src/HOL/NSA/HyperDef.thy
changeset 62479 716336f19aa9
parent 62478 a62c86d25024
child 62480 f2e8984adef7
--- a/src/HOL/NSA/HyperDef.thy	Mon Feb 29 22:32:04 2016 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,540 +0,0 @@
-(*  Title       : HOL/NSA/HyperDef.thy
-    Author      : Jacques D. Fleuriot
-    Copyright   : 1998  University of Cambridge
-    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
-*)
-
-section\<open>Construction of Hyperreals Using Ultrafilters\<close>
-
-theory HyperDef
-imports Complex_Main HyperNat
-begin
-
-type_synonym hypreal = "real star"
-
-abbreviation
-  hypreal_of_real :: "real => real star" where
-  "hypreal_of_real == star_of"
-
-abbreviation
-  hypreal_of_hypnat :: "hypnat \<Rightarrow> hypreal" where
-  "hypreal_of_hypnat \<equiv> of_hypnat"
-
-definition
-  omega :: hypreal  ("\<omega>") where
-   \<comment> \<open>an infinite number \<open>= [<1,2,3,...>]\<close>\<close>
-  "\<omega> = star_n (\<lambda>n. real (Suc n))"
-
-definition
-  epsilon :: hypreal  ("\<epsilon>") where
-   \<comment> \<open>an infinitesimal number \<open>= [<1,1/2,1/3,...>]\<close>\<close>
-  "\<epsilon> = star_n (\<lambda>n. inverse (real (Suc n)))"
-
-
-subsection \<open>Real vector class instances\<close>
-
-instantiation star :: (scaleR) scaleR
-begin
-
-definition
-  star_scaleR_def [transfer_unfold]: "scaleR r \<equiv> *f* (scaleR r)"
-
-instance ..
-
-end
-
-lemma Standard_scaleR [simp]: "x \<in> Standard \<Longrightarrow> scaleR r x \<in> Standard"
-by (simp add: star_scaleR_def)
-
-lemma star_of_scaleR [simp]: "star_of (scaleR r x) = scaleR r (star_of x)"
-by transfer (rule refl)
-
-instance star :: (real_vector) real_vector
-proof
-  fix a b :: real
-  show "\<And>x y::'a star. scaleR a (x + y) = scaleR a x + scaleR a y"
-    by transfer (rule scaleR_right_distrib)
-  show "\<And>x::'a star. scaleR (a + b) x = scaleR a x + scaleR b x"
-    by transfer (rule scaleR_left_distrib)
-  show "\<And>x::'a star. scaleR a (scaleR b x) = scaleR (a * b) x"
-    by transfer (rule scaleR_scaleR)
-  show "\<And>x::'a star. scaleR 1 x = x"
-    by transfer (rule scaleR_one)
-qed
-
-instance star :: (real_algebra) real_algebra
-proof
-  fix a :: real
-  show "\<And>x y::'a star. scaleR a x * y = scaleR a (x * y)"
-    by transfer (rule mult_scaleR_left)
-  show "\<And>x y::'a star. x * scaleR a y = scaleR a (x * y)"
-    by transfer (rule mult_scaleR_right)
-qed
-
-instance star :: (real_algebra_1) real_algebra_1 ..
-
-instance star :: (real_div_algebra) real_div_algebra ..
-
-instance star :: (field_char_0) field_char_0 ..
-
-instance star :: (real_field) real_field ..
-
-lemma star_of_real_def [transfer_unfold]: "of_real r = star_of (of_real r)"
-by (unfold of_real_def, transfer, rule refl)
-
-lemma Standard_of_real [simp]: "of_real r \<in> Standard"
-by (simp add: star_of_real_def)
-
-lemma star_of_of_real [simp]: "star_of (of_real r) = of_real r"
-by transfer (rule refl)
-
-lemma of_real_eq_star_of [simp]: "of_real = star_of"
-proof
-  fix r :: real
-  show "of_real r = star_of r"
-    by transfer simp
-qed
-
-lemma Reals_eq_Standard: "(\<real> :: hypreal set) = Standard"
-by (simp add: Reals_def Standard_def)
-
-
-subsection \<open>Injection from @{typ hypreal}\<close>
-
-definition
-  of_hypreal :: "hypreal \<Rightarrow> 'a::real_algebra_1 star" where
-  [transfer_unfold]: "of_hypreal = *f* of_real"
-
-lemma Standard_of_hypreal [simp]:
-  "r \<in> Standard \<Longrightarrow> of_hypreal r \<in> Standard"
-by (simp add: of_hypreal_def)
-
-lemma of_hypreal_0 [simp]: "of_hypreal 0 = 0"
-by transfer (rule of_real_0)
-
-lemma of_hypreal_1 [simp]: "of_hypreal 1 = 1"
-by transfer (rule of_real_1)
-
-lemma of_hypreal_add [simp]:
-  "\<And>x y. of_hypreal (x + y) = of_hypreal x + of_hypreal y"
-by transfer (rule of_real_add)
-
-lemma of_hypreal_minus [simp]: "\<And>x. of_hypreal (- x) = - of_hypreal x"
-by transfer (rule of_real_minus)
-
-lemma of_hypreal_diff [simp]:
-  "\<And>x y. of_hypreal (x - y) = of_hypreal x - of_hypreal y"
-by transfer (rule of_real_diff)
-
-lemma of_hypreal_mult [simp]:
-  "\<And>x y. of_hypreal (x * y) = of_hypreal x * of_hypreal y"
-by transfer (rule of_real_mult)
-
-lemma of_hypreal_inverse [simp]:
-  "\<And>x. of_hypreal (inverse x) =
-   inverse (of_hypreal x :: 'a::{real_div_algebra, division_ring} star)"
-by transfer (rule of_real_inverse)
-
-lemma of_hypreal_divide [simp]:
-  "\<And>x y. of_hypreal (x / y) =
-   (of_hypreal x / of_hypreal y :: 'a::{real_field, field} star)"
-by transfer (rule of_real_divide)
-
-lemma of_hypreal_eq_iff [simp]:
-  "\<And>x y. (of_hypreal x = of_hypreal y) = (x = y)"
-by transfer (rule of_real_eq_iff)
-
-lemma of_hypreal_eq_0_iff [simp]:
-  "\<And>x. (of_hypreal x = 0) = (x = 0)"
-by transfer (rule of_real_eq_0_iff)
-
-
-subsection\<open>Properties of @{term starrel}\<close>
-
-lemma lemma_starrel_refl [simp]: "x \<in> starrel `` {x}"
-by (simp add: starrel_def)
-
-lemma starrel_in_hypreal [simp]: "starrel``{x}:star"
-by (simp add: star_def starrel_def quotient_def, blast)
-
-declare Abs_star_inject [simp] Abs_star_inverse [simp]
-declare equiv_starrel [THEN eq_equiv_class_iff, simp]
-
-subsection\<open>@{term hypreal_of_real}:
-            the Injection from @{typ real} to @{typ hypreal}\<close>
-
-lemma inj_star_of: "inj star_of"
-by (rule inj_onI, simp)
-
-lemma mem_Rep_star_iff: "(X \<in> Rep_star x) = (x = star_n X)"
-by (cases x, simp add: star_n_def)
-
-lemma Rep_star_star_n_iff [simp]:
-  "(X \<in> Rep_star (star_n Y)) = (eventually (\<lambda>n. Y n = X n) \<U>)"
-by (simp add: star_n_def)
-
-lemma Rep_star_star_n: "X \<in> Rep_star (star_n X)"
-by simp
-
-subsection\<open>Properties of @{term star_n}\<close>
-
-lemma star_n_add:
-  "star_n X + star_n Y = star_n (%n. X n + Y n)"
-by (simp only: star_add_def starfun2_star_n)
-
-lemma star_n_minus:
-   "- star_n X = star_n (%n. -(X n))"
-by (simp only: star_minus_def starfun_star_n)
-
-lemma star_n_diff:
-     "star_n X - star_n Y = star_n (%n. X n - Y n)"
-by (simp only: star_diff_def starfun2_star_n)
-
-lemma star_n_mult:
-  "star_n X * star_n Y = star_n (%n. X n * Y n)"
-by (simp only: star_mult_def starfun2_star_n)
-
-lemma star_n_inverse:
-      "inverse (star_n X) = star_n (%n. inverse(X n))"
-by (simp only: star_inverse_def starfun_star_n)
-
-lemma star_n_le:
-      "star_n X \<le> star_n Y = (eventually (\<lambda>n. X n \<le> Y n) FreeUltrafilterNat)"
-by (simp only: star_le_def starP2_star_n)
-
-lemma star_n_less:
-      "star_n X < star_n Y = (eventually (\<lambda>n. X n < Y n) FreeUltrafilterNat)"
-by (simp only: star_less_def starP2_star_n)
-
-lemma star_n_zero_num: "0 = star_n (%n. 0)"
-by (simp only: star_zero_def star_of_def)
-
-lemma star_n_one_num: "1 = star_n (%n. 1)"
-by (simp only: star_one_def star_of_def)
-
-lemma star_n_abs: "\<bar>star_n X\<bar> = star_n (%n. \<bar>X n\<bar>)"
-by (simp only: star_abs_def starfun_star_n)
-
-lemma hypreal_omega_gt_zero [simp]: "0 < \<omega>"
-by (simp add: omega_def star_n_zero_num star_n_less)
-
-subsection\<open>Existence of Infinite Hyperreal Number\<close>
-
-text\<open>Existence of infinite number not corresponding to any real number.
-Use assumption that member @{term FreeUltrafilterNat} is not finite.\<close>
-
-
-text\<open>A few lemmas first\<close>
-
-lemma lemma_omega_empty_singleton_disj:
-  "{n::nat. x = real n} = {} \<or> (\<exists>y. {n::nat. x = real n} = {y})"
-by force
-
-lemma lemma_finite_omega_set: "finite {n::nat. x = real n}"
-  using lemma_omega_empty_singleton_disj [of x] by auto
-
-lemma not_ex_hypreal_of_real_eq_omega:
-      "~ (\<exists>x. hypreal_of_real x = \<omega>)"
-apply (simp add: omega_def star_of_def star_n_eq_iff)
-apply clarify
-apply (rule_tac x2="x-1" in lemma_finite_omega_set [THEN FreeUltrafilterNat.finite, THEN notE])
-apply (erule eventually_mono)
-apply auto
-done
-
-lemma hypreal_of_real_not_eq_omega: "hypreal_of_real x \<noteq> \<omega>"
-by (insert not_ex_hypreal_of_real_eq_omega, auto)
-
-text\<open>Existence of infinitesimal number also not corresponding to any
- real number\<close>
-
-lemma lemma_epsilon_empty_singleton_disj:
-     "{n::nat. x = inverse(real(Suc n))} = {} |
-      (\<exists>y. {n::nat. x = inverse(real(Suc n))} = {y})"
-by auto
-
-lemma lemma_finite_epsilon_set: "finite {n. x = inverse(real(Suc n))}"
-by (cut_tac x = x in lemma_epsilon_empty_singleton_disj, auto)
-
-lemma not_ex_hypreal_of_real_eq_epsilon: "~ (\<exists>x. hypreal_of_real x = \<epsilon>)"
-by (auto simp add: epsilon_def star_of_def star_n_eq_iff
-                   lemma_finite_epsilon_set [THEN FreeUltrafilterNat.finite] simp del: of_nat_Suc)
-
-lemma hypreal_of_real_not_eq_epsilon: "hypreal_of_real x \<noteq> \<epsilon>"
-by (insert not_ex_hypreal_of_real_eq_epsilon, auto)
-
-lemma hypreal_epsilon_not_zero: "\<epsilon> \<noteq> 0"
-by (simp add: epsilon_def star_zero_def star_of_def star_n_eq_iff FreeUltrafilterNat.proper
-         del: star_of_zero)
-
-lemma hypreal_epsilon_inverse_omega: "\<epsilon> = inverse \<omega>"
-by (simp add: epsilon_def omega_def star_n_inverse)
-
-lemma hypreal_epsilon_gt_zero: "0 < \<epsilon>"
-by (simp add: hypreal_epsilon_inverse_omega)
-
-subsection\<open>Absolute Value Function for the Hyperreals\<close>
-
-lemma hrabs_add_less: "[| \<bar>x\<bar> < r; \<bar>y\<bar> < s |] ==> \<bar>x + y\<bar> < r + (s::hypreal)"
-by (simp add: abs_if split: if_split_asm)
-
-lemma hrabs_less_gt_zero: "\<bar>x\<bar> < r ==> (0::hypreal) < r"
-by (blast intro!: order_le_less_trans abs_ge_zero)
-
-lemma hrabs_disj: "\<bar>x\<bar> = (x::'a::abs_if) \<or> \<bar>x\<bar> = -x"
-by (simp add: abs_if)
-
-lemma hrabs_add_lemma_disj: "(y::hypreal) + - x + (y + - z) = \<bar>x + - z\<bar> ==> y = z | x = y"
-by (simp add: abs_if split add: if_split_asm)
-
-
-subsection\<open>Embedding the Naturals into the Hyperreals\<close>
-
-abbreviation
-  hypreal_of_nat :: "nat => hypreal" where
-  "hypreal_of_nat == of_nat"
-
-lemma SNat_eq: "Nats = {n. \<exists>N. n = hypreal_of_nat N}"
-by (simp add: Nats_def image_def)
-
-(*------------------------------------------------------------*)
-(* naturals embedded in hyperreals                            *)
-(* is a hyperreal c.f. NS extension                           *)
-(*------------------------------------------------------------*)
-
-lemma hypreal_of_nat: "hypreal_of_nat m = star_n (%n. real m)"
-by (simp add: star_of_def [symmetric])
-
-declaration \<open>
-  K (Lin_Arith.add_inj_thms [@{thm star_of_le} RS iffD2,
-    @{thm star_of_less} RS iffD2, @{thm star_of_eq} RS iffD2]
-  #> Lin_Arith.add_simps [@{thm star_of_zero}, @{thm star_of_one},
-      @{thm star_of_numeral}, @{thm star_of_add},
-      @{thm star_of_minus}, @{thm star_of_diff}, @{thm star_of_mult}]
-  #> Lin_Arith.add_inj_const (@{const_name "StarDef.star_of"}, @{typ "real \<Rightarrow> hypreal"}))
-\<close>
-
-simproc_setup fast_arith_hypreal ("(m::hypreal) < n" | "(m::hypreal) <= n" | "(m::hypreal) = n") =
-  \<open>K Lin_Arith.simproc\<close>
-
-
-subsection \<open>Exponentials on the Hyperreals\<close>
-
-lemma hpowr_0 [simp]:   "r ^ 0       = (1::hypreal)"
-by (rule power_0)
-
-lemma hpowr_Suc [simp]: "r ^ (Suc n) = (r::hypreal) * (r ^ n)"
-by (rule power_Suc)
-
-lemma hrealpow_two: "(r::hypreal) ^ Suc (Suc 0) = r * r"
-by simp
-
-lemma hrealpow_two_le [simp]: "(0::hypreal) \<le> r ^ Suc (Suc 0)"
-by (auto simp add: zero_le_mult_iff)
-
-lemma hrealpow_two_le_add_order [simp]:
-     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hrealpow_two_le_add_order2 [simp]:
-     "(0::hypreal) \<le> u ^ Suc (Suc 0) + v ^ Suc (Suc 0) + w ^ Suc (Suc 0)"
-by (simp only: hrealpow_two_le add_nonneg_nonneg)
-
-lemma hypreal_add_nonneg_eq_0_iff:
-     "[| 0 \<le> x; 0 \<le> y |] ==> (x+y = 0) = (x = 0 & y = (0::hypreal))"
-by arith
-
-
-text\<open>FIXME: DELETE THESE\<close>
-lemma hypreal_three_squares_add_zero_iff:
-     "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"
-apply (simp only: zero_le_square add_nonneg_nonneg hypreal_add_nonneg_eq_0_iff, auto)
-done
-
-lemma hrealpow_three_squares_add_zero_iff [simp]:
-     "(x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + z ^ Suc (Suc 0) = (0::hypreal)) =
-      (x = 0 & y = 0 & z = 0)"
-by (simp only: hypreal_three_squares_add_zero_iff hrealpow_two)
-
-(*FIXME: This and RealPow.abs_realpow_two should be replaced by an abstract
-  result proved in Rings or Fields*)
-lemma hrabs_hrealpow_two [simp]: "\<bar>x ^ Suc (Suc 0)\<bar> = (x::hypreal) ^ Suc (Suc 0)"
-by (simp add: abs_mult)
-
-lemma two_hrealpow_ge_one [simp]: "(1::hypreal) \<le> 2 ^ n"
-by (insert power_increasing [of 0 n "2::hypreal"], simp)
-
-lemma hrealpow:
-    "star_n X ^ m = star_n (%n. (X n::real) ^ m)"
-apply (induct_tac "m")
-apply (auto simp add: star_n_one_num star_n_mult power_0)
-done
-
-lemma hrealpow_sum_square_expand:
-     "(x + (y::hypreal)) ^ Suc (Suc 0) =
-      x ^ Suc (Suc 0) + y ^ Suc (Suc 0) + (hypreal_of_nat (Suc (Suc 0)))*x*y"
-by (simp add: distrib_left distrib_right)
-
-lemma power_hypreal_of_real_numeral:
-     "(numeral v :: hypreal) ^ n = hypreal_of_real ((numeral v) ^ n)"
-by simp
-declare power_hypreal_of_real_numeral [of _ "numeral w", simp] for w
-
-lemma power_hypreal_of_real_neg_numeral:
-     "(- numeral v :: hypreal) ^ n = hypreal_of_real ((- numeral v) ^ n)"
-by simp
-declare power_hypreal_of_real_neg_numeral [of _ "numeral w", simp] for w
-(*
-lemma hrealpow_HFinite:
-  fixes x :: "'a::{real_normed_algebra,power} star"
-  shows "x \<in> HFinite ==> x ^ n \<in> HFinite"
-apply (induct_tac "n")
-apply (auto simp add: power_Suc intro: HFinite_mult)
-done
-*)
-
-subsection\<open>Powers with Hypernatural Exponents\<close>
-
-definition pow :: "['a::power star, nat star] \<Rightarrow> 'a star" (infixr "pow" 80) where
-  hyperpow_def [transfer_unfold]: "R pow N = ( *f2* op ^) R N"
-  (* hypernatural powers of hyperreals *)
-
-lemma Standard_hyperpow [simp]:
-  "\<lbrakk>r \<in> Standard; n \<in> Standard\<rbrakk> \<Longrightarrow> r pow n \<in> Standard"
-unfolding hyperpow_def by simp
-
-lemma hyperpow: "star_n X pow star_n Y = star_n (%n. X n ^ Y n)"
-by (simp add: hyperpow_def starfun2_star_n)
-
-lemma hyperpow_zero [simp]:
-  "\<And>n. (0::'a::{power,semiring_0} star) pow (n + (1::hypnat)) = 0"
-by transfer simp
-
-lemma hyperpow_not_zero:
-  "\<And>r n. r \<noteq> (0::'a::{field} star) ==> r pow n \<noteq> 0"
-by transfer (rule power_not_zero)
-
-lemma hyperpow_inverse:
-  "\<And>r n. r \<noteq> (0::'a::field star)
-   \<Longrightarrow> inverse (r pow n) = (inverse r) pow n"
-by transfer (rule power_inverse [symmetric])
-
-lemma hyperpow_hrabs:
-  "\<And>r n. \<bar>r::'a::{linordered_idom} star\<bar> pow n = \<bar>r pow n\<bar>"
-by transfer (rule power_abs [symmetric])
-
-lemma hyperpow_add:
-  "\<And>r n m. (r::'a::monoid_mult star) pow (n + m) = (r pow n) * (r pow m)"
-by transfer (rule power_add)
-
-lemma hyperpow_one [simp]:
-  "\<And>r. (r::'a::monoid_mult star) pow (1::hypnat) = r"
-by transfer (rule power_one_right)
-
-lemma hyperpow_two:
-  "\<And>r. (r::'a::monoid_mult star) pow (2::hypnat) = r * r"
-by transfer (rule power2_eq_square)
-
-lemma hyperpow_gt_zero:
-  "\<And>r n. (0::'a::{linordered_semidom} star) < r \<Longrightarrow> 0 < r pow n"
-by transfer (rule zero_less_power)
-
-lemma hyperpow_ge_zero:
-  "\<And>r n. (0::'a::{linordered_semidom} star) \<le> r \<Longrightarrow> 0 \<le> r pow n"
-by transfer (rule zero_le_power)
-
-lemma hyperpow_le:
-  "\<And>x y n. \<lbrakk>(0::'a::{linordered_semidom} star) < x; x \<le> y\<rbrakk>
-   \<Longrightarrow> x pow n \<le> y pow n"
-by transfer (rule power_mono [OF _ order_less_imp_le])
-
-lemma hyperpow_eq_one [simp]:
-  "\<And>n. 1 pow n = (1::'a::monoid_mult star)"
-by transfer (rule power_one)
-
-lemma hrabs_hyperpow_minus [simp]:
-  "\<And>(a::'a::{linordered_idom} star) n. \<bar>(-a) pow n\<bar> = \<bar>a pow n\<bar>"
-by transfer (rule abs_power_minus)
-
-lemma hyperpow_mult:
-  "\<And>r s n. (r * s::'a::{comm_monoid_mult} star) pow n
-   = (r pow n) * (s pow n)"
-by transfer (rule power_mult_distrib)
-
-lemma hyperpow_two_le [simp]:
-  "\<And>r. (0::'a::{monoid_mult,linordered_ring_strict} star) \<le> r pow 2"
-by (auto simp add: hyperpow_two zero_le_mult_iff)
-
-lemma hrabs_hyperpow_two [simp]:
-  "\<bar>x pow 2\<bar> =
-   (x::'a::{monoid_mult,linordered_ring_strict} star) pow 2"
-by (simp only: abs_of_nonneg hyperpow_two_le)
-
-lemma hyperpow_two_hrabs [simp]:
-  "\<bar>x::'a::{linordered_idom} star\<bar> pow 2 = x pow 2"
-by (simp add: hyperpow_hrabs)
-
-text\<open>The precondition could be weakened to @{term "0\<le>x"}\<close>
-lemma hypreal_mult_less_mono:
-     "[| u<v;  x<y;  (0::hypreal) < v;  0 < x |] ==> u*x < v* y"
- by (simp add: mult_strict_mono order_less_imp_le)
-
-lemma hyperpow_two_gt_one:
-  "\<And>r::'a::{linordered_semidom} star. 1 < r \<Longrightarrow> 1 < r pow 2"
-by transfer simp
-
-lemma hyperpow_two_ge_one:
-  "\<And>r::'a::{linordered_semidom} star. 1 \<le> r \<Longrightarrow> 1 \<le> r pow 2"
-by transfer (rule one_le_power)
-
-lemma two_hyperpow_ge_one [simp]: "(1::hypreal) \<le> 2 pow n"
-apply (rule_tac y = "1 pow n" in order_trans)
-apply (rule_tac [2] hyperpow_le, auto)
-done
-
-lemma hyperpow_minus_one2 [simp]:
-     "\<And>n. (- 1) pow (2*n) = (1::hypreal)"
-by transfer (rule power_minus1_even)
-
-lemma hyperpow_less_le:
-     "!!r n N. [|(0::hypreal) \<le> r; r \<le> 1; n < N|] ==> r pow N \<le> r pow n"
-by transfer (rule power_decreasing [OF order_less_imp_le])
-
-lemma hyperpow_SHNat_le:
-     "[| 0 \<le> r;  r \<le> (1::hypreal);  N \<in> HNatInfinite |]
-      ==> ALL n: Nats. r pow N \<le> r pow n"
-by (auto intro!: hyperpow_less_le simp add: HNatInfinite_iff)
-
-lemma hyperpow_realpow:
-      "(hypreal_of_real r) pow (hypnat_of_nat n) = hypreal_of_real (r ^ n)"
-by transfer (rule refl)
-
-lemma hyperpow_SReal [simp]:
-     "(hypreal_of_real r) pow (hypnat_of_nat n) \<in> \<real>"
-by (simp add: Reals_eq_Standard)
-
-lemma hyperpow_zero_HNatInfinite [simp]:
-     "N \<in> HNatInfinite ==> (0::hypreal) pow N = 0"
-by (drule HNatInfinite_is_Suc, auto)
-
-lemma hyperpow_le_le:
-     "[| (0::hypreal) \<le> r; r \<le> 1; n \<le> N |] ==> r pow N \<le> r pow n"
-apply (drule order_le_less [of n, THEN iffD1])
-apply (auto intro: hyperpow_less_le)
-done
-
-lemma hyperpow_Suc_le_self2:
-     "[| (0::hypreal) \<le> r; r < 1 |] ==> r pow (n + (1::hypnat)) \<le> r"
-apply (drule_tac n = " (1::hypnat) " in hyperpow_le_le)
-apply auto
-done
-
-lemma hyperpow_hypnat_of_nat: "\<And>x. x pow hypnat_of_nat n = x ^ n"
-by transfer (rule refl)
-
-lemma of_hypreal_hyperpow:
-  "\<And>x n. of_hypreal (x pow n) =
-   (of_hypreal x::'a::{real_algebra_1} star) pow n"
-by transfer (rule of_real_power)
-
-end