| author | blanchet | 
| Fri, 16 May 2014 12:56:39 +0200 | |
| changeset 56978 | 0c1b4987e6b2 | 
| parent 54489 | 03ff4d1e6784 | 
| child 58645 | 94bef115c08f | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Parity.thy | 
| 2 | Author: Jeremy Avigad | |
| 3 | Author: Jacques D. Fleuriot | |
| 21256 | 4 | *) | 
| 5 | ||
| 6 | header {* Even and Odd for int and nat *}
 | |
| 7 | ||
| 8 | theory Parity | |
| 30738 | 9 | imports Main | 
| 21256 | 10 | begin | 
| 11 | ||
| 54228 | 12 | class even_odd = semiring_div_parity | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 13 | begin | 
| 21256 | 14 | |
| 54228 | 15 | definition even :: "'a \<Rightarrow> bool" | 
| 16 | where | |
| 17 | even_def [presburger]: "even a \<longleftrightarrow> a mod 2 = 0" | |
| 18 | ||
| 19 | lemma even_iff_2_dvd [algebra]: | |
| 20 | "even a \<longleftrightarrow> 2 dvd a" | |
| 21 | by (simp add: even_def dvd_eq_mod_eq_0) | |
| 22 | ||
| 23 | lemma even_zero [simp]: | |
| 24 | "even 0" | |
| 25 | by (simp add: even_def) | |
| 26 | ||
| 27 | lemma even_times_anything: | |
| 28 | "even a \<Longrightarrow> even (a * b)" | |
| 29 | by (simp add: even_iff_2_dvd) | |
| 30 | ||
| 31 | lemma anything_times_even: | |
| 32 | "even a \<Longrightarrow> even (b * a)" | |
| 33 | by (simp add: even_iff_2_dvd) | |
| 34 | ||
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 35 | abbreviation odd :: "'a \<Rightarrow> bool" | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 36 | where | 
| 54228 | 37 | "odd a \<equiv> \<not> even a" | 
| 38 | ||
| 39 | lemma odd_times_odd: | |
| 40 | "odd a \<Longrightarrow> odd b \<Longrightarrow> odd (a * b)" | |
| 41 | by (auto simp add: even_def mod_mult_left_eq) | |
| 42 | ||
| 43 | lemma even_product [simp, presburger]: | |
| 44 | "even (a * b) \<longleftrightarrow> even a \<or> even b" | |
| 45 | apply (auto simp add: even_times_anything anything_times_even) | |
| 46 | apply (rule ccontr) | |
| 47 | apply (auto simp add: odd_times_odd) | |
| 48 | done | |
| 22390 | 49 | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 50 | end | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 51 | |
| 54228 | 52 | instance nat and int :: even_odd .. | 
| 22390 | 53 | |
| 54228 | 54 | lemma even_nat_def [presburger]: | 
| 55 | "even x \<longleftrightarrow> even (int x)" | |
| 56 | by (auto simp add: even_def int_eq_iff int_mult nat_mult_distrib) | |
| 57 | ||
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 58 | lemma transfer_int_nat_relations: | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 59 | "even (int x) \<longleftrightarrow> even x" | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 60 | by (simp add: even_nat_def) | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 61 | |
| 35644 | 62 | declare transfer_morphism_int_nat[transfer add return: | 
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 63 | transfer_int_nat_relations | 
| 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
31718diff
changeset | 64 | ] | 
| 21256 | 65 | |
| 54228 | 66 | lemma odd_one_int [simp]: | 
| 67 | "odd (1::int)" | |
| 68 | by presburger | |
| 31148 | 69 | |
| 54228 | 70 | lemma odd_1_nat [simp]: | 
| 71 | "odd (1::nat)" | |
| 72 | by presburger | |
| 31148 | 73 | |
| 47224 | 74 | lemma even_numeral_int [simp]: "even (numeral (Num.Bit0 k) :: int)" | 
| 75 | unfolding even_def by simp | |
| 76 | ||
| 77 | lemma odd_numeral_int [simp]: "odd (numeral (Num.Bit1 k) :: int)" | |
| 78 | unfolding even_def by simp | |
| 79 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 80 | (* TODO: proper simp rules for Num.Bit0, Num.Bit1 *) | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54228diff
changeset | 81 | declare even_def [of "- numeral v", simp] for v | 
| 31148 | 82 | |
| 47224 | 83 | lemma even_numeral_nat [simp]: "even (numeral (Num.Bit0 k) :: nat)" | 
| 84 | unfolding even_nat_def by simp | |
| 85 | ||
| 86 | lemma odd_numeral_nat [simp]: "odd (numeral (Num.Bit1 k) :: nat)" | |
| 87 | unfolding even_nat_def by simp | |
| 31148 | 88 | |
| 21256 | 89 | subsection {* Even and odd are mutually exclusive *}
 | 
| 90 | ||
| 25600 | 91 | |
| 21256 | 92 | subsection {* Behavior under integer arithmetic operations *}
 | 
| 93 | ||
| 94 | lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" | |
| 31148 | 95 | by presburger | 
| 21256 | 96 | |
| 97 | lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" | |
| 31148 | 98 | by presburger | 
| 21256 | 99 | |
| 100 | lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" | |
| 31148 | 101 | by presburger | 
| 21256 | 102 | |
| 23522 | 103 | lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger | 
| 21256 | 104 | |
| 31148 | 105 | lemma even_sum[simp,presburger]: | 
| 106 | "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" | |
| 107 | by presburger | |
| 21256 | 108 | |
| 31148 | 109 | lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" | 
| 110 | by presburger | |
| 21256 | 111 | |
| 31148 | 112 | lemma even_difference[simp]: | 
| 23522 | 113 | "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger | 
| 21256 | 114 | |
| 31148 | 115 | lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)" | 
| 116 | by (induct n) auto | |
| 21256 | 117 | |
| 31148 | 118 | lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp | 
| 21256 | 119 | |
| 120 | ||
| 121 | subsection {* Equivalent definitions *}
 | |
| 122 | ||
| 23522 | 123 | lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" | 
| 31148 | 124 | by presburger | 
| 21256 | 125 | |
| 31148 | 126 | lemma two_times_odd_div_two_plus_one: | 
| 127 | "odd (x::int) ==> 2 * (x div 2) + 1 = x" | |
| 128 | by presburger | |
| 21256 | 129 | |
| 23522 | 130 | lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger | 
| 21256 | 131 | |
| 23522 | 132 | lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger | 
| 21256 | 133 | |
| 134 | subsection {* even and odd for nats *}
 | |
| 135 | ||
| 136 | lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" | |
| 31148 | 137 | by (simp add: even_nat_def) | 
| 21256 | 138 | |
| 31148 | 139 | lemma even_product_nat[simp,presburger,algebra]: | 
| 140 | "even((x::nat) * y) = (even x | even y)" | |
| 141 | by (simp add: even_nat_def int_mult) | |
| 21256 | 142 | |
| 31148 | 143 | lemma even_sum_nat[simp,presburger,algebra]: | 
| 144 | "even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" | |
| 23522 | 145 | by presburger | 
| 21256 | 146 | |
| 31148 | 147 | lemma even_difference_nat[simp,presburger,algebra]: | 
| 148 | "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" | |
| 149 | by presburger | |
| 21256 | 150 | |
| 31148 | 151 | lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" | 
| 152 | by presburger | |
| 21256 | 153 | |
| 31148 | 154 | lemma even_power_nat[simp,presburger,algebra]: | 
| 155 | "even ((x::nat)^y) = (even x & 0 < y)" | |
| 156 | by (simp add: even_nat_def int_power) | |
| 21256 | 157 | |
| 158 | ||
| 159 | subsection {* Equivalent definitions *}
 | |
| 160 | ||
| 161 | lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" | |
| 31148 | 162 | by presburger | 
| 21256 | 163 | |
| 164 | lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" | |
| 23522 | 165 | by presburger | 
| 21256 | 166 | |
| 21263 | 167 | lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" | 
| 31148 | 168 | by presburger | 
| 21256 | 169 | |
| 170 | lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" | |
| 31148 | 171 | by presburger | 
| 21256 | 172 | |
| 21263 | 173 | lemma even_nat_div_two_times_two: "even (x::nat) ==> | 
| 23522 | 174 | Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger | 
| 21256 | 175 | |
| 21263 | 176 | lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> | 
| 23522 | 177 | Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger | 
| 21256 | 178 | |
| 179 | lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" | |
| 31148 | 180 | by presburger | 
| 21256 | 181 | |
| 182 | lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" | |
| 31148 | 183 | by presburger | 
| 21256 | 184 | |
| 25600 | 185 | |
| 21256 | 186 | subsection {* Parity and powers *}
 | 
| 187 | ||
| 54228 | 188 | lemma (in comm_ring_1) neg_power_if: | 
| 189 | "(- a) ^ n = (if even n then (a ^ n) else - (a ^ n))" | |
| 190 | by (induct n) simp_all | |
| 21256 | 191 | |
| 54228 | 192 | lemma (in comm_ring_1) | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54228diff
changeset | 193 | shows neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54228diff
changeset | 194 | and neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54228diff
changeset | 195 | by (simp_all add: neg_power_if) | 
| 21256 | 196 | |
| 21263 | 197 | lemma zero_le_even_power: "even n ==> | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35216diff
changeset | 198 |     0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n"
 | 
| 21256 | 199 | apply (simp add: even_nat_equiv_def2) | 
| 200 | apply (erule exE) | |
| 201 | apply (erule ssubst) | |
| 202 | apply (subst power_add) | |
| 203 | apply (rule zero_le_square) | |
| 204 | done | |
| 205 | ||
| 21263 | 206 | lemma zero_le_odd_power: "odd n ==> | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 207 |     (0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)"
 | 
| 35216 | 208 | apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff) | 
| 36722 | 209 | apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square) | 
| 30056 | 210 | done | 
| 21256 | 211 | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 212 | lemma zero_le_power_eq [presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) =
 | 
| 21256 | 213 | (even n | (odd n & 0 <= x))" | 
| 214 | apply auto | |
| 21263 | 215 | apply (subst zero_le_odd_power [symmetric]) | 
| 21256 | 216 | apply assumption+ | 
| 217 | apply (erule zero_le_even_power) | |
| 21263 | 218 | done | 
| 21256 | 219 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 220 | lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) =
 | 
| 21256 | 221 | (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" | 
| 27668 | 222 | |
| 223 | unfolding order_less_le zero_le_power_eq by auto | |
| 21256 | 224 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 225 | lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) =
 | 
| 27668 | 226 | (odd n & x < 0)" | 
| 21263 | 227 | apply (subst linorder_not_le [symmetric])+ | 
| 21256 | 228 | apply (subst zero_le_power_eq) | 
| 229 | apply auto | |
| 21263 | 230 | done | 
| 21256 | 231 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 232 | lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) =
 | 
| 21256 | 233 | (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" | 
| 21263 | 234 | apply (subst linorder_not_less [symmetric])+ | 
| 21256 | 235 | apply (subst zero_less_power_eq) | 
| 236 | apply auto | |
| 21263 | 237 | done | 
| 21256 | 238 | |
| 21263 | 239 | lemma power_even_abs: "even n ==> | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 240 |     (abs (x::'a::{linordered_idom}))^n = x^n"
 | 
| 21263 | 241 | apply (subst power_abs [symmetric]) | 
| 21256 | 242 | apply (simp add: zero_le_even_power) | 
| 21263 | 243 | done | 
| 21256 | 244 | |
| 21263 | 245 | lemma power_minus_even [simp]: "even n ==> | 
| 31017 | 246 |     (- x)^n = (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 247 | apply (subst power_minus) | 
| 248 | apply simp | |
| 21263 | 249 | done | 
| 21256 | 250 | |
| 21263 | 251 | lemma power_minus_odd [simp]: "odd n ==> | 
| 31017 | 252 |     (- x)^n = - (x^n::'a::{comm_ring_1})"
 | 
| 21256 | 253 | apply (subst power_minus) | 
| 254 | apply simp | |
| 21263 | 255 | done | 
| 21256 | 256 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 257 | lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 258 | assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 259 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 260 | proof - | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 261 | have "0 \<le> \<bar>x\<bar>" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 262 | with `\<bar>x\<bar> \<le> \<bar>y\<bar>` | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 263 | have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 264 | thus ?thesis unfolding power_even_abs[OF `even n`] . | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 265 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 266 | |
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 267 | lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 268 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 269 | lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}"
 | 
| 29803 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 270 | assumes "odd n" and "x \<le> y" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 271 | shows "x^n \<le> y^n" | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 272 | proof (cases "y < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 273 | case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 274 | hence "(-y)^n \<le> (-x)^n" by (rule power_mono) | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 275 | thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 276 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 277 | case False | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 278 | show ?thesis | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 279 | proof (cases "x < 0") | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 280 | case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 281 | hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 282 | moreover | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 283 | from `\<not> y < 0` have "0 \<le> y" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 284 | hence "0 \<le> y^n" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 285 | ultimately show ?thesis by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 286 | next | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 287 | case False hence "0 \<le> x" by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 288 | with `x \<le> y` show ?thesis using power_mono by auto | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 289 | qed | 
| 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 hoelzl parents: 
29654diff
changeset | 290 | qed | 
| 21263 | 291 | |
| 25600 | 292 | |
| 293 | subsection {* More Even/Odd Results *}
 | |
| 294 | ||
| 27668 | 295 | lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger | 
| 296 | lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger | |
| 297 | lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger | |
| 25600 | 298 | |
| 27668 | 299 | lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger | 
| 25600 | 300 | |
| 27668 | 301 | lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger | 
| 25600 | 302 | |
| 303 | lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" | |
| 27668 | 304 | by presburger | 
| 25600 | 305 | |
| 27668 | 306 | lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger | 
| 307 | lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger | |
| 25600 | 308 | |
| 27668 | 309 | lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger | 
| 25600 | 310 | |
| 311 | lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" | |
| 27668 | 312 | by presburger | 
| 25600 | 313 | |
| 21263 | 314 | text {* Simplify, when the exponent is a numeral *}
 | 
| 21256 | 315 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 316 | lemmas zero_le_power_eq_numeral [simp] = | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 317 | zero_le_power_eq [of _ "numeral w"] for w | 
| 21256 | 318 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 319 | lemmas zero_less_power_eq_numeral [simp] = | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 320 | zero_less_power_eq [of _ "numeral w"] for w | 
| 21256 | 321 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 322 | lemmas power_le_zero_eq_numeral [simp] = | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 323 | power_le_zero_eq [of _ "numeral w"] for w | 
| 21256 | 324 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 325 | lemmas power_less_zero_eq_numeral [simp] = | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 326 | power_less_zero_eq [of _ "numeral w"] for w | 
| 21256 | 327 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45607diff
changeset | 328 | lemmas zero_less_power_nat_eq_numeral [simp] = | 
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 329 | nat_zero_less_power_iff [of _ "numeral w"] for w | 
| 21256 | 330 | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 331 | lemmas power_eq_0_iff_numeral [simp] = | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 332 | power_eq_0_iff [of _ "numeral w"] for w | 
| 21256 | 333 | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 334 | lemmas power_even_abs_numeral [simp] = | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 335 | power_even_abs [of "numeral w" _] for w | 
| 21256 | 336 | |
| 337 | ||
| 338 | subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
 | |
| 339 | ||
| 23522 | 340 | lemma zero_le_power_iff[presburger]: | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
33358diff
changeset | 341 |   "(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)"
 | 
| 21256 | 342 | proof cases | 
| 343 | assume even: "even n" | |
| 344 | then obtain k where "n = 2*k" | |
| 345 | by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) | |
| 21263 | 346 | thus ?thesis by (simp add: zero_le_even_power even) | 
| 21256 | 347 | next | 
| 348 | assume odd: "odd n" | |
| 349 | then obtain k where "n = Suc(2*k)" | |
| 350 | by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 351 | moreover have "a ^ (2 * k) \<le> 0 \<Longrightarrow> a = 0" | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 352 | by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 353 | ultimately show ?thesis | 
| 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 354 | by (auto simp add: zero_le_mult_iff zero_le_even_power) | 
| 21263 | 355 | qed | 
| 356 | ||
| 21256 | 357 | |
| 358 | subsection {* Miscellaneous *}
 | |
| 359 | ||
| 23522 | 360 | lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger | 
| 361 | lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger | |
| 362 | lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger | |
| 363 | lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger | |
| 21256 | 364 | |
| 23522 | 365 | lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger | 
| 21263 | 366 | lemma even_nat_plus_one_div_two: "even (x::nat) ==> | 
| 23522 | 367 | (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger | 
| 21256 | 368 | |
| 21263 | 369 | lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> | 
| 23522 | 370 | (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger | 
| 21256 | 371 | |
| 372 | end | |
| 54227 
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
 haftmann parents: 
47225diff
changeset | 373 |