ==> w \<approx> z"
-apply safe
-apply (frule HFinite_inverse, assumption)
-apply (drule not_Infinitesimal_not_zero)
-apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
-done
-
-lemma approx_HFinite_mult_cancel_iff1:
-  fixes a w z :: "'a::real_normed_div_algebra star"
-  shows "a: HFinite-Infinitesimal ==> (a * w \<approx> a * z) = (w \<approx> z)"
-by (auto intro: approx_mult2 approx_HFinite_mult_cancel)
-
-lemma HInfinite_HFinite_add_cancel:
-     "[| x + y \<in> HInfinite; y \<in> HFinite |] ==> x \<in> HInfinite"
-apply (rule ccontr)
-apply (drule HFinite_HInfinite_iff [THEN iffD2])
-apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff)
-done
-
-lemma HInfinite_HFinite_add:
-     "[| x \<in> HInfinite; y \<in> HFinite |] ==> x + y \<in> HInfinite"
-apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel)
-apply (auto simp add: add.assoc HFinite_minus_iff)
-done
-
-lemma HInfinite_ge_HInfinite:
-     "[| (x::hypreal) \<in> HInfinite; x \<le> y; 0 \<le> x |] ==> y \<in> HInfinite"
-by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff)
-
-lemma Infinitesimal_inverse_HInfinite:
-  fixes x :: "'a::real_normed_div_algebra star"
-  shows "[| x \<in> Infinitesimal; x \<noteq> 0 |] ==> inverse x \<in> HInfinite"
-apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
-apply (auto dest: Infinitesimal_HFinite_mult2)
-done
-
-lemma HInfinite_HFinite_not_Infinitesimal_mult:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |]
-      ==> x * y \<in> HInfinite"
-apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
-apply (frule HFinite_Infinitesimal_not_zero)
-apply (drule HFinite_not_Infinitesimal_inverse)
-apply (safe, drule HFinite_mult)
-apply (auto simp add: mult.assoc HFinite_HInfinite_iff)
-done
-
-lemma HInfinite_HFinite_not_Infinitesimal_mult2:
-  fixes x y :: "'a::real_normed_div_algebra star"
-  shows "[| x \<in> HInfinite; y \<in> HFinite - Infinitesimal |]
-      ==> y * x \<in> HInfinite"
-apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2])
-apply (frule HFinite_Infinitesimal_not_zero)
-apply (drule HFinite_not_Infinitesimal_inverse)
-apply (safe, drule_tac x="inverse y" in HFinite_mult)
-apply assumption
-apply (auto simp add: mult.assoc [symmetric] HFinite_HInfinite_iff)
-done
-
-lemma HInfinite_gt_SReal:
-  "[| (x::hypreal) \<in> HInfinite; 0 < x; y \<in> \<real> |] ==> y < x"
-by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le)
-
-lemma HInfinite_gt_zero_gt_one:
-  "[| (x::hypreal) \<in> HInfinite; 0 < x |] ==> 1 < x"
-by (auto intro: HInfinite_gt_SReal)
-
-
-lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite"
-apply (simp (no_asm) add: HInfinite_HFinite_iff)
-done
-
-lemma approx_hrabs_disj: "\<bar>x::hypreal\<bar> \<approx> x \<or> \<bar>x\<bar> \<approx> -x"
-by (cut_tac x = x in hrabs_disj, auto)
-
-
-subsection\<open>Theorems about Monads\<close>
-
-lemma monad_hrabs_Un_subset: "monad \<bar>x\<bar> \<le> monad(x::hypreal) Un monad(-x)"
-by (rule_tac x1 = x in hrabs_disj [THEN disjE], auto)
-
-lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal ==> monad (x+e) = monad x"
-by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1])
-
-lemma mem_monad_iff: "(u \<in> monad x) = (-u \<in> monad (-x))"
-by (simp add: monad_def)
-
-lemma Infinitesimal_monad_zero_iff: "(x \<in> Infinitesimal) = (x \<in> monad 0)"
-by (auto intro: approx_sym simp add: monad_def mem_infmal_iff)
-
-lemma monad_zero_minus_iff: "(x \<in> monad 0) = (-x \<in> monad 0)"
-apply (simp (no_asm) add: Infinitesimal_monad_zero_iff [symmetric])
-done
-
-lemma monad_zero_hrabs_iff: "((x::hypreal) \<in> monad 0) = (\<bar>x\<bar> \<in> monad 0)"
-apply (rule_tac x1 = x in hrabs_disj [THEN disjE])
-apply (auto simp add: monad_zero_minus_iff [symmetric])
-done
-
-lemma mem_monad_self [simp]: "x \<in> monad x"
-by (simp add: monad_def)
-
-
-subsection\<open>Proof that @{term "x \<approx> y"} implies @{term"\<bar>x\<bar> \<approx> \<bar>y\<bar>"}\<close>
-
-lemma approx_subset_monad: "x \<approx> y ==> {x,y} \<le> monad x"
-apply (simp (no_asm))
-apply (simp add: approx_monad_iff)
-done
-
-lemma approx_subset_monad2: "x \<approx> y ==> {x,y} \<le> monad y"
-apply (drule approx_sym)
-apply (fast dest: approx_subset_monad)
-done
-
-lemma mem_monad_approx: "u \<in> monad x ==> x \<approx> u"
-by (simp add: monad_def)
-
-lemma approx_mem_monad: "x \<approx> u ==> u \<in> monad x"
-by (simp add: monad_def)
-
-lemma approx_mem_monad2: "x \<approx> u ==> x \<in> monad u"
-apply (simp add: monad_def)
-apply (blast intro!: approx_sym)
-done
-
-lemma approx_mem_monad_zero: "[| x \<approx> y;x \<in> monad 0 |] ==> y \<in> monad 0"
-apply (drule mem_monad_approx)
-apply (fast intro: approx_mem_monad approx_trans)
-done
-
-lemma Infinitesimal_approx_hrabs:
-     "[| x \<approx> y; (x::hypreal) \<in> Infinitesimal |] ==> \<bar>x\<bar> \<approx> \<bar>y\<bar>"
-apply (drule Infinitesimal_monad_zero_iff [THEN iffD1])
-apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] mem_monad_approx approx_trans3)
-done
-
-lemma less_Infinitesimal_less:
-     "[| 0 < x;  (x::hypreal) \<notin>Infinitesimal;  e :Infinitesimal |] ==> e < x"
-apply (rule ccontr)
-apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval]
-            dest!: order_le_imp_less_or_eq simp add: linorder_not_less)
-done
-
-lemma Ball_mem_monad_gt_zero:
-     "[| 0 < (x::hypreal);  x \<notin> Infinitesimal; u \<in> monad x |] ==> 0 < u"
-apply (drule mem_monad_approx [THEN approx_sym])
-apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE])
-apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto)
-done
-
-lemma Ball_mem_monad_less_zero:
-     "[| (x::hypreal) < 0; x \<notin> Infinitesimal; u \<in> monad x |] ==> u < 0"
-apply (drule mem_monad_approx [THEN approx_sym])
-apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE])
-apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto)
-done
-
-lemma lemma_approx_gt_zero:
-     "[|0 < (x::hypreal); x \<notin> Infinitesimal; x \<approx> y|] ==> 0 < y"
-by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad)
-
-lemma lemma_approx_less_zero:
-     "[|(x::hypreal) < 0; x \<notin> Infinitesimal; x \<approx> y|] ==> y < 0"
-by (blast dest: Ball_mem_monad_less_zero approx_subset_monad)
-
-theorem approx_hrabs: "(x::hypreal) \<approx> y ==> \<bar>x\<bar> \<approx> \<bar>y\<bar>"
-by (drule approx_hnorm, simp)
-
-lemma approx_hrabs_zero_cancel: "\<bar>x::hypreal\<bar> \<approx> 0 ==> x \<approx> 0"
-apply (cut_tac x = x in hrabs_disj)
-apply (auto dest: approx_minus)
-done
-
-lemma approx_hrabs_add_Infinitesimal:
-  "(e::hypreal) \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + e\<bar>"
-by (fast intro: approx_hrabs Infinitesimal_add_approx_self)
-
-lemma approx_hrabs_add_minus_Infinitesimal:
-     "(e::hypreal) \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + -e\<bar>"
-by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self)
-
-lemma hrabs_add_Infinitesimal_cancel:
-     "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal;
-         \<bar>x + e\<bar> = \<bar>y + e'\<bar>|] ==> \<bar>x\<bar> \<approx> \<bar>y\<bar>"
-apply (drule_tac x = x in approx_hrabs_add_Infinitesimal)
-apply (drule_tac x = y in approx_hrabs_add_Infinitesimal)
-apply (auto intro: approx_trans2)
-done
-
-lemma hrabs_add_minus_Infinitesimal_cancel:
-     "[| (e::hypreal) \<in> Infinitesimal; e' \<in> Infinitesimal;
-         \<bar>x + -e\<bar> = \<bar>y + -e'\<bar>|] ==> \<bar>x\<bar> \<approx> \<bar>y\<bar>"
-apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal)
-apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal)
-apply (auto intro: approx_trans2)
-done
-
-subsection \<open>More @{term HFinite} and @{term Infinitesimal} Theorems\<close>
-
-(* interesting slightly counterintuitive theorem: necessary
-   for proving that an open interval is an NS open set
-*)
-lemma Infinitesimal_add_hypreal_of_real_less:
-     "[| x < y;  u \<in> Infinitesimal |]
-      ==> hypreal_of_real x + u < hypreal_of_real y"
-apply (simp add: Infinitesimal_def)
-apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp)
-apply (simp add: abs_less_iff)
-done
-
-lemma Infinitesimal_add_hrabs_hypreal_of_real_less:
-     "[| x \<in> Infinitesimal; \<bar>hypreal_of_real r\<bar> < hypreal_of_real y |]
-      ==> \<bar>hypreal_of_real r + x\<bar> < hypreal_of_real y"
-apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal)
-apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]])
-apply (auto intro!: Infinitesimal_add_hypreal_of_real_less
-            simp del: star_of_abs
-            simp add: star_of_abs [symmetric])
-done
-
-lemma Infinitesimal_add_hrabs_hypreal_of_real_less2:
-     "[| x \<in> Infinitesimal;  \<bar>hypreal_of_real r\<bar> < hypreal_of_real y |]
-      ==> \<bar>x + hypreal_of_real r\<bar> < hypreal_of_real y"
-apply (rule add.commute [THEN subst])
-apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption)
-done
-
-lemma hypreal_of_real_le_add_Infininitesimal_cancel:
-     "[| u \<in> Infinitesimal; v \<in> Infinitesimal;
-         hypreal_of_real x + u \<le> hypreal_of_real y + v |]
-      ==> hypreal_of_real x \<le> hypreal_of_real y"
-apply (simp add: linorder_not_less [symmetric], auto)
-apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less)
-apply (auto simp add: Infinitesimal_diff)
-done
-
-lemma hypreal_of_real_le_add_Infininitesimal_cancel2:
-     "[| u \<in> Infinitesimal; v \<in> Infinitesimal;
-         hypreal_of_real x + u \<le> hypreal_of_real y + v |]
-      ==> x \<le> y"
-by (blast intro: star_of_le [THEN iffD1]
-          intro!: hypreal_of_real_le_add_Infininitesimal_cancel)
-
-lemma hypreal_of_real_less_Infinitesimal_le_zero:
-    "[| hypreal_of_real x < e; e \<in> Infinitesimal |] ==> hypreal_of_real x \<le> 0"
-apply (rule linorder_not_less [THEN iffD1], safe)
-apply (drule Infinitesimal_interval)
-apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto)
-done
-
-(*used once, in Lim/NSDERIV_inverse*)
-lemma Infinitesimal_add_not_zero:
-     "[| h \<in> Infinitesimal; x \<noteq> 0 |] ==> star_of x + h \<noteq> 0"
-apply auto
-apply (subgoal_tac "h = - star_of x", auto intro: minus_unique [symmetric])
-done
-
-lemma Infinitesimal_square_cancel [simp]:
-     "(x::hypreal)*x + y*y \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
-apply (rule Infinitesimal_interval2)
-apply (rule_tac [3] zero_le_square, assumption)
-apply (auto)
-done
-
-lemma HFinite_square_cancel [simp]:
-  "(x::hypreal)*x + y*y \<in> HFinite ==> x*x \<in> HFinite"
-apply (rule HFinite_bounded, assumption)
-apply (auto)
-done
-
-lemma Infinitesimal_square_cancel2 [simp]:
-     "(x::hypreal)*x + y*y \<in> Infinitesimal ==> y*y \<in> Infinitesimal"
-apply (rule Infinitesimal_square_cancel)
-apply (rule add.commute [THEN subst])
-apply (simp (no_asm))
-done
-
-lemma HFinite_square_cancel2 [simp]:
-  "(x::hypreal)*x + y*y \<in> HFinite ==> y*y \<in> HFinite"
-apply (rule HFinite_square_cancel)
-apply (rule add.commute [THEN subst])
-apply (simp (no_asm))
-done
-
-lemma Infinitesimal_sum_square_cancel [simp]:
-     "(x::hypreal)*x + y*y + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
-apply (rule Infinitesimal_interval2, assumption)
-apply (rule_tac [2] zero_le_square, simp)
-apply (insert zero_le_square [of y])
-apply (insert zero_le_square [of z], simp del:zero_le_square)
-done
-
-lemma HFinite_sum_square_cancel [simp]:
-     "(x::hypreal)*x + y*y + z*z \<in> HFinite ==> x*x \<in> HFinite"
-apply (rule HFinite_bounded, assumption)
-apply (rule_tac [2] zero_le_square)
-apply (insert zero_le_square [of y])
-apply (insert zero_le_square [of z], simp del:zero_le_square)
-done
-
-lemma Infinitesimal_sum_square_cancel2 [simp]:
-     "(y::hypreal)*y + x*x + z*z \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
-apply (rule Infinitesimal_sum_square_cancel)
-apply (simp add: ac_simps)
-done
-
-lemma HFinite_sum_square_cancel2 [simp]:
-     "(y::hypreal)*y + x*x + z*z \<in> HFinite ==> x*x \<in> HFinite"
-apply (rule HFinite_sum_square_cancel)
-apply (simp add: ac_simps)
-done
-
-lemma Infinitesimal_sum_square_cancel3 [simp]:
-     "(z::hypreal)*z + y*y + x*x \<in> Infinitesimal ==> x*x \<in> Infinitesimal"
-apply (rule Infinitesimal_sum_square_cancel)
-apply (simp add: ac_simps)
-done
-
-lemma HFinite_sum_square_cancel3 [simp]:
-     "(z::hypreal)*z + y*y + x*x \<in> HFinite ==> x*x \<in> HFinite"
-apply (rule HFinite_sum_square_cancel)
-apply (simp add: ac_simps)
-done
-
-lemma monad_hrabs_less:
-     "[| y \<in> monad x; 0 < hypreal_of_real e |]
-      ==> \<bar>y - x\<bar> < hypreal_of_real e"
-apply (drule mem_monad_approx [THEN approx_sym])
-apply (drule bex_Infinitesimal_iff [THEN iffD2])
-apply (auto dest!: InfinitesimalD)
-done
-
-lemma mem_monad_SReal_HFinite:
-     "x \<in> monad (hypreal_of_real  a) ==> x \<in> HFinite"
-apply (drule mem_monad_approx [THEN approx_sym])
-apply (drule bex_Infinitesimal_iff2 [THEN iffD2])
-apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD])
-apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add])
-done
-
-
-subsection\<open>Theorems about Standard Part\<close>
-
-lemma st_approx_self: "x \<in> HFinite ==> st x \<approx> x"
-apply (simp add: st_def)
-apply (frule st_part_Ex, safe)
-apply (rule someI2)
-apply (auto intro: approx_sym)
-done
-
-lemma st_SReal: "x \<in> HFinite ==> st x \<in> \<real>"
-apply (simp add: st_def)
-apply (frule st_part_Ex, safe)
-apply (rule someI2)
-apply (auto intro: approx_sym)
-done
-
-lemma st_HFinite: "x \<in> HFinite ==> st x \<in> HFinite"
-by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]])
-
-lemma st_unique: "\<lbrakk>r \<in> \<real>; r \<approx> x\<rbrakk> \<Longrightarrow> st x = r"
-apply (frule SReal_subset_HFinite [THEN subsetD])
-apply (drule (1) approx_HFinite)
-apply (unfold st_def)
-apply (rule some_equality)
-apply (auto intro: approx_unique_real)
-done
-
-lemma st_SReal_eq: "x \<in> \<real> ==> st x = x"
-  by (metis approx_refl st_unique)
-
-lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x"
-by (rule SReal_hypreal_of_real [THEN st_SReal_eq])
-
-lemma st_eq_approx: "[| x \<in> HFinite; y \<in> HFinite; st x = st y |] ==> x \<approx> y"
-by (auto dest!: st_approx_self elim!: approx_trans3)
-
-lemma approx_st_eq:
-  assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x \<approx> y"
-  shows "st x = st y"
-proof -
-  have "st x \<approx> x" "st y \<approx> y" "st x \<in> \<real>" "st y \<in> \<real>"
-    by (simp_all add: st_approx_self st_SReal x y)
-  with xy show ?thesis
-    by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1])
-qed
-
-lemma st_eq_approx_iff:
-     "[| x \<in> HFinite; y \<in> HFinite|]
-                   ==> (x \<approx> y) = (st x = st y)"
-by (blast intro: approx_st_eq st_eq_approx)
-
-lemma st_Infinitesimal_add_SReal:
-     "[| x \<in> \<real>; e \<in> Infinitesimal |] ==> st(x + e) = x"
-apply (erule st_unique)
-apply (erule Infinitesimal_add_approx_self)
-done
-
-lemma st_Infinitesimal_add_SReal2:
-     "[| x \<in> \<real>; e \<in> Infinitesimal |] ==> st(e + x) = x"
-apply (erule st_unique)
-apply (erule Infinitesimal_add_approx_self2)
-done
-
-lemma HFinite_st_Infinitesimal_add:
-     "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = st(x) + e"
-by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
-
-lemma st_add: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x + y) = st x + st y"
-by (simp add: st_unique st_SReal st_approx_self approx_add)
-
-lemma st_numeral [simp]: "st (numeral w) = numeral w"
-by (rule Reals_numeral [THEN st_SReal_eq])
-
-lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w"
-proof -
-  from Reals_numeral have "numeral w \<in> \<real>" .
-  then have "- numeral w \<in> \<real>" by simp
-  with st_SReal_eq show ?thesis .
-qed
-
-lemma st_0 [simp]: "st 0 = 0"
-by (simp add: st_SReal_eq)
-
-lemma st_1 [simp]: "st 1 = 1"
-by (simp add: st_SReal_eq)
-
-lemma st_neg_1 [simp]: "st (- 1) = - 1"
-by (simp add: st_SReal_eq)
-
-lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x"
-by (simp add: st_unique st_SReal st_approx_self approx_minus)
-
-lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y"
-by (simp add: st_unique st_SReal st_approx_self approx_diff)
-
-lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y"
-by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite)
-
-lemma st_Infinitesimal: "x \<in> Infinitesimal ==> st x = 0"
-by (simp add: st_unique mem_infmal_iff)
-
-lemma st_not_Infinitesimal: "st(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
-by (fast intro: st_Infinitesimal)
-
-lemma st_inverse:
-     "[| x \<in> HFinite; st x \<noteq> 0 |]
-      ==> st(inverse x) = inverse (st x)"
-apply (rule_tac c1 = "st x" in mult_left_cancel [THEN iffD1])
-apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse)
-apply (subst right_inverse, auto)
-done
-
-lemma st_divide [simp]:
-     "[| x \<in> HFinite; y \<in> HFinite; st y \<noteq> 0 |]
-      ==> st(x/y) = (st x) / (st y)"
-by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse)
-
-lemma st_idempotent [simp]: "x \<in> HFinite ==> st(st(x)) = st(x)"
-by (blast intro: st_HFinite st_approx_self approx_st_eq)
-
-lemma Infinitesimal_add_st_less:
-     "[| x \<in> HFinite; y \<in> HFinite; u \<in> Infinitesimal; st x < st y |]
-      ==> st x + u < st y"
-apply (drule st_SReal)+
-apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff)
-done
-
-lemma Infinitesimal_add_st_le_cancel:
-     "[| x \<in> HFinite; y \<in> HFinite;
-         u \<in> Infinitesimal; st x \<le> st y + u
-      |] ==> st x \<le> st y"
-apply (simp add: linorder_not_less [symmetric])
-apply (auto dest: Infinitesimal_add_st_less)
-done
-
-lemma st_le: "[| x \<in> HFinite; y \<in> HFinite; x \<le> y |] ==> st(x) \<le> st(y)"
-by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1)
-
-lemma st_zero_le: "[| 0 \<le> x;  x \<in> HFinite |] ==> 0 \<le> st x"
-apply (subst st_0 [symmetric])
-apply (rule st_le, auto)
-done
-
-lemma st_zero_ge: "[| x \<le> 0;  x \<in> HFinite |] ==> st x \<le> 0"
-apply (subst st_0 [symmetric])
-apply (rule st_le, auto)
-done
-
-lemma st_hrabs: "x \<in> HFinite ==> \<bar>st x\<bar> = st \<bar>x\<bar>"
-apply (simp add: linorder_not_le st_zero_le abs_if st_minus
-   linorder_not_less)
-apply (auto dest!: st_zero_ge [OF order_less_imp_le])
-done
-
-
-
-subsection \<open>Alternative Definitions using Free Ultrafilter\<close>
-
-subsubsection \<open>@{term HFinite}\<close>
-
-lemma HFinite_FreeUltrafilterNat:
-    "star_n X \<in> HFinite
-   ==> \<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat"
-apply (auto simp add: HFinite_def SReal_def)
-apply (rule_tac x=r in exI)
-apply (simp add: hnorm_def star_of_def starfun_star_n)
-apply (simp add: star_less_def starP2_star_n)
-done
-
-lemma FreeUltrafilterNat_HFinite:
-     "\<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat
-       ==>  star_n X \<in> HFinite"
-apply (auto simp add: HFinite_def mem_Rep_star_iff)
-apply (rule_tac x="star_of u" in bexI)
-apply (simp add: hnorm_def starfun_star_n star_of_def)
-apply (simp add: star_less_def starP2_star_n)
-apply (simp add: SReal_def)
-done
-
-lemma HFinite_FreeUltrafilterNat_iff:
-     "(star_n X \<in> HFinite) = (\<exists>u. eventually (\<lambda>n. norm (X n) < u) FreeUltrafilterNat)"
-by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite)
-
-subsubsection \<open>@{term HInfinite}\<close>
-
-lemma lemma_Compl_eq: "- {n. u < norm (f n)} = {n. norm (f n) \<le> u}"
-by auto
-
-lemma lemma_Compl_eq2: "- {n. norm (f n) < u} = {n. u \<le> norm (f n)}"
-by auto
-
-lemma lemma_Int_eq1:
-     "{n. norm (f n) \<le> u} Int {n. u \<le> norm (f n)} = {n. norm(f n) = u}"
-by auto
-
-lemma lemma_FreeUltrafilterNat_one:
-     "{n. norm (f n) = u} \<le> {n. norm (f n) < u + (1::real)}"
-by auto
-
-(*-------------------------------------
-  Exclude this type of sets from free
-  ultrafilter for Infinite numbers!
- -------------------------------------*)
-lemma FreeUltrafilterNat_const_Finite:
-     "eventually (\<lambda>n. norm (X n) = u) FreeUltrafilterNat ==> star_n X \<in> HFinite"
-apply (rule FreeUltrafilterNat_HFinite)
-apply (rule_tac x = "u + 1" in exI)
-apply (auto elim: eventually_mono)
-done
-
-lemma HInfinite_FreeUltrafilterNat:
-     "star_n X \<in> HInfinite ==> \<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat"
-apply (drule HInfinite_HFinite_iff [THEN iffD1])
-apply (simp add: HFinite_FreeUltrafilterNat_iff)
-apply (rule allI, drule_tac x="u + 1" in spec)
-apply (simp add: FreeUltrafilterNat.eventually_not_iff[symmetric])
-apply (auto elim: eventually_mono)
-done
-
-lemma lemma_Int_HI:
-     "{n. norm (Xa n) < u} Int {n. X n = Xa n} \<subseteq> {n. norm (X n) < (u::real)}"
-by auto
-
-lemma lemma_Int_HIa: "{n. u < norm (X n)} Int {n. norm (X n) < u} = {}"
-by (auto intro: order_less_asym)
-
-lemma FreeUltrafilterNat_HInfinite:
-     "\<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat ==> star_n X \<in> HInfinite"
-apply (rule HInfinite_HFinite_iff [THEN iffD2])
-apply (safe, drule HFinite_FreeUltrafilterNat, safe)
-apply (drule_tac x = u in spec)
-proof -
-  fix u assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)"
-  then have "\<forall>\<^sub>F x in \<U>. False"
-    by eventually_elim auto
-  then show False
-    by (simp add: eventually_False FreeUltrafilterNat.proper)
-qed
-
-lemma HInfinite_FreeUltrafilterNat_iff:
-     "(star_n X \<in> HInfinite) = (\<forall>u. eventually (\<lambda>n. u < norm (X n)) FreeUltrafilterNat)"
-by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite)
-
-subsubsection \<open>@{term Infinitesimal}\<close>
-
-lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) = (\<forall>x::real. P (star_of x))"
-by (unfold SReal_def, auto)
-
-lemma Infinitesimal_FreeUltrafilterNat:
-     "star_n X \<in> Infinitesimal ==> \<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>"
-apply (simp add: Infinitesimal_def ball_SReal_eq)
-apply (simp add: hnorm_def starfun_star_n star_of_def)
-apply (simp add: star_less_def starP2_star_n)
-done
-
-lemma FreeUltrafilterNat_Infinitesimal:
-     "\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U> ==> star_n X \<in> Infinitesimal"
-apply (simp add: Infinitesimal_def ball_SReal_eq)
-apply (simp add: hnorm_def starfun_star_n star_of_def)
-apply (simp add: star_less_def starP2_star_n)
-done
-
-lemma Infinitesimal_FreeUltrafilterNat_iff:
-     "(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)"
-by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal)
-
-(*------------------------------------------------------------------------
-         Infinitesimals as smaller than 1/n for all n::nat (> 0)
- ------------------------------------------------------------------------*)
-
-lemma lemma_Infinitesimal:
-     "(\<forall>r. 0 < r --> x < r) = (\<forall>n. x < inverse(real (Suc n)))"
-apply (auto simp del: of_nat_Suc)
-apply (blast dest!: reals_Archimedean intro: order_less_trans)
-done
-
-lemma lemma_Infinitesimal2:
-     "(\<forall>r \<in> Reals. 0 < r --> x < r) =
-      (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))"
-apply safe
- apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec)
-  apply simp_all
-  using less_imp_of_nat_less apply fastforce
-apply (auto dest!: reals_Archimedean simp add: SReal_iff simp del: of_nat_Suc)
-apply (drule star_of_less [THEN iffD2])
-apply simp
-apply (blast intro: order_less_trans)
-done
-
-
-lemma Infinitesimal_hypreal_of_nat_iff:
-     "Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}"
-apply (simp add: Infinitesimal_def)
-apply (auto simp add: lemma_Infinitesimal2)
-done
-
-
-subsection\<open>Proof that \<open>\<omega>\<close> is an infinite number\<close>
-
-text\<open>It will follow that \<open>\<epsilon>\<close> is an infinitesimal number.\<close>
-
-lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
-by (auto simp add: less_Suc_eq)
-
-(*-------------------------------------------
-  Prove that any segment is finite and hence cannot belong to FreeUltrafilterNat
- -------------------------------------------*)
-
-lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
-  by (auto intro: finite_Collect_less_nat)
-
-lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
-apply (cut_tac x = u in reals_Archimedean2, safe)
-apply (rule finite_real_of_nat_segment [THEN [2] finite_subset])
-apply (auto dest: order_less_trans)
-done
-
-lemma lemma_real_le_Un_eq:
-     "{n. f n \<le> u} = {n. f n < u} Un {n. u = (f n :: real)}"
-by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le)
-
-lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
-by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real)
-
-lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. \<bar>real n\<bar> \<le> u}"
-apply (simp (no_asm) add: finite_real_of_nat_le_real)
-done
-
-lemma rabs_real_of_nat_le_real_FreeUltrafilterNat:
-     "\<not> eventually (\<lambda>n. \<bar>real n\<bar> \<le> u) FreeUltrafilterNat"
-by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real)
-
-lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) FreeUltrafilterNat"
-apply (rule FreeUltrafilterNat.finite')
-apply (subgoal_tac "{n::nat. \<not> u < real n} = {n. real n \<le> u}")
-apply (auto simp add: finite_real_of_nat_le_real)
-done
-
-(*--------------------------------------------------------------
- The complement of {n. \<bar>real n\<bar> \<le> u} =
- {n. u < \<bar>real n\<bar>} is in FreeUltrafilterNat
- by property of (free) ultrafilters
- --------------------------------------------------------------*)
-
-lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}"
-by (auto dest!: order_le_less_trans simp add: linorder_not_le)
-
-text\<open>@{term \<omega>} is a member of @{term HInfinite}\<close>
-
-theorem HInfinite_omega [simp]: "\<omega> \<in> HInfinite"
-apply (simp add: omega_def)
-apply (rule FreeUltrafilterNat_HInfinite)
-apply clarify
-apply (rule_tac u1 = "u-1" in eventually_mono [OF FreeUltrafilterNat_nat_gt_real])
-apply auto
-done
-
-(*-----------------------------------------------
-       Epsilon is a member of Infinitesimal
- -----------------------------------------------*)
-
-lemma Infinitesimal_epsilon [simp]: "\<epsilon> \<in> Infinitesimal"
-by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega simp add: hypreal_epsilon_inverse_omega)
-
-lemma HFinite_epsilon [simp]: "\<epsilon> \<in> HFinite"
-by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD])
-
-lemma epsilon_approx_zero [simp]: "\<epsilon> \<approx> 0"
-apply (simp (no_asm) add: mem_infmal_iff [symmetric])
-done
-
-(*------------------------------------------------------------------------
-  Needed for proof that we define a hyperreal [<X(n)] \<approx> hypreal_of_real a given
-  that \<forall>n. |X n - a| < 1/n. Used in proof of NSLIM => LIM.
- -----------------------------------------------------------------------*)
-
-lemma real_of_nat_less_inverse_iff:
-     "0 < u  ==> (u < inverse (real(Suc n))) = (real(Suc n) < inverse u)"
-apply (simp add: inverse_eq_divide)
-apply (subst pos_less_divide_eq, assumption)
-apply (subst pos_less_divide_eq)
- apply simp
-apply (simp add: mult.commute)
-done
-
-lemma finite_inverse_real_of_posnat_gt_real:
-     "0 < u ==> finite {n. u < inverse(real(Suc n))}"
-proof (simp only: real_of_nat_less_inverse_iff)
-  have "{n. 1 + real n < inverse u} = {n. real n < inverse u - 1}"
-    by fastforce
-  thus "finite {n. real (Suc n) < inverse u}"
-    using finite_real_of_nat_less_real [of "inverse u - 1"] by auto
-qed
-
-lemma lemma_real_le_Un_eq2:
-     "{n. u \<le> inverse(real(Suc n))} =
-     {n. u < inverse(real(Suc n))} Un {n. u = inverse(real(Suc n))}"
-by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le)
-
-lemma finite_inverse_real_of_posnat_ge_real:
-     "0 < u ==> finite {n. u \<le> inverse(real(Suc n))}"
-by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_epsilon_set finite_inverse_real_of_posnat_gt_real
-            simp del: of_nat_Suc)
-
-lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat:
-     "0 < u ==> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) FreeUltrafilterNat"
-by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real)
-
-(*--------------------------------------------------------------
-    The complement of  {n. u \<le> inverse(real(Suc n))} =
-    {n. inverse(real(Suc n)) < u} is in FreeUltrafilterNat
-    by property of (free) ultrafilters
- --------------------------------------------------------------*)
-lemma Compl_le_inverse_eq:
-     "- {n. u \<le> inverse(real(Suc n))} = {n. inverse(real(Suc n)) < u}"
-by (auto dest!: order_le_less_trans simp add: linorder_not_le)
-
-
-lemma FreeUltrafilterNat_inverse_real_of_posnat:
-     "0 < u ==> eventually (\<lambda>n. inverse(real(Suc n)) < u) FreeUltrafilterNat"
-by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat)
-   (simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric])
-
-text\<open>Example of an hypersequence (i.e. an extended standard sequence)
-   whose term with an hypernatural suffix is an infinitesimal i.e.
-   the whn'nth term of the hypersequence is a member of Infinitesimal\<close>
-
-lemma SEQ_Infinitesimal:
-      "( *f* (%n::nat. inverse(real(Suc n)))) whn : Infinitesimal"
-by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff
-        FreeUltrafilterNat_inverse_real_of_posnat del: of_nat_Suc)
-
-text\<open>Example where we get a hyperreal from a real sequence
-      for which a particular property holds. The theorem is
-      used in proofs about equivalence of nonstandard and
-      standard neighbourhoods. Also used for equivalence of
-      nonstandard ans standard definitions of pointwise
-      limit.\<close>
-
-(*-----------------------------------------------------
-    |X(n) - x| < 1/n ==> [<X n>] - hypreal_of_real x| \<in> Infinitesimal
- -----------------------------------------------------*)
-lemma real_seq_to_hypreal_Infinitesimal:
-     "\<forall>n. norm(X n - x) < inverse(real(Suc n))
-     ==> star_n X - star_of x \<in> Infinitesimal"
-unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse
-by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat
-         intro: order_less_trans elim!: eventually_mono)
-
-lemma real_seq_to_hypreal_approx:
-     "\<forall>n. norm(X n - x) < inverse(real(Suc n))
-      ==> star_n X \<approx> star_of x"
-by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal)
-
-lemma real_seq_to_hypreal_approx2:
-     "\<forall>n. norm(x - X n) < inverse(real(Suc n))
-               ==> star_n X \<approx> star_of x"
-by (metis norm_minus_commute real_seq_to_hypreal_approx)
-
-lemma real_seq_to_hypreal_Infinitesimal2:
-     "\<forall>n. norm(X n - Y n) < inverse(real(Suc n))
-      ==> star_n X - star_n Y \<in> Infinitesimal"
-unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff
-by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat
-         intro: order_less_trans elim!: eventually_mono)
-
-end
--- a/src/HOL/NSA/NSCA.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,515 +0,0 @@
-(*  Title       : NSA/NSCA.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 2001,2002 University of Edinburgh
-*)
-
-section\<open>Non-Standard Complex Analysis\<close>
-
-theory NSCA
-imports NSComplex HTranscendental
-begin
-
-abbreviation
-   (* standard complex numbers reagarded as an embedded subset of NS complex *)
-   SComplex  :: "hcomplex set" where
-   "SComplex \<equiv> Standard"
-
-definition \<comment>\<open>standard part map\<close>
-  stc :: "hcomplex => hcomplex" where 
-  "stc x = (SOME r. x \<in> HFinite & r:SComplex & r \<approx> x)"
-
-
-subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close>
-
-lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)"
-by (auto, drule Standard_minus, auto)
-
-lemma SComplex_add_cancel:
-     "[| x + y \<in> SComplex; y \<in> SComplex |] ==> x \<in> SComplex"
-by (drule (1) Standard_diff, simp)
-
-lemma SReal_hcmod_hcomplex_of_complex [simp]:
-     "hcmod (hcomplex_of_complex r) \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma SReal_hcmod_numeral [simp]: "hcmod (numeral w ::hcomplex) \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma SReal_hcmod_SComplex: "x \<in> SComplex ==> hcmod x \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma SComplex_divide_numeral:
-     "r \<in> SComplex ==> r/(numeral w::hcomplex) \<in> SComplex"
-by simp
-
-lemma SComplex_UNIV_complex:
-     "{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)"
-by simp
-
-lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)"
-by (simp add: Standard_def image_def)
-
-lemma hcomplex_of_complex_image:
-     "hcomplex_of_complex `(UNIV::complex set) = SComplex"
-by (simp add: Standard_def)
-
-lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV"
-by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f)
-
-lemma SComplex_hcomplex_of_complex_image: 
-      "[| \<exists>x. x: P; P \<le> SComplex |] ==> \<exists>Q. P = hcomplex_of_complex ` Q"
-apply (simp add: Standard_def, blast)
-done
-
-lemma SComplex_SReal_dense:
-     "[| x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y  
-      |] ==> \<exists>r \<in> Reals. hcmod x< r & r < hcmod y"
-apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex)
-done
-
-
-subsection\<open>The Finite Elements form a Subring\<close>
-
-lemma HFinite_hcmod_hcomplex_of_complex [simp]:
-     "hcmod (hcomplex_of_complex r) \<in> HFinite"
-by (auto intro!: SReal_subset_HFinite [THEN subsetD])
-
-lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)"
-by (simp add: HFinite_def)
-
-lemma HFinite_bounded_hcmod:
-  "[|x \<in> HFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite"
-by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff)
-
-
-subsection\<open>The Complex Infinitesimals form a Subring\<close>
-
-lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x"
-by auto
-
-lemma Infinitesimal_hcmod_iff: 
-   "(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)"
-by (simp add: Infinitesimal_def)
-
-lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)"
-by (simp add: HInfinite_def)
-
-lemma HFinite_diff_Infinitesimal_hcmod:
-     "x \<in> HFinite - Infinitesimal ==> hcmod x \<in> HFinite - Infinitesimal"
-by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff)
-
-lemma hcmod_less_Infinitesimal:
-     "[| e \<in> Infinitesimal; hcmod x < hcmod e |] ==> x \<in> Infinitesimal"
-by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff)
-
-lemma hcmod_le_Infinitesimal:
-     "[| e \<in> Infinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> Infinitesimal"
-by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff)
-
-lemma Infinitesimal_interval_hcmod:
-     "[| e \<in> Infinitesimal;  
-          e' \<in> Infinitesimal;  
-          hcmod e' < hcmod x ; hcmod x < hcmod e  
-       |] ==> x \<in> Infinitesimal"
-by (auto intro: Infinitesimal_interval simp add: Infinitesimal_hcmod_iff)
-
-lemma Infinitesimal_interval2_hcmod:
-     "[| e \<in> Infinitesimal;  
-         e' \<in> Infinitesimal;  
-         hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e  
-      |] ==> x \<in> Infinitesimal"
-by (auto intro: Infinitesimal_interval2 simp add: Infinitesimal_hcmod_iff)
-
-
-subsection\<open>The ``Infinitely Close'' Relation\<close>
-
-(*
-Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z \<approx> hcmod w)"
-by (auto_tac (claset(),simpset() addsimps [Infinitesimal_hcmod_iff]));
-*)
-
-lemma approx_SComplex_mult_cancel_zero:
-     "[| a \<in> SComplex; a \<noteq> 0; a*x \<approx> 0 |] ==> x \<approx> 0"
-apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
-apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
-done
-
-lemma approx_mult_SComplex1: "[| a \<in> SComplex; x \<approx> 0 |] ==> x*a \<approx> 0"
-by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult1)
-
-lemma approx_mult_SComplex2: "[| a \<in> SComplex; x \<approx> 0 |] ==> a*x \<approx> 0"
-by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult2)
-
-lemma approx_mult_SComplex_zero_cancel_iff [simp]:
-     "[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x \<approx> 0) = (x \<approx> 0)"
-by (blast intro: approx_SComplex_mult_cancel_zero approx_mult_SComplex2)
-
-lemma approx_SComplex_mult_cancel:
-     "[| a \<in> SComplex; a \<noteq> 0; a* w \<approx> a*z |] ==> w \<approx> z"
-apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]])
-apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric])
-done
-
-lemma approx_SComplex_mult_cancel_iff1 [simp]:
-     "[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w \<approx> a*z) = (w \<approx> z)"
-by (auto intro!: approx_mult2 Standard_subset_HFinite [THEN subsetD]
-            intro: approx_SComplex_mult_cancel)
-
-(* TODO: generalize following theorems: hcmod -> hnorm *)
-
-lemma approx_hcmod_approx_zero: "(x \<approx> y) = (hcmod (y - x) \<approx> 0)"
-apply (subst hnorm_minus_commute)
-apply (simp add: approx_def Infinitesimal_hcmod_iff)
-done
-
-lemma approx_approx_zero_iff: "(x \<approx> 0) = (hcmod x \<approx> 0)"
-by (simp add: approx_hcmod_approx_zero)
-
-lemma approx_minus_zero_cancel_iff [simp]: "(-x \<approx> 0) = (x \<approx> 0)"
-by (simp add: approx_def)
-
-lemma Infinitesimal_hcmod_add_diff:
-     "u \<approx> 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal"
-apply (drule approx_approx_zero_iff [THEN iffD1])
-apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2)
-apply (auto simp add: mem_infmal_iff [symmetric])
-apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1])
-apply auto
-done
-
-lemma approx_hcmod_add_hcmod: "u \<approx> 0 ==> hcmod(x + u) \<approx> hcmod x"
-apply (rule approx_minus_iff [THEN iffD2])
-apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric])
-done
-
-
-subsection\<open>Zero is the Only Infinitesimal Complex Number\<close>
-
-lemma Infinitesimal_less_SComplex:
-   "[| x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x"
-by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff)
-
-lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}"
-by (auto simp add: Standard_def Infinitesimal_hcmod_iff)
-
-lemma SComplex_Infinitesimal_zero:
-     "[| x \<in> SComplex; x \<in> Infinitesimal|] ==> x = 0"
-by (cut_tac SComplex_Int_Infinitesimal_zero, blast)
-
-lemma SComplex_HFinite_diff_Infinitesimal:
-     "[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal"
-by (auto dest: SComplex_Infinitesimal_zero Standard_subset_HFinite [THEN subsetD])
-
-lemma hcomplex_of_complex_HFinite_diff_Infinitesimal:
-     "hcomplex_of_complex x \<noteq> 0 
-      ==> hcomplex_of_complex x \<in> HFinite - Infinitesimal"
-by (rule SComplex_HFinite_diff_Infinitesimal, auto)
-
-lemma numeral_not_Infinitesimal [simp]:
-     "numeral w \<noteq> (0::hcomplex) ==> (numeral w::hcomplex) \<notin> Infinitesimal"
-by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
-
-lemma approx_SComplex_not_zero:
-     "[| y \<in> SComplex; x \<approx> y; y\<noteq> 0 |] ==> x \<noteq> 0"
-by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]])
-
-lemma SComplex_approx_iff:
-     "[|x \<in> SComplex; y \<in> SComplex|] ==> (x \<approx> y) = (x = y)"
-by (auto simp add: Standard_def)
-
-lemma numeral_Infinitesimal_iff [simp]:
-     "((numeral w :: hcomplex) \<in> Infinitesimal) =
-      (numeral w = (0::hcomplex))"
-apply (rule iffI)
-apply (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero])
-apply (simp (no_asm_simp))
-done
-
-lemma approx_unique_complex:
-     "[| r \<in> SComplex; s \<in> SComplex; r \<approx> x; s \<approx> x|] ==> r = s"
-by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2)
-
-subsection \<open>Properties of @{term hRe}, @{term hIm} and @{term HComplex}\<close>
-
-
-lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x"
-by transfer (rule abs_Re_le_cmod)
-
-lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x"
-by transfer (rule abs_Im_le_cmod)
-
-lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal"
-apply (rule InfinitesimalI2, simp)
-apply (rule order_le_less_trans [OF abs_hRe_le_hcmod])
-apply (erule (1) InfinitesimalD2)
-done
-
-lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal"
-apply (rule InfinitesimalI2, simp)
-apply (rule order_le_less_trans [OF abs_hIm_le_hcmod])
-apply (erule (1) InfinitesimalD2)
-done
-
-lemma real_sqrt_lessI: "\<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> sqrt x < u"
-(* TODO: this belongs somewhere else *)
-by (frule real_sqrt_less_mono) simp
-
-lemma hypreal_sqrt_lessI:
-  "\<And>x u. \<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u"
-by transfer (rule real_sqrt_lessI)
- 
-lemma hypreal_sqrt_ge_zero: "\<And>x. 0 \<le> x \<Longrightarrow> 0 \<le> ( *f* sqrt) x"
-by transfer (rule real_sqrt_ge_zero)
-
-lemma Infinitesimal_sqrt:
-  "\<lbrakk>x \<in> Infinitesimal; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> Infinitesimal"
-apply (rule InfinitesimalI2)
-apply (drule_tac r="r\<^sup>2" in InfinitesimalD2, simp)
-apply (simp add: hypreal_sqrt_ge_zero)
-apply (rule hypreal_sqrt_lessI, simp_all)
-done
-
-lemma Infinitesimal_HComplex:
-  "\<lbrakk>x \<in> Infinitesimal; y \<in> Infinitesimal\<rbrakk> \<Longrightarrow> HComplex x y \<in> Infinitesimal"
-apply (rule Infinitesimal_hcmod_iff [THEN iffD2])
-apply (simp add: hcmod_i)
-apply (rule Infinitesimal_add)
-apply (erule Infinitesimal_hrealpow, simp)
-apply (erule Infinitesimal_hrealpow, simp)
-done
-
-lemma hcomplex_Infinitesimal_iff:
-  "(x \<in> Infinitesimal) = (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)"
-apply (safe intro!: Infinitesimal_hRe Infinitesimal_hIm)
-apply (drule (1) Infinitesimal_HComplex, simp)
-done
-
-lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
-by transfer simp
-
-lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
-by transfer simp
-
-lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
-unfolding approx_def by (drule Infinitesimal_hRe) simp
-
-lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y"
-unfolding approx_def by (drule Infinitesimal_hIm) simp
-
-lemma approx_HComplex:
-  "\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d"
-unfolding approx_def by (simp add: Infinitesimal_HComplex)
-
-lemma hcomplex_approx_iff:
-  "(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)"
-unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff)
-
-lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite"
-apply (auto simp add: HFinite_def SReal_def)
-apply (rule_tac x="star_of r" in exI, simp)
-apply (erule order_le_less_trans [OF abs_hRe_le_hcmod])
-done
-
-lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite"
-apply (auto simp add: HFinite_def SReal_def)
-apply (rule_tac x="star_of r" in exI, simp)
-apply (erule order_le_less_trans [OF abs_hIm_le_hcmod])
-done
-
-lemma HFinite_HComplex:
-  "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> HComplex x y \<in> HFinite"
-apply (subgoal_tac "HComplex x 0 + HComplex 0 y \<in> HFinite", simp)
-apply (rule HFinite_add)
-apply (simp add: HFinite_hcmod_iff hcmod_i)
-apply (simp add: HFinite_hcmod_iff hcmod_i)
-done
-
-lemma hcomplex_HFinite_iff:
-  "(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)"
-apply (safe intro!: HFinite_hRe HFinite_hIm)
-apply (drule (1) HFinite_HComplex, simp)
-done
-
-lemma hcomplex_HInfinite_iff:
-  "(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)"
-by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff)
-
-lemma hcomplex_of_hypreal_approx_iff [simp]:
-     "(hcomplex_of_hypreal x \<approx> hcomplex_of_hypreal z) = (x \<approx> z)"
-by (simp add: hcomplex_approx_iff)
-
-lemma Standard_HComplex:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> HComplex x y \<in> Standard"
-by (simp add: HComplex_def)
-
-(* Here we go - easy proof now!! *)
-lemma stc_part_Ex: "x:HFinite ==> \<exists>t \<in> SComplex. x \<approx> t"
-apply (simp add: hcomplex_HFinite_iff hcomplex_approx_iff)
-apply (rule_tac x="HComplex (st (hRe x)) (st (hIm x))" in bexI)
-apply (simp add: st_approx_self [THEN approx_sym])
-apply (simp add: Standard_HComplex st_SReal [unfolded Reals_eq_Standard])
-done
-
-lemma stc_part_Ex1: "x:HFinite ==> EX! t. t \<in> SComplex &  x \<approx> t"
-apply (drule stc_part_Ex, safe)
-apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym)
-apply (auto intro!: approx_unique_complex)
-done
-
-lemmas hcomplex_of_complex_approx_inverse =
-  hcomplex_of_complex_HFinite_diff_Infinitesimal [THEN [2] approx_inverse]
-
-
-subsection\<open>Theorems About Monads\<close>
-
-lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x:monad 0)"
-by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff)
-
-
-subsection\<open>Theorems About Standard Part\<close>
-
-lemma stc_approx_self: "x \<in> HFinite ==> stc x \<approx> x"
-apply (simp add: stc_def)
-apply (frule stc_part_Ex, safe)
-apply (rule someI2)
-apply (auto intro: approx_sym)
-done
-
-lemma stc_SComplex: "x \<in> HFinite ==> stc x \<in> SComplex"
-apply (simp add: stc_def)
-apply (frule stc_part_Ex, safe)
-apply (rule someI2)
-apply (auto intro: approx_sym)
-done
-
-lemma stc_HFinite: "x \<in> HFinite ==> stc x \<in> HFinite"
-by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]])
-
-lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y"
-apply (frule Standard_subset_HFinite [THEN subsetD])
-apply (drule (1) approx_HFinite)
-apply (unfold stc_def)
-apply (rule some_equality)
-apply (auto intro: approx_unique_complex)
-done
-
-lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x"
-apply (erule stc_unique)
-apply (rule approx_refl)
-done
-
-lemma stc_hcomplex_of_complex:
-     "stc (hcomplex_of_complex x) = hcomplex_of_complex x"
-by auto
-
-lemma stc_eq_approx:
-     "[| x \<in> HFinite; y \<in> HFinite; stc x = stc y |] ==> x \<approx> y"
-by (auto dest!: stc_approx_self elim!: approx_trans3)
-
-lemma approx_stc_eq:
-     "[| x \<in> HFinite; y \<in> HFinite; x \<approx> y |] ==> stc x = stc y"
-by (blast intro: approx_trans approx_trans2 SComplex_approx_iff [THEN iffD1]
-          dest: stc_approx_self stc_SComplex)
-
-lemma stc_eq_approx_iff:
-     "[| x \<in> HFinite; y \<in> HFinite|] ==> (x \<approx> y) = (stc x = stc y)"
-by (blast intro: approx_stc_eq stc_eq_approx)
-
-lemma stc_Infinitesimal_add_SComplex:
-     "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(x + e) = x"
-apply (erule stc_unique)
-apply (erule Infinitesimal_add_approx_self)
-done
-
-lemma stc_Infinitesimal_add_SComplex2:
-     "[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(e + x) = x"
-apply (erule stc_unique)
-apply (erule Infinitesimal_add_approx_self2)
-done
-
-lemma HFinite_stc_Infinitesimal_add:
-     "x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = stc(x) + e"
-by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2])
-
-lemma stc_add:
-     "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x + y) = stc(x) + stc(y)"
-by (simp add: stc_unique stc_SComplex stc_approx_self approx_add)
-
-lemma stc_numeral [simp]: "stc (numeral w) = numeral w"
-by (rule Standard_numeral [THEN stc_SComplex_eq])
-
-lemma stc_zero [simp]: "stc 0 = 0"
-by simp
-
-lemma stc_one [simp]: "stc 1 = 1"
-by simp
-
-lemma stc_minus: "y \<in> HFinite ==> stc(-y) = -stc(y)"
-by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus)
-
-lemma stc_diff: 
-     "[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x-y) = stc(x) - stc(y)"
-by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff)
-
-lemma stc_mult:
-     "[| x \<in> HFinite; y \<in> HFinite |]  
-               ==> stc (x * y) = stc(x) * stc(y)"
-by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite)
-
-lemma stc_Infinitesimal: "x \<in> Infinitesimal ==> stc x = 0"
-by (simp add: stc_unique mem_infmal_iff)
-
-lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> Infinitesimal"
-by (fast intro: stc_Infinitesimal)
-
-lemma stc_inverse:
-     "[| x \<in> HFinite; stc x \<noteq> 0 |]  
-      ==> stc(inverse x) = inverse (stc x)"
-apply (drule stc_not_Infinitesimal)
-apply (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse)
-done
-
-lemma stc_divide [simp]:
-     "[| x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0 |]  
-      ==> stc(x/y) = (stc x) / (stc y)"
-by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse)
-
-lemma stc_idempotent [simp]: "x \<in> HFinite ==> stc(stc(x)) = stc(x)"
-by (blast intro: stc_HFinite stc_approx_self approx_stc_eq)
-
-lemma HFinite_HFinite_hcomplex_of_hypreal:
-     "z \<in> HFinite ==> hcomplex_of_hypreal z \<in> HFinite"
-by (simp add: hcomplex_HFinite_iff)
-
-lemma SComplex_SReal_hcomplex_of_hypreal:
-     "x \<in> \<real> ==>  hcomplex_of_hypreal x \<in> SComplex"
-apply (rule Standard_of_hypreal)
-apply (simp add: Reals_eq_Standard)
-done
-
-lemma stc_hcomplex_of_hypreal: 
- "z \<in> HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)"
-apply (rule stc_unique)
-apply (rule SComplex_SReal_hcomplex_of_hypreal)
-apply (erule st_SReal)
-apply (simp add: hcomplex_of_hypreal_approx_iff st_approx_self)
-done
-
-(*
-Goal "x \<in> HFinite ==> hcmod(stc x) = st(hcmod x)"
-by (dtac stc_approx_self 1)
-by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym]));
-
-
-approx_hcmod_add_hcmod
-*)
-
-lemma Infinitesimal_hcnj_iff [simp]:
-     "(hcnj z \<in> Infinitesimal) = (z \<in> Infinitesimal)"
-by (simp add: Infinitesimal_hcmod_iff)
-
-lemma Infinitesimal_hcomplex_of_hypreal_epsilon [simp]:
-     "hcomplex_of_hypreal \<epsilon> \<in> Infinitesimal"
-by (simp add: Infinitesimal_hcmod_iff)
-
-end
--- a/src/HOL/NSA/NSComplex.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,656 +0,0 @@
-(*  Title:      HOL/NSA/NSComplex.thy
-    Author:     Jacques D. Fleuriot, University of Edinburgh
-    Author:     Lawrence C Paulson
-*)
-
-section\<open>Nonstandard Complex Numbers\<close>
-
-theory NSComplex
-imports NSA
-begin
-
-type_synonym hcomplex = "complex star"
-
-abbreviation
-  hcomplex_of_complex :: "complex => complex star" where
-  "hcomplex_of_complex == star_of"
-
-abbreviation
-  hcmod :: "complex star => real star" where
-  "hcmod == hnorm"
-
-
-  (*--- real and Imaginary parts ---*)
-
-definition
-  hRe :: "hcomplex => hypreal" where
-  "hRe = *f* Re"
-
-definition
-  hIm :: "hcomplex => hypreal" where
-  "hIm = *f* Im"
-
-
-  (*------ imaginary unit ----------*)
-
-definition
-  iii :: hcomplex where
-  "iii = star_of ii"
-
-  (*------- complex conjugate ------*)
-
-definition
-  hcnj :: "hcomplex => hcomplex" where
-  "hcnj = *f* cnj"
-
-  (*------------ Argand -------------*)
-
-definition
-  hsgn :: "hcomplex => hcomplex" where
-  "hsgn = *f* sgn"
-
-definition
-  harg :: "hcomplex => hypreal" where
-  "harg = *f* arg"
-
-definition
-  (* abbreviation for (cos a + i sin a) *)
-  hcis :: "hypreal => hcomplex" where
-  "hcis = *f* cis"
-
-  (*----- injection from hyperreals -----*)
-
-abbreviation
-  hcomplex_of_hypreal :: "hypreal \<Rightarrow> hcomplex" where
-  "hcomplex_of_hypreal \<equiv> of_hypreal"
-
-definition
-  (* abbreviation for r*(cos a + i sin a) *)
-  hrcis :: "[hypreal, hypreal] => hcomplex" where
-  "hrcis = *f2* rcis"
-
-  (*------------ e ^ (x + iy) ------------*)
-definition
-  hExp :: "hcomplex => hcomplex" where
-  "hExp = *f* exp"
-
-definition
-  HComplex :: "[hypreal,hypreal] => hcomplex" where
-  "HComplex = *f2* Complex"
-
-lemmas hcomplex_defs [transfer_unfold] =
-  hRe_def hIm_def iii_def hcnj_def hsgn_def harg_def hcis_def
-  hrcis_def hExp_def HComplex_def
-
-lemma Standard_hRe [simp]: "x \<in> Standard \<Longrightarrow> hRe x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hIm [simp]: "x \<in> Standard \<Longrightarrow> hIm x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_iii [simp]: "iii \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hcnj [simp]: "x \<in> Standard \<Longrightarrow> hcnj x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hsgn [simp]: "x \<in> Standard \<Longrightarrow> hsgn x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_harg [simp]: "x \<in> Standard \<Longrightarrow> harg x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hcis [simp]: "r \<in> Standard \<Longrightarrow> hcis r \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hExp [simp]: "x \<in> Standard \<Longrightarrow> hExp x \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_hrcis [simp]:
-  "\<lbrakk>r \<in> Standard; s \<in> Standard\<rbrakk> \<Longrightarrow> hrcis r s \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma Standard_HComplex [simp]:
-  "\<lbrakk>r \<in> Standard; s \<in> Standard\<rbrakk> \<Longrightarrow> HComplex r s \<in> Standard"
-by (simp add: hcomplex_defs)
-
-lemma hcmod_def: "hcmod = *f* cmod"
-by (rule hnorm_def)
-
-
-subsection\<open>Properties of Nonstandard Real and Imaginary Parts\<close>
-
-lemma hcomplex_hRe_hIm_cancel_iff:
-     "!!w z. (w=z) = (hRe(w) = hRe(z) & hIm(w) = hIm(z))"
-by transfer (rule complex_Re_Im_cancel_iff)
-
-lemma hcomplex_equality [intro?]:
-  "!!z w. hRe z = hRe w ==> hIm z = hIm w ==> z = w"
-by transfer (rule complex_equality)
-
-lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0"
-by transfer simp
-
-lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0"
-by transfer simp
-
-lemma hcomplex_hRe_one [simp]: "hRe 1 = 1"
-by transfer simp
-
-lemma hcomplex_hIm_one [simp]: "hIm 1 = 0"
-by transfer simp
-
-
-subsection\<open>Addition for Nonstandard Complex Numbers\<close>
-
-lemma hRe_add: "!!x y. hRe(x + y) = hRe(x) + hRe(y)"
-by transfer simp
-
-lemma hIm_add: "!!x y. hIm(x + y) = hIm(x) + hIm(y)"
-by transfer simp
-
-subsection\<open>More Minus Laws\<close>
-
-lemma hRe_minus: "!!z. hRe(-z) = - hRe(z)"
-by transfer (rule uminus_complex.sel)
-
-lemma hIm_minus: "!!z. hIm(-z) = - hIm(z)"
-by transfer (rule uminus_complex.sel)
-
-lemma hcomplex_add_minus_eq_minus:
-      "x + y = (0::hcomplex) ==> x = -y"
-apply (drule minus_unique)
-apply (simp add: minus_equation_iff [of x y])
-done
-
-lemma hcomplex_i_mult_eq [simp]: "iii * iii = -1"
-by transfer (rule i_squared)
-
-lemma hcomplex_i_mult_left [simp]: "!!z. iii * (iii * z) = -z"
-by transfer (rule complex_i_mult_minus)
-
-lemma hcomplex_i_not_zero [simp]: "iii \<noteq> 0"
-by transfer (rule complex_i_not_zero)
-
-
-subsection\<open>More Multiplication Laws\<close>
-
-lemma hcomplex_mult_minus_one: "- 1 * (z::hcomplex) = -z"
-by simp
-
-lemma hcomplex_mult_minus_one_right: "(z::hcomplex) * - 1 = -z"
-by simp
-
-lemma hcomplex_mult_left_cancel:
-     "(c::hcomplex) \<noteq> (0::hcomplex) ==> (c*a=c*b) = (a=b)"
-by simp
-
-lemma hcomplex_mult_right_cancel:
-     "(c::hcomplex) \<noteq> (0::hcomplex) ==> (a*c=b*c) = (a=b)"
-by simp
-
-
-subsection\<open>Subraction and Division\<close>
-
-lemma hcomplex_diff_eq_eq [simp]: "((x::hcomplex) - y = z) = (x = z + y)"
-(* TODO: delete *)
-by (rule diff_eq_eq)
-
-
-subsection\<open>Embedding Properties for @{term hcomplex_of_hypreal} Map\<close>
-
-lemma hRe_hcomplex_of_hypreal [simp]: "!!z. hRe(hcomplex_of_hypreal z) = z"
-by transfer (rule Re_complex_of_real)
-
-lemma hIm_hcomplex_of_hypreal [simp]: "!!z. hIm(hcomplex_of_hypreal z) = 0"
-by transfer (rule Im_complex_of_real)
-
-lemma hcomplex_of_hypreal_epsilon_not_zero [simp]:
-     "hcomplex_of_hypreal \<epsilon> \<noteq> 0"
-by (simp add: hypreal_epsilon_not_zero)
-
-subsection\<open>HComplex theorems\<close>
-
-lemma hRe_HComplex [simp]: "!!x y. hRe (HComplex x y) = x"
-by transfer simp
-
-lemma hIm_HComplex [simp]: "!!x y. hIm (HComplex x y) = y"
-by transfer simp
-
-lemma hcomplex_surj [simp]: "!!z. HComplex (hRe z) (hIm z) = z"
-by transfer (rule complex_surj)
-
-lemma hcomplex_induct [case_names rect(*, induct type: hcomplex*)]:
-     "(\<And>x y. P (HComplex x y)) ==> P z"
-by (rule hcomplex_surj [THEN subst], blast)
-
-
-subsection\<open>Modulus (Absolute Value) of Nonstandard Complex Number\<close>
-
-lemma hcomplex_of_hypreal_abs:
-     "hcomplex_of_hypreal \<bar>x\<bar> =
-      hcomplex_of_hypreal (hcmod (hcomplex_of_hypreal x))"
-by simp
-
-lemma HComplex_inject [simp]:
-  "!!x y x' y'. HComplex x y = HComplex x' y' = (x=x' & y=y')"
-by transfer (rule complex.inject)
-
-lemma HComplex_add [simp]:
-  "!!x1 y1 x2 y2. HComplex x1 y1 + HComplex x2 y2 = HComplex (x1+x2) (y1+y2)"
-by transfer (rule complex_add)
-
-lemma HComplex_minus [simp]: "!!x y. - HComplex x y = HComplex (-x) (-y)"
-by transfer (rule complex_minus)
-
-lemma HComplex_diff [simp]:
-  "!!x1 y1 x2 y2. HComplex x1 y1 - HComplex x2 y2 = HComplex (x1-x2) (y1-y2)"
-by transfer (rule complex_diff)
-
-lemma HComplex_mult [simp]:
-  "!!x1 y1 x2 y2. HComplex x1 y1 * HComplex x2 y2 =
-   HComplex (x1*x2 - y1*y2) (x1*y2 + y1*x2)"
-by transfer (rule complex_mult)
-
-(*HComplex_inverse is proved below*)
-
-lemma hcomplex_of_hypreal_eq: "!!r. hcomplex_of_hypreal r = HComplex r 0"
-by transfer (rule complex_of_real_def)
-
-lemma HComplex_add_hcomplex_of_hypreal [simp]:
-     "!!x y r. HComplex x y + hcomplex_of_hypreal r = HComplex (x+r) y"
-by transfer (rule Complex_add_complex_of_real)
-
-lemma hcomplex_of_hypreal_add_HComplex [simp]:
-     "!!r x y. hcomplex_of_hypreal r + HComplex x y = HComplex (r+x) y"
-by transfer (rule complex_of_real_add_Complex)
-
-lemma HComplex_mult_hcomplex_of_hypreal:
-     "!!x y r. HComplex x y * hcomplex_of_hypreal r = HComplex (x*r) (y*r)"
-by transfer (rule Complex_mult_complex_of_real)
-
-lemma hcomplex_of_hypreal_mult_HComplex:
-     "!!r x y. hcomplex_of_hypreal r * HComplex x y = HComplex (r*x) (r*y)"
-by transfer (rule complex_of_real_mult_Complex)
-
-lemma i_hcomplex_of_hypreal [simp]:
-     "!!r. iii * hcomplex_of_hypreal r = HComplex 0 r"
-by transfer (rule i_complex_of_real)
-
-lemma hcomplex_of_hypreal_i [simp]:
-     "!!r. hcomplex_of_hypreal r * iii = HComplex 0 r"
-by transfer (rule complex_of_real_i)
-
-
-subsection\<open>Conjugation\<close>
-
-lemma hcomplex_hcnj_cancel_iff [iff]: "!!x y. (hcnj x = hcnj y) = (x = y)"
-by transfer (rule complex_cnj_cancel_iff)
-
-lemma hcomplex_hcnj_hcnj [simp]: "!!z. hcnj (hcnj z) = z"
-by transfer (rule complex_cnj_cnj)
-
-lemma hcomplex_hcnj_hcomplex_of_hypreal [simp]:
-     "!!x. hcnj (hcomplex_of_hypreal x) = hcomplex_of_hypreal x"
-by transfer (rule complex_cnj_complex_of_real)
-
-lemma hcomplex_hmod_hcnj [simp]: "!!z. hcmod (hcnj z) = hcmod z"
-by transfer (rule complex_mod_cnj)
-
-lemma hcomplex_hcnj_minus: "!!z. hcnj (-z) = - hcnj z"
-by transfer (rule complex_cnj_minus)
-
-lemma hcomplex_hcnj_inverse: "!!z. hcnj(inverse z) = inverse(hcnj z)"
-by transfer (rule complex_cnj_inverse)
-
-lemma hcomplex_hcnj_add: "!!w z. hcnj(w + z) = hcnj(w) + hcnj(z)"
-by transfer (rule complex_cnj_add)
-
-lemma hcomplex_hcnj_diff: "!!w z. hcnj(w - z) = hcnj(w) - hcnj(z)"
-by transfer (rule complex_cnj_diff)
-
-lemma hcomplex_hcnj_mult: "!!w z. hcnj(w * z) = hcnj(w) * hcnj(z)"
-by transfer (rule complex_cnj_mult)
-
-lemma hcomplex_hcnj_divide: "!!w z. hcnj(w / z) = (hcnj w)/(hcnj z)"
-by transfer (rule complex_cnj_divide)
-
-lemma hcnj_one [simp]: "hcnj 1 = 1"
-by transfer (rule complex_cnj_one)
-
-lemma hcomplex_hcnj_zero [simp]: "hcnj 0 = 0"
-by transfer (rule complex_cnj_zero)
-
-lemma hcomplex_hcnj_zero_iff [iff]: "!!z. (hcnj z = 0) = (z = 0)"
-by transfer (rule complex_cnj_zero_iff)
-
-lemma hcomplex_mult_hcnj:
-     "!!z. z * hcnj z = hcomplex_of_hypreal ((hRe z)\<^sup>2 + (hIm z)\<^sup>2)"
-by transfer (rule complex_mult_cnj)
-
-
-subsection\<open>More Theorems about the Function @{term hcmod}\<close>
-
-lemma hcmod_hcomplex_of_hypreal_of_nat [simp]:
-     "hcmod (hcomplex_of_hypreal(hypreal_of_nat n)) = hypreal_of_nat n"
-by simp
-
-lemma hcmod_hcomplex_of_hypreal_of_hypnat [simp]:
-     "hcmod (hcomplex_of_hypreal(hypreal_of_hypnat n)) = hypreal_of_hypnat n"
-by simp
-
-lemma hcmod_mult_hcnj: "!!z. hcmod(z * hcnj(z)) = (hcmod z)\<^sup>2"
-by transfer (rule complex_mod_mult_cnj)
-
-lemma hcmod_triangle_ineq2 [simp]:
-  "!!a b. hcmod(b + a) - hcmod b \<le> hcmod a"
-by transfer (rule complex_mod_triangle_ineq2)
-
-lemma hcmod_diff_ineq [simp]: "!!a b. hcmod(a) - hcmod(b) \<le> hcmod(a + b)"
-by transfer (rule norm_diff_ineq)
-
-
-subsection\<open>Exponentiation\<close>
-
-lemma hcomplexpow_0 [simp]:   "z ^ 0       = (1::hcomplex)"
-by (rule power_0)
-
-lemma hcomplexpow_Suc [simp]: "z ^ (Suc n) = (z::hcomplex) * (z ^ n)"
-by (rule power_Suc)
-
-lemma hcomplexpow_i_squared [simp]: "iii\<^sup>2 = -1"
-by transfer (rule power2_i)
-
-lemma hcomplex_of_hypreal_pow:
-     "!!x. hcomplex_of_hypreal (x ^ n) = (hcomplex_of_hypreal x) ^ n"
-by transfer (rule of_real_power)
-
-lemma hcomplex_hcnj_pow: "!!z. hcnj(z ^ n) = hcnj(z) ^ n"
-by transfer (rule complex_cnj_power)
-
-lemma hcmod_hcomplexpow: "!!x. hcmod(x ^ n) = hcmod(x) ^ n"
-by transfer (rule norm_power)
-
-lemma hcpow_minus:
-     "!!x n. (-x::hcomplex) pow n =
-      (if ( *p* even) n then (x pow n) else -(x pow n))"
-by transfer simp
-
-lemma hcpow_mult:
-  "((r::hcomplex) * s) pow n = (r pow n) * (s pow n)"
-  by (fact hyperpow_mult)
-
-lemma hcpow_zero2 [simp]:
-  "\<And>n. 0 pow (hSuc n) = (0::'a::semiring_1 star)"
-  by transfer (rule power_0_Suc)
-
-lemma hcpow_not_zero [simp,intro]:
-  "!!r n. r \<noteq> 0 ==> r pow n \<noteq> (0::hcomplex)"
-  by (fact hyperpow_not_zero)
-
-lemma hcpow_zero_zero:
-  "r pow n = (0::hcomplex) ==> r = 0"
-  by (blast intro: ccontr dest: hcpow_not_zero)
-
-subsection\<open>The Function @{term hsgn}\<close>
-
-lemma hsgn_zero [simp]: "hsgn 0 = 0"
-by transfer (rule sgn_zero)
-
-lemma hsgn_one [simp]: "hsgn 1 = 1"
-by transfer (rule sgn_one)
-
-lemma hsgn_minus: "!!z. hsgn (-z) = - hsgn(z)"
-by transfer (rule sgn_minus)
-
-lemma hsgn_eq: "!!z. hsgn z = z / hcomplex_of_hypreal (hcmod z)"
-by transfer (rule sgn_eq)
-
-lemma hcmod_i: "!!x y. hcmod (HComplex x y) = ( *f* sqrt) (x\<^sup>2 + y\<^sup>2)"
-by transfer (rule complex_norm)
-
-lemma hcomplex_eq_cancel_iff1 [simp]:
-     "(hcomplex_of_hypreal xa = HComplex x y) = (xa = x & y = 0)"
-by (simp add: hcomplex_of_hypreal_eq)
-
-lemma hcomplex_eq_cancel_iff2 [simp]:
-     "(HComplex x y = hcomplex_of_hypreal xa) = (x = xa & y = 0)"
-by (simp add: hcomplex_of_hypreal_eq)
-
-lemma HComplex_eq_0 [simp]: "!!x y. (HComplex x y = 0) = (x = 0 & y = 0)"
-by transfer (rule Complex_eq_0)
-
-lemma HComplex_eq_1 [simp]: "!!x y. (HComplex x y = 1) = (x = 1 & y = 0)"
-by transfer (rule Complex_eq_1)
-
-lemma i_eq_HComplex_0_1: "iii = HComplex 0 1"
-by transfer (simp add: complex_eq_iff)
-
-lemma HComplex_eq_i [simp]: "!!x y. (HComplex x y = iii) = (x = 0 & y = 1)"
-by transfer (rule Complex_eq_i)
-
-lemma hRe_hsgn [simp]: "!!z. hRe(hsgn z) = hRe(z)/hcmod z"
-by transfer (rule Re_sgn)
-
-lemma hIm_hsgn [simp]: "!!z. hIm(hsgn z) = hIm(z)/hcmod z"
-by transfer (rule Im_sgn)
-
-lemma HComplex_inverse:
-     "!!x y. inverse (HComplex x y) = HComplex (x/(x\<^sup>2 + y\<^sup>2)) (-y/(x\<^sup>2 + y\<^sup>2))"
-by transfer (rule complex_inverse)
-
-lemma hRe_mult_i_eq[simp]:
-    "!!y. hRe (iii * hcomplex_of_hypreal y) = 0"
-by transfer simp
-
-lemma hIm_mult_i_eq [simp]:
-    "!!y. hIm (iii * hcomplex_of_hypreal y) = y"
-by transfer simp
-
-lemma hcmod_mult_i [simp]: "!!y. hcmod (iii * hcomplex_of_hypreal y) = \<bar>y\<bar>"
-by transfer (simp add: norm_complex_def)
-
-lemma hcmod_mult_i2 [simp]: "!!y. hcmod (hcomplex_of_hypreal y * iii) = \<bar>y\<bar>"
-by transfer (simp add: norm_complex_def)
-
-(*---------------------------------------------------------------------------*)
-(*  harg                                                                     *)
-(*---------------------------------------------------------------------------*)
-
-lemma cos_harg_i_mult_zero [simp]:
-     "!!y. y \<noteq> 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0"
-by transfer simp
-
-lemma hcomplex_of_hypreal_zero_iff [simp]:
-     "!!y. (hcomplex_of_hypreal y = 0) = (y = 0)"
-by transfer (rule of_real_eq_0_iff)
-
-
-subsection\<open>Polar Form for Nonstandard Complex Numbers\<close>
-
-lemma complex_split_polar2:
-     "\<forall>n. \<exists>r a. (z n) =  complex_of_real r * (Complex (cos a) (sin a))"
-by (auto intro: complex_split_polar)
-
-lemma hcomplex_split_polar:
-  "!!z. \<exists>r a. z = hcomplex_of_hypreal r * (HComplex(( *f* cos) a)(( *f* sin) a))"
-by transfer (simp add: complex_split_polar)
-
-lemma hcis_eq:
-   "!!a. hcis a =
-    (hcomplex_of_hypreal(( *f* cos) a) +
-    iii * hcomplex_of_hypreal(( *f* sin) a))"
-by transfer (simp add: complex_eq_iff)
-
-lemma hrcis_Ex: "!!z. \<exists>r a. z = hrcis r a"
-by transfer (rule rcis_Ex)
-
-lemma hRe_hcomplex_polar [simp]:
-  "!!r a. hRe (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) =
-      r * ( *f* cos) a"
-by transfer simp
-
-lemma hRe_hrcis [simp]: "!!r a. hRe(hrcis r a) = r * ( *f* cos) a"
-by transfer (rule Re_rcis)
-
-lemma hIm_hcomplex_polar [simp]:
-  "!!r a. hIm (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) =
-      r * ( *f* sin) a"
-by transfer simp
-
-lemma hIm_hrcis [simp]: "!!r a. hIm(hrcis r a) = r * ( *f* sin) a"
-by transfer (rule Im_rcis)
-
-lemma hcmod_unit_one [simp]:
-     "!!a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1"
-by transfer (simp add: cmod_unit_one)
-
-lemma hcmod_complex_polar [simp]:
-  "!!r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) = \<bar>r\<bar>"
-by transfer (simp add: cmod_complex_polar)
-
-lemma hcmod_hrcis [simp]: "!!r a. hcmod(hrcis r a) = \<bar>r\<bar>"
-by transfer (rule complex_mod_rcis)
-
-(*---------------------------------------------------------------------------*)
-(*  (r1 * hrcis a) * (r2 * hrcis b) = r1 * r2 * hrcis (a + b)                *)
-(*---------------------------------------------------------------------------*)
-
-lemma hcis_hrcis_eq: "!!a. hcis a = hrcis 1 a"
-by transfer (rule cis_rcis_eq)
-declare hcis_hrcis_eq [symmetric, simp]
-
-lemma hrcis_mult:
-  "!!a b r1 r2. hrcis r1 a * hrcis r2 b = hrcis (r1*r2) (a + b)"
-by transfer (rule rcis_mult)
-
-lemma hcis_mult: "!!a b. hcis a * hcis b = hcis (a + b)"
-by transfer (rule cis_mult)
-
-lemma hcis_zero [simp]: "hcis 0 = 1"
-by transfer (rule cis_zero)
-
-lemma hrcis_zero_mod [simp]: "!!a. hrcis 0 a = 0"
-by transfer (rule rcis_zero_mod)
-
-lemma hrcis_zero_arg [simp]: "!!r. hrcis r 0 = hcomplex_of_hypreal r"
-by transfer (rule rcis_zero_arg)
-
-lemma hcomplex_i_mult_minus [simp]: "!!x. iii * (iii * x) = - x"
-by transfer (rule complex_i_mult_minus)
-
-lemma hcomplex_i_mult_minus2 [simp]: "iii * iii * x = - x"
-by simp
-
-lemma hcis_hypreal_of_nat_Suc_mult:
-   "!!a. hcis (hypreal_of_nat (Suc n) * a) =
-     hcis a * hcis (hypreal_of_nat n * a)"
-apply transfer
-apply (simp add: distrib_right cis_mult)
-done
-
-lemma NSDeMoivre: "!!a. (hcis a) ^ n = hcis (hypreal_of_nat n * a)"
-apply transfer
-apply (rule DeMoivre)
-done
-
-lemma hcis_hypreal_of_hypnat_Suc_mult:
-     "!! a n. hcis (hypreal_of_hypnat (n + 1) * a) =
-      hcis a * hcis (hypreal_of_hypnat n * a)"
-by transfer (simp add: distrib_right cis_mult)
-
-lemma NSDeMoivre_ext:
-  "!!a n. (hcis a) pow n = hcis (hypreal_of_hypnat n * a)"
-by transfer (rule DeMoivre)
-
-lemma NSDeMoivre2:
-  "!!a r. (hrcis r a) ^ n = hrcis (r ^ n) (hypreal_of_nat n * a)"
-by transfer (rule DeMoivre2)
-
-lemma DeMoivre2_ext:
-  "!! a r n. (hrcis r a) pow n = hrcis (r pow n) (hypreal_of_hypnat n * a)"
-by transfer (rule DeMoivre2)
-
-lemma hcis_inverse [simp]: "!!a. inverse(hcis a) = hcis (-a)"
-by transfer (rule cis_inverse)
-
-lemma hrcis_inverse: "!!a r. inverse(hrcis r a) = hrcis (inverse r) (-a)"
-by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric])
-
-lemma hRe_hcis [simp]: "!!a. hRe(hcis a) = ( *f* cos) a"
-by transfer simp
-
-lemma hIm_hcis [simp]: "!!a. hIm(hcis a) = ( *f* sin) a"
-by transfer simp
-
-lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe(hcis a ^ n)"
-by (simp add: NSDeMoivre)
-
-lemma sin_n_hIm_hcis_pow_n: "( *f* sin) (hypreal_of_nat n * a) = hIm(hcis a ^ n)"
-by (simp add: NSDeMoivre)
-
-lemma cos_n_hRe_hcis_hcpow_n: "( *f* cos) (hypreal_of_hypnat n * a) = hRe(hcis a pow n)"
-by (simp add: NSDeMoivre_ext)
-
-lemma sin_n_hIm_hcis_hcpow_n: "( *f* sin) (hypreal_of_hypnat n * a) = hIm(hcis a pow n)"
-by (simp add: NSDeMoivre_ext)
-
-lemma hExp_add: "!!a b. hExp(a + b) = hExp(a) * hExp(b)"
-by transfer (rule exp_add)
-
-
-subsection\<open>@{term hcomplex_of_complex}: the Injection from
-  type @{typ complex} to to @{typ hcomplex}\<close>
-
-lemma hcomplex_of_complex_i: "iii = hcomplex_of_complex ii"
-by (rule iii_def)
-
-lemma hRe_hcomplex_of_complex:
-   "hRe (hcomplex_of_complex z) = hypreal_of_real (Re z)"
-by transfer (rule refl)
-
-lemma hIm_hcomplex_of_complex:
-   "hIm (hcomplex_of_complex z) = hypreal_of_real (Im z)"
-by transfer (rule refl)
-
-lemma hcmod_hcomplex_of_complex:
-     "hcmod (hcomplex_of_complex x) = hypreal_of_real (cmod x)"
-by transfer (rule refl)
-
-
-subsection\<open>Numerals and Arithmetic\<close>
-
-lemma hcomplex_of_hypreal_eq_hcomplex_of_complex:
-     "hcomplex_of_hypreal (hypreal_of_real x) =
-      hcomplex_of_complex (complex_of_real x)"
-by transfer (rule refl)
-
-lemma hcomplex_hypreal_numeral:
-  "hcomplex_of_complex (numeral w) = hcomplex_of_hypreal(numeral w)"
-by transfer (rule of_real_numeral [symmetric])
-
-lemma hcomplex_hypreal_neg_numeral:
-  "hcomplex_of_complex (- numeral w) = hcomplex_of_hypreal(- numeral w)"
-by transfer (rule of_real_neg_numeral [symmetric])
-
-lemma hcomplex_numeral_hcnj [simp]:
-     "hcnj (numeral v :: hcomplex) = numeral v"
-by transfer (rule complex_cnj_numeral)
-
-lemma hcomplex_numeral_hcmod [simp]:
-      "hcmod(numeral v :: hcomplex) = (numeral v :: hypreal)"
-by transfer (rule norm_numeral)
-
-lemma hcomplex_neg_numeral_hcmod [simp]:
-      "hcmod(- numeral v :: hcomplex) = (numeral v :: hypreal)"
-by transfer (rule norm_neg_numeral)
-
-lemma hcomplex_numeral_hRe [simp]:
-      "hRe(numeral v :: hcomplex) = numeral v"
-by transfer (rule complex_Re_numeral)
-
-lemma hcomplex_numeral_hIm [simp]:
-      "hIm(numeral v :: hcomplex) = 0"
-by transfer (rule complex_Im_numeral)
-
-end
--- a/src/HOL/NSA/NatStar.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,241 +0,0 @@
-(*  Title       : NatStar.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-
-Converted to Isar and polished by lcp
-*)
-
-section\<open>Star-transforms for the Hypernaturals\<close>
-
-theory NatStar
-imports Star
-begin
-
-lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"
-by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)
-
-lemma starset_n_Un: "*sn* (%n. (A n) Un (B n)) = *sn* A Un *sn* B"
-apply (simp add: starset_n_def star_n_eq_starfun_whn Un_def)
-apply (rule_tac x=whn in spec, transfer, simp)
-done
-
-lemma InternalSets_Un:
-     "[| X \<in> InternalSets; Y \<in> InternalSets |]
-      ==> (X Un Y) \<in> InternalSets"
-by (auto simp add: InternalSets_def starset_n_Un [symmetric])
-
-lemma starset_n_Int:
-      "*sn* (%n. (A n) Int (B n)) = *sn* A Int *sn* B"
-apply (simp add: starset_n_def star_n_eq_starfun_whn Int_def)
-apply (rule_tac x=whn in spec, transfer, simp)
-done
-
-lemma InternalSets_Int:
-     "[| X \<in> InternalSets; Y \<in> InternalSets |]
-      ==> (X Int Y) \<in> InternalSets"
-by (auto simp add: InternalSets_def starset_n_Int [symmetric])
-
-lemma starset_n_Compl: "*sn* ((%n. - A n)) = -( *sn* A)"
-apply (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)
-apply (rule_tac x=whn in spec, transfer, simp)
-done
-
-lemma InternalSets_Compl: "X \<in> InternalSets ==> -X \<in> InternalSets"
-by (auto simp add: InternalSets_def starset_n_Compl [symmetric])
-
-lemma starset_n_diff: "*sn* (%n. (A n) - (B n)) = *sn* A - *sn* B"
-apply (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)
-apply (rule_tac x=whn in spec, transfer, simp)
-done
-
-lemma InternalSets_diff:
-     "[| X \<in> InternalSets; Y \<in> InternalSets |]
-      ==> (X - Y) \<in> InternalSets"
-by (auto simp add: InternalSets_def starset_n_diff [symmetric])
-
-lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"
-by simp
-
-lemma NatStar_hypreal_of_real_Int:
-     "*s* X Int Nats = hypnat_of_nat ` X"
-by (auto simp add: SHNat_eq)
-
-lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)"
-by (simp add: starset_n_starset)
-
-lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"
-by (auto simp add: InternalSets_def starset_starset_n_eq)
-
-lemma InternalSets_UNIV_diff:
-     "X \<in> InternalSets ==> UNIV - X \<in> InternalSets"
-apply (subgoal_tac "UNIV - X = - X")
-by (auto intro: InternalSets_Compl)
-
-
-subsection\<open>Nonstandard Extensions of Functions\<close>
-
-text\<open>Example of transfer of a property from reals to hyperreals
-    --- used for limit comparison of sequences\<close>
-
-lemma starfun_le_mono:
-     "\<forall>n. N \<le> n --> f n \<le> g n
-      ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n \<le> ( *f* g) n"
-by transfer
-
-(*****----- and another -----*****)
-lemma starfun_less_mono:
-     "\<forall>n. N \<le> n --> f n < g n
-      ==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n < ( *f* g) n"
-by transfer
-
-text\<open>Nonstandard extension when we increment the argument by one\<close>
-
-lemma starfun_shift_one:
-     "!!N. ( *f* (%n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"
-by (transfer, simp)
-
-text\<open>Nonstandard extension with absolute value\<close>
-
-lemma starfun_abs: "!!N. ( *f* (%n. \<bar>f n\<bar>)) N = \<bar>( *f* f) N\<bar>"
-by (transfer, rule refl)
-
-text\<open>The hyperpow function as a nonstandard extension of realpow\<close>
-
-lemma starfun_pow: "!!N. ( *f* (%n. r ^ n)) N = (hypreal_of_real r) pow N"
-by (transfer, rule refl)
-
-lemma starfun_pow2:
-     "!!N. ( *f* (%n. (X n) ^ m)) N = ( *f* X) N pow hypnat_of_nat m"
-by (transfer, rule refl)
-
-lemma starfun_pow3: "!!R. ( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n"
-by (transfer, rule refl)
-
-text\<open>The @{term hypreal_of_hypnat} function as a nonstandard extension of
-  @{term real_of_nat}\<close>
-
-lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
-by transfer (simp add: fun_eq_iff)
-
-lemma starfun_inverse_real_of_nat_eq:
-     "N \<in> HNatInfinite
-   ==> ( *f* (%x::nat. inverse(real x))) N = inverse(hypreal_of_hypnat N)"
-apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
-apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
-apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat starfun_inverse_inverse)
-done
-
-text\<open>Internal functions - some redundancy with *f* now\<close>
-
-lemma starfun_n: "( *fn* f) (star_n X) = star_n (%n. f n (X n))"
-by (simp add: starfun_n_def Ifun_star_n)
-
-text\<open>Multiplication: \<open>( *fn) x ( *gn) = *(fn x gn)\<close>\<close>
-
-lemma starfun_n_mult:
-     "( *fn* f) z * ( *fn* g) z = ( *fn* (% i x. f i x * g i x)) z"
-apply (cases z)
-apply (simp add: starfun_n star_n_mult)
-done
-
-text\<open>Addition: \<open>( *fn) + ( *gn) = *(fn + gn)\<close>\<close>
-
-lemma starfun_n_add:
-     "( *fn* f) z + ( *fn* g) z = ( *fn* (%i x. f i x + g i x)) z"
-apply (cases z)
-apply (simp add: starfun_n star_n_add)
-done
-
-text\<open>Subtraction: \<open>( *fn) - ( *gn) = *(fn + - gn)\<close>\<close>
-
-lemma starfun_n_add_minus:
-     "( *fn* f) z + -( *fn* g) z = ( *fn* (%i x. f i x + -g i x)) z"
-apply (cases z)
-apply (simp add: starfun_n star_n_minus star_n_add)
-done
-
-
-text\<open>Composition: \<open>( *fn) o ( *gn) = *(fn o gn)\<close>\<close>
-
-lemma starfun_n_const_fun [simp]:
-     "( *fn* (%i x. k)) z = star_of k"
-apply (cases z)
-apply (simp add: starfun_n star_of_def)
-done
-
-lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (%i x. - (f i) x)) x"
-apply (cases x)
-apply (simp add: starfun_n star_n_minus)
-done
-
-lemma starfun_n_eq [simp]:
-     "( *fn* f) (star_of n) = star_n (%i. f i n)"
-by (simp add: starfun_n star_of_def)
-
-lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) = (f = g)"
-by (transfer, rule refl)
-
-lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:
-     "N \<in> HNatInfinite ==> ( *f* (%x. inverse (real x))) N \<in> Infinitesimal"
-apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
-apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
-apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat)
-done
-
-
-subsection\<open>Nonstandard Characterization of Induction\<close>
-
-lemma hypnat_induct_obj:
-    "!!n. (( *p* P) (0::hypnat) &
-            (\<forall>n. ( *p* P)(n) --> ( *p* P)(n + 1)))
-       --> ( *p* P)(n)"
-by (transfer, induct_tac n, auto)
-
-lemma hypnat_induct:
-  "!!n. [| ( *p* P) (0::hypnat);
-      !!n. ( *p* P)(n) ==> ( *p* P)(n + 1)|]
-     ==> ( *p* P)(n)"
-by (transfer, induct_tac n, auto)
-
-lemma starP2_eq_iff: "( *p2* (op =)) = (op =)"
-by transfer (rule refl)
-
-lemma starP2_eq_iff2: "( *p2* (%x y. x = y)) X Y = (X = Y)"
-by (simp add: starP2_eq_iff)
-
-lemma nonempty_nat_set_Least_mem:
-  "c \<in> (S :: nat set) ==> (LEAST n. n \<in> S) \<in> S"
-by (erule LeastI)
-
-lemma nonempty_set_star_has_least:
-    "!!S::nat set star. Iset S \<noteq> {} ==> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
-apply (transfer empty_def)
-apply (rule_tac x="LEAST n. n \<in> S" in bexI)
-apply (simp add: Least_le)
-apply (rule LeastI_ex, auto)
-done
-
-lemma nonempty_InternalNatSet_has_least:
-    "[| (S::hypnat set) \<in> InternalSets; S \<noteq> {} |] ==> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
-apply (clarsimp simp add: InternalSets_def starset_n_def)
-apply (erule nonempty_set_star_has_least)
-done
-
-text\<open>Goldblatt page 129 Thm 11.3.2\<close>
-lemma internal_induct_lemma:
-     "!!X::nat set star. [| (0::hypnat) \<in> Iset X; \<forall>n. n \<in> Iset X --> n + 1 \<in> Iset X |]
-      ==> Iset X = (UNIV:: hypnat set)"
-apply (transfer UNIV_def)
-apply (rule equalityI [OF subset_UNIV subsetI])
-apply (induct_tac x, auto)
-done
-
-lemma internal_induct:
-     "[| X \<in> InternalSets; (0::hypnat) \<in> X; \<forall>n. n \<in> X --> n + 1 \<in> X |]
-      ==> X = (UNIV:: hypnat set)"
-apply (clarsimp simp add: InternalSets_def starset_n_def)
-apply (erule (1) internal_induct_lemma)
-done
-
-
-end
--- a/src/HOL/NSA/Star.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,343 +0,0 @@
-(*  Title       : Star.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4
-*)
-
-section\<open>Star-Transforms in Non-Standard Analysis\<close>
-
-theory Star
-imports NSA
-begin
-
-definition
-    (* internal sets *)
-  starset_n :: "(nat => 'a set) => 'a star set" ("*sn* _" [80] 80) where
-  "*sn* As = Iset (star_n As)"
-
-definition
-  InternalSets :: "'a star set set" where
-  "InternalSets = {X. \<exists>As. X = *sn* As}"
-
-definition
-  (* nonstandard extension of function *)
-  is_starext  :: "['a star => 'a star, 'a => 'a] => bool" where
-  "is_starext F f =
-    (\<forall>x y. \<exists>X \<in> Rep_star(x). \<exists>Y \<in> Rep_star(y). ((y = (F x)) = (eventually (\<lambda>n. Y n = f(X n)) \<U>)))"
-
-definition
-  (* internal functions *)
-  starfun_n :: "(nat => ('a => 'b)) => 'a star => 'b star"   ("*fn* _" [80] 80) where
-  "*fn* F = Ifun (star_n F)"
-
-definition
-  InternalFuns :: "('a star => 'b star) set" where
-  "InternalFuns = {X. \<exists>F. X = *fn* F}"
-
-
-(*--------------------------------------------------------
-   Preamble - Pulling "EX" over "ALL"
- ---------------------------------------------------------*)
-
-(* This proof does not need AC and was suggested by the
-   referee for the JCM Paper: let f(x) be least y such
-   that  Q(x,y)
-*)
-lemma no_choice: "\<forall>x. \<exists>y. Q x y ==> \<exists>(f :: 'a => nat). \<forall>x. Q x (f x)"
-apply (rule_tac x = "%x. LEAST y. Q x y" in exI)
-apply (blast intro: LeastI)
-done
-
-subsection\<open>Properties of the Star-transform Applied to Sets of Reals\<close>
-
-lemma STAR_star_of_image_subset: "star_of ` A <= *s* A"
-by auto
-
-lemma STAR_hypreal_of_real_Int: "*s* X Int \<real> = hypreal_of_real ` X"
-by (auto simp add: SReal_def)
-
-lemma STAR_star_of_Int: "*s* X Int Standard = star_of ` X"
-by (auto simp add: Standard_def)
-
-lemma lemma_not_hyprealA: "x \<notin> hypreal_of_real ` A ==> \<forall>y \<in> A. x \<noteq> hypreal_of_real y"
-by auto
-
-lemma lemma_not_starA: "x \<notin> star_of ` A ==> \<forall>y \<in> A. x \<noteq> star_of y"
-by auto
-
-lemma lemma_Compl_eq: "- {n. X n = xa} = {n. X n \<noteq> xa}"
-by auto
-
-lemma STAR_real_seq_to_hypreal:
-    "\<forall>n. (X n) \<notin> M ==> star_n X \<notin> *s* M"
-apply (unfold starset_def star_of_def)
-apply (simp add: Iset_star_n FreeUltrafilterNat.proper)
-done
-
-lemma STAR_singleton: "*s* {x} = {star_of x}"
-by simp
-
-lemma STAR_not_mem: "x \<notin> F ==> star_of x \<notin> *s* F"
-by transfer
-
-lemma STAR_subset_closed: "[| x : *s* A; A <= B |] ==> x : *s* B"
-by (erule rev_subsetD, simp)
-
-text\<open>Nonstandard extension of a set (defined using a constant
-   sequence) as a special case of an internal set\<close>
-
-lemma starset_n_starset: "\<forall>n. (As n = A) ==> *sn* As = *s* A"
-apply (drule fun_eq_iff [THEN iffD2])
-apply (simp add: starset_n_def starset_def star_of_def)
-done
-
-
-(*----------------------------------------------------------------*)
-(* Theorems about nonstandard extensions of functions             *)
-(*----------------------------------------------------------------*)
-
-(*----------------------------------------------------------------*)
-(* Nonstandard extension of a function (defined using a           *)
-(* constant sequence) as a special case of an internal function   *)
-(*----------------------------------------------------------------*)
-
-lemma starfun_n_starfun: "\<forall>n. (F n = f) ==> *fn* F = *f* f"
-apply (drule fun_eq_iff [THEN iffD2])
-apply (simp add: starfun_n_def starfun_def star_of_def)
-done
-
-
-(*
-   Prove that abs for hypreal is a nonstandard extension of abs for real w/o
-   use of congruence property (proved after this for general
-   nonstandard extensions of real valued functions).
-
-   Proof now Uses the ultrafilter tactic!
-*)
-
-lemma hrabs_is_starext_rabs: "is_starext abs abs"
-apply (simp add: is_starext_def, safe)
-apply (rule_tac x=x in star_cases)
-apply (rule_tac x=y in star_cases)
-apply (unfold star_n_def, auto)
-apply (rule bexI, rule_tac [2] lemma_starrel_refl)
-apply (rule bexI, rule_tac [2] lemma_starrel_refl)
-apply (fold star_n_def)
-apply (unfold star_abs_def starfun_def star_of_def)
-apply (simp add: Ifun_star_n star_n_eq_iff)
-done
-
-text\<open>Nonstandard extension of functions\<close>
-
-lemma starfun:
-      "( *f* f) (star_n X) = star_n (%n. f (X n))"
-by (rule starfun_star_n)
-
-lemma starfun_if_eq:
-     "!!w. w \<noteq> star_of x
-       ==> ( *f* (\<lambda>z. if z = x then a else g z)) w = ( *f* g) w"
-by (transfer, simp)
-
-(*-------------------------------------------
-  multiplication: ( *f) x ( *g) = *(f x g)
- ------------------------------------------*)
-lemma starfun_mult: "!!x. ( *f* f) x * ( *f* g) x = ( *f* (%x. f x * g x)) x"
-by (transfer, rule refl)
-declare starfun_mult [symmetric, simp]
-
-(*---------------------------------------
-  addition: ( *f) + ( *g) = *(f + g)
- ---------------------------------------*)
-lemma starfun_add: "!!x. ( *f* f) x + ( *f* g) x = ( *f* (%x. f x + g x)) x"
-by (transfer, rule refl)
-declare starfun_add [symmetric, simp]
-
-(*--------------------------------------------
-  subtraction: ( *f) + -( *g) = *(f + -g)
- -------------------------------------------*)
-lemma starfun_minus: "!!x. - ( *f* f) x = ( *f* (%x. - f x)) x"
-by (transfer, rule refl)
-declare starfun_minus [symmetric, simp]
-
-(*FIXME: delete*)
-lemma starfun_add_minus: "!!x. ( *f* f) x + -( *f* g) x = ( *f* (%x. f x + -g x)) x"
-by (transfer, rule refl)
-declare starfun_add_minus [symmetric, simp]
-
-lemma starfun_diff: "!!x. ( *f* f) x  - ( *f* g) x = ( *f* (%x. f x - g x)) x"
-by (transfer, rule refl)
-declare starfun_diff [symmetric, simp]
-
-(*--------------------------------------
-  composition: ( *f) o ( *g) = *(f o g)
- ---------------------------------------*)
-
-lemma starfun_o2: "(%x. ( *f* f) (( *f* g) x)) = *f* (%x. f (g x))"
-by (transfer, rule refl)
-
-lemma starfun_o: "( *f* f) o ( *f* g) = ( *f* (f o g))"
-by (transfer o_def, rule refl)
-
-text\<open>NS extension of constant function\<close>
-lemma starfun_const_fun [simp]: "!!x. ( *f* (%x. k)) x = star_of k"
-by (transfer, rule refl)
-
-text\<open>the NS extension of the identity function\<close>
-
-lemma starfun_Id [simp]: "!!x. ( *f* (%x. x)) x = x"
-by (transfer, rule refl)
-
-(* this is trivial, given starfun_Id *)
-lemma starfun_Idfun_approx:
-  "x \<approx> star_of a ==> ( *f* (%x. x)) x \<approx> star_of a"
-by (simp only: starfun_Id)
-
-text\<open>The Star-function is a (nonstandard) extension of the function\<close>
-
-lemma is_starext_starfun: "is_starext ( *f* f) f"
-apply (simp add: is_starext_def, auto)
-apply (rule_tac x = x in star_cases)
-apply (rule_tac x = y in star_cases)
-apply (auto intro!: bexI [OF _ Rep_star_star_n]
-            simp add: starfun star_n_eq_iff)
-done
-
-text\<open>Any nonstandard extension is in fact the Star-function\<close>
-
-lemma is_starfun_starext: "is_starext F f ==> F = *f* f"
-apply (simp add: is_starext_def)
-apply (rule ext)
-apply (rule_tac x = x in star_cases)
-apply (drule_tac x = x in spec)
-apply (drule_tac x = "( *f* f) x" in spec)
-apply (auto simp add: starfun_star_n)
-apply (simp add: star_n_eq_iff [symmetric])
-apply (simp add: starfun_star_n [of f, symmetric])
-done
-
-lemma is_starext_starfun_iff: "(is_starext F f) = (F = *f* f)"
-by (blast intro: is_starfun_starext is_starext_starfun)
-
-text\<open>extented function has same solution as its standard
-   version for real arguments. i.e they are the same
-   for all real arguments\<close>
-lemma starfun_eq: "( *f* f) (star_of a) = star_of (f a)"
-by (rule starfun_star_of)
-
-lemma starfun_approx: "( *f* f) (star_of a) \<approx> star_of (f a)"
-by simp
-
-(* useful for NS definition of derivatives *)
-lemma starfun_lambda_cancel:
-  "!!x'. ( *f* (%h. f (x + h))) x'  = ( *f* f) (star_of x + x')"
-by (transfer, rule refl)
-
-lemma starfun_lambda_cancel2:
-  "( *f* (%h. f(g(x + h)))) x' = ( *f* (f o g)) (star_of x + x')"
-by (unfold o_def, rule starfun_lambda_cancel)
-
-lemma starfun_mult_HFinite_approx:
-  fixes l m :: "'a::real_normed_algebra star"
-  shows "[| ( *f* f) x \<approx> l; ( *f* g) x \<approx> m;
-                  l: HFinite; m: HFinite
-               |] ==>  ( *f* (%x. f x * g x)) x \<approx> l * m"
-apply (drule (3) approx_mult_HFinite)
-apply (auto intro: approx_HFinite [OF _ approx_sym])
-done
-
-lemma starfun_add_approx: "[| ( *f* f) x \<approx> l; ( *f* g) x \<approx> m
-               |] ==>  ( *f* (%x. f x + g x)) x \<approx> l + m"
-by (auto intro: approx_add)
-
-text\<open>Examples: hrabs is nonstandard extension of rabs
-              inverse is nonstandard extension of inverse\<close>
-
-(* can be proved easily using theorem "starfun" and *)
-(* properties of ultrafilter as for inverse below we  *)
-(* use the theorem we proved above instead          *)
-
-lemma starfun_rabs_hrabs: "*f* abs = abs"
-by (simp only: star_abs_def)
-
-lemma starfun_inverse_inverse [simp]: "( *f* inverse) x = inverse(x)"
-by (simp only: star_inverse_def)
-
-lemma starfun_inverse: "!!x. inverse (( *f* f) x) = ( *f* (%x. inverse (f x))) x"
-by (transfer, rule refl)
-declare starfun_inverse [symmetric, simp]
-
-lemma starfun_divide: "!!x. ( *f* f) x / ( *f* g) x = ( *f* (%x. f x / g x)) x"
-by (transfer, rule refl)
-declare starfun_divide [symmetric, simp]
-
-lemma starfun_inverse2: "!!x. inverse (( *f* f) x) = ( *f* (%x. inverse (f x))) x"
-by (transfer, rule refl)
-
-text\<open>General lemma/theorem needed for proofs in elementary
-    topology of the reals\<close>
-lemma starfun_mem_starset:
-      "!!x. ( *f* f) x : *s* A ==> x : *s* {x. f x  \<in> A}"
-by (transfer, simp)
-
-text\<open>Alternative definition for hrabs with rabs function
-   applied entrywise to equivalence class representative.
-   This is easily proved using starfun and ns extension thm\<close>
-lemma hypreal_hrabs: "\<bar>star_n X\<bar> = star_n (%n. \<bar>X n\<bar>)"
-by (simp only: starfun_rabs_hrabs [symmetric] starfun)
-
-text\<open>nonstandard extension of set through nonstandard extension
-   of rabs function i.e hrabs. A more general result should be
-   where we replace rabs by some arbitrary function f and hrabs
-   by its NS extenson. See second NS set extension below.\<close>
-lemma STAR_rabs_add_minus:
-   "*s* {x. \<bar>x + - y\<bar> < r} = {x. \<bar>x + -star_of y\<bar> < star_of r}"
-by (transfer, rule refl)
-
-lemma STAR_starfun_rabs_add_minus:
-  "*s* {x. \<bar>f x + - y\<bar> < r} =
-       {x. \<bar>( *f* f) x + -star_of y\<bar> < star_of r}"
-by (transfer, rule refl)
-
-text\<open>Another characterization of Infinitesimal and one of \<open>\<approx>\<close> relation.
-   In this theory since \<open>hypreal_hrabs\<close> proved here. Maybe
-   move both theorems??\<close>
-lemma Infinitesimal_FreeUltrafilterNat_iff2:
-     "(star_n X \<in> Infinitesimal) = (\<forall>m. eventually (\<lambda>n. norm(X n) < inverse(real(Suc m))) \<U>)"
-by (simp add: Infinitesimal_hypreal_of_nat_iff star_of_def
-     hnorm_def star_of_nat_def starfun_star_n
-     star_n_inverse star_n_less)
-
-lemma HNatInfinite_inverse_Infinitesimal [simp]:
-     "n \<in> HNatInfinite ==> inverse (hypreal_of_hypnat n) \<in> Infinitesimal"
-apply (cases n)
-apply (auto simp add: of_hypnat_def starfun_star_n star_n_inverse real_norm_def
-      HNatInfinite_FreeUltrafilterNat_iff
-      Infinitesimal_FreeUltrafilterNat_iff2)
-apply (drule_tac x="Suc m" in spec)
-apply (auto elim!: eventually_mono)
-done
-
-lemma approx_FreeUltrafilterNat_iff: "star_n X \<approx> star_n Y =
-      (\<forall>r>0. eventually (\<lambda>n. norm (X n - Y n) < r) \<U>)"
-apply (subst approx_minus_iff)
-apply (rule mem_infmal_iff [THEN subst])
-apply (simp add: star_n_diff)
-apply (simp add: Infinitesimal_FreeUltrafilterNat_iff)
-done
-
-lemma approx_FreeUltrafilterNat_iff2: "star_n X \<approx> star_n Y =
-      (\<forall>m. eventually (\<lambda>n. norm (X n - Y n) < inverse(real(Suc m))) \<U>)"
-apply (subst approx_minus_iff)
-apply (rule mem_infmal_iff [THEN subst])
-apply (simp add: star_n_diff)
-apply (simp add: Infinitesimal_FreeUltrafilterNat_iff2)
-done
-
-lemma inj_starfun: "inj starfun"
-apply (rule inj_onI)
-apply (rule ext, rule ccontr)
-apply (drule_tac x = "star_n (%n. xa)" in fun_cong)
-apply (auto simp add: starfun star_n_eq_iff FreeUltrafilterNat.proper)
-done
-
-end
--- a/src/HOL/NSA/StarDef.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1063 +0,0 @@
-(*  Title       : HOL/Hyperreal/StarDef.thy
-    Author      : Jacques D. Fleuriot and Brian Huffman
-*)
-
-section \<open>Construction of Star Types Using Ultrafilters\<close>
-
-theory StarDef
-imports Free_Ultrafilter
-begin
-
-subsection \<open>A Free Ultrafilter over the Naturals\<close>
-
-definition
-  FreeUltrafilterNat :: "nat filter"  ("\<U>") where
-  "\<U> = (SOME U. freeultrafilter U)"
-
-lemma freeultrafilter_FreeUltrafilterNat: "freeultrafilter \<U>"
-apply (unfold FreeUltrafilterNat_def)
-apply (rule someI_ex)
-apply (rule freeultrafilter_Ex)
-apply (rule infinite_UNIV_nat)
-done
-
-interpretation FreeUltrafilterNat: freeultrafilter FreeUltrafilterNat
-by (rule freeultrafilter_FreeUltrafilterNat)
-
-subsection \<open>Definition of \<open>star\<close> type constructor\<close>
-
-definition
-  starrel :: "((nat \<Rightarrow> 'a) \<times> (nat \<Rightarrow> 'a)) set" where
-  "starrel = {(X,Y). eventually (\<lambda>n. X n = Y n) \<U>}"
-
-definition "star = (UNIV :: (nat \<Rightarrow> 'a) set) // starrel"
-
-typedef 'a star = "star :: (nat \<Rightarrow> 'a) set set"
-  unfolding star_def by (auto intro: quotientI)
-
-definition
-  star_n :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a star" where
-  "star_n X = Abs_star (starrel `` {X})"
-
-theorem star_cases [case_names star_n, cases type: star]:
-  "(\<And>X. x = star_n X \<Longrightarrow> P) \<Longrightarrow> P"
-by (cases x, unfold star_n_def star_def, erule quotientE, fast)
-
-lemma all_star_eq: "(\<forall>x. P x) = (\<forall>X. P (star_n X))"
-by (auto, rule_tac x=x in star_cases, simp)
-
-lemma ex_star_eq: "(\<exists>x. P x) = (\<exists>X. P (star_n X))"
-by (auto, rule_tac x=x in star_cases, auto)
-
-text \<open>Proving that @{term starrel} is an equivalence relation\<close>
-
-lemma starrel_iff [iff]: "((X,Y) \<in> starrel) = (eventually (\<lambda>n. X n = Y n) \<U>)"
-by (simp add: starrel_def)
-
-lemma equiv_starrel: "equiv UNIV starrel"
-proof (rule equivI)
-  show "refl starrel" by (simp add: refl_on_def)
-  show "sym starrel" by (simp add: sym_def eq_commute)
-  show "trans starrel" by (intro transI) (auto elim: eventually_elim2)
-qed
-
-lemmas equiv_starrel_iff =
-  eq_equiv_class_iff [OF equiv_starrel UNIV_I UNIV_I]
-
-lemma starrel_in_star: "starrel``{x} \<in> star"
-by (simp add: star_def quotientI)
-
-lemma star_n_eq_iff: "(star_n X = star_n Y) = (eventually (\<lambda>n. X n = Y n) \<U>)"
-by (simp add: star_n_def Abs_star_inject starrel_in_star equiv_starrel_iff)
-
-
-subsection \<open>Transfer principle\<close>
-
-text \<open>This introduction rule starts each transfer proof.\<close>
-lemma transfer_start:
-  "P \<equiv> eventually (\<lambda>n. Q) \<U> \<Longrightarrow> Trueprop P \<equiv> Trueprop Q"
-  by (simp add: FreeUltrafilterNat.proper)
-
-text \<open>Initialize transfer tactic.\<close>
-ML_file "transfer.ML"
-
-method_setup transfer = \<open>
-  Attrib.thms >> (fn ths => fn ctxt =>
-    SIMPLE_METHOD' (Transfer_Principle.transfer_tac ctxt ths))
-\<close> "transfer principle"
-
-
-text \<open>Transfer introduction rules.\<close>
-
-lemma transfer_ex [transfer_intro]:
-  "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
-    \<Longrightarrow> \<exists>x::'a star. p x \<equiv> eventually (\<lambda>n. \<exists>x. P n x) \<U>"
-by (simp only: ex_star_eq eventually_ex)
-
-lemma transfer_all [transfer_intro]:
-  "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
-    \<Longrightarrow> \<forall>x::'a star. p x \<equiv> eventually (\<lambda>n. \<forall>x. P n x) \<U>"
-by (simp only: all_star_eq FreeUltrafilterNat.eventually_all_iff)
-
-lemma transfer_not [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>\<rbrakk> \<Longrightarrow> \<not> p \<equiv> eventually (\<lambda>n. \<not> P n) \<U>"
-by (simp only: FreeUltrafilterNat.eventually_not_iff)
-
-lemma transfer_conj [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
-    \<Longrightarrow> p \<and> q \<equiv> eventually (\<lambda>n. P n \<and> Q n) \<U>"
-by (simp only: eventually_conj_iff)
-
-lemma transfer_disj [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
-    \<Longrightarrow> p \<or> q \<equiv> eventually (\<lambda>n. P n \<or> Q n) \<U>"
-by (simp only: FreeUltrafilterNat.eventually_disj_iff)
-
-lemma transfer_imp [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
-    \<Longrightarrow> p \<longrightarrow> q \<equiv> eventually (\<lambda>n. P n \<longrightarrow> Q n) \<U>"
-by (simp only: FreeUltrafilterNat.eventually_imp_iff)
-
-lemma transfer_iff [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>; q \<equiv> eventually Q \<U>\<rbrakk>
-    \<Longrightarrow> p = q \<equiv> eventually (\<lambda>n. P n = Q n) \<U>"
-by (simp only: FreeUltrafilterNat.eventually_iff_iff)
-
-lemma transfer_if_bool [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually P \<U>; x \<equiv> eventually X \<U>; y \<equiv> eventually Y \<U>\<rbrakk>
-    \<Longrightarrow> (if p then x else y) \<equiv> eventually (\<lambda>n. if P n then X n else Y n) \<U>"
-by (simp only: if_bool_eq_conj transfer_conj transfer_imp transfer_not)
-
-lemma transfer_eq [transfer_intro]:
-  "\<lbrakk>x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk> \<Longrightarrow> x = y \<equiv> eventually (\<lambda>n. X n = Y n) \<U>"
-by (simp only: star_n_eq_iff)
-
-lemma transfer_if [transfer_intro]:
-  "\<lbrakk>p \<equiv> eventually (\<lambda>n. P n) \<U>; x \<equiv> star_n X; y \<equiv> star_n Y\<rbrakk>
-    \<Longrightarrow> (if p then x else y) \<equiv> star_n (\<lambda>n. if P n then X n else Y n)"
-apply (rule eq_reflection)
-apply (auto simp add: star_n_eq_iff transfer_not elim!: eventually_mono)
-done
-
-lemma transfer_fun_eq [transfer_intro]:
-  "\<lbrakk>\<And>X. f (star_n X) = g (star_n X)
-    \<equiv> eventually (\<lambda>n. F n (X n) = G n (X n)) \<U>\<rbrakk>
-      \<Longrightarrow> f = g \<equiv> eventually (\<lambda>n. F n = G n) \<U>"
-by (simp only: fun_eq_iff transfer_all)
-
-lemma transfer_star_n [transfer_intro]: "star_n X \<equiv> star_n (\<lambda>n. X n)"
-by (rule reflexive)
-
-lemma transfer_bool [transfer_intro]: "p \<equiv> eventually (\<lambda>n. p) \<U>"
-by (simp add: FreeUltrafilterNat.proper)
-
-
-subsection \<open>Standard elements\<close>
-
-definition
-  star_of :: "'a \<Rightarrow> 'a star" where
-  "star_of x == star_n (\<lambda>n. x)"
-
-definition
-  Standard :: "'a star set" where
-  "Standard = range star_of"
-
-text \<open>Transfer tactic should remove occurrences of @{term star_of}\<close>
-setup \<open>Transfer_Principle.add_const @{const_name star_of}\<close>
-
-declare star_of_def [transfer_intro]
-
-lemma star_of_inject: "(star_of x = star_of y) = (x = y)"
-by (transfer, rule refl)
-
-lemma Standard_star_of [simp]: "star_of x \<in> Standard"
-by (simp add: Standard_def)
-
-
-subsection \<open>Internal functions\<close>
-
-definition
-  Ifun :: "('a \<Rightarrow> 'b) star \<Rightarrow> 'a star \<Rightarrow> 'b star" ("_ \<star> _" [300,301] 300) where
-  "Ifun f \<equiv> \<lambda>x. Abs_star
-       (\<Union>F\<in>Rep_star f. \<Union>X\<in>Rep_star x. starrel``{\<lambda>n. F n (X n)})"
-
-lemma Ifun_congruent2:
-  "congruent2 starrel starrel (\<lambda>F X. starrel``{\<lambda>n. F n (X n)})"
-by (auto simp add: congruent2_def equiv_starrel_iff elim!: eventually_rev_mp)
-
-lemma Ifun_star_n: "star_n F \<star> star_n X = star_n (\<lambda>n. F n (X n))"
-by (simp add: Ifun_def star_n_def Abs_star_inverse starrel_in_star
-    UN_equiv_class2 [OF equiv_starrel equiv_starrel Ifun_congruent2])
-
-text \<open>Transfer tactic should remove occurrences of @{term Ifun}\<close>
-setup \<open>Transfer_Principle.add_const @{const_name Ifun}\<close>
-
-lemma transfer_Ifun [transfer_intro]:
-  "\<lbrakk>f \<equiv> star_n F; x \<equiv> star_n X\<rbrakk> \<Longrightarrow> f \<star> x \<equiv> star_n (\<lambda>n. F n (X n))"
-by (simp only: Ifun_star_n)
-
-lemma Ifun_star_of [simp]: "star_of f \<star> star_of x = star_of (f x)"
-by (transfer, rule refl)
-
-lemma Standard_Ifun [simp]:
-  "\<lbrakk>f \<in> Standard; x \<in> Standard\<rbrakk> \<Longrightarrow> f \<star> x \<in> Standard"
-by (auto simp add: Standard_def)
-
-text \<open>Nonstandard extensions of functions\<close>
-
-definition
-  starfun :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a star \<Rightarrow> 'b star)"  ("*f* _" [80] 80) where
-  "starfun f == \<lambda>x. star_of f \<star> x"
-
-definition
-  starfun2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> ('a star \<Rightarrow> 'b star \<Rightarrow> 'c star)"
-    ("*f2* _" [80] 80) where
-  "starfun2 f == \<lambda>x y. star_of f \<star> x \<star> y"
-
-declare starfun_def [transfer_unfold]
-declare starfun2_def [transfer_unfold]
-
-lemma starfun_star_n: "( *f* f) (star_n X) = star_n (\<lambda>n. f (X n))"
-by (simp only: starfun_def star_of_def Ifun_star_n)
-
-lemma starfun2_star_n:
-  "( *f2* f) (star_n X) (star_n Y) = star_n (\<lambda>n. f (X n) (Y n))"
-by (simp only: starfun2_def star_of_def Ifun_star_n)
-
-lemma starfun_star_of [simp]: "( *f* f) (star_of x) = star_of (f x)"
-by (transfer, rule refl)
-
-lemma starfun2_star_of [simp]: "( *f2* f) (star_of x) = *f* f x"
-by (transfer, rule refl)
-
-lemma Standard_starfun [simp]: "x \<in> Standard \<Longrightarrow> starfun f x \<in> Standard"
-by (simp add: starfun_def)
-
-lemma Standard_starfun2 [simp]:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> starfun2 f x y \<in> Standard"
-by (simp add: starfun2_def)
-
-lemma Standard_starfun_iff:
-  assumes inj: "\<And>x y. f x = f y \<Longrightarrow> x = y"
-  shows "(starfun f x \<in> Standard) = (x \<in> Standard)"
-proof
-  assume "x \<in> Standard"
-  thus "starfun f x \<in> Standard" by simp
-next
-  have inj': "\<And>x y. starfun f x = starfun f y \<Longrightarrow> x = y"
-    using inj by transfer
-  assume "starfun f x \<in> Standard"
-  then obtain b where b: "starfun f x = star_of b"
-    unfolding Standard_def ..
-  hence "\<exists>x. starfun f x = star_of b" ..
-  hence "\<exists>a. f a = b" by transfer
-  then obtain a where "f a = b" ..
-  hence "starfun f (star_of a) = star_of b" by transfer
-  with b have "starfun f x = starfun f (star_of a)" by simp
-  hence "x = star_of a" by (rule inj')
-  thus "x \<in> Standard"
-    unfolding Standard_def by auto
-qed
-
-lemma Standard_starfun2_iff:
-  assumes inj: "\<And>a b a' b'. f a b = f a' b' \<Longrightarrow> a = a' \<and> b = b'"
-  shows "(starfun2 f x y \<in> Standard) = (x \<in> Standard \<and> y \<in> Standard)"
-proof
-  assume "x \<in> Standard \<and> y \<in> Standard"
-  thus "starfun2 f x y \<in> Standard" by simp
-next
-  have inj': "\<And>x y z w. starfun2 f x y = starfun2 f z w \<Longrightarrow> x = z \<and> y = w"
-    using inj by transfer
-  assume "starfun2 f x y \<in> Standard"
-  then obtain c where c: "starfun2 f x y = star_of c"
-    unfolding Standard_def ..
-  hence "\<exists>x y. starfun2 f x y = star_of c" by auto
-  hence "\<exists>a b. f a b = c" by transfer
-  then obtain a b where "f a b = c" by auto
-  hence "starfun2 f (star_of a) (star_of b) = star_of c"
-    by transfer
-  with c have "starfun2 f x y = starfun2 f (star_of a) (star_of b)"
-    by simp
-  hence "x = star_of a \<and> y = star_of b"
-    by (rule inj')
-  thus "x \<in> Standard \<and> y \<in> Standard"
-    unfolding Standard_def by auto
-qed
-
-
-subsection \<open>Internal predicates\<close>
-
-definition unstar :: "bool star \<Rightarrow> bool" where
-  "unstar b \<longleftrightarrow> b = star_of True"
-
-lemma unstar_star_n: "unstar (star_n P) = (eventually P \<U>)"
-by (simp add: unstar_def star_of_def star_n_eq_iff)
-
-lemma unstar_star_of [simp]: "unstar (star_of p) = p"
-by (simp add: unstar_def star_of_inject)
-
-text \<open>Transfer tactic should remove occurrences of @{term unstar}\<close>
-setup \<open>Transfer_Principle.add_const @{const_name unstar}\<close>
-
-lemma transfer_unstar [transfer_intro]:
-  "p \<equiv> star_n P \<Longrightarrow> unstar p \<equiv> eventually P \<U>"
-by (simp only: unstar_star_n)
-
-definition
-  starP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> bool"  ("*p* _" [80] 80) where
-  "*p* P = (\<lambda>x. unstar (star_of P \<star> x))"
-
-definition
-  starP2 :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a star \<Rightarrow> 'b star \<Rightarrow> bool"  ("*p2* _" [80] 80) where
-  "*p2* P = (\<lambda>x y. unstar (star_of P \<star> x \<star> y))"
-
-declare starP_def [transfer_unfold]
-declare starP2_def [transfer_unfold]
-
-lemma starP_star_n: "( *p* P) (star_n X) = (eventually (\<lambda>n. P (X n)) \<U>)"
-by (simp only: starP_def star_of_def Ifun_star_n unstar_star_n)
-
-lemma starP2_star_n:
-  "( *p2* P) (star_n X) (star_n Y) = (eventually (\<lambda>n. P (X n) (Y n)) \<U>)"
-by (simp only: starP2_def star_of_def Ifun_star_n unstar_star_n)
-
-lemma starP_star_of [simp]: "( *p* P) (star_of x) = P x"
-by (transfer, rule refl)
-
-lemma starP2_star_of [simp]: "( *p2* P) (star_of x) = *p* P x"
-by (transfer, rule refl)
-
-
-subsection \<open>Internal sets\<close>
-
-definition
-  Iset :: "'a set star \<Rightarrow> 'a star set" where
-  "Iset A = {x. ( *p2* op \<in>) x A}"
-
-lemma Iset_star_n:
-  "(star_n X \<in> Iset (star_n A)) = (eventually (\<lambda>n. X n \<in> A n) \<U>)"
-by (simp add: Iset_def starP2_star_n)
-
-text \<open>Transfer tactic should remove occurrences of @{term Iset}\<close>
-setup \<open>Transfer_Principle.add_const @{const_name Iset}\<close>
-
-lemma transfer_mem [transfer_intro]:
-  "\<lbrakk>x \<equiv> star_n X; a \<equiv> Iset (star_n A)\<rbrakk>
-    \<Longrightarrow> x \<in> a \<equiv> eventually (\<lambda>n. X n \<in> A n) \<U>"
-by (simp only: Iset_star_n)
-
-lemma transfer_Collect [transfer_intro]:
-  "\<lbrakk>\<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
-    \<Longrightarrow> Collect p \<equiv> Iset (star_n (\<lambda>n. Collect (P n)))"
-by (simp add: atomize_eq set_eq_iff all_star_eq Iset_star_n)
-
-lemma transfer_set_eq [transfer_intro]:
-  "\<lbrakk>a \<equiv> Iset (star_n A); b \<equiv> Iset (star_n B)\<rbrakk>
-    \<Longrightarrow> a = b \<equiv> eventually (\<lambda>n. A n = B n) \<U>"
-by (simp only: set_eq_iff transfer_all transfer_iff transfer_mem)
-
-lemma transfer_ball [transfer_intro]:
-  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
-    \<Longrightarrow> \<forall>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<forall>x\<in>A n. P n x) \<U>"
-by (simp only: Ball_def transfer_all transfer_imp transfer_mem)
-
-lemma transfer_bex [transfer_intro]:
-  "\<lbrakk>a \<equiv> Iset (star_n A); \<And>X. p (star_n X) \<equiv> eventually (\<lambda>n. P n (X n)) \<U>\<rbrakk>
-    \<Longrightarrow> \<exists>x\<in>a. p x \<equiv> eventually (\<lambda>n. \<exists>x\<in>A n. P n x) \<U>"
-by (simp only: Bex_def transfer_ex transfer_conj transfer_mem)
-
-lemma transfer_Iset [transfer_intro]:
-  "\<lbrakk>a \<equiv> star_n A\<rbrakk> \<Longrightarrow> Iset a \<equiv> Iset (star_n (\<lambda>n. A n))"
-by simp
-
-text \<open>Nonstandard extensions of sets.\<close>
-
-definition
-  starset :: "'a set \<Rightarrow> 'a star set" ("*s* _" [80] 80) where
-  "starset A = Iset (star_of A)"
-
-declare starset_def [transfer_unfold]
-
-lemma starset_mem: "(star_of x \<in> *s* A) = (x \<in> A)"
-by (transfer, rule refl)
-
-lemma starset_UNIV: "*s* (UNIV::'a set) = (UNIV::'a star set)"
-by (transfer UNIV_def, rule refl)
-
-lemma starset_empty: "*s* {} = {}"
-by (transfer empty_def, rule refl)
-
-lemma starset_insert: "*s* (insert x A) = insert (star_of x) ( *s* A)"
-by (transfer insert_def Un_def, rule refl)
-
-lemma starset_Un: "*s* (A \<union> B) = *s* A \<union> *s* B"
-by (transfer Un_def, rule refl)
-
-lemma starset_Int: "*s* (A \<inter> B) = *s* A \<inter> *s* B"
-by (transfer Int_def, rule refl)
-
-lemma starset_Compl: "*s* -A = -( *s* A)"
-by (transfer Compl_eq, rule refl)
-
-lemma starset_diff: "*s* (A - B) = *s* A - *s* B"
-by (transfer set_diff_eq, rule refl)
-
-lemma starset_image: "*s* (f ` A) = ( *f* f) ` ( *s* A)"
-by (transfer image_def, rule refl)
-
-lemma starset_vimage: "*s* (f -` A) = ( *f* f) -` ( *s* A)"
-by (transfer vimage_def, rule refl)
-
-lemma starset_subset: "( *s* A \<subseteq> *s* B) = (A \<subseteq> B)"
-by (transfer subset_eq, rule refl)
-
-lemma starset_eq: "( *s* A = *s* B) = (A = B)"
-by (transfer, rule refl)
-
-lemmas starset_simps [simp] =
-  starset_mem     starset_UNIV
-  starset_empty   starset_insert
-  starset_Un      starset_Int
-  starset_Compl   starset_diff
-  starset_image   starset_vimage
-  starset_subset  starset_eq
-
-
-subsection \<open>Syntactic classes\<close>
-
-instantiation star :: (zero) zero
-begin
-
-definition
-  star_zero_def:    "0 \<equiv> star_of 0"
-
-instance ..
-
-end
-
-instantiation star :: (one) one
-begin
-
-definition
-  star_one_def:     "1 \<equiv> star_of 1"
-
-instance ..
-
-end
-
-instantiation star :: (plus) plus
-begin
-
-definition
-  star_add_def:     "(op +) \<equiv> *f2* (op +)"
-
-instance ..
-
-end
-
-instantiation star :: (times) times
-begin
-
-definition
-  star_mult_def:    "(op *) \<equiv> *f2* (op *)"
-
-instance ..
-
-end
-
-instantiation star :: (uminus) uminus
-begin
-
-definition
-  star_minus_def:   "uminus \<equiv> *f* uminus"
-
-instance ..
-
-end
-
-instantiation star :: (minus) minus
-begin
-
-definition
-  star_diff_def:    "(op -) \<equiv> *f2* (op -)"
-
-instance ..
-
-end
-
-instantiation star :: (abs) abs
-begin
-
-definition
-  star_abs_def:     "abs \<equiv> *f* abs"
-
-instance ..
-
-end
-
-instantiation star :: (sgn) sgn
-begin
-
-definition
-  star_sgn_def:     "sgn \<equiv> *f* sgn"
-
-instance ..
-
-end
-
-instantiation star :: (divide) divide
-begin
-
-definition
-  star_divide_def:  "divide \<equiv> *f2* divide"
-
-instance ..
-
-end
-
-instantiation star :: (inverse) inverse
-begin
-
-definition
-  star_inverse_def: "inverse \<equiv> *f* inverse"
-
-instance ..
-
-end
-
-instance star :: (Rings.dvd) Rings.dvd ..
-
-instantiation star :: (Divides.div) Divides.div
-begin
-
-definition
-  star_mod_def:     "(op mod) \<equiv> *f2* (op mod)"
-
-instance ..
-
-end
-
-instantiation star :: (ord) ord
-begin
-
-definition
-  star_le_def:      "(op \<le>) \<equiv> *p2* (op \<le>)"
-
-definition
-  star_less_def:    "(op <) \<equiv> *p2* (op <)"
-
-instance ..
-
-end
-
-lemmas star_class_defs [transfer_unfold] =
-  star_zero_def     star_one_def
-  star_add_def      star_diff_def     star_minus_def
-  star_mult_def     star_divide_def   star_inverse_def
-  star_le_def       star_less_def     star_abs_def       star_sgn_def
-  star_mod_def
-
-text \<open>Class operations preserve standard elements\<close>
-
-lemma Standard_zero: "0 \<in> Standard"
-by (simp add: star_zero_def)
-
-lemma Standard_one: "1 \<in> Standard"
-by (simp add: star_one_def)
-
-lemma Standard_add: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x + y \<in> Standard"
-by (simp add: star_add_def)
-
-lemma Standard_diff: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x - y \<in> Standard"
-by (simp add: star_diff_def)
-
-lemma Standard_minus: "x \<in> Standard \<Longrightarrow> - x \<in> Standard"
-by (simp add: star_minus_def)
-
-lemma Standard_mult: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x * y \<in> Standard"
-by (simp add: star_mult_def)
-
-lemma Standard_divide: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x / y \<in> Standard"
-by (simp add: star_divide_def)
-
-lemma Standard_inverse: "x \<in> Standard \<Longrightarrow> inverse x \<in> Standard"
-by (simp add: star_inverse_def)
-
-lemma Standard_abs: "x \<in> Standard \<Longrightarrow> \<bar>x\<bar> \<in> Standard"
-by (simp add: star_abs_def)
-
-lemma Standard_mod: "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> x mod y \<in> Standard"
-by (simp add: star_mod_def)
-
-lemmas Standard_simps [simp] =
-  Standard_zero  Standard_one
-  Standard_add   Standard_diff    Standard_minus
-  Standard_mult  Standard_divide  Standard_inverse
-  Standard_abs   Standard_mod
-
-text \<open>@{term star_of} preserves class operations\<close>
-
-lemma star_of_add: "star_of (x + y) = star_of x + star_of y"
-by transfer (rule refl)
-
-lemma star_of_diff: "star_of (x - y) = star_of x - star_of y"
-by transfer (rule refl)
-
-lemma star_of_minus: "star_of (-x) = - star_of x"
-by transfer (rule refl)
-
-lemma star_of_mult: "star_of (x * y) = star_of x * star_of y"
-by transfer (rule refl)
-
-lemma star_of_divide: "star_of (x / y) = star_of x / star_of y"
-by transfer (rule refl)
-
-lemma star_of_inverse: "star_of (inverse x) = inverse (star_of x)"
-by transfer (rule refl)
-
-lemma star_of_mod: "star_of (x mod y) = star_of x mod star_of y"
-by transfer (rule refl)
-
-lemma star_of_abs: "star_of \<bar>x\<bar> = \<bar>star_of x\<bar>"
-by transfer (rule refl)
-
-text \<open>@{term star_of} preserves numerals\<close>
-
-lemma star_of_zero: "star_of 0 = 0"
-by transfer (rule refl)
-
-lemma star_of_one: "star_of 1 = 1"
-by transfer (rule refl)
-
-text \<open>@{term star_of} preserves orderings\<close>
-
-lemma star_of_less: "(star_of x < star_of y) = (x < y)"
-by transfer (rule refl)
-
-lemma star_of_le: "(star_of x \<le> star_of y) = (x \<le> y)"
-by transfer (rule refl)
-
-lemma star_of_eq: "(star_of x = star_of y) = (x = y)"
-by transfer (rule refl)
-
-text\<open>As above, for 0\<close>
-
-lemmas star_of_0_less = star_of_less [of 0, simplified star_of_zero]
-lemmas star_of_0_le   = star_of_le   [of 0, simplified star_of_zero]
-lemmas star_of_0_eq   = star_of_eq   [of 0, simplified star_of_zero]
-
-lemmas star_of_less_0 = star_of_less [of _ 0, simplified star_of_zero]
-lemmas star_of_le_0   = star_of_le   [of _ 0, simplified star_of_zero]
-lemmas star_of_eq_0   = star_of_eq   [of _ 0, simplified star_of_zero]
-
-text\<open>As above, for 1\<close>
-
-lemmas star_of_1_less = star_of_less [of 1, simplified star_of_one]
-lemmas star_of_1_le   = star_of_le   [of 1, simplified star_of_one]
-lemmas star_of_1_eq   = star_of_eq   [of 1, simplified star_of_one]
-
-lemmas star_of_less_1 = star_of_less [of _ 1, simplified star_of_one]
-lemmas star_of_le_1   = star_of_le   [of _ 1, simplified star_of_one]
-lemmas star_of_eq_1   = star_of_eq   [of _ 1, simplified star_of_one]
-
-lemmas star_of_simps [simp] =
-  star_of_add     star_of_diff    star_of_minus
-  star_of_mult    star_of_divide  star_of_inverse
-  star_of_mod     star_of_abs
-  star_of_zero    star_of_one
-  star_of_less    star_of_le      star_of_eq
-  star_of_0_less  star_of_0_le    star_of_0_eq
-  star_of_less_0  star_of_le_0    star_of_eq_0
-  star_of_1_less  star_of_1_le    star_of_1_eq
-  star_of_less_1  star_of_le_1    star_of_eq_1
-
-subsection \<open>Ordering and lattice classes\<close>
-
-instance star :: (order) order
-apply (intro_classes)
-apply (transfer, rule less_le_not_le)
-apply (transfer, rule order_refl)
-apply (transfer, erule (1) order_trans)
-apply (transfer, erule (1) order_antisym)
-done
-
-instantiation star :: (semilattice_inf) semilattice_inf
-begin
-
-definition
-  star_inf_def [transfer_unfold]: "inf \<equiv> *f2* inf"
-
-instance
-  by (standard; transfer) auto
-
-end
-
-instantiation star :: (semilattice_sup) semilattice_sup
-begin
-
-definition
-  star_sup_def [transfer_unfold]: "sup \<equiv> *f2* sup"
-
-instance
-  by (standard; transfer) auto
-
-end
-
-instance star :: (lattice) lattice ..
-
-instance star :: (distrib_lattice) distrib_lattice
-  by (standard; transfer) (auto simp add: sup_inf_distrib1)
-
-lemma Standard_inf [simp]:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> inf x y \<in> Standard"
-by (simp add: star_inf_def)
-
-lemma Standard_sup [simp]:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> sup x y \<in> Standard"
-by (simp add: star_sup_def)
-
-lemma star_of_inf [simp]: "star_of (inf x y) = inf (star_of x) (star_of y)"
-by transfer (rule refl)
-
-lemma star_of_sup [simp]: "star_of (sup x y) = sup (star_of x) (star_of y)"
-by transfer (rule refl)
-
-instance star :: (linorder) linorder
-by (intro_classes, transfer, rule linorder_linear)
-
-lemma star_max_def [transfer_unfold]: "max = *f2* max"
-apply (rule ext, rule ext)
-apply (unfold max_def, transfer, fold max_def)
-apply (rule refl)
-done
-
-lemma star_min_def [transfer_unfold]: "min = *f2* min"
-apply (rule ext, rule ext)
-apply (unfold min_def, transfer, fold min_def)
-apply (rule refl)
-done
-
-lemma Standard_max [simp]:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> max x y \<in> Standard"
-by (simp add: star_max_def)
-
-lemma Standard_min [simp]:
-  "\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> min x y \<in> Standard"
-by (simp add: star_min_def)
-
-lemma star_of_max [simp]: "star_of (max x y) = max (star_of x) (star_of y)"
-by transfer (rule refl)
-
-lemma star_of_min [simp]: "star_of (min x y) = min (star_of x) (star_of y)"
-by transfer (rule refl)
-
-
-subsection \<open>Ordered group classes\<close>
-
-instance star :: (semigroup_add) semigroup_add
-by (intro_classes, transfer, rule add.assoc)
-
-instance star :: (ab_semigroup_add) ab_semigroup_add
-by (intro_classes, transfer, rule add.commute)
-
-instance star :: (semigroup_mult) semigroup_mult
-by (intro_classes, transfer, rule mult.assoc)
-
-instance star :: (ab_semigroup_mult) ab_semigroup_mult
-by (intro_classes, transfer, rule mult.commute)
-
-instance star :: (comm_monoid_add) comm_monoid_add
-by (intro_classes, transfer, rule comm_monoid_add_class.add_0)
-
-instance star :: (monoid_mult) monoid_mult
-apply (intro_classes)
-apply (transfer, rule mult_1_left)
-apply (transfer, rule mult_1_right)
-done
-
-instance star :: (power) power ..
-
-instance star :: (comm_monoid_mult) comm_monoid_mult
-by (intro_classes, transfer, rule mult_1)
-
-instance star :: (cancel_semigroup_add) cancel_semigroup_add
-apply (intro_classes)
-apply (transfer, erule add_left_imp_eq)
-apply (transfer, erule add_right_imp_eq)
-done
-
-instance star :: (cancel_ab_semigroup_add) cancel_ab_semigroup_add
-by intro_classes (transfer, simp add: diff_diff_eq)+
-
-instance star :: (cancel_comm_monoid_add) cancel_comm_monoid_add ..
-
-instance star :: (ab_group_add) ab_group_add
-apply (intro_classes)
-apply (transfer, rule left_minus)
-apply (transfer, rule diff_conv_add_uminus)
-done
-
-instance star :: (ordered_ab_semigroup_add) ordered_ab_semigroup_add
-by (intro_classes, transfer, rule add_left_mono)
-
-instance star :: (ordered_cancel_ab_semigroup_add) ordered_cancel_ab_semigroup_add ..
-
-instance star :: (ordered_ab_semigroup_add_imp_le) ordered_ab_semigroup_add_imp_le
-by (intro_classes, transfer, rule add_le_imp_le_left)
-
-instance star :: (ordered_comm_monoid_add) ordered_comm_monoid_add ..
-instance star :: (ordered_cancel_comm_monoid_add) ordered_cancel_comm_monoid_add ..
-instance star :: (ordered_ab_group_add) ordered_ab_group_add ..
-
-instance star :: (ordered_ab_group_add_abs) ordered_ab_group_add_abs
-  by intro_classes (transfer,
-    simp add: abs_ge_self abs_leI abs_triangle_ineq)+
-
-instance star :: (linordered_cancel_ab_semigroup_add) linordered_cancel_ab_semigroup_add ..
-
-
-subsection \<open>Ring and field classes\<close>
-
-instance star :: (semiring) semiring
-  by (intro_classes; transfer) (fact distrib_right distrib_left)+
-
-instance star :: (semiring_0) semiring_0
-  by (intro_classes; transfer) simp_all
-
-instance star :: (semiring_0_cancel) semiring_0_cancel ..
-
-instance star :: (comm_semiring) comm_semiring
-  by (intro_classes; transfer) (fact distrib_right)
-
-instance star :: (comm_semiring_0) comm_semiring_0 ..
-instance star :: (comm_semiring_0_cancel) comm_semiring_0_cancel ..
-
-instance star :: (zero_neq_one) zero_neq_one
-  by (intro_classes; transfer) (fact zero_neq_one)
-
-instance star :: (semiring_1) semiring_1 ..
-instance star :: (comm_semiring_1) comm_semiring_1 ..
-
-declare dvd_def [transfer_refold]
-
-instance star :: (comm_semiring_1_cancel) comm_semiring_1_cancel
-  by (intro_classes; transfer) (fact right_diff_distrib')
-
-instance star :: (semiring_no_zero_divisors) semiring_no_zero_divisors
-  by (intro_classes; transfer) (fact no_zero_divisors)
-
-instance star :: (semiring_1_no_zero_divisors) semiring_1_no_zero_divisors ..
-
-instance star :: (semiring_no_zero_divisors_cancel) semiring_no_zero_divisors_cancel
-  by (intro_classes; transfer) simp_all
-
-instance star :: (semiring_1_cancel) semiring_1_cancel ..
-instance star :: (ring) ring ..
-instance star :: (comm_ring) comm_ring ..
-instance star :: (ring_1) ring_1 ..
-instance star :: (comm_ring_1) comm_ring_1 ..
-instance star :: (semidom) semidom ..
-
-instance star :: (semidom_divide) semidom_divide
-  by (intro_classes; transfer) simp_all
-
-instance star :: (semiring_div) semiring_div
-  by (intro_classes; transfer) (simp_all add: mod_div_equality)
-
-instance star :: (ring_no_zero_divisors) ring_no_zero_divisors ..
-instance star :: (ring_1_no_zero_divisors) ring_1_no_zero_divisors ..
-instance star :: (idom) idom ..
-instance star :: (idom_divide) idom_divide ..
-
-instance star :: (division_ring) division_ring
-  by (intro_classes; transfer) (simp_all add: divide_inverse)
-
-instance star :: (field) field
-  by (intro_classes; transfer) (simp_all add: divide_inverse)
-
-instance star :: (ordered_semiring) ordered_semiring
-  by (intro_classes; transfer) (fact mult_left_mono mult_right_mono)+
-
-instance star :: (ordered_cancel_semiring) ordered_cancel_semiring ..
-
-instance star :: (linordered_semiring_strict) linordered_semiring_strict
-  by (intro_classes; transfer) (fact mult_strict_left_mono mult_strict_right_mono)+
-
-instance star :: (ordered_comm_semiring) ordered_comm_semiring
-  by (intro_classes; transfer) (fact mult_left_mono)
-
-instance star :: (ordered_cancel_comm_semiring) ordered_cancel_comm_semiring ..
-
-instance star :: (linordered_comm_semiring_strict) linordered_comm_semiring_strict
-  by (intro_classes; transfer) (fact mult_strict_left_mono)
-
-instance star :: (ordered_ring) ordered_ring ..
-
-instance star :: (ordered_ring_abs) ordered_ring_abs
-  by (intro_classes; transfer) (fact abs_eq_mult)
-
-instance star :: (abs_if) abs_if
-  by (intro_classes; transfer) (fact abs_if)
-
-instance star :: (sgn_if) sgn_if
-  by (intro_classes; transfer) (fact sgn_if)
-
-instance star :: (linordered_ring_strict) linordered_ring_strict ..
-instance star :: (ordered_comm_ring) ordered_comm_ring ..
-
-instance star :: (linordered_semidom) linordered_semidom
-  apply intro_classes
-  apply(transfer, fact zero_less_one)
-  apply(transfer, fact le_add_diff_inverse2)
-  done
-
-instance star :: (linordered_idom) linordered_idom ..
-instance star :: (linordered_field) linordered_field ..
-
-subsection \<open>Power\<close>
-
-lemma star_power_def [transfer_unfold]:
-  "(op ^) \<equiv> \<lambda>x n. ( *f* (\<lambda>x. x ^ n)) x"
-proof (rule eq_reflection, rule ext, rule ext)
-  fix n :: nat
-  show "\<And>x::'a star. x ^ n = ( *f* (\<lambda>x. x ^ n)) x"
-  proof (induct n)
-    case 0
-    have "\<And>x::'a star. ( *f* (\<lambda>x. 1)) x = 1"
-      by transfer simp
-    then show ?case by simp
-  next
-    case (Suc n)
-    have "\<And>x::'a star. x * ( *f* (\<lambda>x::'a. x ^ n)) x = ( *f* (\<lambda>x::'a. x * x ^ n)) x"
-      by transfer simp
-    with Suc show ?case by simp
-  qed
-qed