src/HOL/NSA/HyperDef.thy
changeset 62479 716336f19aa9
parent 62478 a62c86d25024
child 62480 f2e8984adef7
equal deleted inserted replaced
62478:a62c86d25024 62479:716336f19aa9
     1 (*  Title       : HOL/NSA/HyperDef.thy
       
     2     Author      : Jacques D. Fleuriot
       
     3     Copyright   : 1998  University of Cambridge
       
     4     Conversion to Isar and new proofs by Lawrence C Paulson, 2004
       
     5 *)
       
     6 
       
     7 section\<open>Construction of Hyperreals Using Ultrafilters\<close>
       
     8 
       
     9 theory HyperDef
       
    10 imports Complex_Main HyperNat
       
    11 begin
       
    12 
       
    13 type_synonym hypreal = "real star"
       
    14 
       
    15 abbreviation
       
    16   hypreal_of_real :: "real => real star" where
       
    17   "hypreal_of_real == star_of"
       
    18 
       
    19 abbreviation
       
    20   hypreal_of_hypnat :: "hypnat \<Rightarrow> hypreal" where
       
    21   "hypreal_of_hypnat \<equiv> of_hypnat"
       
    22 
       
    23 definition
       
    24   omega :: hypreal  ("\<omega>") where
       
    25    \<comment> \<open>an infinite number \<open>= [<1,2,3,...>]\<close>\<close>
       
    26   "\<omega> = star_n (\<lambda>n. real (Suc n))"
       
    27 
       
    28 definition
       
    29   epsilon :: hypreal  ("\<epsilon>") where
       
    30    \<comment> \<open>an infinitesimal number \<open>= [<1,1/2,1/3,...>]\<close>\<close>
       
    31   "\<epsilon> = star_n (\<lambda>n. inverse (real (Suc n)))"
       
    32 
       
    33 
       
    34 subsection \<open>Real vector class instances\<close>
       
    35 
       
    36 instantiation star :: (scaleR) scaleR
       
    37 begin
       
    38 
       
    39 definition
       
    40   star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)"
       
    41 
       
    42 instance ..
       
    43 
       
    44 end
       
    45 
       
    46 lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard"
       
    47 by (simp add: star_scaleR_def)
       
    48 
       
    49 lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)"
       
    50 by transfer (rule refl)
       
    51 
       
    52 instance star :: (real_vector) real_vector
       
    53 proof
       
    54   fix a b :: real
       
    55   show "\<And>x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y"
       
    56     by transfer (rule scaleR_right_distrib)
       
    57   show "\<And>x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x"
       
    58     by transfer (rule scaleR_left_distrib)
       
    59   show "\<And>x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x"
       
    60     by transfer (rule scaleR_scaleR)
       
    61   show "\<And>x::'a star. scaleR 1 x = x"
       
    62     by transfer (rule scaleR_one)
       
    63 qed
       
    64 
       
    65 instance star :: (real_algebra) real_algebra
       
    66 proof
       
    67   fix a :: real
       
    68   show "\<And>x y::'a star. scaleR a x * y = scaleR a (x * y)"
       
    69     by transfer (rule mult_scaleR_left)
       
    70   show "\<And>x y::'a star. x * scaleR a y = scaleR a (x * y)"
       
    71     by transfer (rule mult_scaleR_right)
       
    72 qed
       
    73 
       
    74 instance star :: (real_algebra_1) real_algebra_1 ..
       
    75 
       
    76 instance star :: (real_div_algebra) real_div_algebra ..
       
    77 
       
    78 instance star :: (field_char_0) field_char_0 ..
       
    79 
       
    80 instance star :: (real_field) real_field ..
       
    81 
       
    82 lemma star_of_real_def [transfer_unfold]: "of_real r = star_of (of_real r)"
       
    83 by (unfold of_real_def, transfer, rule refl)
       
    84 
       
    85 lemma Standard_of_real [simp]: "of_real r \<in> Standard"
       
    86 by (simp add: star_of_real_def)
       
    87 
       
    88 lemma star_of_of_real [simp]: "star_of (of_real r) = of_real r"
       
    89 by transfer (rule refl)
       
    90 
       
    91 lemma of_real_eq_star_of [simp]: "of_real = star_of"
       
    92 proof
       
    93   fix r :: real
       
    94   show "of_real r = star_of r"
       
    95     by transfer simp
       
    96 qed
       
    97 
       
    98 lemma Reals_eq_Standard: "(\<real> :: hypreal set) = Standard"
       
    99 by (simp add: Reals_def Standard_def)
       
   100 
       
   101 
       
   102 subsection \<open>Injection from @{typ hypreal}\<close>
       
   103 
       
   104 definition
       
   105   of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" where
       
   106   [transfer_unfold]: "of_hypreal = *f* of_real"
       
   107 
       
   108 lemma Standard_of_hypreal [simp]:
       
   109   "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard"
       
   110 by (simp add: of_hypreal_def)
       
   111 
       
   112 lemma of_hypreal_0 [simp]: "of_hypreal 0 = 0"
       
   113 by transfer (rule of_real_0)
       
   114 
       
   115 lemma of_hypreal_1 [simp]: "of_hypreal 1 = 1"
       
   116 by transfer (rule of_real_1)
       
   117 
       
   118 lemma of_hypreal_add [simp]:
       
   119   "\<And>x y. of_hypreal (x + y) = of_hypreal x + of_hypreal y"
       
   120 by transfer (rule of_real_add)
       
   121 
       
   122 lemma of_hypreal_minus [simp]: "\<And>x. of_hypreal (- x) = - of_hypreal x"
       
   123 by transfer (rule of_real_minus)
       
   124 
       
   125 lemma of_hypreal_diff [simp]:
       
   126   "\<And>x y. of_hypreal (x - y) = of_hypreal x - of_hypreal y"
       
   127 by transfer (rule of_real_diff)
       
   128 
       
   129 lemma of_hypreal_mult [simp]:
       
   130   "\<And>x y. of_hypreal (x * y) = of_hypreal x * of_hypreal y"
       
   131 by transfer (rule of_real_mult)
       
   132 
       
   133 lemma of_hypreal_inverse [simp]:
       
   134   "\<And>x. of_hypreal (inverse x) =
       
   135    inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring} star)"
       
   136 by transfer (rule of_real_inverse)
       
   137 
       
   138 lemma of_hypreal_divide [simp]:
       
   139   "\<And>x y. of_hypreal (x / y) =
       
   140    (of_hypreal x / of_hypreal y :: 'a::{real_field, field} star)"
       
   141 by transfer (rule of_real_divide)
       
   142 
       
   143 lemma of_hypreal_eq_iff [simp]:
       
   144   "\<And>x y. (of_hypreal x = of_hypreal y) = (x = y)"
       
   145 by transfer (rule of_real_eq_iff)
       
   146 
       
   147 lemma of_hypreal_eq_0_iff [simp]:
       
   148   "\<And>x. (of_hypreal x = 0) = (x = 0)"
       
   149 by transfer (rule of_real_eq_0_iff)
       
   150 
       
   151 
       
   152 subsection\<open>Properties of @{term starrel}\<close>
       
   153 
       
   154 lemma lemma_starrel_refl [simp]: "x \<in> starrel `` {x}"
       
   155 by (simp add: starrel_def)
       
   156 
       
   157 lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
       
   158 by (simp add: star_def starrel_def quotient_def, blast)
       
   159 
       
   160 declare Abs_star_inject [simp] Abs_star_inverse [simp]
       
   161 declare equiv_starrel [THEN eq_equiv_class_iff, simp]
       
   162 
       
   163 subsection\<open>@{term hypreal_of_real}:
       
   164             the Injection from @{typ real} to @{typ hypreal}\<close>
       
   165 
       
   166 lemma inj_star_of: "inj star_of"
       
   167 by (rule inj_onI, simp)
       
   168 
       
   169 lemma mem_Rep_star_iff: "(X \<in> Rep_star x) = (x = star_n X)"
       
   170 by (cases x, simp add: star_n_def)
       
   171 
       
   172 lemma Rep_star_star_n_iff [simp]:
       
   173   "(X \<in> Rep_star (star_n Y)) = (eventually (\<lambda>n. Y n = X n) \<U>)"
       
   174 by (simp add: star_n_def)
       
   175 
       
   176 lemma Rep_star_star_n: "X \<in> Rep_star (star_n X)"
       
   177 by simp
       
   178 
       
   179 subsection\<open>Properties of @{term star_n}\<close>
       
   180 
       
   181 lemma star_n_add:
       
   182   "star_n X + star_n Y = star_n (%n. X n + Y n)"
       
   183 by (simp only: star_add_def starfun2_star_n)
       
   184 
       
   185 lemma star_n_minus:
       
   186    "- star_n X = star_n (%n. -(X n))"
       
   187 by (simp only: star_minus_def starfun_star_n)
       
   188 
       
   189 lemma star_n_diff:
       
   190      "star_n X - star_n Y = star_n (%n. X n - Y n)"
       
   191 by (simp only: star_diff_def starfun2_star_n)
       
   192 
       
   193 lemma star_n_mult:
       
   194   "star_n X * star_n Y = star_n (%n. X n * Y n)"
       
   195 by (simp only: star_mult_def starfun2_star_n)
       
   196 
       
   197 lemma star_n_inverse:
       
   198       "inverse (star_n X) = star_n (%n. inverse(X n))"
       
   199 by (simp only: star_inverse_def starfun_star_n)
       
   200 
       
   201 lemma star_n_le:
       
   202       "star_n X \<le> star_n Y = (eventually (\<lambda>n. X n \<le> Y n) FreeUltrafilterNat)"
       
   203 by (simp only: star_le_def starP2_star_n)
       
   204 
       
   205 lemma star_n_less:
       
   206       "star_n X < star_n Y = (eventually (\<lambda>n. X n < Y n) FreeUltrafilterNat)"
       
   207 by (simp only: star_less_def starP2_star_n)
       
   208 
       
   209 lemma star_n_zero_num: "0 = star_n (%n. 0)"
       
   210 by (simp only: star_zero_def star_of_def)
       
   211 
       
   212 lemma star_n_one_num: "1 = star_n (%n. 1)"
       
   213 by (simp only: star_one_def star_of_def)
       
   214 
       
   215 lemma star_n_abs: "\<bar>star_n X\<bar> = star_n (%n. \<bar>X n\<bar>)"
       
   216 by (simp only: star_abs_def starfun_star_n)
       
   217 
       
   218 lemma hypreal_omega_gt_zero [simp]: "0 < \<omega>"
       
   219 by (simp add: omega_def star_n_zero_num star_n_less)
       
   220 
       
   221 subsection\<open>Existence of Infinite Hyperreal Number\<close>
       
   222 
       
   223 text\<open>Existence of infinite number not corresponding to any real number.
       
   224 Use assumption that member @{term FreeUltrafilterNat} is not finite.\<close>
       
   225 
       
   226 
       
   227 text\<open>A few lemmas first\<close>
       
   228 
       
   229 lemma lemma_omega_empty_singleton_disj:
       
   230   "{n::nat. x = real n} = {} \<or> (\<exists>y. {n::nat. x = real n} = {y})"
       
   231 by force
       
   232 
       
   233 lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
       
   234   using lemma_omega_empty_singleton_disj [of x] by auto
       
   235 
       
   236 lemma not_ex_hypreal_of_real_eq_omega:
       
   237       "~ (\<exists>x. hypreal_of_real x = \<omega>)"
       
   238 apply (simp add: omega_def star_of_def star_n_eq_iff)
       
   239 apply clarify
       
   240 apply (rule_tac x2="x-1" in lemma_finite_omega_set [THEN FreeUltrafilterNat.finite, THEN notE])
       
   241 apply (erule eventually_mono)
       
   242 apply auto
       
   243 done
       
   244 
       
   245 lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> \<omega>"
       
   246 by (insert not_ex_hypreal_of_real_eq_omega, auto)
       
   247 
       
   248 text\<open>Existence of infinitesimal number also not corresponding to any
       
   249  real number\<close>
       
   250 
       
   251 lemma lemma_epsilon_empty_singleton_disj:
       
   252      "{n::nat. x = inverse(real(Suc n))} = {} |
       
   253       (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
       
   254 by auto
       
   255 
       
   256 lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
       
   257 by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)
       
   258 
       
   259 lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = \<epsilon>)"
       
   260 by (auto simp add: epsilon_def star_of_def star_n_eq_iff
       
   261                    lemma_finite_epsilon_set [THEN FreeUltrafilterNat.finite] simp del: of_nat_Suc)
       
   262 
       
   263 lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> \<epsilon>"
       
   264 by (insert not_ex_hypreal_of_real_eq_epsilon, auto)
       
   265 
       
   266 lemma hypreal_epsilon_not_zero: "\<epsilon> \<noteq> 0"
       
   267 by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff FreeUltrafilterNat.proper
       
   268          del: star_of_zero)
       
   269 
       
   270 lemma hypreal_epsilon_inverse_omega: "\<epsilon> = inverse \<omega>"
       
   271 by (simp add: epsilon_def omega_def star_n_inverse)
       
   272 
       
   273 lemma hypreal_epsilon_gt_zero: "0 < \<epsilon>"
       
   274 by (simp add: hypreal_epsilon_inverse_omega)
       
   275 
       
   276 subsection\<open>Absolute Value Function for the Hyperreals\<close>
       
   277 
       
   278 lemma hrabs_add_less: "[| \<bar>x\<bar> < r; \<bar>y\<bar> < s |] ==> \<bar>x + y\<bar> < r + (s::hypreal)"
       
   279 by (simp add: abs_if split: if_split_asm)
       
   280 
       
   281 lemma hrabs_less_gt_zero: "\<bar>x\<bar> < r ==> (0::hypreal) < r"
       
   282 by (blast intro!: order_le_less_trans abs_ge_zero)
       
   283 
       
   284 lemma hrabs_disj: "\<bar>x\<bar> = (x::'a::abs_if) \<or> \<bar>x\<bar> = -x"
       
   285 by (simp add: abs_if)
       
   286 
       
   287 lemma hrabs_add_lemma_disj: "(y::hypreal) + - x + (y + - z) = \<bar>x + - z\<bar> ==> y = z | x = y"
       
   288 by (simp add: abs_if split add: if_split_asm)
       
   289 
       
   290 
       
   291 subsection\<open>Embedding the Naturals into the Hyperreals\<close>
       
   292 
       
   293 abbreviation
       
   294   hypreal_of_nat :: "nat => hypreal" where
       
   295   "hypreal_of_nat == of_nat"
       
   296 
       
   297 lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}"
       
   298 by (simp add: Nats_def image_def)
       
   299 
       
   300 (*------------------------------------------------------------*)
       
   301 (* naturals embedded in hyperreals                            *)
       
   302 (* is a hyperreal c.f. NS extension                           *)
       
   303 (*------------------------------------------------------------*)
       
   304 
       
   305 lemma hypreal_of_nat: "hypreal_of_nat m = star_n (%n. real m)"
       
   306 by (simp add: star_of_def [symmetric])
       
   307 
       
   308 declaration \<open>
       
   309   K (Lin_Arith.add_inj_thms [@{thm star_of_le} RS iffD2,
       
   310     @{thm star_of_less} RS iffD2, @{thm star_of_eq} RS iffD2]
       
   311   #> Lin_Arith.add_simps [@{thm star_of_zero}, @{thm star_of_one},
       
   312       @{thm star_of_numeral}, @{thm star_of_add},
       
   313       @{thm star_of_minus}, @{thm star_of_diff}, @{thm star_of_mult}]
       
   314   #> Lin_Arith.add_inj_const (@{const_name "StarDef.star_of"}, @{typ "real \<Rightarrow> hypreal"}))
       
   315 \<close>
       
   316 
       
   317 simproc_setup fast_arith_hypreal ("(m::hypreal) < n" | "(m::hypreal) <= n" | "(m::hypreal) = n") =
       
   318   \<open>K Lin_Arith.simproc\<close>
       
   319 
       
   320 
       
   321 subsection \<open>Exponentials on the Hyperreals\<close>
       
   322 
       
   323 lemma hpowr_0 [simp]:   "r ^ 0       = (1::hypreal)"
       
   324 by (rule power_0)
       
   325 
       
   326 lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)"
       
   327 by (rule power_Suc)
       
   328 
       
   329 lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r"
       
   330 by simp
       
   331 
       
   332 lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)"
       
   333 by (auto simp add: zero_le_mult_iff)
       
   334 
       
   335 lemma hrealpow_two_le_add_order [simp]:
       
   336      "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)"
       
   337 by (simp only: hrealpow_two_le add_nonneg_nonneg)
       
   338 
       
   339 lemma hrealpow_two_le_add_order2 [simp]:
       
   340      "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)"
       
   341 by (simp only: hrealpow_two_le add_nonneg_nonneg)
       
   342 
       
   343 lemma hypreal_add_nonneg_eq_0_iff:
       
   344      "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))"
       
   345 by arith
       
   346 
       
   347 
       
   348 text\<open>FIXME: DELETE THESE\<close>
       
   349 lemma hypreal_three_squares_add_zero_iff:
       
   350      "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"
       
   351 apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto)
       
   352 done
       
   353 
       
   354 lemma hrealpow_three_squares_add_zero_iff [simp]:
       
   355      "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) =
       
   356       (x = 0 & y = 0 & z = 0)"
       
   357 by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two)
       
   358 
       
   359 (*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract
       
   360   result proved in Rings or Fields*)
       
   361 lemma hrabs_hrealpow_two [simp]: "\<bar>x ^ Suc (Suc 0)\<bar> = (x::hypreal) ^ Suc (Suc 0)"
       
   362 by (simp add: abs_mult)
       
   363 
       
   364 lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
       
   365 by (insert power_increasing [of 0 n "2::hypreal"], simp)
       
   366 
       
   367 lemma hrealpow:
       
   368     "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
       
   369 apply (induct_tac "m")
       
   370 apply (auto simp add: star_n_one_num star_n_mult power_0)
       
   371 done
       
   372 
       
   373 lemma hrealpow_sum_square_expand:
       
   374      "(x + (y::hypreal)) ^ Suc (Suc 0) =
       
   375       x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
       
   376 by (simp add: distrib_left distrib_right)
       
   377 
       
   378 lemma power_hypreal_of_real_numeral:
       
   379      "(numeral v :: hypreal) ^ n = hypreal_of_real ((numeral v) ^ n)"
       
   380 by simp
       
   381 declare power_hypreal_of_real_numeral [of _ "numeral w", simp] for w
       
   382 
       
   383 lemma power_hypreal_of_real_neg_numeral:
       
   384      "(- numeral v :: hypreal) ^ n = hypreal_of_real ((- numeral v) ^ n)"
       
   385 by simp
       
   386 declare power_hypreal_of_real_neg_numeral [of _ "numeral w", simp] for w
       
   387 (*
       
   388 lemma hrealpow_HFinite:
       
   389   fixes x :: "'a::{real_normed_algebra,power} star"
       
   390   shows "x \<in> HFinite ==> x ^ n \<in> HFinite"
       
   391 apply (induct_tac "n")
       
   392 apply (auto simp add: power_Suc intro: HFinite_mult)
       
   393 done
       
   394 *)
       
   395 
       
   396 subsection\<open>Powers with Hypernatural Exponents\<close>
       
   397 
       
   398 definition pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where
       
   399   hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N"
       
   400   (* hypernatural powers of hyperreals *)
       
   401 
       
   402 lemma Standard_hyperpow [simp]:
       
   403   "\<lbrakk>r \<in> Standard; n \<in> Standard\<rbrakk> \<Longrightarrow> r pow n \<in> Standard"
       
   404 unfolding hyperpow_def by simp
       
   405 
       
   406 lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)"
       
   407 by (simp add: hyperpow_def starfun2_star_n)
       
   408 
       
   409 lemma hyperpow_zero [simp]:
       
   410   "\<And>n. (0::'a::{power,semiring_0} star) pow (n + (1::hypnat)) = 0"
       
   411 by transfer simp
       
   412 
       
   413 lemma hyperpow_not_zero:
       
   414   "\<And>r n. r \<noteq> (0::'a::{field} star) ==> r pow n \<noteq> 0"
       
   415 by transfer (rule power_not_zero)
       
   416 
       
   417 lemma hyperpow_inverse:
       
   418   "\<And>r n. r \<noteq> (0::'a::field star)
       
   419    \<Longrightarrow> inverse (r pow n) = (inverse r) pow n"
       
   420 by transfer (rule power_inverse [symmetric])
       
   421 
       
   422 lemma hyperpow_hrabs:
       
   423   "\<And>r n. \<bar>r::'a::{linordered_idom} star\<bar> pow n = \<bar>r pow n\<bar>"
       
   424 by transfer (rule power_abs [symmetric])
       
   425 
       
   426 lemma hyperpow_add:
       
   427   "\<And>r n m. (r::'a::monoid_mult star) pow (n + m) = (r pow n) * (r pow m)"
       
   428 by transfer (rule power_add)
       
   429 
       
   430 lemma hyperpow_one [simp]:
       
   431   "\<And>r. (r::'a::monoid_mult star) pow (1::hypnat) = r"
       
   432 by transfer (rule power_one_right)
       
   433 
       
   434 lemma hyperpow_two:
       
   435   "\<And>r. (r::'a::monoid_mult star) pow (2::hypnat) = r * r"
       
   436 by transfer (rule power2_eq_square)
       
   437 
       
   438 lemma hyperpow_gt_zero:
       
   439   "\<And>r n. (0::'a::{linordered_semidom} star) < r \<Longrightarrow> 0 < r pow n"
       
   440 by transfer (rule zero_less_power)
       
   441 
       
   442 lemma hyperpow_ge_zero:
       
   443   "\<And>r n. (0::'a::{linordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n"
       
   444 by transfer (rule zero_le_power)
       
   445 
       
   446 lemma hyperpow_le:
       
   447   "\<And>x y n. \<lbrakk>(0::'a::{linordered_semidom} star) < x; x \<le> y\<rbrakk>
       
   448    \<Longrightarrow> x pow n \<le> y pow n"
       
   449 by transfer (rule power_mono [OF _ order_less_imp_le])
       
   450 
       
   451 lemma hyperpow_eq_one [simp]:
       
   452   "\<And>n. 1 pow n = (1::'a::monoid_mult star)"
       
   453 by transfer (rule power_one)
       
   454 
       
   455 lemma hrabs_hyperpow_minus [simp]:
       
   456   "\<And>(a::'a::{linordered_idom} star) n. \<bar>(-a) pow n\<bar> = \<bar>a pow n\<bar>"
       
   457 by transfer (rule abs_power_minus)
       
   458 
       
   459 lemma hyperpow_mult:
       
   460   "\<And>r s n. (r * s::'a::{comm_monoid_mult} star) pow n
       
   461    = (r pow n) * (s pow n)"
       
   462 by transfer (rule power_mult_distrib)
       
   463 
       
   464 lemma hyperpow_two_le [simp]:
       
   465   "\<And>r. (0::'a::{monoid_mult,linordered_ring_strict} star) \<le> r pow 2"
       
   466 by (auto simp add: hyperpow_two zero_le_mult_iff)
       
   467 
       
   468 lemma hrabs_hyperpow_two [simp]:
       
   469   "\<bar>x pow 2\<bar> =
       
   470    (x::'a::{monoid_mult,linordered_ring_strict} star) pow 2"
       
   471 by (simp only: abs_of_nonneg hyperpow_two_le)
       
   472 
       
   473 lemma hyperpow_two_hrabs [simp]:
       
   474   "\<bar>x::'a::{linordered_idom} star\<bar> pow 2 = x pow 2"
       
   475 by (simp add: hyperpow_hrabs)
       
   476 
       
   477 text\<open>The precondition could be weakened to @{term "0\<le>x"}\<close>
       
   478 lemma hypreal_mult_less_mono:
       
   479      "[| u<v;  x<y;  (0::hypreal) < v;  0 < x |] ==> u*x < v* y"
       
   480  by (simp add: mult_strict_mono order_less_imp_le)
       
   481 
       
   482 lemma hyperpow_two_gt_one:
       
   483   "\<And>r::'a::{linordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow 2"
       
   484 by transfer simp
       
   485 
       
   486 lemma hyperpow_two_ge_one:
       
   487   "\<And>r::'a::{linordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow 2"
       
   488 by transfer (rule one_le_power)
       
   489 
       
   490 lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
       
   491 apply (rule_tac y = "1 pow n" in order_trans)
       
   492 apply (rule_tac [2] hyperpow_le, auto)
       
   493 done
       
   494 
       
   495 lemma hyperpow_minus_one2 [simp]:
       
   496      "\<And>n. (- 1) pow (2*n) = (1::hypreal)"
       
   497 by transfer (rule power_minus1_even)
       
   498 
       
   499 lemma hyperpow_less_le:
       
   500      "!!r n N. [|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n"
       
   501 by transfer (rule power_decreasing [OF order_less_imp_le])
       
   502 
       
   503 lemma hyperpow_SHNat_le:
       
   504      "[| 0 \<le> r;  r \<le> (1::hypreal);  N \<in> HNatInfinite |]
       
   505       ==> ALL n: Nats. r pow N \<le> r pow n"
       
   506 by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff)
       
   507 
       
   508 lemma hyperpow_realpow:
       
   509       "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)"
       
   510 by transfer (rule refl)
       
   511 
       
   512 lemma hyperpow_SReal [simp]:
       
   513      "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> \<real>"
       
   514 by (simp add: Reals_eq_Standard)
       
   515 
       
   516 lemma hyperpow_zero_HNatInfinite [simp]:
       
   517      "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0"
       
   518 by (drule HNatInfinite_is_Suc, auto)
       
   519 
       
   520 lemma hyperpow_le_le:
       
   521      "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n"
       
   522 apply (drule order_le_less [of n, THEN iffD1])
       
   523 apply (auto intro: hyperpow_less_le)
       
   524 done
       
   525 
       
   526 lemma hyperpow_Suc_le_self2:
       
   527      "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r"
       
   528 apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le)
       
   529 apply auto
       
   530 done
       
   531 
       
   532 lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n"
       
   533 by transfer (rule refl)
       
   534 
       
   535 lemma of_hypreal_hyperpow:
       
   536   "\<And>x n. of_hypreal (x pow n) =
       
   537    (of_hypreal x::'a::{real_algebra_1} star) pow n"
       
   538 by transfer (rule of_real_power)
       
   539 
       
   540 end