src/HOL/Library/Parity.thy
author chaieb
Mon Jul 02 10:43:17 2007 +0200 (2007-07-02)
changeset 23522 7e8255828502
parent 23438 dd824e86fa8a
child 25134 3d4953e88449
permissions -rw-r--r--
Tuned proofs
wenzelm@21263
     1
(*  Title:      HOL/Library/Parity.thy
wenzelm@21256
     2
    ID:         $Id$
wenzelm@21256
     3
    Author:     Jeremy Avigad
wenzelm@21256
     4
*)
wenzelm@21256
     5
wenzelm@21256
     6
header {* Even and Odd for int and nat *}
wenzelm@21256
     7
wenzelm@21256
     8
theory Parity
wenzelm@21256
     9
imports Main
wenzelm@21256
    10
begin
wenzelm@21256
    11
haftmann@22473
    12
class even_odd = type + 
haftmann@22390
    13
  fixes even :: "'a \<Rightarrow> bool"
wenzelm@21256
    14
wenzelm@21256
    15
abbreviation
haftmann@22390
    16
  odd :: "'a\<Colon>even_odd \<Rightarrow> bool" where
haftmann@22390
    17
  "odd x \<equiv> \<not> even x"
haftmann@22390
    18
haftmann@22390
    19
instance int :: even_odd
chaieb@23522
    20
  even_def[presburger]: "even x \<equiv> x mod 2 = 0" ..
haftmann@22390
    21
haftmann@22390
    22
instance nat :: even_odd
chaieb@23522
    23
  even_nat_def[presburger]: "even x \<equiv> even (int x)" ..
wenzelm@21256
    24
wenzelm@21256
    25
wenzelm@21256
    26
subsection {* Even and odd are mutually exclusive *}
wenzelm@21256
    27
wenzelm@21263
    28
lemma int_pos_lt_two_imp_zero_or_one:
wenzelm@21256
    29
    "0 <= x ==> (x::int) < 2 ==> x = 0 | x = 1"
chaieb@23522
    30
  by presburger
wenzelm@21256
    31
chaieb@23522
    32
lemma neq_one_mod_two [simp, presburger]: 
chaieb@23522
    33
  "((x::int) mod 2 ~= 0) = (x mod 2 = 1)" by presburger
wenzelm@21256
    34
wenzelm@21256
    35
subsection {* Behavior under integer arithmetic operations *}
wenzelm@21256
    36
wenzelm@21256
    37
lemma even_times_anything: "even (x::int) ==> even (x * y)"
wenzelm@21256
    38
  by (simp add: even_def zmod_zmult1_eq')
wenzelm@21256
    39
wenzelm@21256
    40
lemma anything_times_even: "even (y::int) ==> even (x * y)"
wenzelm@21256
    41
  by (simp add: even_def zmod_zmult1_eq)
wenzelm@21256
    42
wenzelm@21256
    43
lemma odd_times_odd: "odd (x::int) ==> odd y ==> odd (x * y)"
wenzelm@21256
    44
  by (simp add: even_def zmod_zmult1_eq)
wenzelm@21256
    45
chaieb@23522
    46
lemma even_product[presburger]: "even((x::int) * y) = (even x | even y)"
wenzelm@21263
    47
  apply (auto simp add: even_times_anything anything_times_even)
wenzelm@21256
    48
  apply (rule ccontr)
wenzelm@21256
    49
  apply (auto simp add: odd_times_odd)
wenzelm@21256
    50
  done
wenzelm@21256
    51
wenzelm@21256
    52
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)"
chaieb@23522
    53
  by presburger
wenzelm@21256
    54
wenzelm@21256
    55
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)"
chaieb@23522
    56
  by presburger
wenzelm@21256
    57
wenzelm@21256
    58
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)"
chaieb@23522
    59
  by presburger
wenzelm@21256
    60
chaieb@23522
    61
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger
wenzelm@21256
    62
chaieb@23522
    63
lemma even_sum[presburger]: "even ((x::int) + y) = ((even x & even y) | (odd x & odd y))"
chaieb@23522
    64
  by presburger
wenzelm@21256
    65
chaieb@23522
    66
lemma even_neg[presburger]: "even (-(x::int)) = even x" by presburger
wenzelm@21256
    67
wenzelm@21263
    68
lemma even_difference:
chaieb@23522
    69
    "even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
    70
wenzelm@21263
    71
lemma even_pow_gt_zero:
wenzelm@21263
    72
    "even (x::int) ==> 0 < n ==> even (x^n)"
wenzelm@21263
    73
  by (induct n) (auto simp add: even_product)
wenzelm@21256
    74
chaieb@23522
    75
lemma odd_pow_iff[presburger]: "odd ((x::int) ^ n) \<longleftrightarrow> (n = 0 \<or> odd x)"
chaieb@23522
    76
  apply (induct n, simp_all)
chaieb@23522
    77
  apply presburger
chaieb@23522
    78
  apply (case_tac n, auto)
chaieb@23522
    79
  apply (simp_all add: even_product)
wenzelm@21256
    80
  done
wenzelm@21256
    81
chaieb@23522
    82
lemma odd_pow: "odd x ==> odd((x::int)^n)" by (simp add: odd_pow_iff)
chaieb@23522
    83
chaieb@23522
    84
lemma even_power[presburger]: "even ((x::int)^n) = (even x & 0 < n)"
wenzelm@21263
    85
  apply (auto simp add: even_pow_gt_zero)
wenzelm@21256
    86
  apply (erule contrapos_pp, erule odd_pow)
wenzelm@21256
    87
  apply (erule contrapos_pp, simp add: even_def)
wenzelm@21256
    88
  done
wenzelm@21256
    89
chaieb@23522
    90
lemma even_zero[presburger]: "even (0::int)" by presburger
wenzelm@21256
    91
chaieb@23522
    92
lemma odd_one[presburger]: "odd (1::int)" by presburger
wenzelm@21256
    93
wenzelm@21263
    94
lemmas even_odd_simps [simp] = even_def[of "number_of v",standard] even_zero
wenzelm@21256
    95
  odd_one even_product even_sum even_neg even_difference even_power
wenzelm@21256
    96
wenzelm@21256
    97
wenzelm@21256
    98
subsection {* Equivalent definitions *}
wenzelm@21256
    99
chaieb@23522
   100
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" 
chaieb@23522
   101
  by presburger
wenzelm@21256
   102
wenzelm@21263
   103
lemma two_times_odd_div_two_plus_one: "odd (x::int) ==>
chaieb@23522
   104
    2 * (x div 2) + 1 = x" by presburger
wenzelm@21256
   105
chaieb@23522
   106
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger
wenzelm@21256
   107
chaieb@23522
   108
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger
wenzelm@21256
   109
wenzelm@21256
   110
subsection {* even and odd for nats *}
wenzelm@21256
   111
wenzelm@21256
   112
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)"
wenzelm@21256
   113
  by (simp add: even_nat_def)
wenzelm@21256
   114
chaieb@23522
   115
lemma even_nat_product[presburger]: "even((x::nat) * y) = (even x | even y)"
huffman@23431
   116
  by (simp add: even_nat_def int_mult)
wenzelm@21256
   117
chaieb@23522
   118
lemma even_nat_sum[presburger]: "even ((x::nat) + y) =
chaieb@23522
   119
    ((even x & even y) | (odd x & odd y))" by presburger
wenzelm@21256
   120
chaieb@23522
   121
lemma even_nat_difference[presburger]:
wenzelm@21256
   122
    "even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))"
chaieb@23522
   123
by presburger
wenzelm@21256
   124
chaieb@23522
   125
lemma even_nat_Suc[presburger]: "even (Suc x) = odd x" by presburger
wenzelm@21256
   126
chaieb@23522
   127
lemma even_nat_power[presburger]: "even ((x::nat)^y) = (even x & 0 < y)"
huffman@23431
   128
  by (simp add: even_nat_def int_power)
wenzelm@21256
   129
chaieb@23522
   130
lemma even_nat_zero[presburger]: "even (0::nat)" by presburger
wenzelm@21256
   131
wenzelm@21263
   132
lemmas even_odd_nat_simps [simp] = even_nat_def[of "number_of v",standard]
wenzelm@21256
   133
  even_nat_zero even_nat_Suc even_nat_product even_nat_sum even_nat_power
wenzelm@21256
   134
wenzelm@21256
   135
wenzelm@21256
   136
subsection {* Equivalent definitions *}
wenzelm@21256
   137
wenzelm@21263
   138
lemma nat_lt_two_imp_zero_or_one: "(x::nat) < Suc (Suc 0) ==>
chaieb@23522
   139
    x = 0 | x = Suc 0" by presburger
wenzelm@21256
   140
wenzelm@21256
   141
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0"
chaieb@23522
   142
  by presburger
wenzelm@21256
   143
wenzelm@21256
   144
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0"
chaieb@23522
   145
by presburger
wenzelm@21256
   146
wenzelm@21263
   147
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)"
chaieb@23522
   148
  by presburger
wenzelm@21256
   149
wenzelm@21256
   150
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)"
chaieb@23522
   151
  by presburger
wenzelm@21256
   152
wenzelm@21263
   153
lemma even_nat_div_two_times_two: "even (x::nat) ==>
chaieb@23522
   154
    Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger
wenzelm@21256
   155
wenzelm@21263
   156
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==>
chaieb@23522
   157
    Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger
wenzelm@21256
   158
wenzelm@21256
   159
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)"
chaieb@23522
   160
  by presburger
wenzelm@21256
   161
wenzelm@21256
   162
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))"
chaieb@23522
   163
  by presburger
wenzelm@21256
   164
wenzelm@21256
   165
subsection {* Parity and powers *}
wenzelm@21256
   166
wenzelm@21263
   167
lemma  minus_one_even_odd_power:
wenzelm@21263
   168
     "(even x --> (- 1::'a::{comm_ring_1,recpower})^x = 1) &
wenzelm@21256
   169
      (odd x --> (- 1::'a)^x = - 1)"
wenzelm@21256
   170
  apply (induct x)
wenzelm@21256
   171
  apply (rule conjI)
wenzelm@21256
   172
  apply simp
wenzelm@21256
   173
  apply (insert even_nat_zero, blast)
wenzelm@21256
   174
  apply (simp add: power_Suc)
wenzelm@21263
   175
  done
wenzelm@21256
   176
wenzelm@21256
   177
lemma minus_one_even_power [simp]:
wenzelm@21263
   178
    "even x ==> (- 1::'a::{comm_ring_1,recpower})^x = 1"
wenzelm@21263
   179
  using minus_one_even_odd_power by blast
wenzelm@21256
   180
wenzelm@21256
   181
lemma minus_one_odd_power [simp]:
wenzelm@21263
   182
    "odd x ==> (- 1::'a::{comm_ring_1,recpower})^x = - 1"
wenzelm@21263
   183
  using minus_one_even_odd_power by blast
wenzelm@21256
   184
wenzelm@21256
   185
lemma neg_one_even_odd_power:
wenzelm@21263
   186
     "(even x --> (-1::'a::{number_ring,recpower})^x = 1) &
wenzelm@21256
   187
      (odd x --> (-1::'a)^x = -1)"
wenzelm@21256
   188
  apply (induct x)
wenzelm@21256
   189
  apply (simp, simp add: power_Suc)
wenzelm@21256
   190
  done
wenzelm@21256
   191
wenzelm@21256
   192
lemma neg_one_even_power [simp]:
wenzelm@21263
   193
    "even x ==> (-1::'a::{number_ring,recpower})^x = 1"
wenzelm@21263
   194
  using neg_one_even_odd_power by blast
wenzelm@21256
   195
wenzelm@21256
   196
lemma neg_one_odd_power [simp]:
wenzelm@21263
   197
    "odd x ==> (-1::'a::{number_ring,recpower})^x = -1"
wenzelm@21263
   198
  using neg_one_even_odd_power by blast
wenzelm@21256
   199
wenzelm@21256
   200
lemma neg_power_if:
wenzelm@21263
   201
     "(-x::'a::{comm_ring_1,recpower}) ^ n =
wenzelm@21256
   202
      (if even n then (x ^ n) else -(x ^ n))"
wenzelm@21263
   203
  apply (induct n)
wenzelm@21263
   204
  apply (simp_all split: split_if_asm add: power_Suc)
wenzelm@21263
   205
  done
wenzelm@21256
   206
wenzelm@21263
   207
lemma zero_le_even_power: "even n ==>
wenzelm@21256
   208
    0 <= (x::'a::{recpower,ordered_ring_strict}) ^ n"
wenzelm@21256
   209
  apply (simp add: even_nat_equiv_def2)
wenzelm@21256
   210
  apply (erule exE)
wenzelm@21256
   211
  apply (erule ssubst)
wenzelm@21256
   212
  apply (subst power_add)
wenzelm@21256
   213
  apply (rule zero_le_square)
wenzelm@21256
   214
  done
wenzelm@21256
   215
wenzelm@21263
   216
lemma zero_le_odd_power: "odd n ==>
wenzelm@21256
   217
    (0 <= (x::'a::{recpower,ordered_idom}) ^ n) = (0 <= x)"
wenzelm@21256
   218
  apply (simp add: odd_nat_equiv_def2)
wenzelm@21256
   219
  apply (erule exE)
wenzelm@21256
   220
  apply (erule ssubst)
wenzelm@21256
   221
  apply (subst power_Suc)
wenzelm@21256
   222
  apply (subst power_add)
wenzelm@21256
   223
  apply (subst zero_le_mult_iff)
wenzelm@21256
   224
  apply auto
wenzelm@21256
   225
  apply (subgoal_tac "x = 0 & 0 < y")
wenzelm@21256
   226
  apply (erule conjE, assumption)
wenzelm@21263
   227
  apply (subst power_eq_0_iff [symmetric])
wenzelm@21256
   228
  apply (subgoal_tac "0 <= x^y * x^y")
wenzelm@21256
   229
  apply simp
wenzelm@21256
   230
  apply (rule zero_le_square)+
wenzelm@21263
   231
  done
wenzelm@21256
   232
chaieb@23522
   233
lemma zero_le_power_eq[presburger]: "(0 <= (x::'a::{recpower,ordered_idom}) ^ n) =
wenzelm@21256
   234
    (even n | (odd n & 0 <= x))"
wenzelm@21256
   235
  apply auto
wenzelm@21263
   236
  apply (subst zero_le_odd_power [symmetric])
wenzelm@21256
   237
  apply assumption+
wenzelm@21256
   238
  apply (erule zero_le_even_power)
wenzelm@21263
   239
  apply (subst zero_le_odd_power)
wenzelm@21256
   240
  apply assumption+
wenzelm@21263
   241
  done
wenzelm@21256
   242
chaieb@23522
   243
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{recpower,ordered_idom}) ^ n) =
wenzelm@21256
   244
    (n = 0 | (even n & x ~= 0) | (odd n & 0 < x))"
wenzelm@21256
   245
  apply (rule iffI)
wenzelm@21256
   246
  apply clarsimp
wenzelm@21256
   247
  apply (rule conjI)
wenzelm@21256
   248
  apply clarsimp
wenzelm@21256
   249
  apply (rule ccontr)
wenzelm@21256
   250
  apply (subgoal_tac "~ (0 <= x^n)")
wenzelm@21256
   251
  apply simp
wenzelm@21256
   252
  apply (subst zero_le_odd_power)
wenzelm@21263
   253
  apply assumption
wenzelm@21256
   254
  apply simp
wenzelm@21256
   255
  apply (rule notI)
wenzelm@21256
   256
  apply (simp add: power_0_left)
wenzelm@21256
   257
  apply (rule notI)
wenzelm@21256
   258
  apply (simp add: power_0_left)
wenzelm@21256
   259
  apply auto
wenzelm@21256
   260
  apply (subgoal_tac "0 <= x^n")
wenzelm@21256
   261
  apply (frule order_le_imp_less_or_eq)
wenzelm@21256
   262
  apply simp
wenzelm@21256
   263
  apply (erule zero_le_even_power)
wenzelm@21256
   264
  apply (subgoal_tac "0 <= x^n")
wenzelm@21256
   265
  apply (frule order_le_imp_less_or_eq)
wenzelm@21256
   266
  apply auto
wenzelm@21256
   267
  apply (subst zero_le_odd_power)
wenzelm@21256
   268
  apply assumption
wenzelm@21256
   269
  apply (erule order_less_imp_le)
wenzelm@21263
   270
  done
wenzelm@21256
   271
chaieb@23522
   272
lemma power_less_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n < 0) =
chaieb@23522
   273
    (odd n & x < 0)" 
wenzelm@21263
   274
  apply (subst linorder_not_le [symmetric])+
wenzelm@21256
   275
  apply (subst zero_le_power_eq)
wenzelm@21256
   276
  apply auto
wenzelm@21263
   277
  done
wenzelm@21256
   278
chaieb@23522
   279
lemma power_le_zero_eq[presburger]: "((x::'a::{recpower,ordered_idom}) ^ n <= 0) =
wenzelm@21256
   280
    (n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))"
wenzelm@21263
   281
  apply (subst linorder_not_less [symmetric])+
wenzelm@21256
   282
  apply (subst zero_less_power_eq)
wenzelm@21256
   283
  apply auto
wenzelm@21263
   284
  done
wenzelm@21256
   285
wenzelm@21263
   286
lemma power_even_abs: "even n ==>
wenzelm@21256
   287
    (abs (x::'a::{recpower,ordered_idom}))^n = x^n"
wenzelm@21263
   288
  apply (subst power_abs [symmetric])
wenzelm@21256
   289
  apply (simp add: zero_le_even_power)
wenzelm@21263
   290
  done
wenzelm@21256
   291
chaieb@23522
   292
lemma zero_less_power_nat_eq[presburger]: "(0 < (x::nat) ^ n) = (n = 0 | 0 < x)"
wenzelm@21263
   293
  by (induct n) auto
wenzelm@21256
   294
wenzelm@21263
   295
lemma power_minus_even [simp]: "even n ==>
wenzelm@21256
   296
    (- x)^n = (x^n::'a::{recpower,comm_ring_1})"
wenzelm@21256
   297
  apply (subst power_minus)
wenzelm@21256
   298
  apply simp
wenzelm@21263
   299
  done
wenzelm@21256
   300
wenzelm@21263
   301
lemma power_minus_odd [simp]: "odd n ==>
wenzelm@21256
   302
    (- x)^n = - (x^n::'a::{recpower,comm_ring_1})"
wenzelm@21256
   303
  apply (subst power_minus)
wenzelm@21256
   304
  apply simp
wenzelm@21263
   305
  done
wenzelm@21256
   306
wenzelm@21263
   307
wenzelm@21263
   308
text {* Simplify, when the exponent is a numeral *}
wenzelm@21256
   309
wenzelm@21256
   310
lemmas power_0_left_number_of = power_0_left [of "number_of w", standard]
wenzelm@21256
   311
declare power_0_left_number_of [simp]
wenzelm@21256
   312
wenzelm@21263
   313
lemmas zero_le_power_eq_number_of [simp] =
wenzelm@21256
   314
    zero_le_power_eq [of _ "number_of w", standard]
wenzelm@21256
   315
wenzelm@21263
   316
lemmas zero_less_power_eq_number_of [simp] =
wenzelm@21256
   317
    zero_less_power_eq [of _ "number_of w", standard]
wenzelm@21256
   318
wenzelm@21263
   319
lemmas power_le_zero_eq_number_of [simp] =
wenzelm@21256
   320
    power_le_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   321
wenzelm@21263
   322
lemmas power_less_zero_eq_number_of [simp] =
wenzelm@21256
   323
    power_less_zero_eq [of _ "number_of w", standard]
wenzelm@21256
   324
wenzelm@21263
   325
lemmas zero_less_power_nat_eq_number_of [simp] =
wenzelm@21256
   326
    zero_less_power_nat_eq [of _ "number_of w", standard]
wenzelm@21256
   327
wenzelm@21263
   328
lemmas power_eq_0_iff_number_of [simp] = power_eq_0_iff [of _ "number_of w", standard]
wenzelm@21256
   329
wenzelm@21263
   330
lemmas power_even_abs_number_of [simp] = power_even_abs [of "number_of w" _, standard]
wenzelm@21256
   331
wenzelm@21256
   332
wenzelm@21256
   333
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *}
wenzelm@21256
   334
wenzelm@21256
   335
lemma even_power_le_0_imp_0:
wenzelm@21263
   336
    "a ^ (2*k) \<le> (0::'a::{ordered_idom,recpower}) ==> a=0"
wenzelm@21263
   337
  by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff power_Suc)
wenzelm@21256
   338
chaieb@23522
   339
lemma zero_le_power_iff[presburger]:
wenzelm@21263
   340
  "(0 \<le> a^n) = (0 \<le> (a::'a::{ordered_idom,recpower}) | even n)"
wenzelm@21256
   341
proof cases
wenzelm@21256
   342
  assume even: "even n"
wenzelm@21256
   343
  then obtain k where "n = 2*k"
wenzelm@21256
   344
    by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21263
   345
  thus ?thesis by (simp add: zero_le_even_power even)
wenzelm@21256
   346
next
wenzelm@21256
   347
  assume odd: "odd n"
wenzelm@21256
   348
  then obtain k where "n = Suc(2*k)"
wenzelm@21256
   349
    by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2)
wenzelm@21256
   350
  thus ?thesis
wenzelm@21263
   351
    by (auto simp add: power_Suc zero_le_mult_iff zero_le_even_power
wenzelm@21263
   352
             dest!: even_power_le_0_imp_0)
wenzelm@21263
   353
qed
wenzelm@21263
   354
wenzelm@21256
   355
wenzelm@21256
   356
subsection {* Miscellaneous *}
wenzelm@21256
   357
chaieb@23522
   358
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger
chaieb@23522
   359
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger
chaieb@23522
   360
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2"  by presburger
chaieb@23522
   361
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger
wenzelm@21256
   362
wenzelm@21263
   363
lemma div_Suc: "Suc a div c = a div c + Suc 0 div c +
chaieb@23522
   364
    (a mod c + Suc 0 mod c) div c" 
wenzelm@21256
   365
  apply (subgoal_tac "Suc a = a + Suc 0")
wenzelm@21256
   366
  apply (erule ssubst)
wenzelm@21256
   367
  apply (rule div_add1_eq, simp)
wenzelm@21256
   368
  done
wenzelm@21256
   369
chaieb@23522
   370
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
chaieb@23522
   371
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger
wenzelm@21263
   372
lemma even_nat_plus_one_div_two: "even (x::nat) ==>
chaieb@23522
   373
    (Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger
wenzelm@21256
   374
wenzelm@21263
   375
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==>
chaieb@23522
   376
    (Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger
wenzelm@21256
   377
wenzelm@21256
   378
end