src/HOL/NSA/HyperNat.thy
changeset 62479 716336f19aa9
parent 62478 a62c86d25024
child 62480 f2e8984adef7
equal deleted inserted replaced
62478:a62c86d25024 62479:716336f19aa9
     1 (*  Title       : HyperNat.thy
       
     2     Author      : Jacques D. Fleuriot
       
     3     Copyright   : 1998  University of Cambridge
       
     4 
       
     5 Converted to Isar and polished by lcp
       
     6 *)
       
     7 
       
     8 section\<open>Hypernatural numbers\<close>
       
     9 
       
    10 theory HyperNat
       
    11 imports StarDef
       
    12 begin
       
    13 
       
    14 type_synonym hypnat = "nat star"
       
    15 
       
    16 abbreviation
       
    17   hypnat_of_nat :: "nat => nat star" where
       
    18   "hypnat_of_nat == star_of"
       
    19 
       
    20 definition
       
    21   hSuc :: "hypnat => hypnat" where
       
    22   hSuc_def [transfer_unfold]: "hSuc = *f* Suc"
       
    23 
       
    24 subsection\<open>Properties Transferred from Naturals\<close>
       
    25 
       
    26 lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"
       
    27 by transfer (rule Suc_not_Zero)
       
    28 
       
    29 lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"
       
    30 by transfer (rule Zero_not_Suc)
       
    31 
       
    32 lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)"
       
    33 by transfer (rule nat.inject)
       
    34 
       
    35 lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"
       
    36 by transfer (rule zero_less_Suc)
       
    37 
       
    38 lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)"
       
    39 by transfer (rule diff_self_eq_0)
       
    40 
       
    41 lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0"
       
    42 by transfer (rule diff_0_eq_0)
       
    43 
       
    44 lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)"
       
    45 by transfer (rule add_is_0)
       
    46 
       
    47 lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)"
       
    48 by transfer (rule diff_diff_left)
       
    49 
       
    50 lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j"
       
    51 by transfer (rule diff_commute)
       
    52 
       
    53 lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m"
       
    54 by transfer (rule diff_add_inverse)
       
    55 
       
    56 lemma hypnat_diff_add_inverse2 [simp]:  "!!m n. ((m::hypnat) + n) - n = m"
       
    57 by transfer (rule diff_add_inverse2)
       
    58 
       
    59 lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n"
       
    60 by transfer (rule diff_cancel)
       
    61 
       
    62 lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n"
       
    63 by transfer (rule diff_cancel2)
       
    64 
       
    65 lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)"
       
    66 by transfer (rule diff_add_0)
       
    67 
       
    68 lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)"
       
    69 by transfer (rule diff_mult_distrib)
       
    70 
       
    71 lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)"
       
    72 by transfer (rule diff_mult_distrib2)
       
    73 
       
    74 lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)"
       
    75 by transfer (rule le_0_eq)
       
    76 
       
    77 lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)"
       
    78 by transfer (rule mult_is_0)
       
    79 
       
    80 lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)"
       
    81 by transfer (rule diff_is_0_eq)
       
    82 
       
    83 lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)"
       
    84 by transfer (rule not_less0)
       
    85 
       
    86 lemma hypnat_less_one [iff]:
       
    87       "!!n. (n < (1::hypnat)) = (n=0)"
       
    88 by transfer (rule less_one)
       
    89 
       
    90 lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)"
       
    91 by transfer (rule add_diff_inverse)
       
    92 
       
    93 lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)"
       
    94 by transfer (rule le_add_diff_inverse)
       
    95 
       
    96 lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)"
       
    97 by transfer (rule le_add_diff_inverse2)
       
    98 
       
    99 declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]
       
   100 
       
   101 lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n"
       
   102 by transfer (rule le0)
       
   103 
       
   104 lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n"
       
   105 by transfer (rule le_add1)
       
   106 
       
   107 lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x"
       
   108 by transfer (rule le_add2)
       
   109 
       
   110 lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)"
       
   111   by (fact less_add_one)
       
   112 
       
   113 lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))"
       
   114 by transfer (rule neq0_conv)
       
   115 
       
   116 lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)"
       
   117 by (auto simp add: linorder_not_less [symmetric])
       
   118 
       
   119 lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))"
       
   120   by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)
       
   121 
       
   122 lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))"
       
   123 by (simp add: linorder_not_le [symmetric] add.commute [of x])
       
   124 
       
   125 lemma hypnat_diff_split:
       
   126     "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))"
       
   127     \<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close>
       
   128 proof (cases "a<b" rule: case_split)
       
   129   case True
       
   130     thus ?thesis
       
   131       by (auto simp add: hypnat_add_self_not_less order_less_imp_le
       
   132                          hypnat_diff_is_0_eq [THEN iffD2])
       
   133 next
       
   134   case False
       
   135     thus ?thesis
       
   136       by (auto simp add: linorder_not_less dest: order_le_less_trans)
       
   137 qed
       
   138 
       
   139 subsection\<open>Properties of the set of embedded natural numbers\<close>
       
   140 
       
   141 lemma of_nat_eq_star_of [simp]: "of_nat = star_of"
       
   142 proof
       
   143   fix n :: nat
       
   144   show "of_nat n = star_of n" by transfer simp
       
   145 qed
       
   146 
       
   147 lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"
       
   148 by (auto simp add: Nats_def Standard_def)
       
   149 
       
   150 lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"
       
   151 by (simp add: Nats_eq_Standard)
       
   152 
       
   153 lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)"
       
   154 by transfer simp
       
   155 
       
   156 lemma hypnat_of_nat_Suc [simp]:
       
   157      "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)"
       
   158 by transfer simp
       
   159 
       
   160 lemma of_nat_eq_add [rule_format]:
       
   161      "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat"
       
   162 apply (induct n)
       
   163 apply (auto simp add: add.assoc)
       
   164 apply (case_tac x)
       
   165 apply (auto simp add: add.commute [of 1])
       
   166 done
       
   167 
       
   168 lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats"
       
   169 by (simp add: Nats_eq_Standard)
       
   170 
       
   171 
       
   172 subsection\<open>Infinite Hypernatural Numbers -- @{term HNatInfinite}\<close>
       
   173 
       
   174 definition
       
   175   (* the set of infinite hypernatural numbers *)
       
   176   HNatInfinite :: "hypnat set" where
       
   177   "HNatInfinite = {n. n \<notin> Nats}"
       
   178 
       
   179 lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)"
       
   180 by (simp add: HNatInfinite_def)
       
   181 
       
   182 lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)"
       
   183 by (simp add: HNatInfinite_def)
       
   184 
       
   185 lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"
       
   186 by (auto simp add: HNatInfinite_def Nats_eq_Standard)
       
   187 
       
   188 lemma star_of_Suc_lessI:
       
   189   "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N"
       
   190 by transfer (rule Suc_lessI)
       
   191 
       
   192 lemma star_of_less_HNatInfinite:
       
   193   assumes N: "N \<in> HNatInfinite"
       
   194   shows "star_of n < N"
       
   195 proof (induct n)
       
   196   case 0
       
   197   from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite)
       
   198   thus "star_of 0 < N" by simp
       
   199 next
       
   200   case (Suc n)
       
   201   from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite)
       
   202   with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI)
       
   203 qed
       
   204 
       
   205 lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"
       
   206 by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])
       
   207 
       
   208 subsubsection \<open>Closure Rules\<close>
       
   209 
       
   210 lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y"
       
   211 by (auto simp add: Nats_def star_of_less_HNatInfinite)
       
   212 
       
   213 lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y"
       
   214 by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])
       
   215 
       
   216 lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"
       
   217 by (simp add: Nats_less_HNatInfinite)
       
   218 
       
   219 lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"
       
   220 by (simp add: Nats_less_HNatInfinite)
       
   221 
       
   222 lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"
       
   223 by (simp add: Nats_le_HNatInfinite)
       
   224 
       
   225 lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"
       
   226 by (simp add: HNatInfinite_def)
       
   227 
       
   228 lemma Nats_downward_closed:
       
   229   "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats"
       
   230 apply (simp only: linorder_not_less [symmetric])
       
   231 apply (erule contrapos_np)
       
   232 apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])
       
   233 apply (erule (1) Nats_less_HNatInfinite)
       
   234 done
       
   235 
       
   236 lemma HNatInfinite_upward_closed:
       
   237   "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite"
       
   238 apply (simp only: HNatInfinite_not_Nats_iff)
       
   239 apply (erule contrapos_nn)
       
   240 apply (erule (1) Nats_downward_closed)
       
   241 done
       
   242 
       
   243 lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"
       
   244 apply (erule HNatInfinite_upward_closed)
       
   245 apply (rule hypnat_le_add1)
       
   246 done
       
   247 
       
   248 lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"
       
   249 by (rule HNatInfinite_add)
       
   250 
       
   251 lemma HNatInfinite_diff:
       
   252   "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite"
       
   253 apply (frule (1) Nats_le_HNatInfinite)
       
   254 apply (simp only: HNatInfinite_not_Nats_iff)
       
   255 apply (erule contrapos_nn)
       
   256 apply (drule (1) Nats_add, simp)
       
   257 done
       
   258 
       
   259 lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)"
       
   260 apply (rule_tac x = "x - (1::hypnat) " in exI)
       
   261 apply (simp add: Nats_le_HNatInfinite)
       
   262 done
       
   263 
       
   264 
       
   265 subsection\<open>Existence of an infinite hypernatural number\<close>
       
   266 
       
   267 definition
       
   268   (* \<omega> is in fact an infinite hypernatural number = [<1,2,3,...>] *)
       
   269   whn :: hypnat where
       
   270   hypnat_omega_def: "whn = star_n (%n::nat. n)"
       
   271 
       
   272 lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"
       
   273 by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)
       
   274 
       
   275 lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"
       
   276 by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)
       
   277 
       
   278 lemma whn_not_Nats [simp]: "whn \<notin> Nats"
       
   279 by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)
       
   280 
       
   281 lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"
       
   282 by (simp add: HNatInfinite_def)
       
   283 
       
   284 lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>"
       
   285   by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])
       
   286      (auto simp add: cofinite_eq_sequentially eventually_at_top_dense)
       
   287 
       
   288 lemma hypnat_of_nat_eq:
       
   289      "hypnat_of_nat m  = star_n (%n::nat. m)"
       
   290 by (simp add: star_of_def)
       
   291 
       
   292 lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
       
   293 by (simp add: Nats_def image_def)
       
   294 
       
   295 lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"
       
   296 by (simp add: Nats_less_HNatInfinite)
       
   297 
       
   298 lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"
       
   299 by (simp add: Nats_le_HNatInfinite)
       
   300 
       
   301 lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"
       
   302 by (simp add: Nats_less_whn)
       
   303 
       
   304 lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"
       
   305 by (simp add: Nats_le_whn)
       
   306 
       
   307 lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"
       
   308 by (simp add: Nats_less_whn)
       
   309 
       
   310 lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"
       
   311 by (simp add: Nats_less_whn)
       
   312 
       
   313 
       
   314 subsubsection\<open>Alternative characterization of the set of infinite hypernaturals\<close>
       
   315 
       
   316 text\<open>@{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}\<close>
       
   317 
       
   318 (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)
       
   319 lemma HNatInfinite_FreeUltrafilterNat_lemma:
       
   320   assumes "\<forall>N::nat. eventually (\<lambda>n. f n \<noteq> N) \<U>"
       
   321   shows "eventually (\<lambda>n. N < f n) \<U>"
       
   322 apply (induct N)
       
   323 using assms
       
   324 apply (drule_tac x = 0 in spec, simp)
       
   325 using assms
       
   326 apply (drule_tac x = "Suc N" in spec)
       
   327 apply (auto elim: eventually_elim2)
       
   328 done
       
   329 
       
   330 lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
       
   331 apply (safe intro!: Nats_less_HNatInfinite)
       
   332 apply (auto simp add: HNatInfinite_def)
       
   333 done
       
   334 
       
   335 
       
   336 subsubsection\<open>Alternative Characterization of @{term HNatInfinite} using
       
   337 Free Ultrafilter\<close>
       
   338 
       
   339 lemma HNatInfinite_FreeUltrafilterNat:
       
   340      "star_n X \<in> HNatInfinite ==> \<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat"
       
   341 apply (auto simp add: HNatInfinite_iff SHNat_eq)
       
   342 apply (drule_tac x="star_of u" in spec, simp)
       
   343 apply (simp add: star_of_def star_less_def starP2_star_n)
       
   344 done
       
   345 
       
   346 lemma FreeUltrafilterNat_HNatInfinite:
       
   347      "\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
       
   348 by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)
       
   349 
       
   350 lemma HNatInfinite_FreeUltrafilterNat_iff:
       
   351      "(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) FreeUltrafilterNat)"
       
   352 by (rule iffI [OF HNatInfinite_FreeUltrafilterNat
       
   353                  FreeUltrafilterNat_HNatInfinite])
       
   354 
       
   355 subsection \<open>Embedding of the Hypernaturals into other types\<close>
       
   356 
       
   357 definition
       
   358   of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where
       
   359   of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"
       
   360 
       
   361 lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"
       
   362 by transfer (rule of_nat_0)
       
   363 
       
   364 lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"
       
   365 by transfer (rule of_nat_1)
       
   366 
       
   367 lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"
       
   368 by transfer (rule of_nat_Suc)
       
   369 
       
   370 lemma of_hypnat_add [simp]:
       
   371   "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"
       
   372 by transfer (rule of_nat_add)
       
   373 
       
   374 lemma of_hypnat_mult [simp]:
       
   375   "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"
       
   376 by transfer (rule of_nat_mult)
       
   377 
       
   378 lemma of_hypnat_less_iff [simp]:
       
   379   "\<And>m n. (of_hypnat m < (of_hypnat n::'a::linordered_semidom star)) = (m < n)"
       
   380 by transfer (rule of_nat_less_iff)
       
   381 
       
   382 lemma of_hypnat_0_less_iff [simp]:
       
   383   "\<And>n. (0 < (of_hypnat n::'a::linordered_semidom star)) = (0 < n)"
       
   384 by transfer (rule of_nat_0_less_iff)
       
   385 
       
   386 lemma of_hypnat_less_0_iff [simp]:
       
   387   "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"
       
   388 by transfer (rule of_nat_less_0_iff)
       
   389 
       
   390 lemma of_hypnat_le_iff [simp]:
       
   391   "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star)) = (m \<le> n)"
       
   392 by transfer (rule of_nat_le_iff)
       
   393 
       
   394 lemma of_hypnat_0_le_iff [simp]:
       
   395   "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"
       
   396 by transfer (rule of_nat_0_le_iff)
       
   397 
       
   398 lemma of_hypnat_le_0_iff [simp]:
       
   399   "\<And>m. ((of_hypnat m::'a::linordered_semidom star) \<le> 0) = (m = 0)"
       
   400 by transfer (rule of_nat_le_0_iff)
       
   401 
       
   402 lemma of_hypnat_eq_iff [simp]:
       
   403   "\<And>m n. (of_hypnat m = (of_hypnat n::'a::linordered_semidom star)) = (m = n)"
       
   404 by transfer (rule of_nat_eq_iff)
       
   405 
       
   406 lemma of_hypnat_eq_0_iff [simp]:
       
   407   "\<And>m. ((of_hypnat m::'a::linordered_semidom star) = 0) = (m = 0)"
       
   408 by transfer (rule of_nat_eq_0_iff)
       
   409 
       
   410 lemma HNatInfinite_of_hypnat_gt_zero:
       
   411   "N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"
       
   412 by (rule ccontr, simp add: linorder_not_less)
       
   413 
       
   414 end