src/HOL/Nonstandard_Analysis/HSEQ.thy
changeset 62479 716336f19aa9
parent 61975 b4b11391c676
child 63579 73939a9b70a3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nonstandard_Analysis/HSEQ.thy	Mon Feb 29 22:34:36 2016 +0100
@@ -0,0 +1,528 @@
+(*  Title:      HOL/Nonstandard_Analysis/HSEQ.thy
+    Author:     Jacques D. Fleuriot
+    Copyright:  1998  University of Cambridge
+
+Convergence of sequences and series.
+
+Conversion to Isar and new proofs by Lawrence C Paulson, 2004
+Additional contributions by Jeremy Avigad and Brian Huffman.
+*)
+
+section \<open>Sequences and Convergence (Nonstandard)\<close>
+
+theory HSEQ
+imports Limits NatStar
+begin
+
+definition
+  NSLIMSEQ :: "[nat => 'a::real_normed_vector, 'a] => bool"
+    ("((_)/ \<longlonglongrightarrow>\<^sub>N\<^sub>S (_))" [60, 60] 60) where
+    \<comment>\<open>Nonstandard definition of convergence of sequence\<close>
+  "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
+
+definition
+  nslim :: "(nat => 'a::real_normed_vector) => 'a" where
+    \<comment>\<open>Nonstandard definition of limit using choice operator\<close>
+  "nslim X = (THE L. X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
+
+definition
+  NSconvergent :: "(nat => 'a::real_normed_vector) => bool" where
+    \<comment>\<open>Nonstandard definition of convergence\<close>
+  "NSconvergent X = (\<exists>L. X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
+
+definition
+  NSBseq :: "(nat => 'a::real_normed_vector) => bool" where
+    \<comment>\<open>Nonstandard definition for bounded sequence\<close>
+  "NSBseq X = (\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite)"
+
+definition
+  NSCauchy :: "(nat => 'a::real_normed_vector) => bool" where
+    \<comment>\<open>Nonstandard definition\<close>
+  "NSCauchy X = (\<forall>M \<in> HNatInfinite. \<forall>N \<in> HNatInfinite. ( *f* X) M \<approx> ( *f* X) N)"
+
+subsection \<open>Limits of Sequences\<close>
+
+lemma NSLIMSEQ_iff:
+    "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S L) = (\<forall>N \<in> HNatInfinite. ( *f* X) N \<approx> star_of L)"
+by (simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_I:
+  "(\<And>N. N \<in> HNatInfinite \<Longrightarrow> starfun X N \<approx> star_of L) \<Longrightarrow> X \<longlonglongrightarrow>\<^sub>N\<^sub>S L"
+by (simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_D:
+  "\<lbrakk>X \<longlonglongrightarrow>\<^sub>N\<^sub>S L; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X N \<approx> star_of L"
+by (simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_const: "(%n. k) \<longlonglongrightarrow>\<^sub>N\<^sub>S k"
+by (simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_add:
+      "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n + Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + b"
+by (auto intro: approx_add simp add: NSLIMSEQ_def starfun_add [symmetric])
+
+lemma NSLIMSEQ_add_const: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n.(f n + b)) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + b"
+by (simp only: NSLIMSEQ_add NSLIMSEQ_const)
+
+lemma NSLIMSEQ_mult:
+  fixes a b :: "'a::real_normed_algebra"
+  shows "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n * Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a * b"
+by (auto intro!: approx_mult_HFinite simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_minus: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n. -(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S -a"
+by (auto simp add: NSLIMSEQ_def)
+
+lemma NSLIMSEQ_minus_cancel: "(%n. -(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S -a ==> X \<longlonglongrightarrow>\<^sub>N\<^sub>S a"
+by (drule NSLIMSEQ_minus, simp)
+
+lemma NSLIMSEQ_diff:
+     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n - Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a - b"
+  using NSLIMSEQ_add [of X a "- Y" "- b"] by (simp add: NSLIMSEQ_minus fun_Compl_def)
+
+(* FIXME: delete *)
+lemma NSLIMSEQ_add_minus:
+     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> (%n. X n + -Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a + -b"
+  by (simp add: NSLIMSEQ_diff)
+
+lemma NSLIMSEQ_diff_const: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S a ==> (%n.(f n - b)) \<longlonglongrightarrow>\<^sub>N\<^sub>S a - b"
+by (simp add: NSLIMSEQ_diff NSLIMSEQ_const)
+
+lemma NSLIMSEQ_inverse:
+  fixes a :: "'a::real_normed_div_algebra"
+  shows "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a;  a ~= 0 |] ==> (%n. inverse(X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S inverse(a)"
+by (simp add: NSLIMSEQ_def star_of_approx_inverse)
+
+lemma NSLIMSEQ_mult_inverse:
+  fixes a b :: "'a::real_normed_field"
+  shows
+     "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a;  Y \<longlonglongrightarrow>\<^sub>N\<^sub>S b;  b ~= 0 |] ==> (%n. X n / Y n) \<longlonglongrightarrow>\<^sub>N\<^sub>S a/b"
+by (simp add: NSLIMSEQ_mult NSLIMSEQ_inverse divide_inverse)
+
+lemma starfun_hnorm: "\<And>x. hnorm (( *f* f) x) = ( *f* (\<lambda>x. norm (f x))) x"
+by transfer simp
+
+lemma NSLIMSEQ_norm: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S a \<Longrightarrow> (\<lambda>n. norm (X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S norm a"
+by (simp add: NSLIMSEQ_def starfun_hnorm [symmetric] approx_hnorm)
+
+text\<open>Uniqueness of limit\<close>
+lemma NSLIMSEQ_unique: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S a; X \<longlonglongrightarrow>\<^sub>N\<^sub>S b |] ==> a = b"
+apply (simp add: NSLIMSEQ_def)
+apply (drule HNatInfinite_whn [THEN [2] bspec])+
+apply (auto dest: approx_trans3)
+done
+
+lemma NSLIMSEQ_pow [rule_format]:
+  fixes a :: "'a::{real_normed_algebra,power}"
+  shows "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S a) --> ((%n. (X n) ^ m) \<longlonglongrightarrow>\<^sub>N\<^sub>S a ^ m)"
+apply (induct "m")
+apply (auto simp add: power_Suc intro: NSLIMSEQ_mult NSLIMSEQ_const)
+done
+
+text\<open>We can now try and derive a few properties of sequences,
+     starting with the limit comparison property for sequences.\<close>
+
+lemma NSLIMSEQ_le:
+       "[| f \<longlonglongrightarrow>\<^sub>N\<^sub>S l; g \<longlonglongrightarrow>\<^sub>N\<^sub>S m;
+           \<exists>N. \<forall>n \<ge> N. f(n) \<le> g(n)
+        |] ==> l \<le> (m::real)"
+apply (simp add: NSLIMSEQ_def, safe)
+apply (drule starfun_le_mono)
+apply (drule HNatInfinite_whn [THEN [2] bspec])+
+apply (drule_tac x = whn in spec)
+apply (drule bex_Infinitesimal_iff2 [THEN iffD2])+
+apply clarify
+apply (auto intro: hypreal_of_real_le_add_Infininitesimal_cancel2)
+done
+
+lemma NSLIMSEQ_le_const: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S (r::real); \<forall>n. a \<le> X n |] ==> a \<le> r"
+by (erule NSLIMSEQ_le [OF NSLIMSEQ_const], auto)
+
+lemma NSLIMSEQ_le_const2: "[| X \<longlonglongrightarrow>\<^sub>N\<^sub>S (r::real); \<forall>n. X n \<le> a |] ==> r \<le> a"
+by (erule NSLIMSEQ_le [OF _ NSLIMSEQ_const], auto)
+
+text\<open>Shift a convergent series by 1:
+  By the equivalence between Cauchiness and convergence and because
+  the successor of an infinite hypernatural is also infinite.\<close>
+
+lemma NSLIMSEQ_Suc: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S l ==> (%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l"
+apply (unfold NSLIMSEQ_def, safe)
+apply (drule_tac x="N + 1" in bspec)
+apply (erule HNatInfinite_add)
+apply (simp add: starfun_shift_one)
+done
+
+lemma NSLIMSEQ_imp_Suc: "(%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l ==> f \<longlonglongrightarrow>\<^sub>N\<^sub>S l"
+apply (unfold NSLIMSEQ_def, safe)
+apply (drule_tac x="N - 1" in bspec) 
+apply (erule Nats_1 [THEN [2] HNatInfinite_diff])
+apply (simp add: starfun_shift_one one_le_HNatInfinite)
+done
+
+lemma NSLIMSEQ_Suc_iff: "((%n. f(Suc n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S l) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S l)"
+by (blast intro: NSLIMSEQ_imp_Suc NSLIMSEQ_Suc)
+
+subsubsection \<open>Equivalence of @{term LIMSEQ} and @{term NSLIMSEQ}\<close>
+
+lemma LIMSEQ_NSLIMSEQ:
+  assumes X: "X \<longlonglongrightarrow> L" shows "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L"
+proof (rule NSLIMSEQ_I)
+  fix N assume N: "N \<in> HNatInfinite"
+  have "starfun X N - star_of L \<in> Infinitesimal"
+  proof (rule InfinitesimalI2)
+    fix r::real assume r: "0 < r"
+    from LIMSEQ_D [OF X r]
+    obtain no where "\<forall>n\<ge>no. norm (X n - L) < r" ..
+    hence "\<forall>n\<ge>star_of no. hnorm (starfun X n - star_of L) < star_of r"
+      by transfer
+    thus "hnorm (starfun X N - star_of L) < star_of r"
+      using N by (simp add: star_of_le_HNatInfinite)
+  qed
+  thus "starfun X N \<approx> star_of L"
+    by (unfold approx_def)
+qed
+
+lemma NSLIMSEQ_LIMSEQ:
+  assumes X: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L" shows "X \<longlonglongrightarrow> L"
+proof (rule LIMSEQ_I)
+  fix r::real assume r: "0 < r"
+  have "\<exists>no. \<forall>n\<ge>no. hnorm (starfun X n - star_of L) < star_of r"
+  proof (intro exI allI impI)
+    fix n assume "whn \<le> n"
+    with HNatInfinite_whn have "n \<in> HNatInfinite"
+      by (rule HNatInfinite_upward_closed)
+    with X have "starfun X n \<approx> star_of L"
+      by (rule NSLIMSEQ_D)
+    hence "starfun X n - star_of L \<in> Infinitesimal"
+      by (unfold approx_def)
+    thus "hnorm (starfun X n - star_of L) < star_of r"
+      using r by (rule InfinitesimalD2)
+  qed
+  thus "\<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
+    by transfer
+qed
+
+theorem LIMSEQ_NSLIMSEQ_iff: "(f \<longlonglongrightarrow> L) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
+by (blast intro: LIMSEQ_NSLIMSEQ NSLIMSEQ_LIMSEQ)
+
+subsubsection \<open>Derived theorems about @{term NSLIMSEQ}\<close>
+
+text\<open>We prove the NS version from the standard one, since the NS proof
+   seems more complicated than the standard one above!\<close>
+lemma NSLIMSEQ_norm_zero: "((\<lambda>n. norm (X n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0) = (X \<longlonglongrightarrow>\<^sub>N\<^sub>S 0)"
+by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] tendsto_norm_zero_iff)
+
+lemma NSLIMSEQ_rabs_zero: "((%n. \<bar>f n\<bar>) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0) = (f \<longlonglongrightarrow>\<^sub>N\<^sub>S (0::real))"
+by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] tendsto_rabs_zero_iff)
+
+text\<open>Generalization to other limits\<close>
+lemma NSLIMSEQ_imp_rabs: "f \<longlonglongrightarrow>\<^sub>N\<^sub>S (l::real) ==> (%n. \<bar>f n\<bar>) \<longlonglongrightarrow>\<^sub>N\<^sub>S \<bar>l\<bar>"
+apply (simp add: NSLIMSEQ_def)
+apply (auto intro: approx_hrabs 
+            simp add: starfun_abs)
+done
+
+lemma NSLIMSEQ_inverse_zero:
+     "\<forall>y::real. \<exists>N. \<forall>n \<ge> N. y < f(n)
+      ==> (%n. inverse(f n)) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
+by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_zero)
+
+lemma NSLIMSEQ_inverse_real_of_nat: "(%n. inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
+by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat del: of_nat_Suc)
+
+lemma NSLIMSEQ_inverse_real_of_nat_add:
+     "(%n. r + inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
+by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric] LIMSEQ_inverse_real_of_nat_add del: of_nat_Suc)
+
+lemma NSLIMSEQ_inverse_real_of_nat_add_minus:
+     "(%n. r + -inverse(real(Suc n))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
+  using LIMSEQ_inverse_real_of_nat_add_minus by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
+
+lemma NSLIMSEQ_inverse_real_of_nat_add_minus_mult:
+     "(%n. r*( 1 + -inverse(real(Suc n)))) \<longlonglongrightarrow>\<^sub>N\<^sub>S r"
+  using LIMSEQ_inverse_real_of_nat_add_minus_mult by (simp add: LIMSEQ_NSLIMSEQ_iff [symmetric])
+
+
+subsection \<open>Convergence\<close>
+
+lemma nslimI: "X \<longlonglongrightarrow>\<^sub>N\<^sub>S L ==> nslim X = L"
+apply (simp add: nslim_def)
+apply (blast intro: NSLIMSEQ_unique)
+done
+
+lemma lim_nslim_iff: "lim X = nslim X"
+by (simp add: lim_def nslim_def LIMSEQ_NSLIMSEQ_iff)
+
+lemma NSconvergentD: "NSconvergent X ==> \<exists>L. (X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
+by (simp add: NSconvergent_def)
+
+lemma NSconvergentI: "(X \<longlonglongrightarrow>\<^sub>N\<^sub>S L) ==> NSconvergent X"
+by (auto simp add: NSconvergent_def)
+
+lemma convergent_NSconvergent_iff: "convergent X = NSconvergent X"
+by (simp add: convergent_def NSconvergent_def LIMSEQ_NSLIMSEQ_iff)
+
+lemma NSconvergent_NSLIMSEQ_iff: "NSconvergent X = (X \<longlonglongrightarrow>\<^sub>N\<^sub>S nslim X)"
+by (auto intro: theI NSLIMSEQ_unique simp add: NSconvergent_def nslim_def)
+
+
+subsection \<open>Bounded Monotonic Sequences\<close>
+
+lemma NSBseqD: "[| NSBseq X;  N: HNatInfinite |] ==> ( *f* X) N : HFinite"
+by (simp add: NSBseq_def)
+
+lemma Standard_subset_HFinite: "Standard \<subseteq> HFinite"
+unfolding Standard_def by auto
+
+lemma NSBseqD2: "NSBseq X \<Longrightarrow> ( *f* X) N \<in> HFinite"
+apply (cases "N \<in> HNatInfinite")
+apply (erule (1) NSBseqD)
+apply (rule subsetD [OF Standard_subset_HFinite])
+apply (simp add: HNatInfinite_def Nats_eq_Standard)
+done
+
+lemma NSBseqI: "\<forall>N \<in> HNatInfinite. ( *f* X) N : HFinite ==> NSBseq X"
+by (simp add: NSBseq_def)
+
+text\<open>The standard definition implies the nonstandard definition\<close>
+
+lemma Bseq_NSBseq: "Bseq X ==> NSBseq X"
+proof (unfold NSBseq_def, safe)
+  assume X: "Bseq X"
+  fix N assume N: "N \<in> HNatInfinite"
+  from BseqD [OF X] obtain K where "\<forall>n. norm (X n) \<le> K" by fast
+  hence "\<forall>N. hnorm (starfun X N) \<le> star_of K" by transfer
+  hence "hnorm (starfun X N) \<le> star_of K" by simp
+  also have "star_of K < star_of (K + 1)" by simp
+  finally have "\<exists>x\<in>Reals. hnorm (starfun X N) < x" by (rule bexI, simp)
+  thus "starfun X N \<in> HFinite" by (simp add: HFinite_def)
+qed
+
+text\<open>The nonstandard definition implies the standard definition\<close>
+
+lemma SReal_less_omega: "r \<in> \<real> \<Longrightarrow> r < \<omega>"
+apply (insert HInfinite_omega)
+apply (simp add: HInfinite_def)
+apply (simp add: order_less_imp_le)
+done
+
+lemma NSBseq_Bseq: "NSBseq X \<Longrightarrow> Bseq X"
+proof (rule ccontr)
+  let ?n = "\<lambda>K. LEAST n. K < norm (X n)"
+  assume "NSBseq X"
+  hence finite: "( *f* X) (( *f* ?n) \<omega>) \<in> HFinite"
+    by (rule NSBseqD2)
+  assume "\<not> Bseq X"
+  hence "\<forall>K>0. \<exists>n. K < norm (X n)"
+    by (simp add: Bseq_def linorder_not_le)
+  hence "\<forall>K>0. K < norm (X (?n K))"
+    by (auto intro: LeastI_ex)
+  hence "\<forall>K>0. K < hnorm (( *f* X) (( *f* ?n) K))"
+    by transfer
+  hence "\<omega> < hnorm (( *f* X) (( *f* ?n) \<omega>))"
+    by simp
+  hence "\<forall>r\<in>\<real>. r < hnorm (( *f* X) (( *f* ?n) \<omega>))"
+    by (simp add: order_less_trans [OF SReal_less_omega])
+  hence "( *f* X) (( *f* ?n) \<omega>) \<in> HInfinite"
+    by (simp add: HInfinite_def)
+  with finite show "False"
+    by (simp add: HFinite_HInfinite_iff)
+qed
+
+text\<open>Equivalence of nonstandard and standard definitions
+  for a bounded sequence\<close>
+lemma Bseq_NSBseq_iff: "(Bseq X) = (NSBseq X)"
+by (blast intro!: NSBseq_Bseq Bseq_NSBseq)
+
+text\<open>A convergent sequence is bounded: 
+ Boundedness as a necessary condition for convergence. 
+ The nonstandard version has no existential, as usual\<close>
+
+lemma NSconvergent_NSBseq: "NSconvergent X ==> NSBseq X"
+apply (simp add: NSconvergent_def NSBseq_def NSLIMSEQ_def)
+apply (blast intro: HFinite_star_of approx_sym approx_HFinite)
+done
+
+text\<open>Standard Version: easily now proved using equivalence of NS and
+ standard definitions\<close>
+
+lemma convergent_Bseq: "convergent X ==> Bseq (X::nat \<Rightarrow> _::real_normed_vector)"
+by (simp add: NSconvergent_NSBseq convergent_NSconvergent_iff Bseq_NSBseq_iff)
+
+subsubsection\<open>Upper Bounds and Lubs of Bounded Sequences\<close>
+
+lemma NSBseq_isUb: "NSBseq X ==> \<exists>U::real. isUb UNIV {x. \<exists>n. X n = x} U"
+by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isUb)
+
+lemma NSBseq_isLub: "NSBseq X ==> \<exists>U::real. isLub UNIV {x. \<exists>n. X n = x} U"
+by (simp add: Bseq_NSBseq_iff [symmetric] Bseq_isLub)
+
+subsubsection\<open>A Bounded and Monotonic Sequence Converges\<close>
+
+text\<open>The best of both worlds: Easier to prove this result as a standard
+   theorem and then use equivalence to "transfer" it into the
+   equivalent nonstandard form if needed!\<close>
+
+lemma Bmonoseq_NSLIMSEQ: "\<forall>n \<ge> m. X n = X m ==> \<exists>L. (X \<longlonglongrightarrow>\<^sub>N\<^sub>S L)"
+by (auto dest!: Bmonoseq_LIMSEQ simp add: LIMSEQ_NSLIMSEQ_iff)
+
+lemma NSBseq_mono_NSconvergent:
+     "[| NSBseq X; \<forall>m. \<forall>n \<ge> m. X m \<le> X n |] ==> NSconvergent (X::nat=>real)"
+by (auto intro: Bseq_mono_convergent 
+         simp add: convergent_NSconvergent_iff [symmetric] 
+                   Bseq_NSBseq_iff [symmetric])
+
+
+subsection \<open>Cauchy Sequences\<close>
+
+lemma NSCauchyI:
+  "(\<And>M N. \<lbrakk>M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk> \<Longrightarrow> starfun X M \<approx> starfun X N)
+   \<Longrightarrow> NSCauchy X"
+by (simp add: NSCauchy_def)
+
+lemma NSCauchyD:
+  "\<lbrakk>NSCauchy X; M \<in> HNatInfinite; N \<in> HNatInfinite\<rbrakk>
+   \<Longrightarrow> starfun X M \<approx> starfun X N"
+by (simp add: NSCauchy_def)
+
+subsubsection\<open>Equivalence Between NS and Standard\<close>
+
+lemma Cauchy_NSCauchy:
+  assumes X: "Cauchy X" shows "NSCauchy X"
+proof (rule NSCauchyI)
+  fix M assume M: "M \<in> HNatInfinite"
+  fix N assume N: "N \<in> HNatInfinite"
+  have "starfun X M - starfun X N \<in> Infinitesimal"
+  proof (rule InfinitesimalI2)
+    fix r :: real assume r: "0 < r"
+    from CauchyD [OF X r]
+    obtain k where "\<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r" ..
+    hence "\<forall>m\<ge>star_of k. \<forall>n\<ge>star_of k.
+           hnorm (starfun X m - starfun X n) < star_of r"
+      by transfer
+    thus "hnorm (starfun X M - starfun X N) < star_of r"
+      using M N by (simp add: star_of_le_HNatInfinite)
+  qed
+  thus "starfun X M \<approx> starfun X N"
+    by (unfold approx_def)
+qed
+
+lemma NSCauchy_Cauchy:
+  assumes X: "NSCauchy X" shows "Cauchy X"
+proof (rule CauchyI)
+  fix r::real assume r: "0 < r"
+  have "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. hnorm (starfun X m - starfun X n) < star_of r"
+  proof (intro exI allI impI)
+    fix M assume "whn \<le> M"
+    with HNatInfinite_whn have M: "M \<in> HNatInfinite"
+      by (rule HNatInfinite_upward_closed)
+    fix N assume "whn \<le> N"
+    with HNatInfinite_whn have N: "N \<in> HNatInfinite"
+      by (rule HNatInfinite_upward_closed)
+    from X M N have "starfun X M \<approx> starfun X N"
+      by (rule NSCauchyD)
+    hence "starfun X M - starfun X N \<in> Infinitesimal"
+      by (unfold approx_def)
+    thus "hnorm (starfun X M - starfun X N) < star_of r"
+      using r by (rule InfinitesimalD2)
+  qed
+  thus "\<exists>k. \<forall>m\<ge>k. \<forall>n\<ge>k. norm (X m - X n) < r"
+    by transfer
+qed
+
+theorem NSCauchy_Cauchy_iff: "NSCauchy X = Cauchy X"
+by (blast intro!: NSCauchy_Cauchy Cauchy_NSCauchy)
+
+subsubsection \<open>Cauchy Sequences are Bounded\<close>
+
+text\<open>A Cauchy sequence is bounded -- nonstandard version\<close>
+
+lemma NSCauchy_NSBseq: "NSCauchy X ==> NSBseq X"
+by (simp add: Cauchy_Bseq Bseq_NSBseq_iff [symmetric] NSCauchy_Cauchy_iff)
+
+subsubsection \<open>Cauchy Sequences are Convergent\<close>
+
+text\<open>Equivalence of Cauchy criterion and convergence:
+  We will prove this using our NS formulation which provides a
+  much easier proof than using the standard definition. We do not
+  need to use properties of subsequences such as boundedness,
+  monotonicity etc... Compare with Harrison's corresponding proof
+  in HOL which is much longer and more complicated. Of course, we do
+  not have problems which he encountered with guessing the right
+  instantiations for his 'espsilon-delta' proof(s) in this case
+  since the NS formulations do not involve existential quantifiers.\<close>
+
+lemma NSconvergent_NSCauchy: "NSconvergent X \<Longrightarrow> NSCauchy X"
+apply (simp add: NSconvergent_def NSLIMSEQ_def NSCauchy_def, safe)
+apply (auto intro: approx_trans2)
+done
+
+lemma real_NSCauchy_NSconvergent:
+  fixes X :: "nat \<Rightarrow> real"
+  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
+apply (simp add: NSconvergent_def NSLIMSEQ_def)
+apply (frule NSCauchy_NSBseq)
+apply (simp add: NSBseq_def NSCauchy_def)
+apply (drule HNatInfinite_whn [THEN [2] bspec])
+apply (drule HNatInfinite_whn [THEN [2] bspec])
+apply (auto dest!: st_part_Ex simp add: SReal_iff)
+apply (blast intro: approx_trans3)
+done
+
+lemma NSCauchy_NSconvergent:
+  fixes X :: "nat \<Rightarrow> 'a::banach"
+  shows "NSCauchy X \<Longrightarrow> NSconvergent X"
+apply (drule NSCauchy_Cauchy [THEN Cauchy_convergent])
+apply (erule convergent_NSconvergent_iff [THEN iffD1])
+done
+
+lemma NSCauchy_NSconvergent_iff:
+  fixes X :: "nat \<Rightarrow> 'a::banach"
+  shows "NSCauchy X = NSconvergent X"
+by (fast intro: NSCauchy_NSconvergent NSconvergent_NSCauchy)
+
+
+subsection \<open>Power Sequences\<close>
+
+text\<open>The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
+"x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
+  also fact that bounded and monotonic sequence converges.\<close>
+
+text\<open>We now use NS criterion to bring proof of theorem through\<close>
+
+lemma NSLIMSEQ_realpow_zero:
+  "[| 0 \<le> (x::real); x < 1 |] ==> (%n. x ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
+apply (simp add: NSLIMSEQ_def)
+apply (auto dest!: convergent_realpow simp add: convergent_NSconvergent_iff)
+apply (frule NSconvergentD)
+apply (auto simp add: NSLIMSEQ_def NSCauchy_NSconvergent_iff [symmetric] NSCauchy_def starfun_pow)
+apply (frule HNatInfinite_add_one)
+apply (drule bspec, assumption)
+apply (drule bspec, assumption)
+apply (drule_tac x = "N + (1::hypnat) " in bspec, assumption)
+apply (simp add: hyperpow_add)
+apply (drule approx_mult_subst_star_of, assumption)
+apply (drule approx_trans3, assumption)
+apply (auto simp del: star_of_mult simp add: star_of_mult [symmetric])
+done
+
+lemma NSLIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < (1::real) ==> (%n. \<bar>c\<bar> ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
+by (simp add: LIMSEQ_rabs_realpow_zero LIMSEQ_NSLIMSEQ_iff [symmetric])
+
+lemma NSLIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < (1::real) ==> (%n. c ^ n) \<longlonglongrightarrow>\<^sub>N\<^sub>S 0"
+by (simp add: LIMSEQ_rabs_realpow_zero2 LIMSEQ_NSLIMSEQ_iff [symmetric])
+
+(***---------------------------------------------------------------
+    Theorems proved by Harrison in HOL that we do not need
+    in order to prove equivalence between Cauchy criterion
+    and convergence:
+ -- Show that every sequence contains a monotonic subsequence
+Goal "\<exists>f. subseq f & monoseq (%n. s (f n))"
+ -- Show that a subsequence of a bounded sequence is bounded
+Goal "Bseq X ==> Bseq (%n. X (f n))";
+ -- Show we can take subsequential terms arbitrarily far
+    up a sequence
+Goal "subseq f ==> n \<le> f(n)";
+Goal "subseq f ==> \<exists>n. N1 \<le> n & N2 \<le> f(n)";
+ ---------------------------------------------------------------***)
+
+end