| author | wenzelm | 
| Sun, 21 Feb 2010 21:04:17 +0100 | |
| changeset 35254 | 0f17eda72e60 | 
| parent 34964 | 4e8be3c04d37 | 
| child 35542 | 8f97d8caabfd | 
| permissions | -rw-r--r-- | 
| 33175 | 1  | 
(* Title: HOL/Library/Convex_Euclidean_Space.thy  | 
2  | 
Author: Robert Himmelmann, TU Muenchen  | 
|
3  | 
*)  | 
|
4  | 
||
5  | 
header {* Convex sets, functions and related things. *}
 | 
|
6  | 
||
7  | 
theory Convex_Euclidean_Space  | 
|
8  | 
imports Topology_Euclidean_Space  | 
|
9  | 
begin  | 
|
10  | 
||
11  | 
||
12  | 
(* ------------------------------------------------------------------------- *)  | 
|
13  | 
(* To be moved elsewhere *)  | 
|
14  | 
(* ------------------------------------------------------------------------- *)  | 
|
15  | 
||
16  | 
declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp]  | 
|
17  | 
declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp]  | 
|
18  | 
declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp]  | 
|
19  | 
declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp]  | 
|
20  | 
declare UNIV_1[simp]  | 
|
21  | 
||
| 34964 | 22  | 
(*lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto*)
 | 
23  | 
||
24  | 
lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_le_def Cart_lambda_beta basis_component vector_uminus_component  | 
|
| 33175 | 25  | 
|
26  | 
lemma dest_vec1_simps[simp]: fixes a::"real^1"  | 
|
27  | 
shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*)  | 
|
28  | 
"a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1"  | 
|
| 34964 | 29  | 
by(auto simp add:vector_component_simps forall_1 Cart_eq)  | 
| 33175 | 30  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
31  | 
lemma norm_not_0:"(x::real^'n)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto  | 
| 33175 | 32  | 
|
33  | 
lemma setsum_delta_notmem: assumes "x\<notin>s"  | 
|
34  | 
shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s"  | 
|
35  | 
"setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s"  | 
|
36  | 
"setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s"  | 
|
37  | 
"setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s"  | 
|
38  | 
apply(rule_tac [!] setsum_cong2) using assms by auto  | 
|
39  | 
||
40  | 
lemma setsum_delta'':  | 
|
41  | 
fixes s::"'a::real_vector set" assumes "finite s"  | 
|
42  | 
shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)"  | 
|
43  | 
proof-  | 
|
44  | 
have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto  | 
|
45  | 
show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto  | 
|
46  | 
qed  | 
|
47  | 
||
48  | 
lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
 | 
|
49  | 
||
50  | 
lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto  | 
|
51  | 
||
52  | 
lemma mem_interval_1: fixes x :: "real^1" shows  | 
|
53  | 
 "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
 | 
|
54  | 
 "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
 | 
|
| 34964 | 55  | 
by(simp_all add: Cart_eq vector_less_def vector_le_def forall_1)  | 
| 33175 | 56  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
57  | 
lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::real^'n)) ` {a..b} =
 | 
| 33175 | 58  | 
  (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
 | 
59  | 
using image_affinity_interval[of m 0 a b] by auto  | 
|
60  | 
||
61  | 
lemma dest_vec1_inverval:  | 
|
62  | 
  "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
 | 
|
63  | 
  "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
 | 
|
64  | 
  "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
 | 
|
65  | 
  "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
 | 
|
66  | 
apply(rule_tac [!] equalityI)  | 
|
67  | 
unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff  | 
|
68  | 
apply(rule_tac [!] allI)apply(rule_tac [!] impI)  | 
|
69  | 
apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI)  | 
|
70  | 
apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI)  | 
|
| 34964 | 71  | 
by (auto simp add: vector_less_def vector_le_def forall_1  | 
72  | 
vec1_dest_vec1[unfolded One_nat_def])  | 
|
| 33175 | 73  | 
|
74  | 
lemma dest_vec1_setsum: assumes "finite S"  | 
|
75  | 
shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S"  | 
|
76  | 
using dest_vec1_sum[OF assms] by auto  | 
|
77  | 
||
78  | 
lemma dist_triangle_eq:  | 
|
79  | 
fixes x y z :: "real ^ _"  | 
|
80  | 
shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)"  | 
|
81  | 
proof- have *:"x - y + (y - z) = x - z" by auto  | 
|
82  | 
show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded smult_conv_scaleR *]  | 
|
83  | 
by(auto simp add:norm_minus_commute) qed  | 
|
84  | 
||
85  | 
lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
86  | 
lemma norm_minus_eqI:"(x::real^'n) = - y \<Longrightarrow> norm x = norm y" by auto  | 
| 33175 | 87  | 
|
88  | 
lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
 | 
|
89  | 
unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto  | 
|
90  | 
||
91  | 
lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1"  | 
|
92  | 
using one_le_card_finite by auto  | 
|
93  | 
||
94  | 
lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
 | 
|
95  | 
by(metis dimindex_ge_1 linorder_not_less real_eq_of_nat real_le_trans real_of_nat_1 real_of_nat_le_iff)  | 
|
96  | 
||
97  | 
lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
 | 
|
98  | 
||
99  | 
subsection {* Affine set and affine hull.*}
 | 
|
100  | 
||
101  | 
definition  | 
|
102  | 
affine :: "'a::real_vector set \<Rightarrow> bool" where  | 
|
103  | 
"affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"  | 
|
104  | 
||
105  | 
lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)"  | 
|
106  | 
proof- have *:"\<And>u v ::real. u + v = 1 \<longleftrightarrow> v = 1 - u" by auto  | 
|
107  | 
  { fix x y assume "x\<in>s" "y\<in>s"
 | 
|
108  | 
hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" apply auto  | 
|
109  | 
apply(erule_tac[!] x="1 - u" in allE) unfolding * by auto }  | 
|
110  | 
thus ?thesis unfolding affine_def by auto qed  | 
|
111  | 
||
112  | 
lemma affine_empty[intro]: "affine {}"
 | 
|
113  | 
unfolding affine_def by auto  | 
|
114  | 
||
115  | 
lemma affine_sing[intro]: "affine {x}"
 | 
|
116  | 
unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric])  | 
|
117  | 
||
118  | 
lemma affine_UNIV[intro]: "affine UNIV"  | 
|
119  | 
unfolding affine_def by auto  | 
|
120  | 
||
121  | 
lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)"  | 
|
122  | 
unfolding affine_def by auto  | 
|
123  | 
||
124  | 
lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)"  | 
|
125  | 
unfolding affine_def by auto  | 
|
126  | 
||
127  | 
lemma affine_affine_hull: "affine(affine hull s)"  | 
|
128  | 
  unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
 | 
|
129  | 
unfolding mem_def by auto  | 
|
130  | 
||
131  | 
lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s"  | 
|
132  | 
proof-  | 
|
133  | 
  { fix f assume "f \<subseteq> affine"
 | 
|
134  | 
hence "affine (\<Inter>f)" using affine_Inter[of f] unfolding subset_eq mem_def by auto }  | 
|
135  | 
thus ?thesis using hull_eq[unfolded mem_def, of affine s] by auto  | 
|
136  | 
qed  | 
|
137  | 
||
138  | 
lemma setsum_restrict_set'': assumes "finite A"  | 
|
139  | 
  shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | 
|
140  | 
unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] ..  | 
|
141  | 
||
142  | 
subsection {* Some explicit formulations (from Lars Schewe). *}
 | 
|
143  | 
||
144  | 
lemma affine: fixes V::"'a::real_vector set"  | 
|
145  | 
  shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
 | 
|
146  | 
unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+  | 
|
147  | 
defer apply(rule, rule, rule, rule, rule) proof-  | 
|
148  | 
fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)"  | 
|
149  | 
    "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
 | 
|
150  | 
thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y")  | 
|
151  | 
    using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
 | 
|
152  | 
by(auto simp add: scaleR_left_distrib[THEN sym])  | 
|
153  | 
next  | 
|
154  | 
fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"  | 
|
155  | 
    "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
 | 
|
156  | 
def n \<equiv> "card s"  | 
|
157  | 
have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto  | 
|
158  | 
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE)  | 
|
159  | 
assume "card s = 2" hence "card s = Suc (Suc 0)" by auto  | 
|
160  | 
    then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
 | 
|
161  | 
thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5)  | 
|
162  | 
by(auto simp add: setsum_clauses(2))  | 
|
163  | 
next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s)  | 
|
164  | 
case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real"  | 
|
165  | 
assume IA:"\<And>u s. \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s;  | 
|
| 34915 | 166  | 
               s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
 | 
167  | 
as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V"  | 
|
| 33175 | 168  | 
           "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
 | 
169  | 
have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr)  | 
|
170  | 
assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto  | 
|
171  | 
thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15)  | 
|
172  | 
less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed  | 
|
173  | 
then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto  | 
|
174  | 
||
175  | 
      have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
 | 
|
176  | 
      have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
 | 
|
177  | 
      have **:"setsum u (s - {x}) = 1 - u x"
 | 
|
178  | 
using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto  | 
|
179  | 
      have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
 | 
|
180  | 
      have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
 | 
|
181  | 
        case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
 | 
|
182  | 
          assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
 | 
|
183  | 
thus False using True by auto qed auto  | 
|
184  | 
        thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
 | 
|
185  | 
unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto  | 
|
186  | 
      next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
 | 
|
187  | 
        then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
 | 
|
188  | 
thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]]  | 
|
189  | 
using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed  | 
|
190  | 
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric]  | 
|
191  | 
apply(subst *) unfolding setsum_clauses(2)[OF *(2)]  | 
|
192  | 
         using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *\<^sub>R (\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa)"], 
 | 
|
193  | 
THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto  | 
|
194  | 
qed auto  | 
|
195  | 
  next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
 | 
|
196  | 
thus ?thesis using as(4,5) by simp  | 
|
197  | 
  qed(insert `s\<noteq>{}` `finite s`, auto)
 | 
|
198  | 
qed  | 
|
199  | 
||
200  | 
lemma affine_hull_explicit:  | 
|
201  | 
  "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
 | 
|
202  | 
apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine]  | 
|
203  | 
apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof-  | 
|
204  | 
  fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | 
|
205  | 
    apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
 | 
|
206  | 
next  | 
|
207  | 
  fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | 
|
208  | 
thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto  | 
|
209  | 
next  | 
|
210  | 
  show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
 | 
|
211  | 
apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof-  | 
|
212  | 
fix u v ::real assume uv:"u + v = 1"  | 
|
213  | 
    fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | 
|
214  | 
    then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
 | 
|
215  | 
    fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
 | 
|
216  | 
    then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
 | 
|
217  | 
have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto  | 
|
218  | 
have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto  | 
|
219  | 
    show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
 | 
|
220  | 
apply(rule_tac x="sx \<union> sy" in exI)  | 
|
221  | 
apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI)  | 
|
222  | 
unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left ** setsum_restrict_set[OF xy, THEN sym]  | 
|
223  | 
unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym]  | 
|
224  | 
unfolding x y using x(1-3) y(1-3) uv by simp qed qed  | 
|
225  | 
||
226  | 
lemma affine_hull_finite:  | 
|
227  | 
assumes "finite s"  | 
|
228  | 
  shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
 | 
|
229  | 
unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule)  | 
|
230  | 
apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof-  | 
|
231  | 
fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"  | 
|
232  | 
  thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
 | 
|
233  | 
apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto  | 
|
234  | 
next  | 
|
235  | 
fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto  | 
|
236  | 
  assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | 
|
237  | 
thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)  | 
|
238  | 
unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed  | 
|
239  | 
||
240  | 
subsection {* Stepping theorems and hence small special cases. *}
 | 
|
241  | 
||
242  | 
lemma affine_hull_empty[simp]: "affine hull {} = {}"
 | 
|
243  | 
apply(rule hull_unique) unfolding mem_def by auto  | 
|
244  | 
||
245  | 
lemma affine_hull_finite_step:  | 
|
246  | 
fixes y :: "'a::real_vector"  | 
|
247  | 
  shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
 | 
|
248  | 
"finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow>  | 
|
249  | 
(\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)")  | 
|
250  | 
proof-  | 
|
251  | 
show ?th1 by simp  | 
|
252  | 
assume ?as  | 
|
253  | 
  { assume ?lhs
 | 
|
254  | 
then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto  | 
|
255  | 
have ?rhs proof(cases "a\<in>s")  | 
|
256  | 
case True hence *:"insert a s = s" by auto  | 
|
257  | 
show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto  | 
|
258  | 
next  | 
|
259  | 
case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto  | 
|
260  | 
qed } moreover  | 
|
261  | 
  { assume ?rhs
 | 
|
262  | 
then obtain v u where vu:"setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto  | 
|
263  | 
have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto  | 
|
264  | 
have ?lhs proof(cases "a\<in>s")  | 
|
265  | 
case True thus ?thesis  | 
|
266  | 
apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI)  | 
|
267  | 
unfolding setsum_clauses(2)[OF `?as`] apply simp  | 
|
268  | 
unfolding scaleR_left_distrib and setsum_addf  | 
|
269  | 
unfolding vu and * and scaleR_zero_left  | 
|
270  | 
by (auto simp add: setsum_delta[OF `?as`])  | 
|
271  | 
next  | 
|
272  | 
case False  | 
|
273  | 
hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)"  | 
|
274  | 
"\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto  | 
|
275  | 
from False show ?thesis  | 
|
276  | 
apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI)  | 
|
277  | 
unfolding setsum_clauses(2)[OF `?as`] and * using vu  | 
|
278  | 
using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)]  | 
|
279  | 
using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto  | 
|
280  | 
qed }  | 
|
281  | 
ultimately show "?lhs = ?rhs" by blast  | 
|
282  | 
qed  | 
|
283  | 
||
284  | 
lemma affine_hull_2:  | 
|
285  | 
fixes a b :: "'a::real_vector"  | 
|
286  | 
  shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
 | 
|
287  | 
proof-  | 
|
288  | 
have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)"  | 
|
289  | 
"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto  | 
|
290  | 
  have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
 | 
|
291  | 
    using affine_hull_finite[of "{a,b}"] by auto
 | 
|
292  | 
  also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
 | 
|
293  | 
    by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
 | 
|
294  | 
also have "\<dots> = ?rhs" unfolding * by auto  | 
|
295  | 
finally show ?thesis by auto  | 
|
296  | 
qed  | 
|
297  | 
||
298  | 
lemma affine_hull_3:  | 
|
299  | 
fixes a b c :: "'a::real_vector"  | 
|
300  | 
  shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
 | 
|
301  | 
proof-  | 
|
302  | 
have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)"  | 
|
303  | 
"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto  | 
|
304  | 
show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step)  | 
|
305  | 
unfolding * apply auto  | 
|
306  | 
apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto  | 
|
307  | 
apply(rule_tac x=u in exI) by(auto intro!: exI)  | 
|
308  | 
qed  | 
|
309  | 
||
310  | 
subsection {* Some relations between affine hull and subspaces. *}
 | 
|
311  | 
||
312  | 
lemma affine_hull_insert_subset_span:  | 
|
313  | 
fixes a :: "real ^ _"  | 
|
314  | 
  shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
 | 
|
315  | 
unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq smult_conv_scaleR  | 
|
316  | 
apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof-  | 
|
317  | 
  fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | 
|
318  | 
  have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
 | 
|
319  | 
  thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
 | 
|
320  | 
apply(rule_tac x="x - a" in exI)  | 
|
321  | 
apply (rule conjI, simp)  | 
|
322  | 
    apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
 | 
|
323  | 
apply(rule_tac x="\<lambda>x. u (x + a)" in exI)  | 
|
324  | 
apply (rule conjI) using as(1) apply simp  | 
|
325  | 
apply (erule conjI)  | 
|
326  | 
using as(1)  | 
|
327  | 
apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib)  | 
|
328  | 
unfolding as by simp qed  | 
|
329  | 
||
330  | 
lemma affine_hull_insert_span:  | 
|
331  | 
fixes a :: "real ^ _"  | 
|
332  | 
assumes "a \<notin> s"  | 
|
333  | 
shows "affine hull (insert a s) =  | 
|
334  | 
            {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
 | 
|
335  | 
apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def  | 
|
336  | 
unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE)  | 
|
337  | 
  fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
 | 
|
338  | 
  then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit smult_conv_scaleR by auto
 | 
|
339  | 
def f \<equiv> "(\<lambda>x. x + a) ` t"  | 
|
340  | 
have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt  | 
|
341  | 
by(auto simp add: setsum_reindex[unfolded inj_on_def])  | 
|
342  | 
  have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
 | 
|
343  | 
  show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
 | 
|
344  | 
apply(rule_tac x="insert a f" in exI)  | 
|
345  | 
apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI)  | 
|
346  | 
using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult  | 
|
347  | 
    unfolding setsum_cases[OF f(1), of "{a}", unfolded singleton_iff] and *
 | 
|
348  | 
by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps) qed  | 
|
349  | 
||
350  | 
lemma affine_hull_span:  | 
|
351  | 
fixes a :: "real ^ _"  | 
|
352  | 
assumes "a \<in> s"  | 
|
353  | 
  shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
 | 
|
354  | 
  using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
 | 
|
355  | 
||
356  | 
subsection {* Convexity. *}
 | 
|
357  | 
||
358  | 
definition  | 
|
359  | 
convex :: "'a::real_vector set \<Rightarrow> bool" where  | 
|
360  | 
"convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)"  | 
|
361  | 
||
362  | 
lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *\<^sub>R x + u *\<^sub>R y) \<in> s)"  | 
|
363  | 
proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto  | 
|
364  | 
show ?thesis unfolding convex_def apply auto  | 
|
365  | 
apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE)  | 
|
366  | 
by (auto simp add: *) qed  | 
|
367  | 
||
368  | 
lemma mem_convex:  | 
|
369  | 
assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1"  | 
|
370  | 
shows "((1 - u) *\<^sub>R a + u *\<^sub>R b) \<in> s"  | 
|
371  | 
using assms unfolding convex_alt by auto  | 
|
372  | 
||
| 
33714
 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 
hoelzl 
parents: 
33270 
diff
changeset
 | 
373  | 
lemma convex_vec1:"convex (vec1 ` s) = convex (s::real set)"  | 
| 
 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 
hoelzl 
parents: 
33270 
diff
changeset
 | 
374  | 
unfolding convex_def Ball_def forall_vec1 unfolding vec1_dest_vec1_simps image_iff by auto  | 
| 
 
eb2574ac4173
Added new lemmas to Euclidean Space by Robert Himmelmann
 
hoelzl 
parents: 
33270 
diff
changeset
 | 
375  | 
|
| 33175 | 376  | 
lemma convex_empty[intro]: "convex {}"
 | 
377  | 
unfolding convex_def by simp  | 
|
378  | 
||
379  | 
lemma convex_singleton[intro]: "convex {a}"
 | 
|
380  | 
unfolding convex_def by (auto simp add:scaleR_left_distrib[THEN sym])  | 
|
381  | 
||
382  | 
lemma convex_UNIV[intro]: "convex UNIV"  | 
|
383  | 
unfolding convex_def by auto  | 
|
384  | 
||
385  | 
lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)"  | 
|
386  | 
unfolding convex_def by auto  | 
|
387  | 
||
388  | 
lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)"  | 
|
389  | 
unfolding convex_def by auto  | 
|
390  | 
||
391  | 
lemma convex_halfspace_le: "convex {x. inner a x \<le> b}"
 | 
|
392  | 
unfolding convex_def apply auto  | 
|
393  | 
unfolding inner_add inner_scaleR  | 
|
394  | 
by (metis real_convex_bound_le)  | 
|
395  | 
||
396  | 
lemma convex_halfspace_ge: "convex {x. inner a x \<ge> b}"
 | 
|
397  | 
proof- have *:"{x. inner a x \<ge> b} = {x. inner (-a) x \<le> -b}" by auto
 | 
|
398  | 
show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed  | 
|
399  | 
||
400  | 
lemma convex_hyperplane: "convex {x. inner a x = b}"
 | 
|
401  | 
proof-  | 
|
402  | 
  have *:"{x. inner a x = b} = {x. inner a x \<le> b} \<inter> {x. inner a x \<ge> b}" by auto
 | 
|
403  | 
show ?thesis unfolding * apply(rule convex_Int)  | 
|
404  | 
using convex_halfspace_le convex_halfspace_ge by auto  | 
|
405  | 
qed  | 
|
406  | 
||
407  | 
lemma convex_halfspace_lt: "convex {x. inner a x < b}"
 | 
|
408  | 
unfolding convex_def  | 
|
409  | 
by(auto simp add: real_convex_bound_lt inner_add)  | 
|
410  | 
||
411  | 
lemma convex_halfspace_gt: "convex {x. inner a x > b}"
 | 
|
412  | 
using convex_halfspace_lt[of "-a" "-b"] by auto  | 
|
413  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
414  | 
lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
 | 
| 33175 | 415  | 
unfolding convex_def apply auto apply(erule_tac x=i in allE)+  | 
416  | 
apply(rule add_nonneg_nonneg) by(auto simp add: mult_nonneg_nonneg)  | 
|
417  | 
||
418  | 
subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | 
|
419  | 
||
420  | 
lemma convex: "convex s \<longleftrightarrow>  | 
|
421  | 
  (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | 
|
422  | 
           \<longrightarrow> setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} \<in> s)"
 | 
|
423  | 
unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule)  | 
|
424  | 
  fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s"
 | 
|
425  | 
"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"  | 
|
426  | 
show "u *\<^sub>R x + v *\<^sub>R y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-)  | 
|
427  | 
by (auto simp add: setsum_head_Suc)  | 
|
428  | 
next  | 
|
429  | 
fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s"  | 
|
430  | 
  show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *\<^sub>R x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
 | 
|
431  | 
case (Suc k) show ?case proof(cases "u (Suc k) = 1")  | 
|
432  | 
case True hence "(\<Sum>i = Suc 0..k. u i *\<^sub>R x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-  | 
|
433  | 
      fix i assume i:"i \<in> {Suc 0..k}" "u i *\<^sub>R x i \<noteq> 0"
 | 
|
434  | 
hence ui:"u i \<noteq> 0" by auto  | 
|
435  | 
      hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
 | 
|
436  | 
      hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
 | 
|
437  | 
      hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
 | 
|
438  | 
thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed  | 
|
439  | 
thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto  | 
|
440  | 
next  | 
|
441  | 
    have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
 | 
|
442  | 
    have **:"u (Suc k) \<le> 1" apply(rule ccontr) unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
 | 
|
443  | 
have ***:"\<And>i k. (u i / (1 - u (Suc k))) *\<^sub>R x i = (inverse (1 - u (Suc k))) *\<^sub>R (u i *\<^sub>R x i)" unfolding real_divide_def by (auto simp add: algebra_simps)  | 
|
444  | 
case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto  | 
|
445  | 
have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and *  | 
|
446  | 
apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto  | 
|
447  | 
hence "(1 - u (Suc k)) *\<^sub>R (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *\<^sub>R x i) + u (Suc k) *\<^sub>R x (Suc k) \<in> s"  | 
|
448  | 
apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto  | 
|
449  | 
thus ?thesis unfolding setsum_cl_ivl_Suc and *** and scaleR_right.setsum [symmetric] using nn by auto qed qed auto qed  | 
|
450  | 
||
451  | 
||
452  | 
lemma convex_explicit:  | 
|
453  | 
fixes s :: "'a::real_vector set"  | 
|
454  | 
shows "convex s \<longleftrightarrow>  | 
|
455  | 
(\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) t \<in> s)"  | 
|
456  | 
unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof-  | 
|
457  | 
fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"  | 
|
458  | 
show "u *\<^sub>R x + v *\<^sub>R y \<in> s" proof(cases "x=y")  | 
|
459  | 
case True show ?thesis unfolding True and scaleR_left_distrib[THEN sym] using as(3,6) by auto next  | 
|
460  | 
    case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
 | 
|
461  | 
next  | 
|
462  | 
fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" "finite (t::'a set)"  | 
|
463  | 
(*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*)  | 
|
464  | 
from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" apply(induct_tac t rule:finite_induct)  | 
|
465  | 
prefer 3 apply (rule,rule) apply(erule conjE)+ proof-  | 
|
466  | 
fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s"  | 
|
467  | 
assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)"  | 
|
468  | 
show "(\<Sum>x\<in>insert x f. u x *\<^sub>R x) \<in> s" proof(cases "u x = 1")  | 
|
469  | 
case True hence "setsum (\<lambda>x. u x *\<^sub>R x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof-  | 
|
470  | 
fix y assume y:"y \<in> f" "u y *\<^sub>R y \<noteq> 0"  | 
|
471  | 
hence uy:"u y \<noteq> 0" by auto  | 
|
472  | 
hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto  | 
|
473  | 
hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta)  | 
|
474  | 
hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto  | 
|
475  | 
thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed  | 
|
476  | 
thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto  | 
|
477  | 
next  | 
|
478  | 
have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto  | 
|
479  | 
have **:"u x \<le> 1" apply(rule ccontr) unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2)  | 
|
480  | 
using setsum_nonneg[of f u] and as(4) by auto  | 
|
481  | 
case False hence "inverse (1 - u x) *\<^sub>R (\<Sum>x\<in>f. u x *\<^sub>R x) \<in> s" unfolding scaleR_right.setsum and scaleR_scaleR  | 
|
482  | 
apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg)  | 
|
483  | 
unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto  | 
|
484  | 
hence "u x *\<^sub>R x + (1 - u x) *\<^sub>R ((inverse (1 - u x)) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) f) \<in>s"  | 
|
485  | 
apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto  | 
|
486  | 
thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed  | 
|
487  | 
qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" by auto  | 
|
488  | 
qed  | 
|
489  | 
||
490  | 
lemma convex_finite: assumes "finite s"  | 
|
491  | 
shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1  | 
|
492  | 
\<longrightarrow> setsum (\<lambda>x. u x *\<^sub>R x) s \<in> s)"  | 
|
493  | 
unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof-  | 
|
494  | 
fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)"  | 
|
495  | 
have *:"s \<inter> t = t" using as(3) by auto  | 
|
496  | 
show "(\<Sum>x\<in>t. u x *\<^sub>R x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]]  | 
|
497  | 
unfolding if_smult and setsum_cases[OF assms] and * using as(2-) by auto  | 
|
498  | 
qed (erule_tac x=s in allE, erule_tac x=u in allE, auto)  | 
|
499  | 
||
500  | 
subsection {* Cones. *}
 | 
|
501  | 
||
502  | 
definition  | 
|
503  | 
cone :: "'a::real_vector set \<Rightarrow> bool" where  | 
|
504  | 
"cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)"  | 
|
505  | 
||
506  | 
lemma cone_empty[intro, simp]: "cone {}"
 | 
|
507  | 
unfolding cone_def by auto  | 
|
508  | 
||
509  | 
lemma cone_univ[intro, simp]: "cone UNIV"  | 
|
510  | 
unfolding cone_def by auto  | 
|
511  | 
||
512  | 
lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)"  | 
|
513  | 
unfolding cone_def by auto  | 
|
514  | 
||
515  | 
subsection {* Conic hull. *}
 | 
|
516  | 
||
517  | 
lemma cone_cone_hull: "cone (cone hull s)"  | 
|
518  | 
  unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
 | 
|
519  | 
by (auto simp add: mem_def)  | 
|
520  | 
||
521  | 
lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s"  | 
|
522  | 
apply(rule hull_eq[unfolded mem_def])  | 
|
523  | 
using cone_Inter unfolding subset_eq by (auto simp add: mem_def)  | 
|
524  | 
||
525  | 
subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
 | 
|
526  | 
||
527  | 
definition  | 
|
528  | 
affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where  | 
|
529  | 
  "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
 | 
|
530  | 
||
531  | 
lemma affine_dependent_explicit:  | 
|
532  | 
"affine_dependent p \<longleftrightarrow>  | 
|
533  | 
(\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and>  | 
|
534  | 
(\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"  | 
|
535  | 
unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule)  | 
|
536  | 
apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE)  | 
|
537  | 
proof-  | 
|
538  | 
  fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | 
|
539  | 
have "x\<notin>s" using as(1,4) by auto  | 
|
540  | 
show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0"  | 
|
541  | 
apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI)  | 
|
542  | 
unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto  | 
|
543  | 
next  | 
|
544  | 
fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0"  | 
|
545  | 
  have "s \<noteq> {v}" using as(3,6) by auto
 | 
|
546  | 
  thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | 
|
547  | 
    apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
 | 
|
548  | 
unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto  | 
|
549  | 
qed  | 
|
550  | 
||
551  | 
lemma affine_dependent_explicit_finite:  | 
|
552  | 
fixes s :: "'a::real_vector set" assumes "finite s"  | 
|
553  | 
shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)"  | 
|
554  | 
(is "?lhs = ?rhs")  | 
|
555  | 
proof  | 
|
556  | 
have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto  | 
|
557  | 
assume ?lhs  | 
|
558  | 
then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0"  | 
|
559  | 
unfolding affine_dependent_explicit by auto  | 
|
560  | 
thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI)  | 
|
561  | 
apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym]  | 
|
562  | 
unfolding Int_absorb1[OF `t\<subseteq>s`] by auto  | 
|
563  | 
next  | 
|
564  | 
assume ?rhs  | 
|
565  | 
then obtain u v where "setsum u s = 0" "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto  | 
|
566  | 
thus ?lhs unfolding affine_dependent_explicit using assms by auto  | 
|
567  | 
qed  | 
|
568  | 
||
569  | 
subsection {* A general lemma. *}
 | 
|
570  | 
||
571  | 
lemma convex_connected:  | 
|
572  | 
fixes s :: "'a::real_normed_vector set"  | 
|
573  | 
assumes "convex s" shows "connected s"  | 
|
574  | 
proof-  | 
|
575  | 
  { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
 | 
|
576  | 
    assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | 
|
577  | 
then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto  | 
|
578  | 
hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto  | 
|
579  | 
||
580  | 
    { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
 | 
|
581  | 
      { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
 | 
|
582  | 
by (simp add: algebra_simps)  | 
|
583  | 
assume "\<bar>y - x\<bar> < e / norm (x1 - x2)"  | 
|
584  | 
hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"  | 
|
585  | 
unfolding * and scaleR_right_diff_distrib[THEN sym]  | 
|
586  | 
unfolding less_divide_eq using n by auto }  | 
|
587  | 
hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e"  | 
|
588  | 
apply(rule_tac x="e / norm (x1 - x2)" in exI) using as  | 
|
589  | 
apply auto unfolding zero_less_divide_iff using n by simp } note * = this  | 
|
590  | 
||
591  | 
have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2"  | 
|
592  | 
apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+  | 
|
593  | 
using * apply(simp add: dist_norm)  | 
|
594  | 
using as(1,2)[unfolded open_dist] apply simp  | 
|
595  | 
using as(1,2)[unfolded open_dist] apply simp  | 
|
596  | 
using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2  | 
|
597  | 
using as(3) by auto  | 
|
598  | 
then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto  | 
|
599  | 
hence False using as(4)  | 
|
600  | 
using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]]  | 
|
601  | 
using x1(2) x2(2) by auto }  | 
|
602  | 
thus ?thesis unfolding connected_def by auto  | 
|
603  | 
qed  | 
|
604  | 
||
605  | 
subsection {* One rather trivial consequence. *}
 | 
|
606  | 
||
| 34964 | 607  | 
lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)"  | 
| 33175 | 608  | 
by(simp add: convex_connected convex_UNIV)  | 
609  | 
||
610  | 
subsection {* Convex functions into the reals. *}
 | 
|
611  | 
||
612  | 
definition  | 
|
613  | 
  convex_on :: "'a::real_vector set \<Rightarrow> ('a \<Rightarrow> real) \<Rightarrow> bool" where
 | 
|
614  | 
"convex_on s f \<longleftrightarrow>  | 
|
615  | 
(\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *\<^sub>R x + v *\<^sub>R y) \<le> u * f x + v * f y)"  | 
|
616  | 
||
617  | 
lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f"  | 
|
618  | 
unfolding convex_on_def by auto  | 
|
619  | 
||
| 34964 | 620  | 
lemma convex_add[intro]:  | 
| 33175 | 621  | 
assumes "convex_on s f" "convex_on s g"  | 
622  | 
shows "convex_on s (\<lambda>x. f x + g x)"  | 
|
623  | 
proof-  | 
|
624  | 
  { fix x y assume "x\<in>s" "y\<in>s" moreover
 | 
|
625  | 
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
626  | 
ultimately have "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> (u * f x + v * f y) + (u * g x + v * g y)"  | 
|
627  | 
using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]  | 
|
628  | 
using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]  | 
|
629  | 
apply - apply(rule add_mono) by auto  | 
|
630  | 
hence "f (u *\<^sub>R x + v *\<^sub>R y) + g (u *\<^sub>R x + v *\<^sub>R y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps) }  | 
|
631  | 
thus ?thesis unfolding convex_on_def by auto  | 
|
632  | 
qed  | 
|
633  | 
||
| 34964 | 634  | 
lemma convex_cmul[intro]:  | 
| 33175 | 635  | 
assumes "0 \<le> (c::real)" "convex_on s f"  | 
636  | 
shows "convex_on s (\<lambda>x. c * f x)"  | 
|
637  | 
proof-  | 
|
638  | 
have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: ring_simps)  | 
|
639  | 
show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto  | 
|
640  | 
qed  | 
|
641  | 
||
642  | 
lemma convex_lower:  | 
|
643  | 
assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
644  | 
shows "f (u *\<^sub>R x + v *\<^sub>R y) \<le> max (f x) (f y)"  | 
|
645  | 
proof-  | 
|
646  | 
let ?m = "max (f x) (f y)"  | 
|
647  | 
have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono)  | 
|
648  | 
using assms(4,5) by(auto simp add: mult_mono1)  | 
|
649  | 
also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto  | 
|
650  | 
finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]]  | 
|
651  | 
using assms(2-6) by auto  | 
|
652  | 
qed  | 
|
653  | 
||
654  | 
lemma convex_local_global_minimum:  | 
|
655  | 
fixes s :: "'a::real_normed_vector set"  | 
|
656  | 
assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y"  | 
|
657  | 
shows "\<forall>y\<in>s. f x \<le> f y"  | 
|
658  | 
proof(rule ccontr)  | 
|
659  | 
have "x\<in>s" using assms(1,3) by auto  | 
|
660  | 
assume "\<not> (\<forall>y\<in>s. f x \<le> f y)"  | 
|
661  | 
then obtain y where "y\<in>s" and y:"f x > f y" by auto  | 
|
662  | 
hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym])  | 
|
663  | 
||
664  | 
then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y"  | 
|
665  | 
using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto  | 
|
666  | 
hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s`  | 
|
667  | 
using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto  | 
|
668  | 
moreover  | 
|
669  | 
have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps)  | 
|
670  | 
have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym]  | 
|
671  | 
using u unfolding pos_less_divide_eq[OF xy] by auto  | 
|
672  | 
hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto  | 
|
673  | 
ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto  | 
|
674  | 
qed  | 
|
675  | 
||
| 34964 | 676  | 
lemma convex_distance[intro]:  | 
| 33175 | 677  | 
fixes s :: "'a::real_normed_vector set"  | 
678  | 
shows "convex_on s (\<lambda>x. dist a x)"  | 
|
679  | 
proof(auto simp add: convex_on_def dist_norm)  | 
|
680  | 
fix x y assume "x\<in>s" "y\<in>s"  | 
|
681  | 
fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
682  | 
have "a = u *\<^sub>R a + v *\<^sub>R a" unfolding scaleR_left_distrib[THEN sym] and `u+v=1` by simp  | 
|
683  | 
hence *:"a - (u *\<^sub>R x + v *\<^sub>R y) = (u *\<^sub>R (a - x)) + (v *\<^sub>R (a - y))"  | 
|
684  | 
by (auto simp add: algebra_simps)  | 
|
685  | 
show "norm (a - (u *\<^sub>R x + v *\<^sub>R y)) \<le> u * norm (a - x) + v * norm (a - y)"  | 
|
686  | 
unfolding * using norm_triangle_ineq[of "u *\<^sub>R (a - x)" "v *\<^sub>R (a - y)"]  | 
|
687  | 
using `0 \<le> u` `0 \<le> v` by auto  | 
|
688  | 
qed  | 
|
689  | 
||
690  | 
subsection {* Arithmetic operations on sets preserve convexity. *}
 | 
|
691  | 
||
692  | 
lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *\<^sub>R x) ` s)"  | 
|
693  | 
unfolding convex_def and image_iff apply auto  | 
|
694  | 
apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by (auto simp add: algebra_simps)  | 
|
695  | 
||
696  | 
lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)"  | 
|
697  | 
unfolding convex_def and image_iff apply auto  | 
|
698  | 
apply (rule_tac x="u *\<^sub>R x+v *\<^sub>R y" in bexI) by auto  | 
|
699  | 
||
700  | 
lemma convex_sums:  | 
|
701  | 
assumes "convex s" "convex t"  | 
|
702  | 
  shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | 
|
703  | 
proof(auto simp add: convex_def image_iff scaleR_right_distrib)  | 
|
704  | 
fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t"  | 
|
705  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
706  | 
show "\<exists>x y. u *\<^sub>R xa + u *\<^sub>R ya + (v *\<^sub>R xb + v *\<^sub>R yb) = x + y \<and> x \<in> s \<and> y \<in> t"  | 
|
707  | 
apply(rule_tac x="u *\<^sub>R xa + v *\<^sub>R xb" in exI) apply(rule_tac x="u *\<^sub>R ya + v *\<^sub>R yb" in exI)  | 
|
708  | 
using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]]  | 
|
709  | 
using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]]  | 
|
710  | 
using uv xy by auto  | 
|
711  | 
qed  | 
|
712  | 
||
713  | 
lemma convex_differences:  | 
|
714  | 
assumes "convex s" "convex t"  | 
|
715  | 
  shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | 
|
716  | 
proof-  | 
|
717  | 
  have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
 | 
|
718  | 
apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp  | 
|
719  | 
apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp  | 
|
720  | 
thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto  | 
|
721  | 
qed  | 
|
722  | 
||
723  | 
lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)"  | 
|
724  | 
proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | 
|
725  | 
thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed  | 
|
726  | 
||
727  | 
lemma convex_affinity: assumes "convex s" shows "convex ((\<lambda>x. a + c *\<^sub>R x) ` s)"  | 
|
728  | 
proof- have "(\<lambda>x. a + c *\<^sub>R x) ` s = op + a ` op *\<^sub>R c ` s" by auto  | 
|
729  | 
thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed  | 
|
730  | 
||
731  | 
lemma convex_linear_image:  | 
|
732  | 
assumes c:"convex s" and l:"bounded_linear f"  | 
|
733  | 
shows "convex(f ` s)"  | 
|
734  | 
proof(auto simp add: convex_def)  | 
|
735  | 
interpret f: bounded_linear f by fact  | 
|
736  | 
fix x y assume xy:"x \<in> s" "y \<in> s"  | 
|
737  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
738  | 
show "u *\<^sub>R f x + v *\<^sub>R f y \<in> f ` s" unfolding image_iff  | 
|
739  | 
apply(rule_tac x="u *\<^sub>R x + v *\<^sub>R y" in bexI)  | 
|
740  | 
unfolding f.add f.scaleR  | 
|
741  | 
using c[unfolded convex_def] xy uv by auto  | 
|
742  | 
qed  | 
|
743  | 
||
744  | 
subsection {* Balls, being convex, are connected. *}
 | 
|
745  | 
||
746  | 
lemma convex_ball:  | 
|
747  | 
fixes x :: "'a::real_normed_vector"  | 
|
748  | 
shows "convex (ball x e)"  | 
|
749  | 
proof(auto simp add: convex_def)  | 
|
750  | 
fix y z assume yz:"dist x y < e" "dist x z < e"  | 
|
751  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
752  | 
have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz  | 
|
753  | 
using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto  | 
|
754  | 
thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using real_convex_bound_lt[OF yz uv] by auto  | 
|
755  | 
qed  | 
|
756  | 
||
757  | 
lemma convex_cball:  | 
|
758  | 
fixes x :: "'a::real_normed_vector"  | 
|
759  | 
shows "convex(cball x e)"  | 
|
760  | 
proof(auto simp add: convex_def Ball_def mem_cball)  | 
|
761  | 
fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e"  | 
|
762  | 
fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
763  | 
have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz  | 
|
764  | 
using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto  | 
|
765  | 
thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using real_convex_bound_le[OF yz uv] by auto  | 
|
766  | 
qed  | 
|
767  | 
||
768  | 
lemma connected_ball:  | 
|
769  | 
fixes x :: "'a::real_normed_vector"  | 
|
770  | 
shows "connected (ball x e)"  | 
|
771  | 
using convex_connected convex_ball by auto  | 
|
772  | 
||
773  | 
lemma connected_cball:  | 
|
774  | 
fixes x :: "'a::real_normed_vector"  | 
|
775  | 
shows "connected(cball x e)"  | 
|
776  | 
using convex_connected convex_cball by auto  | 
|
777  | 
||
778  | 
subsection {* Convex hull. *}
 | 
|
779  | 
||
780  | 
lemma convex_convex_hull: "convex(convex hull s)"  | 
|
781  | 
  unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
 | 
|
782  | 
unfolding mem_def by auto  | 
|
783  | 
||
| 
34064
 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 
haftmann 
parents: 
33758 
diff
changeset
 | 
784  | 
lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s"  | 
| 
 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 
haftmann 
parents: 
33758 
diff
changeset
 | 
785  | 
apply (rule hull_eq [unfolded mem_def])  | 
| 
 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 
haftmann 
parents: 
33758 
diff
changeset
 | 
786  | 
apply (rule convex_Inter [unfolded Ball_def mem_def])  | 
| 
 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 
haftmann 
parents: 
33758 
diff
changeset
 | 
787  | 
apply (simp add: le_fun_def le_bool_def)  | 
| 
 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 
haftmann 
parents: 
33758 
diff
changeset
 | 
788  | 
done  | 
| 33175 | 789  | 
|
790  | 
lemma bounded_convex_hull:  | 
|
791  | 
fixes s :: "'a::real_normed_vector set"  | 
|
792  | 
assumes "bounded s" shows "bounded(convex hull s)"  | 
|
793  | 
proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto  | 
|
794  | 
show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B])  | 
|
795  | 
unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball]  | 
|
796  | 
unfolding subset_eq mem_cball dist_norm using B by auto qed  | 
|
797  | 
||
798  | 
lemma finite_imp_bounded_convex_hull:  | 
|
799  | 
fixes s :: "'a::real_normed_vector set"  | 
|
800  | 
shows "finite s \<Longrightarrow> bounded(convex hull s)"  | 
|
801  | 
using bounded_convex_hull finite_imp_bounded by auto  | 
|
802  | 
||
803  | 
subsection {* Stepping theorems for convex hulls of finite sets. *}
 | 
|
804  | 
||
805  | 
lemma convex_hull_empty[simp]: "convex hull {} = {}"
 | 
|
806  | 
apply(rule hull_unique) unfolding mem_def by auto  | 
|
807  | 
||
808  | 
lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
 | 
|
809  | 
apply(rule hull_unique) unfolding mem_def by auto  | 
|
810  | 
||
811  | 
lemma convex_hull_insert:  | 
|
812  | 
fixes s :: "'a::real_vector set"  | 
|
813  | 
  assumes "s \<noteq> {}"
 | 
|
814  | 
  shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
 | 
|
815  | 
b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull")  | 
|
816  | 
apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof-  | 
|
817  | 
fix x assume x:"x = a \<or> x \<in> s"  | 
|
818  | 
thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer  | 
|
819  | 
apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto  | 
|
820  | 
next  | 
|
821  | 
fix x assume "x\<in>?hull"  | 
|
822  | 
then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto  | 
|
823  | 
have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s"  | 
|
824  | 
    using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
 | 
|
825  | 
thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def]  | 
|
826  | 
apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto  | 
|
827  | 
next  | 
|
828  | 
show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-  | 
|
829  | 
fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull"  | 
|
830  | 
from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto  | 
|
831  | 
from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto  | 
|
832  | 
have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)  | 
|
833  | 
have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)"  | 
|
834  | 
proof(cases "u * v1 + v * v2 = 0")  | 
|
835  | 
have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps)  | 
|
836  | 
case True hence **:"u * v1 = 0" "v * v2 = 0" apply- apply(rule_tac [!] ccontr)  | 
|
837  | 
using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by auto  | 
|
838  | 
hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto  | 
|
839  | 
thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib)  | 
|
840  | 
next  | 
|
841  | 
have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)  | 
|
842  | 
also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps)  | 
|
843  | 
also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto  | 
|
844  | 
case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply -  | 
|
845  | 
apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg)  | 
|
846  | 
using as(1,2) obt1(1,2) obt2(1,2) by auto  | 
|
847  | 
thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False  | 
|
848  | 
apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer  | 
|
849  | 
apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4)  | 
|
850  | 
unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff  | 
|
851  | 
by (auto simp add: scaleR_left_distrib scaleR_right_distrib)  | 
|
852  | 
qed note * = this  | 
|
853  | 
have u1:"u1 \<le> 1" apply(rule ccontr) unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto  | 
|
854  | 
have u2:"u2 \<le> 1" apply(rule ccontr) unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto  | 
|
855  | 
have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono)  | 
|
856  | 
apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto  | 
|
857  | 
also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto  | 
|
858  | 
finally  | 
|
859  | 
show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI)  | 
|
860  | 
apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def  | 
|
861  | 
using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps)  | 
|
862  | 
qed  | 
|
863  | 
qed  | 
|
864  | 
||
865  | 
||
866  | 
subsection {* Explicit expression for convex hull. *}
 | 
|
867  | 
||
868  | 
lemma convex_hull_indexed:  | 
|
869  | 
fixes s :: "'a::real_vector set"  | 
|
870  | 
  shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
 | 
|
871  | 
                            (setsum u {1..k} = 1) \<and>
 | 
|
872  | 
                            (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
 | 
|
873  | 
apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer  | 
|
874  | 
apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule)  | 
|
875  | 
proof-  | 
|
876  | 
fix x assume "x\<in>s"  | 
|
877  | 
thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto  | 
|
878  | 
next  | 
|
879  | 
fix t assume as:"s \<subseteq> t" "convex t"  | 
|
880  | 
show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof-  | 
|
881  | 
    fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | 
|
882  | 
show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format])  | 
|
883  | 
using assm(1,2) as(1) by auto qed  | 
|
884  | 
next  | 
|
885  | 
fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull"  | 
|
886  | 
  from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
 | 
|
887  | 
  from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
 | 
|
888  | 
have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)"  | 
|
889  | 
    "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
 | 
|
890  | 
prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le)  | 
|
891  | 
  have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
 | 
|
892  | 
show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule)  | 
|
893  | 
    apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
 | 
|
894  | 
    apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
 | 
|
895  | 
unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def  | 
|
896  | 
unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof-  | 
|
897  | 
    fix i assume i:"i \<in> {1..k1+k2}"
 | 
|
898  | 
    show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
 | 
|
899  | 
    proof(cases "i\<in>{1..k1}")
 | 
|
900  | 
case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto  | 
|
901  | 
next def j \<equiv> "i - k1"  | 
|
902  | 
      case False with i have "j \<in> {1..k2}" unfolding j_def by auto
 | 
|
903  | 
thus ?thesis unfolding j_def[symmetric] using False  | 
|
904  | 
using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed  | 
|
905  | 
qed(auto simp add: not_le x(2,3) y(2,3) uv(3))  | 
|
906  | 
qed  | 
|
907  | 
||
908  | 
lemma convex_hull_finite:  | 
|
909  | 
fixes s :: "'a::real_vector set"  | 
|
910  | 
assumes "finite s"  | 
|
911  | 
  shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
 | 
|
912  | 
setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set")  | 
|
913  | 
proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set])  | 
|
914  | 
fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x"  | 
|
915  | 
apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto  | 
|
916  | 
unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto  | 
|
917  | 
next  | 
|
918  | 
fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1"  | 
|
919  | 
fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)"  | 
|
920  | 
fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)"  | 
|
921  | 
  { fix x assume "x\<in>s"
 | 
|
922  | 
hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2)  | 
|
923  | 
by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2)) }  | 
|
924  | 
moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1"  | 
|
925  | 
unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto  | 
|
926  | 
moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"  | 
|
927  | 
unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto  | 
|
928  | 
ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)"  | 
|
929  | 
apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto  | 
|
930  | 
next  | 
|
931  | 
fix t assume t:"s \<subseteq> t" "convex t"  | 
|
932  | 
fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)"  | 
|
933  | 
thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]]  | 
|
934  | 
using assms and t(1) by auto  | 
|
935  | 
qed  | 
|
936  | 
||
937  | 
subsection {* Another formulation from Lars Schewe. *}
 | 
|
938  | 
||
939  | 
lemma setsum_constant_scaleR:  | 
|
940  | 
fixes y :: "'a::real_vector"  | 
|
941  | 
shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y"  | 
|
942  | 
apply (cases "finite A")  | 
|
943  | 
apply (induct set: finite)  | 
|
944  | 
apply (simp_all add: algebra_simps)  | 
|
945  | 
done  | 
|
946  | 
||
947  | 
lemma convex_hull_explicit:  | 
|
948  | 
fixes p :: "'a::real_vector set"  | 
|
949  | 
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
 | 
|
950  | 
(\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs")  | 
|
951  | 
proof-  | 
|
952  | 
  { fix x assume "x\<in>?lhs"
 | 
|
953  | 
    then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | 
|
954  | 
unfolding convex_hull_indexed by auto  | 
|
955  | 
||
956  | 
    have fin:"finite {1..k}" by auto
 | 
|
957  | 
    have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
 | 
|
958  | 
    { fix j assume "j\<in>{1..k}"
 | 
|
959  | 
      hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
 | 
|
960  | 
using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp  | 
|
961  | 
apply(rule setsum_nonneg) using obt(1) by auto }  | 
|
962  | 
moreover  | 
|
963  | 
    have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
 | 
|
964  | 
unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto  | 
|
965  | 
    moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
 | 
|
966  | 
using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym]  | 
|
967  | 
unfolding scaleR_left.setsum using obt(3) by auto  | 
|
968  | 
ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"  | 
|
969  | 
      apply(rule_tac x="y ` {1..k}" in exI)
 | 
|
970  | 
      apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
 | 
|
971  | 
hence "x\<in>?rhs" by auto }  | 
|
972  | 
moreover  | 
|
973  | 
  { fix y assume "y\<in>?rhs"
 | 
|
974  | 
then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto  | 
|
975  | 
||
976  | 
    obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
 | 
|
977  | 
||
978  | 
    { fix i::nat assume "i\<in>{1..card s}"
 | 
|
979  | 
hence "f i \<in> s" apply(subst f(2)[THEN sym]) by auto  | 
|
980  | 
hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto }  | 
|
981  | 
    moreover have *:"finite {1..card s}" by auto
 | 
|
982  | 
    { fix y assume "y\<in>s"
 | 
|
983  | 
      then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
 | 
|
984  | 
      hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
 | 
|
985  | 
      hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
 | 
|
986  | 
      hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y"
 | 
|
987  | 
            "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
 | 
|
988  | 
by (auto simp add: setsum_constant_scaleR) }  | 
|
989  | 
||
990  | 
hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y"  | 
|
991  | 
unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f]  | 
|
992  | 
      unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
 | 
|
993  | 
      using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
 | 
|
994  | 
||
995  | 
    ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
 | 
|
996  | 
apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp  | 
|
997  | 
hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto }  | 
|
998  | 
ultimately show ?thesis unfolding expand_set_eq by blast  | 
|
999  | 
qed  | 
|
1000  | 
||
1001  | 
subsection {* A stepping theorem for that expansion. *}
 | 
|
1002  | 
||
1003  | 
lemma convex_hull_finite_step:  | 
|
1004  | 
fixes s :: "'a::real_vector set" assumes "finite s"  | 
|
1005  | 
shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y)  | 
|
1006  | 
\<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs")  | 
|
1007  | 
proof(rule, case_tac[!] "a\<in>s")  | 
|
1008  | 
assume "a\<in>s" hence *:"insert a s = s" by auto  | 
|
1009  | 
assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto  | 
|
1010  | 
next  | 
|
1011  | 
assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto  | 
|
1012  | 
assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp  | 
|
1013  | 
apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto  | 
|
1014  | 
next  | 
|
1015  | 
assume "a\<in>s" hence *:"insert a s = s" by auto  | 
|
1016  | 
have fin:"finite (insert a s)" using assms by auto  | 
|
1017  | 
assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto  | 
|
1018  | 
show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin]  | 
|
1019  | 
unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto  | 
|
1020  | 
next  | 
|
1021  | 
assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto  | 
|
1022  | 
moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)"  | 
|
1023  | 
apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto  | 
|
1024  | 
ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI) unfolding setsum_clauses(2)[OF assms] by auto  | 
|
1025  | 
qed  | 
|
1026  | 
||
1027  | 
subsection {* Hence some special cases. *}
 | 
|
1028  | 
||
1029  | 
lemma convex_hull_2:  | 
|
1030  | 
  "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
 | 
|
1031  | 
proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
 | 
|
1032  | 
show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc]  | 
|
1033  | 
apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp  | 
|
1034  | 
apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed  | 
|
1035  | 
||
1036  | 
lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
 | 
|
1037  | 
unfolding convex_hull_2 unfolding Collect_def  | 
|
1038  | 
proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto  | 
|
1039  | 
fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)"  | 
|
1040  | 
unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed  | 
|
1041  | 
||
1042  | 
lemma convex_hull_3:  | 
|
1043  | 
  "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
 | 
|
1044  | 
proof-  | 
|
1045  | 
  have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
 | 
|
1046  | 
have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z"  | 
|
| 34289 | 1047  | 
"\<And>x y z ::real^_. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: ring_simps)  | 
| 33175 | 1048  | 
show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and *  | 
1049  | 
unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto  | 
|
1050  | 
apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp  | 
|
1051  | 
apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed  | 
|
1052  | 
||
1053  | 
lemma convex_hull_3_alt:  | 
|
1054  | 
  "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
 | 
|
1055  | 
proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto  | 
|
1056  | 
show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps)  | 
|
1057  | 
apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed  | 
|
1058  | 
||
1059  | 
subsection {* Relations among closure notions and corresponding hulls. *}
 | 
|
1060  | 
||
1061  | 
text {* TODO: Generalize linear algebra concepts defined in @{text
 | 
|
1062  | 
Euclidean_Space.thy} so that we can generalize these lemmas. *}  | 
|
1063  | 
||
1064  | 
lemma subspace_imp_affine:  | 
|
1065  | 
fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> affine s"  | 
|
1066  | 
unfolding subspace_def affine_def smult_conv_scaleR by auto  | 
|
1067  | 
||
1068  | 
lemma affine_imp_convex: "affine s \<Longrightarrow> convex s"  | 
|
1069  | 
unfolding affine_def convex_def by auto  | 
|
1070  | 
||
1071  | 
lemma subspace_imp_convex:  | 
|
1072  | 
fixes s :: "(real ^ _) set" shows "subspace s \<Longrightarrow> convex s"  | 
|
1073  | 
using subspace_imp_affine affine_imp_convex by auto  | 
|
1074  | 
||
1075  | 
lemma affine_hull_subset_span:  | 
|
1076  | 
fixes s :: "(real ^ _) set" shows "(affine hull s) \<subseteq> (span s)"  | 
|
1077  | 
unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def  | 
|
1078  | 
using subspace_imp_affine by auto  | 
|
1079  | 
||
1080  | 
lemma convex_hull_subset_span:  | 
|
1081  | 
fixes s :: "(real ^ _) set" shows "(convex hull s) \<subseteq> (span s)"  | 
|
1082  | 
unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def  | 
|
1083  | 
using subspace_imp_convex by auto  | 
|
1084  | 
||
1085  | 
lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)"  | 
|
1086  | 
unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def  | 
|
1087  | 
using affine_imp_convex by auto  | 
|
1088  | 
||
1089  | 
lemma affine_dependent_imp_dependent:  | 
|
1090  | 
fixes s :: "(real ^ _) set" shows "affine_dependent s \<Longrightarrow> dependent s"  | 
|
1091  | 
unfolding affine_dependent_def dependent_def  | 
|
1092  | 
using affine_hull_subset_span by auto  | 
|
1093  | 
||
1094  | 
lemma dependent_imp_affine_dependent:  | 
|
1095  | 
fixes s :: "(real ^ _) set"  | 
|
1096  | 
  assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
 | 
|
1097  | 
shows "affine_dependent (insert a s)"  | 
|
1098  | 
proof-  | 
|
1099  | 
from assms(1)[unfolded dependent_explicit smult_conv_scaleR] obtain S u v  | 
|
1100  | 
    where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
 | 
|
1101  | 
def t \<equiv> "(\<lambda>x. x + a) ` S"  | 
|
1102  | 
||
1103  | 
have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto  | 
|
1104  | 
have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto  | 
|
1105  | 
have fin:"finite t" and "t\<subseteq>s" unfolding t_def using obt(1,2) by auto  | 
|
1106  | 
||
1107  | 
hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto  | 
|
1108  | 
moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)"  | 
|
1109  | 
apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto  | 
|
1110  | 
have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0"  | 
|
1111  | 
unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto  | 
|
1112  | 
moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0"  | 
|
1113  | 
apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto  | 
|
1114  | 
moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)"  | 
|
1115  | 
apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto  | 
|
1116  | 
have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)"  | 
|
1117  | 
unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def  | 
|
1118  | 
using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib)  | 
|
1119  | 
hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0"  | 
|
1120  | 
unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: * vector_smult_lneg)  | 
|
1121  | 
ultimately show ?thesis unfolding affine_dependent_explicit  | 
|
1122  | 
apply(rule_tac x="insert a t" in exI) by auto  | 
|
1123  | 
qed  | 
|
1124  | 
||
1125  | 
lemma convex_cone:  | 
|
1126  | 
"convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs")  | 
|
1127  | 
proof-  | 
|
1128  | 
  { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
 | 
|
1129  | 
hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto  | 
|
1130  | 
hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1]  | 
|
1131  | 
apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE)  | 
|
1132  | 
apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto }  | 
|
| 33270 | 1133  | 
thus ?thesis unfolding convex_def cone_def by auto  | 
| 33175 | 1134  | 
qed  | 
1135  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1136  | 
lemma affine_dependent_biggerset: fixes s::"(real^'n) set"  | 
| 33175 | 1137  | 
  assumes "finite s" "card s \<ge> CARD('n) + 2"
 | 
1138  | 
shows "affine_dependent s"  | 
|
1139  | 
proof-  | 
|
1140  | 
  have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
 | 
|
1141  | 
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | 
|
1142  | 
  have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | 
|
1143  | 
apply(rule card_image) unfolding inj_on_def by auto  | 
|
1144  | 
  also have "\<dots> > CARD('n)" using assms(2)
 | 
|
1145  | 
unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto  | 
|
1146  | 
finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])  | 
|
1147  | 
apply(rule dependent_imp_affine_dependent)  | 
|
1148  | 
apply(rule dependent_biggerset) by auto qed  | 
|
1149  | 
||
1150  | 
lemma affine_dependent_biggerset_general:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1151  | 
assumes "finite (s::(real^'n) set)" "card s \<ge> dim s + 2"  | 
| 33175 | 1152  | 
shows "affine_dependent s"  | 
1153  | 
proof-  | 
|
1154  | 
  from assms(2) have "s \<noteq> {}" by auto
 | 
|
1155  | 
then obtain a where "a\<in>s" by auto  | 
|
1156  | 
  have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | 
|
1157  | 
  have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | 
|
1158  | 
apply(rule card_image) unfolding inj_on_def by auto  | 
|
1159  | 
  have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
 | 
|
1160  | 
apply(rule subset_le_dim) unfolding subset_eq  | 
|
1161  | 
using `a\<in>s` by (auto simp add:span_superset span_sub)  | 
|
1162  | 
also have "\<dots> < dim s + 1" by auto  | 
|
1163  | 
  also have "\<dots> \<le> card (s - {a})" using assms
 | 
|
1164  | 
using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto  | 
|
1165  | 
finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym])  | 
|
1166  | 
apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed  | 
|
1167  | 
||
1168  | 
subsection {* Caratheodory's theorem. *}
 | 
|
1169  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1170  | 
lemma convex_hull_caratheodory: fixes p::"(real^'n) set"  | 
| 33175 | 1171  | 
  shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
 | 
1172  | 
(\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"  | 
|
1173  | 
unfolding convex_hull_explicit expand_set_eq mem_Collect_eq  | 
|
1174  | 
proof(rule,rule)  | 
|
1175  | 
fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"  | 
|
1176  | 
assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"  | 
|
1177  | 
then obtain N where "?P N" by auto  | 
|
1178  | 
hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto  | 
|
1179  | 
then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast  | 
|
1180  | 
then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto  | 
|
1181  | 
||
1182  | 
  have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
 | 
|
1183  | 
    assume "CARD('n) + 1 < card s"
 | 
|
1184  | 
hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto  | 
|
1185  | 
then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0"  | 
|
1186  | 
using affine_dependent_explicit_finite[OF obt(1)] by auto  | 
|
1187  | 
    def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
 | 
|
1188  | 
have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less)  | 
|
1189  | 
assume as:"\<forall>x\<in>s. 0 \<le> w x"  | 
|
1190  | 
      hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
 | 
|
1191  | 
hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`]  | 
|
1192  | 
using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto  | 
|
1193  | 
thus False using wv(1) by auto  | 
|
1194  | 
    qed hence "i\<noteq>{}" unfolding i_def by auto
 | 
|
1195  | 
||
1196  | 
hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def  | 
|
1197  | 
using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto  | 
|
1198  | 
have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof  | 
|
1199  | 
fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto  | 
|
1200  | 
show"0 \<le> u v + t * w v" proof(cases "w v < 0")  | 
|
1201  | 
case False thus ?thesis apply(rule_tac add_nonneg_nonneg)  | 
|
1202  | 
using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next  | 
|
1203  | 
case True hence "t \<le> u v / (- w v)" using `v\<in>s`  | 
|
1204  | 
unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto  | 
|
1205  | 
thus ?thesis unfolding real_0_le_add_iff  | 
|
1206  | 
using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto  | 
|
1207  | 
qed qed  | 
|
1208  | 
||
1209  | 
obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0"  | 
|
1210  | 
      using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
 | 
|
1211  | 
hence a:"a\<in>s" "u a + t * w a = 0" by auto  | 
|
1212  | 
    have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
 | 
|
1213  | 
have "(\<Sum>v\<in>s. u v + t * w v) = 1"  | 
|
1214  | 
unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto  | 
|
1215  | 
moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y"  | 
|
1216  | 
unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4)  | 
|
1217  | 
using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]]  | 
|
1218  | 
by (simp add: vector_smult_lneg)  | 
|
1219  | 
    ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
 | 
|
1220  | 
apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: * scaleR_left_distrib)  | 
|
1221  | 
thus False using smallest[THEN spec[where x="n - 1"]] by auto qed  | 
|
1222  | 
  thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
 | 
|
1223  | 
\<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto  | 
|
1224  | 
qed auto  | 
|
1225  | 
||
1226  | 
lemma caratheodory:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1227  | 
 "convex hull p = {x::real^'n. \<exists>s. finite s \<and> s \<subseteq> p \<and>
 | 
| 33175 | 1228  | 
      card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
 | 
1229  | 
unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof-  | 
|
1230  | 
fix x assume "x \<in> convex hull p"  | 
|
1231  | 
  then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
 | 
|
1232  | 
"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto  | 
|
1233  | 
  thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | 
|
1234  | 
apply(rule_tac x=s in exI) using hull_subset[of s convex]  | 
|
1235  | 
using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto  | 
|
1236  | 
next  | 
|
1237  | 
  fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | 
|
1238  | 
  then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
 | 
|
1239  | 
thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto  | 
|
1240  | 
qed  | 
|
1241  | 
||
1242  | 
subsection {* Openness and compactness are preserved by convex hull operation. *}
 | 
|
1243  | 
||
| 34964 | 1244  | 
lemma open_convex_hull[intro]:  | 
| 33175 | 1245  | 
fixes s :: "'a::real_normed_vector set"  | 
1246  | 
assumes "open s"  | 
|
1247  | 
shows "open(convex hull s)"  | 
|
1248  | 
unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10)  | 
|
1249  | 
proof(rule, rule) fix a  | 
|
1250  | 
assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a"  | 
|
1251  | 
then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto  | 
|
1252  | 
||
1253  | 
from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"  | 
|
1254  | 
using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto  | 
|
1255  | 
  have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
 | 
|
1256  | 
||
1257  | 
  show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
 | 
|
1258  | 
apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq  | 
|
1259  | 
proof-  | 
|
1260  | 
    show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
 | 
|
1261  | 
using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto  | 
|
1262  | 
next fix y assume "y \<in> cball a (Min i)"  | 
|
1263  | 
hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto  | 
|
1264  | 
    { fix x assume "x\<in>t"
 | 
|
1265  | 
hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto  | 
|
1266  | 
hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto  | 
|
1267  | 
moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto  | 
|
1268  | 
ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by auto }  | 
|
1269  | 
moreover  | 
|
1270  | 
have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto  | 
|
1271  | 
have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1"  | 
|
1272  | 
unfolding setsum_reindex[OF *] o_def using obt(4) by auto  | 
|
1273  | 
moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y"  | 
|
1274  | 
unfolding setsum_reindex[OF *] o_def using obt(4,5)  | 
|
1275  | 
by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib)  | 
|
1276  | 
ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"  | 
|
1277  | 
apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI)  | 
|
1278  | 
using obt(1, 3) by auto  | 
|
1279  | 
qed  | 
|
1280  | 
qed  | 
|
1281  | 
||
1282  | 
lemma open_dest_vec1_vimage: "open S \<Longrightarrow> open (dest_vec1 -` S)"  | 
|
| 34964 | 1283  | 
unfolding open_vector_def forall_1 by auto  | 
| 33175 | 1284  | 
|
1285  | 
lemma tendsto_dest_vec1 [tendsto_intros]:  | 
|
1286  | 
"(f ---> l) net \<Longrightarrow> ((\<lambda>x. dest_vec1 (f x)) ---> dest_vec1 l) net"  | 
|
1287  | 
unfolding tendsto_def  | 
|
1288  | 
apply clarify  | 
|
1289  | 
apply (drule_tac x="dest_vec1 -` S" in spec)  | 
|
1290  | 
apply (simp add: open_dest_vec1_vimage)  | 
|
1291  | 
done  | 
|
1292  | 
||
1293  | 
lemma continuous_dest_vec1: "continuous net f \<Longrightarrow> continuous net (\<lambda>x. dest_vec1 (f x))"  | 
|
1294  | 
unfolding continuous_def by (rule tendsto_dest_vec1)  | 
|
1295  | 
||
1296  | 
(* TODO: move *)  | 
|
1297  | 
lemma compact_real_interval:  | 
|
1298  | 
  fixes a b :: real shows "compact {a..b}"
 | 
|
1299  | 
proof -  | 
|
1300  | 
  have "continuous_on {vec1 a .. vec1 b} dest_vec1"
 | 
|
1301  | 
unfolding continuous_on  | 
|
1302  | 
by (simp add: tendsto_dest_vec1 Lim_at_within Lim_ident_at)  | 
|
1303  | 
  moreover have "compact {vec1 a .. vec1 b}" by (rule compact_interval)
 | 
|
1304  | 
  ultimately have "compact (dest_vec1 ` {vec1 a .. vec1 b})"
 | 
|
1305  | 
by (rule compact_continuous_image)  | 
|
1306  | 
  also have "dest_vec1 ` {vec1 a .. vec1 b} = {a..b}"
 | 
|
1307  | 
by (auto simp add: image_def Bex_def exists_vec1)  | 
|
1308  | 
finally show ?thesis .  | 
|
1309  | 
qed  | 
|
1310  | 
||
1311  | 
lemma compact_convex_combinations:  | 
|
1312  | 
fixes s t :: "'a::real_normed_vector set"  | 
|
1313  | 
assumes "compact s" "compact t"  | 
|
1314  | 
  shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
 | 
|
1315  | 
proof-  | 
|
1316  | 
  let ?X = "{0..1} \<times> s \<times> t"
 | 
|
1317  | 
let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"  | 
|
1318  | 
  have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
 | 
|
1319  | 
apply(rule set_ext) unfolding image_iff mem_Collect_eq  | 
|
1320  | 
apply rule apply auto  | 
|
1321  | 
apply (rule_tac x=u in rev_bexI, simp)  | 
|
1322  | 
apply (erule rev_bexI, erule rev_bexI, simp)  | 
|
1323  | 
by auto  | 
|
1324  | 
  have "continuous_on ({0..1} \<times> s \<times> t)
 | 
|
1325  | 
(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))"  | 
|
1326  | 
unfolding continuous_on by (rule ballI) (intro tendsto_intros)  | 
|
1327  | 
thus ?thesis unfolding *  | 
|
1328  | 
apply (rule compact_continuous_image)  | 
|
1329  | 
apply (intro compact_Times compact_real_interval assms)  | 
|
1330  | 
done  | 
|
1331  | 
qed  | 
|
1332  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1333  | 
lemma compact_convex_hull: fixes s::"(real^'n) set"  | 
| 33175 | 1334  | 
assumes "compact s" shows "compact(convex hull s)"  | 
1335  | 
proof(cases "s={}")
 | 
|
1336  | 
case True thus ?thesis using compact_empty by simp  | 
|
1337  | 
next  | 
|
1338  | 
case False then obtain w where "w\<in>s" by auto  | 
|
1339  | 
show ?thesis unfolding caratheodory[of s]  | 
|
| 34915 | 1340  | 
  proof(induct ("CARD('n) + 1"))
 | 
| 33175 | 1341  | 
    have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
 | 
1342  | 
using compact_empty by (auto simp add: convex_hull_empty)  | 
|
1343  | 
case 0 thus ?case unfolding * by simp  | 
|
1344  | 
next  | 
|
1345  | 
case (Suc n)  | 
|
1346  | 
show ?case proof(cases "n=0")  | 
|
1347  | 
      case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
 | 
|
1348  | 
unfolding expand_set_eq and mem_Collect_eq proof(rule, rule)  | 
|
1349  | 
fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"  | 
|
1350  | 
then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto  | 
|
1351  | 
show "x\<in>s" proof(cases "card t = 0")  | 
|
1352  | 
case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by(simp add: convex_hull_empty)  | 
|
1353  | 
next  | 
|
1354  | 
case False hence "card t = Suc 0" using t(3) `n=0` by auto  | 
|
1355  | 
          then obtain a where "t = {a}" unfolding card_Suc_eq by auto
 | 
|
1356  | 
thus ?thesis using t(2,4) by (simp add: convex_hull_singleton)  | 
|
1357  | 
qed  | 
|
1358  | 
next  | 
|
1359  | 
fix x assume "x\<in>s"  | 
|
1360  | 
thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"  | 
|
1361  | 
          apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
 | 
|
1362  | 
qed thus ?thesis using assms by simp  | 
|
1363  | 
next  | 
|
1364  | 
      case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
 | 
|
1365  | 
        { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
 | 
|
1366  | 
        0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
 | 
|
1367  | 
unfolding expand_set_eq and mem_Collect_eq proof(rule,rule)  | 
|
1368  | 
fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>  | 
|
1369  | 
0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"  | 
|
1370  | 
then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v"  | 
|
1371  | 
"0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n" "v \<in> convex hull t" by auto  | 
|
1372  | 
moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t"  | 
|
1373  | 
apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex]  | 
|
1374  | 
using obt(7) and hull_mono[of t "insert u t"] by auto  | 
|
1375  | 
ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"  | 
|
1376  | 
apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if)  | 
|
1377  | 
next  | 
|
1378  | 
fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t"  | 
|
1379  | 
then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto  | 
|
1380  | 
let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and>  | 
|
1381  | 
0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)"  | 
|
1382  | 
show ?P proof(cases "card t = Suc n")  | 
|
1383  | 
case False hence "card t \<le> n" using t(3) by auto  | 
|
1384  | 
thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t  | 
|
1385  | 
by(auto intro!: exI[where x=t])  | 
|
1386  | 
next  | 
|
1387  | 
case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto  | 
|
1388  | 
          show ?P proof(cases "u={}")
 | 
|
1389  | 
case True hence "x=a" using t(4)[unfolded au] by auto  | 
|
1390  | 
show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI)  | 
|
1391  | 
              using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"] simp add: convex_hull_singleton)
 | 
|
1392  | 
next  | 
|
1393  | 
case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b"  | 
|
1394  | 
using t(4)[unfolded au convex_hull_insert[OF False]] by auto  | 
|
1395  | 
have *:"1 - vx = ux" using obt(3) by auto  | 
|
1396  | 
show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI)  | 
|
1397  | 
using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)]  | 
|
1398  | 
by(auto intro!: exI[where x=u])  | 
|
1399  | 
qed  | 
|
1400  | 
qed  | 
|
1401  | 
qed  | 
|
1402  | 
thus ?thesis using compact_convex_combinations[OF assms Suc] by simp  | 
|
1403  | 
qed  | 
|
1404  | 
qed  | 
|
1405  | 
qed  | 
|
1406  | 
||
1407  | 
lemma finite_imp_compact_convex_hull:  | 
|
1408  | 
fixes s :: "(real ^ _) set"  | 
|
1409  | 
shows "finite s \<Longrightarrow> compact(convex hull s)"  | 
|
1410  | 
apply(drule finite_imp_compact, drule compact_convex_hull) by assumption  | 
|
1411  | 
||
1412  | 
subsection {* Extremal points of a simplex are some vertices. *}
 | 
|
1413  | 
||
1414  | 
lemma dist_increases_online:  | 
|
1415  | 
fixes a b d :: "'a::real_inner"  | 
|
1416  | 
assumes "d \<noteq> 0"  | 
|
1417  | 
shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b"  | 
|
1418  | 
proof(cases "inner a d - inner b d > 0")  | 
|
1419  | 
case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)"  | 
|
1420  | 
apply(rule_tac add_pos_pos) using assms by auto  | 
|
1421  | 
thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff  | 
|
1422  | 
by (simp add: algebra_simps inner_commute)  | 
|
1423  | 
next  | 
|
1424  | 
case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)"  | 
|
1425  | 
apply(rule_tac add_pos_nonneg) using assms by auto  | 
|
1426  | 
thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff  | 
|
1427  | 
by (simp add: algebra_simps inner_commute)  | 
|
1428  | 
qed  | 
|
1429  | 
||
1430  | 
lemma norm_increases_online:  | 
|
1431  | 
fixes d :: "'a::real_inner"  | 
|
1432  | 
shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a"  | 
|
1433  | 
using dist_increases_online[of d a 0] unfolding dist_norm by auto  | 
|
1434  | 
||
1435  | 
lemma simplex_furthest_lt:  | 
|
1436  | 
fixes s::"'a::real_inner set" assumes "finite s"  | 
|
1437  | 
shows "\<forall>x \<in> (convex hull s). x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))"  | 
|
1438  | 
proof(induct_tac rule: finite_induct[of s])  | 
|
1439  | 
fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))"  | 
|
1440  | 
show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))"  | 
|
1441  | 
  proof(rule,rule,cases "s = {}")
 | 
|
1442  | 
case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s"  | 
|
1443  | 
obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b"  | 
|
1444  | 
using y(1)[unfolded convex_hull_insert[OF False]] by auto  | 
|
1445  | 
show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)"  | 
|
1446  | 
proof(cases "y\<in>convex hull s")  | 
|
1447  | 
case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)"  | 
|
1448  | 
using as(3)[THEN bspec[where x=y]] and y(2) by auto  | 
|
1449  | 
thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto  | 
|
1450  | 
next  | 
|
1451  | 
case False show ?thesis using obt(3) proof(cases "u=0", case_tac[!] "v=0")  | 
|
1452  | 
assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto  | 
|
1453  | 
thus ?thesis using False and obt(4) by auto  | 
|
1454  | 
next  | 
|
1455  | 
assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto  | 
|
1456  | 
thus ?thesis using y(2) by auto  | 
|
1457  | 
next  | 
|
1458  | 
assume "u\<noteq>0" "v\<noteq>0"  | 
|
1459  | 
then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto  | 
|
1460  | 
have "x\<noteq>b" proof(rule ccontr)  | 
|
1461  | 
assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5)  | 
|
1462  | 
using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym])  | 
|
1463  | 
thus False using obt(4) and False by simp qed  | 
|
1464  | 
hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto  | 
|
1465  | 
show ?thesis using dist_increases_online[OF *, of a y]  | 
|
1466  | 
proof(erule_tac disjE)  | 
|
1467  | 
assume "dist a y < dist a (y + w *\<^sub>R (x - b))"  | 
|
1468  | 
hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)"  | 
|
1469  | 
unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)  | 
|
1470  | 
moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s"  | 
|
1471  | 
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | 
|
1472  | 
apply(rule_tac x="u + w" in exI) apply rule defer  | 
|
1473  | 
apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto  | 
|
1474  | 
ultimately show ?thesis by auto  | 
|
1475  | 
next  | 
|
1476  | 
assume "dist a y < dist a (y - w *\<^sub>R (x - b))"  | 
|
1477  | 
hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)"  | 
|
1478  | 
unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps)  | 
|
1479  | 
moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s"  | 
|
1480  | 
            unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | 
|
1481  | 
apply(rule_tac x="u - w" in exI) apply rule defer  | 
|
1482  | 
apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto  | 
|
1483  | 
ultimately show ?thesis by auto  | 
|
1484  | 
qed  | 
|
1485  | 
qed auto  | 
|
1486  | 
qed  | 
|
1487  | 
qed auto  | 
|
1488  | 
qed (auto simp add: assms)  | 
|
1489  | 
||
1490  | 
lemma simplex_furthest_le:  | 
|
1491  | 
fixes s :: "(real ^ _) set"  | 
|
1492  | 
  assumes "finite s" "s \<noteq> {}"
 | 
|
1493  | 
shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)"  | 
|
1494  | 
proof-  | 
|
1495  | 
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | 
|
1496  | 
then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)"  | 
|
1497  | 
using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a]  | 
|
1498  | 
unfolding dist_commute[of a] unfolding dist_norm by auto  | 
|
1499  | 
thus ?thesis proof(cases "x\<in>s")  | 
|
1500  | 
case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)"  | 
|
1501  | 
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto  | 
|
1502  | 
thus ?thesis using x(2)[THEN bspec[where x=y]] by auto  | 
|
1503  | 
qed auto  | 
|
1504  | 
qed  | 
|
1505  | 
||
1506  | 
lemma simplex_furthest_le_exists:  | 
|
1507  | 
fixes s :: "(real ^ _) set"  | 
|
1508  | 
shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))"  | 
|
1509  | 
  using simplex_furthest_le[of s] by (cases "s={}")auto
 | 
|
1510  | 
||
1511  | 
lemma simplex_extremal_le:  | 
|
1512  | 
fixes s :: "(real ^ _) set"  | 
|
1513  | 
  assumes "finite s" "s \<noteq> {}"
 | 
|
1514  | 
shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)"  | 
|
1515  | 
proof-  | 
|
1516  | 
  have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | 
|
1517  | 
then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s"  | 
|
1518  | 
"\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)"  | 
|
1519  | 
using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto  | 
|
1520  | 
thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE)  | 
|
1521  | 
assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)"  | 
|
1522  | 
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto  | 
|
1523  | 
thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto  | 
|
1524  | 
next  | 
|
1525  | 
assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)"  | 
|
1526  | 
using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto  | 
|
1527  | 
thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1)  | 
|
1528  | 
by (auto simp add: norm_minus_commute)  | 
|
1529  | 
qed auto  | 
|
1530  | 
qed  | 
|
1531  | 
||
1532  | 
lemma simplex_extremal_le_exists:  | 
|
1533  | 
fixes s :: "(real ^ _) set"  | 
|
1534  | 
shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s  | 
|
1535  | 
\<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))"  | 
|
1536  | 
  using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
 | 
|
1537  | 
||
1538  | 
subsection {* Closest point of a convex set is unique, with a continuous projection. *}
 | 
|
1539  | 
||
1540  | 
definition  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1541  | 
closest_point :: "(real ^ 'n) set \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where  | 
| 33175 | 1542  | 
"closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))"  | 
1543  | 
||
1544  | 
lemma closest_point_exists:  | 
|
1545  | 
  assumes "closed s" "s \<noteq> {}"
 | 
|
1546  | 
shows "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y"  | 
|
1547  | 
unfolding closest_point_def apply(rule_tac[!] someI2_ex)  | 
|
1548  | 
using distance_attains_inf[OF assms(1,2), of a] by auto  | 
|
1549  | 
||
1550  | 
lemma closest_point_in_set:  | 
|
1551  | 
  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
 | 
|
1552  | 
by(meson closest_point_exists)  | 
|
1553  | 
||
1554  | 
lemma closest_point_le:  | 
|
1555  | 
"closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x"  | 
|
1556  | 
using closest_point_exists[of s] by auto  | 
|
1557  | 
||
1558  | 
lemma closest_point_self:  | 
|
1559  | 
assumes "x \<in> s" shows "closest_point s x = x"  | 
|
1560  | 
unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x])  | 
|
1561  | 
using assms by auto  | 
|
1562  | 
||
1563  | 
lemma closest_point_refl:  | 
|
1564  | 
 "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
 | 
|
1565  | 
using closest_point_in_set[of s x] closest_point_self[of x s] by auto  | 
|
1566  | 
||
1567  | 
(* TODO: move *)  | 
|
1568  | 
lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y"  | 
|
1569  | 
unfolding norm_eq_sqrt_inner by simp  | 
|
1570  | 
||
1571  | 
(* TODO: move *)  | 
|
1572  | 
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y"  | 
|
1573  | 
unfolding norm_eq_sqrt_inner by simp  | 
|
1574  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1575  | 
lemma closer_points_lemma: fixes y::"real^'n"  | 
| 33175 | 1576  | 
assumes "inner y z > 0"  | 
1577  | 
shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y"  | 
|
1578  | 
proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto  | 
|
1579  | 
thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+)  | 
|
1580  | 
fix v assume "0<v" "v \<le> inner y z / inner z z"  | 
|
1581  | 
thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms  | 
|
1582  | 
by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`])  | 
|
1583  | 
qed(rule divide_pos_pos, auto) qed  | 
|
1584  | 
||
1585  | 
lemma closer_point_lemma:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1586  | 
fixes x y z :: "real ^ 'n"  | 
| 33175 | 1587  | 
assumes "inner (y - x) (z - x) > 0"  | 
1588  | 
shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y"  | 
|
1589  | 
proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)"  | 
|
1590  | 
using closer_points_lemma[OF assms] by auto  | 
|
1591  | 
show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0`  | 
|
1592  | 
unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed  | 
|
1593  | 
||
1594  | 
lemma any_closest_point_dot:  | 
|
1595  | 
fixes s :: "(real ^ _) set"  | 
|
1596  | 
assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"  | 
|
1597  | 
shows "inner (a - x) (y - x) \<le> 0"  | 
|
1598  | 
proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0"  | 
|
1599  | 
then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto  | 
|
1600  | 
let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto  | 
|
1601  | 
thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed  | 
|
1602  | 
||
1603  | 
(* TODO: move *)  | 
|
1604  | 
lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"  | 
|
1605  | 
proof -  | 
|
1606  | 
have "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> norm x \<le> a"  | 
|
1607  | 
using norm_ge_zero [of x] by arith  | 
|
1608  | 
also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> (norm x)\<twosuperior> \<le> a\<twosuperior>"  | 
|
1609  | 
by (auto intro: power_mono dest: power2_le_imp_le)  | 
|
1610  | 
also have "\<dots> \<longleftrightarrow> 0 \<le> a \<and> inner x x \<le> a\<twosuperior>"  | 
|
1611  | 
unfolding power2_norm_eq_inner ..  | 
|
1612  | 
finally show ?thesis .  | 
|
1613  | 
qed  | 
|
1614  | 
||
1615  | 
lemma any_closest_point_unique:  | 
|
1616  | 
fixes s :: "(real ^ _) set"  | 
|
1617  | 
assumes "convex s" "closed s" "x \<in> s" "y \<in> s"  | 
|
1618  | 
"\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z"  | 
|
1619  | 
shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)]  | 
|
1620  | 
unfolding norm_pths(1) and norm_le_square  | 
|
1621  | 
by (auto simp add: algebra_simps)  | 
|
1622  | 
||
1623  | 
lemma closest_point_unique:  | 
|
1624  | 
assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z"  | 
|
1625  | 
shows "x = closest_point s a"  | 
|
1626  | 
using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"]  | 
|
1627  | 
using closest_point_exists[OF assms(2)] and assms(3) by auto  | 
|
1628  | 
||
1629  | 
lemma closest_point_dot:  | 
|
1630  | 
assumes "convex s" "closed s" "x \<in> s"  | 
|
1631  | 
shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0"  | 
|
1632  | 
apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)])  | 
|
1633  | 
using closest_point_exists[OF assms(2)] and assms(3) by auto  | 
|
1634  | 
||
1635  | 
lemma closest_point_lt:  | 
|
1636  | 
assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a"  | 
|
1637  | 
shows "dist a (closest_point s a) < dist a x"  | 
|
1638  | 
apply(rule ccontr) apply(rule_tac notE[OF assms(4)])  | 
|
1639  | 
apply(rule closest_point_unique[OF assms(1-3), of a])  | 
|
1640  | 
using closest_point_le[OF assms(2), of _ a] by fastsimp  | 
|
1641  | 
||
1642  | 
lemma closest_point_lipschitz:  | 
|
1643  | 
  assumes "convex s" "closed s" "s \<noteq> {}"
 | 
|
1644  | 
shows "dist (closest_point s x) (closest_point s y) \<le> dist x y"  | 
|
1645  | 
proof-  | 
|
1646  | 
have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0"  | 
|
1647  | 
"inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0"  | 
|
1648  | 
apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)])  | 
|
1649  | 
using closest_point_exists[OF assms(2-3)] by auto  | 
|
1650  | 
thus ?thesis unfolding dist_norm and norm_le  | 
|
1651  | 
using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"]  | 
|
1652  | 
by (simp add: inner_add inner_diff inner_commute) qed  | 
|
1653  | 
||
1654  | 
lemma continuous_at_closest_point:  | 
|
1655  | 
  assumes "convex s" "closed s" "s \<noteq> {}"
 | 
|
1656  | 
shows "continuous (at x) (closest_point s)"  | 
|
1657  | 
unfolding continuous_at_eps_delta  | 
|
1658  | 
using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto  | 
|
1659  | 
||
1660  | 
lemma continuous_on_closest_point:  | 
|
1661  | 
  assumes "convex s" "closed s" "s \<noteq> {}"
 | 
|
1662  | 
shows "continuous_on t (closest_point s)"  | 
|
1663  | 
apply(rule continuous_at_imp_continuous_on) using continuous_at_closest_point[OF assms] by auto  | 
|
1664  | 
||
1665  | 
subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
 | 
|
1666  | 
||
1667  | 
lemma supporting_hyperplane_closed_point:  | 
|
1668  | 
fixes s :: "(real ^ _) set"  | 
|
1669  | 
  assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
 | 
|
1670  | 
shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)"  | 
|
1671  | 
proof-  | 
|
1672  | 
from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto  | 
|
1673  | 
show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI)  | 
|
1674  | 
apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof-  | 
|
1675  | 
show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym])  | 
|
1676  | 
unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto  | 
|
1677  | 
next  | 
|
1678  | 
fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)"  | 
|
1679  | 
using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto  | 
|
1680  | 
assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where  | 
|
1681  | 
"v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff)  | 
|
1682  | 
thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps)  | 
|
1683  | 
qed auto  | 
|
1684  | 
qed  | 
|
1685  | 
||
1686  | 
lemma separating_hyperplane_closed_point:  | 
|
1687  | 
fixes s :: "(real ^ _) set"  | 
|
1688  | 
assumes "convex s" "closed s" "z \<notin> s"  | 
|
1689  | 
shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)"  | 
|
1690  | 
proof(cases "s={}")
 | 
|
1691  | 
case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI)  | 
|
1692  | 
using less_le_trans[OF _ inner_ge_zero[of z]] by auto  | 
|
1693  | 
next  | 
|
1694  | 
case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x"  | 
|
1695  | 
using distance_attains_inf[OF assms(2) False] by auto  | 
|
1696  | 
show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI)  | 
|
1697  | 
apply rule defer apply rule proof-  | 
|
1698  | 
fix x assume "x\<in>s"  | 
|
1699  | 
have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma)  | 
|
1700  | 
assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z"  | 
|
1701  | 
then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto  | 
|
1702  | 
thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]]  | 
|
1703  | 
using assms(1)[unfolded convex_alt, THEN bspec[where x=y]]  | 
|
1704  | 
using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed  | 
|
1705  | 
moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto  | 
|
1706  | 
hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp  | 
|
1707  | 
ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x"  | 
|
1708  | 
unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff)  | 
|
1709  | 
qed(insert `y\<in>s` `z\<notin>s`, auto)  | 
|
1710  | 
qed  | 
|
1711  | 
||
1712  | 
lemma separating_hyperplane_closed_0:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1713  | 
assumes "convex (s::(real^'n) set)" "closed s" "0 \<notin> s"  | 
| 33175 | 1714  | 
shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)"  | 
1715  | 
  proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
 | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1716  | 
case True have "norm ((basis a)::real^'n) = 1"  | 
| 33175 | 1717  | 
using norm_basis and dimindex_ge_1 by auto  | 
1718  | 
thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto  | 
|
1719  | 
next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms]  | 
|
1720  | 
apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed  | 
|
1721  | 
||
1722  | 
subsection {* Now set-to-set for closed/compact sets. *}
 | 
|
1723  | 
||
1724  | 
lemma separating_hyperplane_closed_compact:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1725  | 
  assumes "convex (s::(real^'n) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1726  | 
shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"  | 
1727  | 
proof(cases "s={}")
 | 
|
1728  | 
case True  | 
|
1729  | 
obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto  | 
|
1730  | 
obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto  | 
|
1731  | 
hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto  | 
|
1732  | 
then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x"  | 
|
1733  | 
using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto  | 
|
1734  | 
thus ?thesis using True by auto  | 
|
1735  | 
next  | 
|
1736  | 
case False then obtain y where "y\<in>s" by auto  | 
|
1737  | 
  obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
 | 
|
1738  | 
using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0]  | 
|
1739  | 
using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast)  | 
|
1740  | 
hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff)  | 
|
| 33270 | 1741  | 
def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)"  | 
| 33175 | 1742  | 
show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI)  | 
1743  | 
apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof-  | 
|
1744  | 
from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)"  | 
|
1745  | 
apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto  | 
|
| 33270 | 1746  | 
hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto  | 
| 33175 | 1747  | 
fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto  | 
1748  | 
next  | 
|
1749  | 
fix x assume "x\<in>s"  | 
|
| 33270 | 1750  | 
hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5)  | 
| 33175 | 1751  | 
using ab[THEN bspec[where x=x]] by auto  | 
1752  | 
thus "k + b / 2 < inner a x" using `0 < b` by auto  | 
|
1753  | 
qed  | 
|
1754  | 
qed  | 
|
1755  | 
||
1756  | 
lemma separating_hyperplane_compact_closed:  | 
|
1757  | 
fixes s :: "(real ^ _) set"  | 
|
1758  | 
  assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
 | 
|
1759  | 
shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)"  | 
|
1760  | 
proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)"  | 
|
1761  | 
using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto  | 
|
1762  | 
thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed  | 
|
1763  | 
||
1764  | 
subsection {* General case without assuming closure and getting non-strict separation. *}
 | 
|
1765  | 
||
1766  | 
lemma separating_hyperplane_set_0:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1767  | 
assumes "convex s" "(0::real^'n) \<notin> s"  | 
| 33175 | 1768  | 
shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)"  | 
1769  | 
proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> inner c x}"
 | 
|
1770  | 
  have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
 | 
|
1771  | 
apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball])  | 
|
1772  | 
defer apply(rule,rule,erule conjE) proof-  | 
|
1773  | 
fix f assume as:"f \<subseteq> ?k ` s" "finite f"  | 
|
1774  | 
obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto  | 
|
1775  | 
then obtain a b where ab:"a \<noteq> 0" "0 < b" "\<forall>x\<in>convex hull c. b < inner a x"  | 
|
1776  | 
using separating_hyperplane_closed_0[OF convex_convex_hull, of c]  | 
|
1777  | 
using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2)  | 
|
1778  | 
using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto  | 
|
1779  | 
hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI)  | 
|
1780  | 
using hull_subset[of c convex] unfolding subset_eq and inner_scaleR  | 
|
1781  | 
apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg)  | 
|
1782  | 
by(auto simp add: inner_commute elim!: ballE)  | 
|
1783  | 
    thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
 | 
|
1784  | 
qed(insert closed_halfspace_ge, auto)  | 
|
1785  | 
then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto  | 
|
1786  | 
thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed  | 
|
1787  | 
||
1788  | 
lemma separating_hyperplane_sets:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1789  | 
  assumes "convex s" "convex (t::(real^'n) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1790  | 
shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)"  | 
1791  | 
proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]]  | 
|
| 33270 | 1792  | 
  obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
 | 
1793  | 
using assms(3-5) by auto  | 
|
1794  | 
hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x"  | 
|
1795  | 
by (force simp add: inner_diff)  | 
|
1796  | 
thus ?thesis  | 
|
1797  | 
apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0`  | 
|
1798  | 
apply auto  | 
|
1799  | 
apply (rule Sup[THEN isLubD2])  | 
|
1800  | 
prefer 4  | 
|
1801  | 
apply (rule Sup_least)  | 
|
1802  | 
using assms(3-5) apply (auto simp add: setle_def)  | 
|
1803  | 
apply (metis COMBC_def Collect_def Collect_mem_eq)  | 
|
1804  | 
done  | 
|
1805  | 
qed  | 
|
| 33175 | 1806  | 
|
1807  | 
subsection {* More convexity generalities. *}
 | 
|
1808  | 
||
1809  | 
lemma convex_closure:  | 
|
1810  | 
fixes s :: "'a::real_normed_vector set"  | 
|
1811  | 
assumes "convex s" shows "convex(closure s)"  | 
|
1812  | 
unfolding convex_def Ball_def closure_sequential  | 
|
1813  | 
apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+  | 
|
1814  | 
apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule)  | 
|
1815  | 
apply(rule assms[unfolded convex_def, rule_format]) prefer 6  | 
|
1816  | 
apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto  | 
|
1817  | 
||
1818  | 
lemma convex_interior:  | 
|
1819  | 
fixes s :: "'a::real_normed_vector set"  | 
|
1820  | 
assumes "convex s" shows "convex(interior s)"  | 
|
1821  | 
unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof-  | 
|
1822  | 
fix x y u assume u:"0 \<le> u" "u \<le> (1::real)"  | 
|
1823  | 
fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e"  | 
|
1824  | 
show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI)  | 
|
1825  | 
apply rule unfolding subset_eq defer apply rule proof-  | 
|
1826  | 
fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)"  | 
|
1827  | 
hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s"  | 
|
1828  | 
apply(rule_tac assms[unfolded convex_alt, rule_format])  | 
|
1829  | 
using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps)  | 
|
1830  | 
thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed  | 
|
1831  | 
||
| 34964 | 1832  | 
lemma convex_hull_eq_empty[simp]: "convex hull s = {} \<longleftrightarrow> s = {}"
 | 
| 33175 | 1833  | 
using hull_subset[of s convex] convex_hull_empty by auto  | 
1834  | 
||
1835  | 
subsection {* Moving and scaling convex hulls. *}
 | 
|
1836  | 
||
1837  | 
lemma convex_hull_translation_lemma:  | 
|
1838  | 
"convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)"  | 
|
1839  | 
apply(rule hull_minimal, rule image_mono, rule hull_subset) unfolding mem_def  | 
|
1840  | 
using convex_translation[OF convex_convex_hull, of a s] by assumption  | 
|
1841  | 
||
1842  | 
lemma convex_hull_bilemma: fixes neg  | 
|
1843  | 
assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))"  | 
|
1844  | 
shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t)  | 
|
1845  | 
\<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)"  | 
|
1846  | 
using assms by(metis subset_antisym)  | 
|
1847  | 
||
1848  | 
lemma convex_hull_translation:  | 
|
1849  | 
"convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)"  | 
|
1850  | 
apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto  | 
|
1851  | 
||
1852  | 
lemma convex_hull_scaling_lemma:  | 
|
1853  | 
"(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"  | 
|
1854  | 
apply(rule hull_minimal, rule image_mono, rule hull_subset)  | 
|
1855  | 
unfolding mem_def by(rule convex_scaling, rule convex_convex_hull)  | 
|
1856  | 
||
1857  | 
lemma convex_hull_scaling:  | 
|
1858  | 
"convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)"  | 
|
1859  | 
apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma)  | 
|
1860  | 
unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv convex_hull_eq_empty)  | 
|
1861  | 
||
1862  | 
lemma convex_hull_affinity:  | 
|
1863  | 
"convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)"  | 
|
1864  | 
unfolding image_image[THEN sym] convex_hull_scaling convex_hull_translation ..  | 
|
1865  | 
||
1866  | 
subsection {* Convex set as intersection of halfspaces. *}
 | 
|
1867  | 
||
1868  | 
lemma convex_halfspace_intersection:  | 
|
1869  | 
fixes s :: "(real ^ _) set"  | 
|
1870  | 
assumes "closed s" "convex s"  | 
|
1871  | 
  shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
 | 
|
1872  | 
apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof-  | 
|
1873  | 
  fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
 | 
|
1874  | 
  hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
 | 
|
1875  | 
thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)])  | 
|
1876  | 
apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto  | 
|
1877  | 
qed auto  | 
|
1878  | 
||
1879  | 
subsection {* Radon's theorem (from Lars Schewe). *}
 | 
|
1880  | 
||
1881  | 
lemma radon_ex_lemma:  | 
|
1882  | 
assumes "finite c" "affine_dependent c"  | 
|
1883  | 
shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0"  | 
|
1884  | 
proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u ..  | 
|
1885  | 
thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left  | 
|
1886  | 
and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed  | 
|
1887  | 
||
1888  | 
lemma radon_s_lemma:  | 
|
1889  | 
assumes "finite s" "setsum f s = (0::real)"  | 
|
1890  | 
  shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
 | 
|
1891  | 
proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto  | 
|
1892  | 
show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *  | 
|
1893  | 
using assms(2) by assumption qed  | 
|
1894  | 
||
1895  | 
lemma radon_v_lemma:  | 
|
| 34289 | 1896  | 
assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^_)"  | 
| 33175 | 1897  | 
  shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
 | 
1898  | 
proof-  | 
|
1899  | 
have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto  | 
|
1900  | 
show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and *  | 
|
1901  | 
using assms(2) by assumption qed  | 
|
1902  | 
||
1903  | 
lemma radon_partition:  | 
|
1904  | 
assumes "finite c" "affine_dependent c"  | 
|
1905  | 
  shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
 | 
|
1906  | 
obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0" "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto  | 
|
1907  | 
  have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
 | 
|
1908  | 
  def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
 | 
|
1909  | 
  have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
 | 
|
1910  | 
case False hence "u v < 0" by auto  | 
|
1911  | 
    thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
 | 
|
1912  | 
case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto  | 
|
1913  | 
next  | 
|
1914  | 
case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto  | 
|
1915  | 
thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed  | 
|
1916  | 
qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto)  | 
|
1917  | 
||
1918  | 
  hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
 | 
|
1919  | 
  moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
 | 
|
1920  | 
    "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
 | 
|
1921  | 
using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto  | 
|
1922  | 
  hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
 | 
|
1923  | 
   "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
 | 
|
1924  | 
unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add: setsum_Un_zero[OF fin, THEN sym])  | 
|
1925  | 
  moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
 | 
|
1926  | 
apply (rule) apply (rule mult_nonneg_nonneg) using * by auto  | 
|
1927  | 
||
1928  | 
  ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
 | 
|
1929  | 
    apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
 | 
|
1930  | 
using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def  | 
|
1931  | 
by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])  | 
|
1932  | 
  moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
 | 
|
1933  | 
apply (rule) apply (rule mult_nonneg_nonneg) using * by auto  | 
|
1934  | 
  hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
 | 
|
1935  | 
    apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
 | 
|
1936  | 
using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using *  | 
|
1937  | 
by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym])  | 
|
1938  | 
  ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
 | 
|
1939  | 
qed  | 
|
1940  | 
||
1941  | 
lemma radon: assumes "affine_dependent c"  | 
|
1942  | 
  obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
 | 
|
1943  | 
proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u ..  | 
|
1944  | 
hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto  | 
|
1945  | 
from radon_partition[OF *] guess m .. then guess p ..  | 
|
1946  | 
thus ?thesis apply(rule_tac that[of p m]) using s by auto qed  | 
|
1947  | 
||
1948  | 
subsection {* Helly's theorem. *}
 | 
|
1949  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1950  | 
lemma helly_induct: fixes f::"(real^'n) set set"  | 
| 33715 | 1951  | 
  assumes "card f = n" "n \<ge> CARD('n) + 1"
 | 
| 33175 | 1952  | 
  "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
1953  | 
  shows "\<Inter> f \<noteq> {}"
 | 
|
| 33715 | 1954  | 
using assms proof(induct n arbitrary: f)  | 
| 33175 | 1955  | 
case (Suc n)  | 
| 33715 | 1956  | 
have "finite f" using `card f = Suc n` by (auto intro: card_ge_0_finite)  | 
1957  | 
show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(5)[rule_format])
 | 
|
1958  | 
unfolding `card f = Suc n` proof-  | 
|
| 33175 | 1959  | 
  assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
 | 
| 33715 | 1960  | 
apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF `finite f`] `card f = Suc n`  | 
1961  | 
defer defer apply(rule Suc(4)[rule_format]) defer apply(rule Suc(5)[rule_format]) using Suc(3) `finite f` by auto  | 
|
| 33175 | 1962  | 
  then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
 | 
1963  | 
show ?thesis proof(cases "inj_on X f")  | 
|
1964  | 
case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto  | 
|
1965  | 
    hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
 | 
|
1966  | 
show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI)  | 
|
1967  | 
apply(rule, rule X[rule_format]) using X st by auto  | 
|
1968  | 
  next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
 | 
|
1969  | 
using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"]  | 
|
| 33715 | 1970  | 
unfolding card_image[OF True] and `card f = Suc n` using Suc(3) `finite f` and ng by auto  | 
| 33175 | 1971  | 
have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto  | 
1972  | 
then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto  | 
|
1973  | 
hence "f \<union> (g \<union> h) = f" by auto  | 
|
1974  | 
hence f:"f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True  | 
|
1975  | 
unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto  | 
|
1976  | 
    have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
 | 
|
1977  | 
have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h"  | 
|
| 33715 | 1978  | 
apply(rule_tac [!] hull_minimal) using Suc gh(3-4) unfolding mem_def unfolding subset_eq  | 
| 33175 | 1979  | 
apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof-  | 
1980  | 
fix x assume "x\<in>X ` g" then guess y unfolding image_iff ..  | 
|
1981  | 
thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next  | 
|
1982  | 
fix x assume "x\<in>X ` h" then guess y unfolding image_iff ..  | 
|
1983  | 
thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto  | 
|
1984  | 
qed(auto)  | 
|
1985  | 
thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed  | 
|
1986  | 
qed(insert dimindex_ge_1, auto) qed(auto)  | 
|
1987  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
1988  | 
lemma helly: fixes f::"(real^'n) set set"  | 
| 33715 | 1989  | 
  assumes "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
 | 
| 33175 | 1990  | 
          "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
1991  | 
  shows "\<Inter> f \<noteq>{}"
 | 
|
| 33715 | 1992  | 
apply(rule helly_induct) using assms by auto  | 
| 33175 | 1993  | 
|
1994  | 
subsection {* Convex hull is "preserved" by a linear function. *}
 | 
|
1995  | 
||
1996  | 
lemma convex_hull_linear_image:  | 
|
1997  | 
assumes "bounded_linear f"  | 
|
1998  | 
shows "f ` (convex hull s) = convex hull (f ` s)"  | 
|
1999  | 
apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3  | 
|
2000  | 
apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption  | 
|
2001  | 
apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption  | 
|
2002  | 
proof-  | 
|
2003  | 
interpret f: bounded_linear f by fact  | 
|
2004  | 
  show "convex {x. f x \<in> convex hull f ` s}" 
 | 
|
2005  | 
unfolding convex_def by(auto simp add: f.scaleR f.add convex_convex_hull[unfolded convex_def, rule_format]) next  | 
|
2006  | 
interpret f: bounded_linear f by fact  | 
|
2007  | 
  show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
 | 
|
2008  | 
unfolding convex_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric])  | 
|
2009  | 
qed auto  | 
|
2010  | 
||
2011  | 
lemma in_convex_hull_linear_image:  | 
|
2012  | 
assumes "bounded_linear f" "x \<in> convex hull s"  | 
|
2013  | 
shows "(f x) \<in> convex hull (f ` s)"  | 
|
2014  | 
using convex_hull_linear_image[OF assms(1)] assms(2) by auto  | 
|
2015  | 
||
2016  | 
subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
 | 
|
2017  | 
||
2018  | 
lemma compact_frontier_line_lemma:  | 
|
2019  | 
fixes s :: "(real ^ _) set"  | 
|
2020  | 
assumes "compact s" "0 \<in> s" "x \<noteq> 0"  | 
|
2021  | 
obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s"  | 
|
2022  | 
proof-  | 
|
2023  | 
obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto  | 
|
2024  | 
  let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
 | 
|
2025  | 
  have A:"?A = (\<lambda>u. dest_vec1 u *\<^sub>R x) ` {0 .. vec1 (b / norm x)}"
 | 
|
2026  | 
unfolding image_image[of "\<lambda>u. u *\<^sub>R x" "\<lambda>x. dest_vec1 x", THEN sym]  | 
|
2027  | 
unfolding dest_vec1_inverval vec1_dest_vec1 by auto  | 
|
2028  | 
have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on)  | 
|
2029  | 
apply(rule, rule continuous_vmul)  | 
|
2030  | 
apply (rule continuous_dest_vec1)  | 
|
2031  | 
apply(rule continuous_at_id) by(rule compact_interval)  | 
|
2032  | 
  moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
 | 
|
2033  | 
unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos)  | 
|
2034  | 
ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x"  | 
|
2035  | 
"y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto  | 
|
2036  | 
||
2037  | 
have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto  | 
|
2038  | 
  { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
 | 
|
2039  | 
hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)]  | 
|
2040  | 
using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto  | 
|
2041  | 
hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer  | 
|
2042  | 
apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI)  | 
|
2043  | 
using as(1) `u\<ge>0` by(auto simp add:field_simps)  | 
|
2044  | 
hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps)  | 
|
2045  | 
} note u_max = this  | 
|
2046  | 
||
2047  | 
have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym]  | 
|
2048  | 
prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof-  | 
|
2049  | 
fix e assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s"  | 
|
2050  | 
hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos)  | 
|
2051  | 
thus False using u_max[OF _ as] by auto  | 
|
2052  | 
qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3))  | 
|
2053  | 
thus ?thesis apply(rule_tac that[of u]) apply(rule obt(1), assumption)  | 
|
2054  | 
apply(rule,rule,rule ccontr) apply(rule u_max) by auto qed  | 
|
2055  | 
||
2056  | 
lemma starlike_compact_projective:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2057  | 
assumes "compact s" "cball (0::real^'n) 1 \<subseteq> s "  | 
| 33175 | 2058  | 
"\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )"  | 
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2059  | 
shows "s homeomorphic (cball (0::real^'n) 1)"  | 
| 33175 | 2060  | 
proof-  | 
2061  | 
have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp  | 
|
2062  | 
def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *\<^sub>R x"  | 
|
2063  | 
have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE)  | 
|
2064  | 
using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto  | 
|
2065  | 
have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto  | 
|
2066  | 
||
2067  | 
  have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
 | 
|
2068  | 
apply rule unfolding pi_def  | 
|
2069  | 
apply (rule continuous_mul)  | 
|
2070  | 
apply (rule continuous_at_inv[unfolded o_def])  | 
|
2071  | 
apply (rule continuous_at_norm)  | 
|
2072  | 
apply simp  | 
|
2073  | 
apply (rule continuous_at_id)  | 
|
2074  | 
done  | 
|
2075  | 
  def sphere \<equiv> "{x::real^'n. norm x = 1}"
 | 
|
2076  | 
have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto  | 
|
2077  | 
||
2078  | 
have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto  | 
|
2079  | 
have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule)  | 
|
2080  | 
fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u"  | 
|
2081  | 
hence "x\<noteq>0" using `0\<notin>frontier s` by auto  | 
|
2082  | 
obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s"  | 
|
2083  | 
using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto  | 
|
2084  | 
have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof-  | 
|
2085  | 
assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next  | 
|
2086  | 
assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]]  | 
|
2087  | 
using v and x and fs unfolding inverse_less_1_iff by auto qed  | 
|
2088  | 
show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof-  | 
|
2089  | 
assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1")  | 
|
2090  | 
using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed  | 
|
2091  | 
||
2092  | 
have "\<exists>surf. homeomorphism (frontier s) sphere pi surf"  | 
|
2093  | 
apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)])  | 
|
2094  | 
apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule)  | 
|
2095  | 
unfolding inj_on_def prefer 3 apply(rule,rule,rule)  | 
|
2096  | 
proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto  | 
|
2097  | 
thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto  | 
|
2098  | 
next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto  | 
|
2099  | 
then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s"  | 
|
2100  | 
using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto  | 
|
2101  | 
thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto  | 
|
2102  | 
next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y"  | 
|
2103  | 
hence xys:"x\<in>s" "y\<in>s" using fs by auto  | 
|
2104  | 
from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto  | 
|
2105  | 
from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto  | 
|
2106  | 
from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto  | 
|
2107  | 
have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)"  | 
|
2108  | 
unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto  | 
|
2109  | 
hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff  | 
|
2110  | 
using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]]  | 
|
2111  | 
using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]]  | 
|
2112  | 
using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym])  | 
|
2113  | 
thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto  | 
|
2114  | 
qed(insert `0 \<notin> frontier s`, auto)  | 
|
2115  | 
then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x" "pi ` frontier s = sphere" "continuous_on (frontier s) pi"  | 
|
2116  | 
"\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto  | 
|
2117  | 
||
2118  | 
  have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
 | 
|
2119  | 
apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto  | 
|
2120  | 
||
2121  | 
  { fix x assume as:"x \<in> cball (0::real^'n) 1"
 | 
|
2122  | 
have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1")  | 
|
2123  | 
case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm)  | 
|
2124  | 
thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1])  | 
|
2125  | 
apply(rule_tac fs[unfolded subset_eq, rule_format])  | 
|
2126  | 
unfolding surf(5)[THEN sym] by auto  | 
|
2127  | 
next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format])  | 
|
2128  | 
unfolding surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this  | 
|
2129  | 
||
2130  | 
  { fix x assume "x\<in>s"
 | 
|
2131  | 
hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0")  | 
|
2132  | 
case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto  | 
|
2133  | 
next let ?a = "inverse (norm (surf (pi x)))"  | 
|
2134  | 
case False hence invn:"inverse (norm x) \<noteq> 0" by auto  | 
|
2135  | 
from False have pix:"pi x\<in>sphere" using pi(1) by auto  | 
|
2136  | 
hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption  | 
|
2137  | 
hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto  | 
|
2138  | 
hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply -  | 
|
2139  | 
apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto  | 
|
2140  | 
have "norm (surf (pi x)) \<noteq> 0" using ** False by auto  | 
|
2141  | 
hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))"  | 
|
2142  | 
unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto  | 
|
2143  | 
moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))"  | 
|
2144  | 
unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] ..  | 
|
2145  | 
moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto  | 
|
2146  | 
hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm  | 
|
2147  | 
using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]]  | 
|
2148  | 
using False `x\<in>s` by(auto simp add:field_simps)  | 
|
2149  | 
ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI)  | 
|
2150  | 
apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`]  | 
|
2151  | 
unfolding pi(2)[OF `?a > 0`] by auto  | 
|
2152  | 
qed } note hom2 = this  | 
|
2153  | 
||
2154  | 
show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"])  | 
|
2155  | 
apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom)  | 
|
2156  | 
prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof-  | 
|
2157  | 
fix x::"real^'n" assume as:"x \<in> cball 0 1"  | 
|
2158  | 
thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0")  | 
|
2159  | 
case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm)  | 
|
2160  | 
using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto  | 
|
2161  | 
next guess a using UNIV_witness[where 'a = 'n] ..  | 
|
2162  | 
obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto  | 
|
2163  | 
hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE)  | 
|
2164  | 
unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def])  | 
|
2165  | 
case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI)  | 
|
2166  | 
apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE)  | 
|
2167  | 
unfolding norm_0 scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof-  | 
|
2168  | 
fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e"  | 
|
2169  | 
hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto  | 
|
2170  | 
hence "norm (surf (pi x)) \<le> B" using B fs by auto  | 
|
2171  | 
hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto  | 
|
2172  | 
also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto  | 
|
2173  | 
also have "\<dots> = e" using `B>0` by auto  | 
|
2174  | 
finally show "norm x * norm (surf (pi x)) < e" by assumption  | 
|
2175  | 
qed(insert `B>0`, auto) qed  | 
|
2176  | 
  next { fix x assume as:"surf (pi x) = 0"
 | 
|
2177  | 
have "x = 0" proof(rule ccontr)  | 
|
2178  | 
assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto  | 
|
2179  | 
hence "surf (pi x) \<in> frontier s" using surf(5) by auto  | 
|
2180  | 
thus False using `0\<notin>frontier s` unfolding as by simp qed  | 
|
2181  | 
} note surf_0 = this  | 
|
2182  | 
show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule)  | 
|
2183  | 
fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)"  | 
|
2184  | 
thus "x=y" proof(cases "x=0 \<or> y=0")  | 
|
2185  | 
case True thus ?thesis using as by(auto elim: surf_0) next  | 
|
2186  | 
case False  | 
|
2187  | 
hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3)  | 
|
2188  | 
using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto  | 
|
2189  | 
moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto  | 
|
2190  | 
ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto  | 
|
2191  | 
moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0)  | 
|
2192  | 
ultimately show ?thesis using injpi by auto qed qed  | 
|
2193  | 
qed auto qed  | 
|
2194  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2195  | 
lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n) set"  | 
| 33175 | 2196  | 
assumes "convex s" "compact s" "cball 0 1 \<subseteq> s"  | 
2197  | 
shows "s homeomorphic (cball (0::real^'n) 1)"  | 
|
2198  | 
apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE)  | 
|
2199  | 
fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)"  | 
|
2200  | 
hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq  | 
|
2201  | 
apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball)  | 
|
2202  | 
unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof-  | 
|
2203  | 
fix y assume "dist (u *\<^sub>R x) y < 1 - u"  | 
|
2204  | 
hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s"  | 
|
2205  | 
using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm  | 
|
2206  | 
unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR  | 
|
2207  | 
apply (rule mult_left_le_imp_le[of "1 - u"])  | 
|
2208  | 
unfolding class_semiring.mul_a using `u<1` by auto  | 
|
2209  | 
thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u]  | 
|
2210  | 
using as unfolding scaleR_scaleR by auto qed auto  | 
|
2211  | 
thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed  | 
|
2212  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2213  | 
lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n) set"  | 
| 33175 | 2214  | 
  assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
 | 
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2215  | 
shows "s homeomorphic (cball (b::real^'n) e)"  | 
| 33175 | 2216  | 
proof- obtain a where "a\<in>interior s" using assms(3) by auto  | 
2217  | 
then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto  | 
|
2218  | 
let ?d = "inverse d" and ?n = "0::real^'n"  | 
|
2219  | 
have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s"  | 
|
2220  | 
apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer  | 
|
2221  | 
apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm  | 
|
2222  | 
by(auto simp add: mult_right_le_one_le)  | 
|
2223  | 
hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1"  | 
|
2224  | 
using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity]  | 
|
2225  | 
using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib)  | 
|
2226  | 
thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]])  | 
|
2227  | 
apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]])  | 
|
2228  | 
using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed  | 
|
2229  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2230  | 
lemma homeomorphic_convex_compact: fixes s::"(real^'n) set" and t::"(real^'n) set"  | 
| 33175 | 2231  | 
  assumes "convex s" "compact s" "interior s \<noteq> {}"
 | 
2232  | 
          "convex t" "compact t" "interior t \<noteq> {}"
 | 
|
2233  | 
shows "s homeomorphic t"  | 
|
2234  | 
using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym)  | 
|
2235  | 
||
2236  | 
subsection {* Epigraphs of convex functions. *}
 | 
|
2237  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2238  | 
definition "epigraph s (f::real^'n \<Rightarrow> real) = {xy. fstcart xy \<in> s \<and> f(fstcart xy) \<le> dest_vec1 (sndcart xy)}"
 | 
| 33175 | 2239  | 
|
2240  | 
lemma mem_epigraph: "(pastecart x (vec1 y)) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto  | 
|
2241  | 
||
| 34964 | 2242  | 
(** move this**)  | 
2243  | 
lemma forall_dest_vec1: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P(dest_vec1 x))"  | 
|
2244  | 
apply safe defer apply(erule_tac x="vec1 x" in allE) by auto  | 
|
2245  | 
||
2246  | 
(** This might break sooner or later. In fact it did already once. **)  | 
|
| 33175 | 2247  | 
lemma convex_epigraph:  | 
2248  | 
"convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s"  | 
|
2249  | 
unfolding convex_def convex_on_def unfolding Ball_def forall_pastecart epigraph_def  | 
|
| 34964 | 2250  | 
unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR] Ball_def[symmetric] unfolding vector_add_component vector_scaleR_component  | 
2251  | 
apply(subst forall_dest_vec1[THEN sym])+  | 
|
2252  | 
apply safe defer apply(erule_tac x=x in allE,erule_tac x="f x" in allE) apply safe  | 
|
2253  | 
apply(erule_tac x=xa in allE,erule_tac x="f xa" in allE) prefer 3  | 
|
2254  | 
apply(rule_tac y="u * f x + v * f xb" in order_trans) defer by(auto intro!:mult_left_mono add_mono)  | 
|
| 33175 | 2255  | 
|
2256  | 
lemma convex_epigraphI: assumes "convex_on s f" "convex s"  | 
|
2257  | 
shows "convex(epigraph s f)" using assms unfolding convex_epigraph by auto  | 
|
2258  | 
||
2259  | 
lemma convex_epigraph_convex: "convex s \<Longrightarrow> (convex_on s f \<longleftrightarrow> convex(epigraph s f))"  | 
|
2260  | 
using convex_epigraph by auto  | 
|
2261  | 
||
2262  | 
subsection {* Use this to derive general bound property of convex function. *}
 | 
|
2263  | 
||
2264  | 
lemma forall_of_pastecart:  | 
|
2265  | 
"(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson  | 
|
2266  | 
apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto  | 
|
2267  | 
||
2268  | 
lemma forall_of_pastecart':  | 
|
2269  | 
"(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson  | 
|
2270  | 
apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto  | 
|
2271  | 
||
2272  | 
lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)"  | 
|
2273  | 
apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto  | 
|
2274  | 
||
2275  | 
lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)"  | 
|
2276  | 
apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule  | 
|
2277  | 
apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto  | 
|
2278  | 
||
2279  | 
lemma convex_on:  | 
|
2280  | 
fixes s :: "(real ^ _) set"  | 
|
2281  | 
assumes "convex s"  | 
|
2282  | 
  shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
 | 
|
2283  | 
   f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
 | 
|
2284  | 
unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq  | 
|
2285  | 
unfolding sndcart_setsum[OF finite_atLeastAtMost] fstcart_setsum[OF finite_atLeastAtMost] dest_vec1_setsum[OF finite_atLeastAtMost]  | 
|
| 34964 | 2286  | 
unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul [where 'a=real, unfolded smult_conv_scaleR] fstcart_add fstcart_cmul [where 'a=real, unfolded smult_conv_scaleR] unfolding vector_scaleR_component  | 
2287  | 
apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule  | 
|
| 33175 | 2288  | 
using assms[unfolded convex] apply simp apply(rule,rule,rule)  | 
2289  | 
apply(erule_tac x=k in allE, erule_tac x=u in allE, erule_tac x=x in allE) apply rule apply rule apply rule defer  | 
|
2290  | 
apply(rule_tac j="\<Sum>i = 1..k. u i * f (x i)" in real_le_trans)  | 
|
| 34964 | 2291  | 
defer apply(rule setsum_mono) apply(erule conjE)+ apply(erule_tac x=i in allE) unfolding real_scaleR_def  | 
2292  | 
apply(rule mult_left_mono)using assms[unfolded convex] by auto  | 
|
| 33175 | 2293  | 
|
2294  | 
subsection {* Convexity of general and special intervals. *}
 | 
|
2295  | 
||
2296  | 
lemma is_interval_convex:  | 
|
2297  | 
fixes s :: "(real ^ _) set"  | 
|
2298  | 
assumes "is_interval s" shows "convex s"  | 
|
2299  | 
unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof-  | 
|
2300  | 
fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)"  | 
|
2301  | 
hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto  | 
|
2302  | 
  { fix a b assume "\<not> b \<le> u * a + v * b"
 | 
|
2303  | 
hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps)  | 
|
2304  | 
hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps)  | 
|
2305  | 
hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono)  | 
|
2306  | 
} moreover  | 
|
2307  | 
  { fix a b assume "\<not> u * a + v * b \<le> a"
 | 
|
2308  | 
hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps)  | 
|
2309  | 
hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: ring_simps)  | 
|
2310  | 
hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) }  | 
|
2311  | 
ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)])  | 
|
2312  | 
using as(3-) dimindex_ge_1 apply- by(auto simp add: vector_component) qed  | 
|
2313  | 
||
2314  | 
lemma is_interval_connected:  | 
|
2315  | 
fixes s :: "(real ^ _) set"  | 
|
2316  | 
shows "is_interval s \<Longrightarrow> connected s"  | 
|
2317  | 
using is_interval_convex convex_connected by auto  | 
|
2318  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2319  | 
lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n}"
 | 
| 33175 | 2320  | 
apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto  | 
2321  | 
||
2322  | 
subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
 | 
|
2323  | 
||
2324  | 
lemma is_interval_1:  | 
|
2325  | 
"is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)"  | 
|
| 34964 | 2326  | 
unfolding is_interval_def forall_1 by auto  | 
| 33175 | 2327  | 
|
2328  | 
lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)"  | 
|
2329  | 
apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1  | 
|
2330  | 
apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof-  | 
|
2331  | 
fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s"  | 
|
2332  | 
hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto  | 
|
2333  | 
  let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
 | 
|
2334  | 
  { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
 | 
|
| 34964 | 2335  | 
using as(6) `y\<in>s` by (auto simp add: inner_vector_def dest_vec1_eq) }  | 
2336  | 
moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def)  | 
|
| 33175 | 2337  | 
  hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
 | 
2338  | 
ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]])  | 
|
2339  | 
apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI)  | 
|
2340  | 
apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) apply(rule, rule, rule ccontr)  | 
|
2341  | 
by(auto simp add: basis_component field_simps) qed  | 
|
2342  | 
||
2343  | 
lemma is_interval_convex_1:  | 
|
2344  | 
"is_interval s \<longleftrightarrow> convex (s::(real^1) set)"  | 
|
2345  | 
using is_interval_convex convex_connected is_interval_connected_1 by auto  | 
|
2346  | 
||
2347  | 
lemma convex_connected_1:  | 
|
2348  | 
"connected s \<longleftrightarrow> convex (s::(real^1) set)"  | 
|
2349  | 
using is_interval_convex convex_connected is_interval_connected_1 by auto  | 
|
2350  | 
||
2351  | 
subsection {* Another intermediate value theorem formulation. *}
 | 
|
2352  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2353  | 
lemma ivt_increasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n"  | 
| 33175 | 2354  | 
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
 | 
2355  | 
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
|
2356  | 
proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
 | 
|
| 34964 | 2357  | 
using assms(1) by(auto simp add: vector_le_def)  | 
| 33175 | 2358  | 
  thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
 | 
2359  | 
using connected_continuous_image[OF assms(2) convex_connected[OF convex_interval(1)]]  | 
|
2360  | 
using assms by(auto intro!: imageI) qed  | 
|
2361  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2362  | 
lemma ivt_increasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n"  | 
| 33175 | 2363  | 
assumes "dest_vec1 a \<le> dest_vec1 b"  | 
2364  | 
  "\<forall>x\<in>{a .. b}. continuous (at x) f" "f a$k \<le> y" "y \<le> f b$k"
 | 
|
2365  | 
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
|
2366  | 
apply(rule ivt_increasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto  | 
|
2367  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2368  | 
lemma ivt_decreasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n"  | 
| 33175 | 2369  | 
  assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
 | 
2370  | 
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
|
2371  | 
apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym]  | 
|
2372  | 
apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg  | 
|
2373  | 
by(auto simp add:vector_uminus_component)  | 
|
2374  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2375  | 
lemma ivt_decreasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n"  | 
| 33175 | 2376  | 
  assumes "dest_vec1 a \<le> dest_vec1 b" "\<forall>x\<in>{a .. b}. continuous (at x) f" "f b$k \<le> y" "y \<le> f a$k"
 | 
2377  | 
  shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | 
|
2378  | 
apply(rule ivt_decreasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto  | 
|
2379  | 
||
2380  | 
subsection {* A bound within a convex hull, and so an interval. *}
 | 
|
2381  | 
||
2382  | 
lemma convex_on_convex_hull_bound:  | 
|
2383  | 
fixes s :: "(real ^ _) set"  | 
|
2384  | 
assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b"  | 
|
2385  | 
shows "\<forall>x\<in> convex hull s. f x \<le> b" proof  | 
|
2386  | 
fix x assume "x\<in>convex hull s"  | 
|
2387  | 
  then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
 | 
|
2388  | 
unfolding convex_hull_indexed mem_Collect_eq by auto  | 
|
2389  | 
  have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
 | 
|
2390  | 
unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono)  | 
|
2391  | 
using assms(2) obt(1) by auto  | 
|
2392  | 
thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v]  | 
|
2393  | 
unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed  | 
|
2394  | 
||
2395  | 
lemma unit_interval_convex_hull:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2396  | 
  "{0::real^'n .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
 | 
| 33175 | 2397  | 
proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
 | 
2398  | 
  { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
 | 
|
2399  | 
hence "x\<in>convex hull ?points" proof(induct n arbitrary: x)  | 
|
2400  | 
case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto  | 
|
2401  | 
thus "x\<in>convex hull ?points" using 01 by auto  | 
|
2402  | 
next  | 
|
2403  | 
    case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
 | 
|
2404  | 
case True hence "x = 0" unfolding Cart_eq by auto  | 
|
2405  | 
thus "x\<in>convex hull ?points" using 01 by auto  | 
|
2406  | 
next  | 
|
2407  | 
      case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
 | 
|
2408  | 
      have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
 | 
|
2409  | 
then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto  | 
|
2410  | 
have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j"  | 
|
2411  | 
unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff  | 
|
2412  | 
defer apply(rule_tac x=j in bexI) using i' by auto  | 
|
2413  | 
have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0`  | 
|
2414  | 
by(auto simp add: Cart_lambda_beta)  | 
|
2415  | 
show ?thesis proof(cases "x$i=1")  | 
|
2416  | 
        case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
 | 
|
2417  | 
fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1"  | 
|
| 
33758
 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 
hoelzl 
parents: 
33715 
diff
changeset
 | 
2418  | 
          hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_le_def elim!:allE[where x=j])
 | 
| 33175 | 2419  | 
          hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
 | 
2420  | 
hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto  | 
|
| 
33758
 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 
hoelzl 
parents: 
33715 
diff
changeset
 | 
2421  | 
thus False using True Suc(2) j by(auto simp add: vector_le_def elim!:ballE[where x=j]) qed  | 
| 33175 | 2422  | 
thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format])  | 
2423  | 
by(auto simp add: Cart_lambda_beta)  | 
|
2424  | 
next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)"  | 
|
2425  | 
case False hence *:"x = x$i *\<^sub>R (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *\<^sub>R (\<chi> j. ?y j)" unfolding Cart_eq  | 
|
2426  | 
by(auto simp add: Cart_lambda_beta vector_add_component vector_smult_component vector_minus_component field_simps)  | 
|
2427  | 
        { fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
 | 
|
2428  | 
apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01  | 
|
2429  | 
using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps Cart_lambda_beta)  | 
|
2430  | 
hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto }  | 
|
2431  | 
        moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by(auto simp add: Cart_lambda_beta)
 | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2432  | 
        hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" by auto
 | 
| 
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2433  | 
        hence **:"{j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by(auto simp add: Cart_lambda_beta)  
 | 
| 33175 | 2434  | 
        have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
 | 
2435  | 
ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format])  | 
|
2436  | 
apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1))  | 
|
2437  | 
unfolding mem_interval using i01 Suc(3) by (auto simp add: Cart_lambda_beta)  | 
|
2438  | 
qed qed qed } note * = this  | 
|
2439  | 
show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule  | 
|
2440  | 
    apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
 | 
|
2441  | 
unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE)  | 
|
| 
33758
 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 
hoelzl 
parents: 
33715 
diff
changeset
 | 
2442  | 
by(auto simp add: vector_le_def mem_def[of _ convex]) qed  | 
| 33175 | 2443  | 
|
2444  | 
subsection {* And this is a finite set of vertices. *}
 | 
|
2445  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2446  | 
lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n} = convex hull s"
 | 
| 
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2447  | 
  apply(rule that[of "{x::real^'n. \<forall>i. x$i=0 \<or> x$i=1}"])
 | 
| 
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2448  | 
apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n) ` UNIV"])  | 
| 33175 | 2449  | 
prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof-  | 
2450  | 
fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1"  | 
|
2451  | 
  show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
 | 
|
2452  | 
unfolding Cart_eq using as by(auto simp add:Cart_lambda_beta) qed auto  | 
|
2453  | 
||
2454  | 
subsection {* Hence any cube (could do any nonempty interval). *}
 | 
|
2455  | 
||
2456  | 
lemma cube_convex_hull:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2457  | 
  assumes "0 < d" obtains s::"(real^'n) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
 | 
| 33175 | 2458  | 
let ?d = "(\<chi> i. d)::real^'n"  | 
2459  | 
  have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. 1}" apply(rule set_ext, rule)
 | 
|
2460  | 
unfolding image_iff defer apply(erule bexE) proof-  | 
|
2461  | 
    fix y assume as:"y\<in>{x - ?d .. x + ?d}"
 | 
|
2462  | 
    { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
 | 
|
2463  | 
by(auto simp add: vector_component)  | 
|
2464  | 
hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)"  | 
|
2465  | 
apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym]  | 
|
2466  | 
using assms by(auto simp add: field_simps right_inverse)  | 
|
2467  | 
hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)"  | 
|
2468  | 
"inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) }  | 
|
2469  | 
    hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
 | 
|
2470  | 
by(auto simp add: Cart_eq vector_component_simps field_simps)  | 
|
2471  | 
    thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
 | 
|
| 
33758
 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 
hoelzl 
parents: 
33715 
diff
changeset
 | 
2472  | 
using assms by(auto simp add: Cart_eq vector_le_def Cart_lambda_beta)  | 
| 33175 | 2473  | 
next  | 
2474  | 
    fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *\<^sub>R z" 
 | 
|
2475  | 
have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE)  | 
|
2476  | 
apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le)  | 
|
2477  | 
using assms by(auto simp add: vector_component_simps Cart_eq)  | 
|
2478  | 
    thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
 | 
|
2479  | 
apply(erule_tac x=i in allE) using assms by(auto simp add: vector_component_simps Cart_eq) qed  | 
|
2480  | 
  obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
 | 
|
2481  | 
thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed  | 
|
2482  | 
||
2483  | 
subsection {* Bounded convex function on open set is continuous. *}
 | 
|
2484  | 
||
2485  | 
lemma convex_on_bounded_continuous:  | 
|
2486  | 
fixes s :: "(real ^ _) set"  | 
|
2487  | 
assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b"  | 
|
2488  | 
shows "continuous_on s f"  | 
|
2489  | 
apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule)  | 
|
2490  | 
fix x e assume "x\<in>s" "(0::real) < e"  | 
|
2491  | 
def B \<equiv> "abs b + 1"  | 
|
2492  | 
have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B"  | 
|
2493  | 
unfolding B_def defer apply(drule assms(3)[rule_format]) by auto  | 
|
2494  | 
obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto  | 
|
2495  | 
show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e"  | 
|
2496  | 
apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule)  | 
|
2497  | 
fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)"  | 
|
2498  | 
show "\<bar>f y - f x\<bar> < e" proof(cases "y=x")  | 
|
2499  | 
case False def t \<equiv> "k / norm (y - x)"  | 
|
2500  | 
have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps)  | 
|
2501  | 
have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm  | 
|
2502  | 
apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute)  | 
|
2503  | 
      { def w \<equiv> "x + t *\<^sub>R (y - x)"
 | 
|
2504  | 
have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm  | 
|
2505  | 
unfolding t_def using `k>0` by auto  | 
|
2506  | 
have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps)  | 
|
2507  | 
also have "\<dots> = 0" using `t>0` by(auto simp add:field_simps)  | 
|
2508  | 
finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)  | 
|
2509  | 
have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps)  | 
|
2510  | 
hence "(f w - f x) / t < e"  | 
|
2511  | 
using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps)  | 
|
2512  | 
hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption  | 
|
2513  | 
using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w]  | 
|
2514  | 
using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) }  | 
|
2515  | 
moreover  | 
|
2516  | 
      { def w \<equiv> "x - t *\<^sub>R (y - x)"
 | 
|
2517  | 
have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm  | 
|
2518  | 
unfolding t_def using `k>0` by auto  | 
|
2519  | 
have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps)  | 
|
2520  | 
also have "\<dots>=x" using `t>0` by (auto simp add:field_simps)  | 
|
2521  | 
finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps)  | 
|
2522  | 
have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps)  | 
|
2523  | 
hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps)  | 
|
2524  | 
have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y"  | 
|
2525  | 
using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w]  | 
|
2526  | 
using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps)  | 
|
2527  | 
also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps)  | 
|
2528  | 
also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps)  | 
|
2529  | 
finally have "f x - f y < e" by auto }  | 
|
2530  | 
ultimately show ?thesis by auto  | 
|
2531  | 
qed(insert `0<e`, auto)  | 
|
2532  | 
qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed  | 
|
2533  | 
||
2534  | 
subsection {* Upper bound on a ball implies upper and lower bounds. *}
 | 
|
2535  | 
||
2536  | 
lemma convex_bounds_lemma:  | 
|
2537  | 
fixes x :: "real ^ _"  | 
|
2538  | 
assumes "convex_on (cball x e) f" "\<forall>y \<in> cball x e. f y \<le> b"  | 
|
2539  | 
shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)"  | 
|
2540  | 
apply(rule) proof(cases "0 \<le> e") case True  | 
|
2541  | 
fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y"  | 
|
2542  | 
have *:"x - (2 *\<^sub>R x - y) = y - x" by vector  | 
|
2543  | 
have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute)  | 
|
2544  | 
have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps)  | 
|
2545  | 
thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"]  | 
|
2546  | 
using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps)  | 
|
2547  | 
next case False fix y assume "y\<in>cball x e"  | 
|
2548  | 
hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero)  | 
|
2549  | 
thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed  | 
|
2550  | 
||
2551  | 
subsection {* Hence a convex function on an open set is continuous. *}
 | 
|
2552  | 
||
2553  | 
lemma convex_on_continuous:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2554  | 
assumes "open (s::(real^'n) set)" "convex_on s f"  | 
| 33175 | 2555  | 
shows "continuous_on s f"  | 
2556  | 
unfolding continuous_on_eq_continuous_at[OF assms(1)] proof  | 
|
2557  | 
note dimge1 = dimindex_ge_1[where 'a='n]  | 
|
2558  | 
fix x assume "x\<in>s"  | 
|
2559  | 
then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto  | 
|
2560  | 
  def d \<equiv> "e / real CARD('n)"
 | 
|
2561  | 
have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto)  | 
|
2562  | 
let ?d = "(\<chi> i. d)::real^'n"  | 
|
2563  | 
  obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
 | 
|
2564  | 
  have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:vector_component_simps)
 | 
|
2565  | 
  hence "c\<noteq>{}" apply(rule_tac ccontr) using c by(auto simp add:convex_hull_empty)
 | 
|
2566  | 
def k \<equiv> "Max (f ` c)"  | 
|
2567  | 
  have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
 | 
|
2568  | 
apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof  | 
|
2569  | 
    fix z assume z:"z\<in>{x - ?d..x + ?d}"
 | 
|
2570  | 
have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1  | 
|
2571  | 
by (metis card_enum field_simps d_def not_one_le_zero of_nat_le_iff real_eq_of_nat real_of_nat_1)  | 
|
2572  | 
show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono)  | 
|
2573  | 
using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:field_simps vector_component_simps) qed  | 
|
2574  | 
  hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
 | 
|
2575  | 
unfolding k_def apply(rule, rule Max_ge) using c(1) by auto  | 
|
2576  | 
have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto  | 
|
2577  | 
hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto  | 
|
2578  | 
have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto  | 
|
2579  | 
hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof  | 
|
2580  | 
fix y assume y:"y\<in>cball x d"  | 
|
2581  | 
    { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
 | 
|
2582  | 
using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add: vector_component) }  | 
|
2583  | 
thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm  | 
|
2584  | 
by(auto simp add: vector_component_simps) qed  | 
|
2585  | 
hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous)  | 
|
| 33270 | 2586  | 
apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball)  | 
2587  | 
apply force  | 
|
2588  | 
done  | 
|
2589  | 
thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball]  | 
|
2590  | 
using `d>0` by auto  | 
|
2591  | 
qed  | 
|
2592  | 
||
2593  | 
subsection {* Line segments, Starlike Sets, etc.*}
 | 
|
2594  | 
||
2595  | 
(* Use the same overloading tricks as for intervals, so that  | 
|
2596  | 
segment[a,b] is closed and segment(a,b) is open relative to affine hull. *)  | 
|
| 33175 | 2597  | 
|
2598  | 
definition  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2599  | 
midpoint :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where  | 
| 33175 | 2600  | 
"midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)"  | 
2601  | 
||
2602  | 
definition  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2603  | 
open_segment :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where  | 
| 33175 | 2604  | 
  "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
 | 
2605  | 
||
2606  | 
definition  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2607  | 
closed_segment :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> (real ^ 'n) set" where  | 
| 33175 | 2608  | 
  "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
 | 
2609  | 
||
2610  | 
definition "between = (\<lambda> (a,b). closed_segment a b)"  | 
|
2611  | 
||
2612  | 
lemmas segment = open_segment_def closed_segment_def  | 
|
2613  | 
||
2614  | 
definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)"  | 
|
2615  | 
||
2616  | 
lemma midpoint_refl: "midpoint x x = x"  | 
|
2617  | 
unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto  | 
|
2618  | 
||
2619  | 
lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib)  | 
|
2620  | 
||
2621  | 
lemma dist_midpoint:  | 
|
2622  | 
"dist a (midpoint a b) = (dist a b) / 2" (is ?t1)  | 
|
2623  | 
"dist b (midpoint a b) = (dist a b) / 2" (is ?t2)  | 
|
2624  | 
"dist (midpoint a b) a = (dist a b) / 2" (is ?t3)  | 
|
2625  | 
"dist (midpoint a b) b = (dist a b) / 2" (is ?t4)  | 
|
2626  | 
proof-  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2627  | 
have *: "\<And>x y::real^'n. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto  | 
| 
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2628  | 
have **:"\<And>x y::real^'n. 2 *\<^sub>R x = y \<Longrightarrow> norm x = (norm y) / 2" by auto  | 
| 33175 | 2629  | 
note scaleR_right_distrib [simp]  | 
2630  | 
show ?t1 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector)  | 
|
2631  | 
show ?t2 unfolding midpoint_def dist_norm apply (rule *) by(auto,vector)  | 
|
2632  | 
show ?t3 unfolding midpoint_def dist_norm apply (rule *) by(auto,vector)  | 
|
2633  | 
show ?t4 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector) qed  | 
|
2634  | 
||
2635  | 
lemma midpoint_eq_endpoint:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2636  | 
"midpoint a b = a \<longleftrightarrow> a = (b::real^'n)"  | 
| 33175 | 2637  | 
"midpoint a b = b \<longleftrightarrow> a = b"  | 
2638  | 
unfolding dist_eq_0_iff[where 'a="real^'n", THEN sym] dist_midpoint by auto  | 
|
2639  | 
||
2640  | 
lemma convex_contains_segment:  | 
|
2641  | 
"convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)"  | 
|
2642  | 
unfolding convex_alt closed_segment_def by auto  | 
|
2643  | 
||
2644  | 
lemma convex_imp_starlike:  | 
|
2645  | 
  "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
 | 
|
2646  | 
unfolding convex_contains_segment starlike_def by auto  | 
|
2647  | 
||
2648  | 
lemma segment_convex_hull:  | 
|
2649  | 
 "closed_segment a b = convex hull {a,b}" proof-
 | 
|
2650  | 
  have *:"\<And>x. {x} \<noteq> {}" by auto
 | 
|
2651  | 
have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto  | 
|
2652  | 
show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext)  | 
|
2653  | 
unfolding mem_Collect_eq apply(rule,erule exE)  | 
|
2654  | 
apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer  | 
|
2655  | 
apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed  | 
|
2656  | 
||
2657  | 
lemma convex_segment: "convex (closed_segment a b)"  | 
|
2658  | 
unfolding segment_convex_hull by(rule convex_convex_hull)  | 
|
2659  | 
||
2660  | 
lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b"  | 
|
2661  | 
unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto  | 
|
2662  | 
||
2663  | 
lemma segment_furthest_le:  | 
|
2664  | 
assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or> norm(y - x) \<le> norm(y - b)" proof-  | 
|
2665  | 
  obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
 | 
|
2666  | 
using assms[unfolded segment_convex_hull] by auto  | 
|
2667  | 
thus ?thesis by(auto simp add:norm_minus_commute) qed  | 
|
2668  | 
||
2669  | 
lemma segment_bound:  | 
|
2670  | 
assumes "x \<in> closed_segment a b"  | 
|
2671  | 
shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)"  | 
|
2672  | 
using segment_furthest_le[OF assms, of a]  | 
|
2673  | 
using segment_furthest_le[OF assms, of b]  | 
|
2674  | 
by (auto simp add:norm_minus_commute)  | 
|
2675  | 
||
2676  | 
lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
 | 
|
2677  | 
||
2678  | 
lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b"  | 
|
2679  | 
unfolding between_def mem_def by auto  | 
|
2680  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2681  | 
lemma between:"between (a,b) (x::real^'n) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)"  | 
| 33175 | 2682  | 
proof(cases "a = b")  | 
2683  | 
case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric]  | 
|
2684  | 
by(auto simp add:segment_refl dist_commute) next  | 
|
2685  | 
case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto  | 
|
2686  | 
have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps)  | 
|
2687  | 
show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq  | 
|
2688  | 
apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof-  | 
|
2689  | 
fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1"  | 
|
2690  | 
hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)"  | 
|
2691  | 
unfolding as(1) by(auto simp add:algebra_simps)  | 
|
2692  | 
show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)"  | 
|
2693  | 
unfolding norm_minus_commute[of x a] * Cart_eq using as(2,3)  | 
|
2694  | 
by(auto simp add: vector_component_simps field_simps)  | 
|
2695  | 
next assume as:"dist a b = dist a x + dist x b"  | 
|
2696  | 
have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto  | 
|
2697  | 
thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI)  | 
|
2698  | 
unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule  | 
|
2699  | 
fix i::'n have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i =  | 
|
2700  | 
((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)"  | 
|
2701  | 
using Fal by(auto simp add:vector_component_simps field_simps)  | 
|
2702  | 
also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal])  | 
|
2703  | 
unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i]  | 
|
2704  | 
by(auto simp add:field_simps vector_component_simps)  | 
|
2705  | 
finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $ i" by auto  | 
|
2706  | 
qed(insert Fal2, auto) qed qed  | 
|
2707  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2708  | 
lemma between_midpoint: fixes a::"real^'n" shows  | 
| 33175 | 2709  | 
"between (a,b) (midpoint a b)" (is ?t1)  | 
2710  | 
"between (b,a) (midpoint a b)" (is ?t2)  | 
|
2711  | 
proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto  | 
|
2712  | 
show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *)  | 
|
2713  | 
by(auto simp add:field_simps Cart_eq vector_component_simps) qed  | 
|
2714  | 
||
2715  | 
lemma between_mem_convex_hull:  | 
|
2716  | 
  "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
 | 
|
2717  | 
unfolding between_mem_segment segment_convex_hull ..  | 
|
2718  | 
||
2719  | 
subsection {* Shrinking towards the interior of a convex set. *}
 | 
|
2720  | 
||
2721  | 
lemma mem_interior_convex_shrink:  | 
|
2722  | 
fixes s :: "(real ^ _) set"  | 
|
2723  | 
assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1"  | 
|
2724  | 
shows "x - e *\<^sub>R (x - c) \<in> interior s"  | 
|
2725  | 
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto  | 
|
2726  | 
show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI)  | 
|
2727  | 
apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule)  | 
|
2728  | 
fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d"  | 
|
2729  | 
have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib)  | 
|
2730  | 
have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)"  | 
|
2731  | 
unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule norm_eqI) using `e>0`  | 
|
2732  | 
by(auto simp add:vector_component_simps Cart_eq field_simps)  | 
|
2733  | 
also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:norm_eqI simp add: algebra_simps)  | 
|
2734  | 
also have "\<dots> < d" using as[unfolded dist_norm] and `e>0`  | 
|
2735  | 
by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute)  | 
|
2736  | 
finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format])  | 
|
2737  | 
apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto  | 
|
2738  | 
qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed  | 
|
2739  | 
||
2740  | 
lemma mem_interior_closure_convex_shrink:  | 
|
2741  | 
fixes s :: "(real ^ _) set"  | 
|
2742  | 
assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1"  | 
|
2743  | 
shows "x - e *\<^sub>R (x - c) \<in> interior s"  | 
|
2744  | 
proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto  | 
|
2745  | 
have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s")  | 
|
2746  | 
case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next  | 
|
2747  | 
case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto  | 
|
2748  | 
show ?thesis proof(cases "e=1")  | 
|
2749  | 
case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1"  | 
|
2750  | 
using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto  | 
|
2751  | 
thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next  | 
|
2752  | 
case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0"  | 
|
2753  | 
using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos)  | 
|
2754  | 
then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)"  | 
|
2755  | 
using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto  | 
|
2756  | 
thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed  | 
|
2757  | 
then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto  | 
|
2758  | 
def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)"  | 
|
2759  | 
have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib)  | 
|
2760  | 
have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format])  | 
|
2761  | 
unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5)  | 
|
2762  | 
by(auto simp add:field_simps norm_minus_commute)  | 
|
2763  | 
thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink)  | 
|
2764  | 
using assms(1,4-5) `y\<in>s` by auto qed  | 
|
2765  | 
||
2766  | 
subsection {* Some obvious but surprisingly hard simplex lemmas. *}
 | 
|
2767  | 
||
2768  | 
lemma simplex:  | 
|
2769  | 
assumes "finite s" "0 \<notin> s"  | 
|
2770  | 
  shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
 | 
|
2771  | 
unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq  | 
|
2772  | 
apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)]  | 
|
2773  | 
apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2)  | 
|
2774  | 
unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto  | 
|
2775  | 
||
2776  | 
lemma std_simplex:  | 
|
2777  | 
  "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
 | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2778  | 
        {x::real^'n . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
 | 
| 33175 | 2779  | 
proof- let ?D = "UNIV::'n set"  | 
2780  | 
have "0\<notin>?p" by(auto simp add: basis_nonzero)  | 
|
2781  | 
  have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
 | 
|
2782  | 
note sumbas = this setsum_reindex[OF basis_inj, unfolded o_def]  | 
|
2783  | 
show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule  | 
|
2784  | 
apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof-  | 
|
2785  | 
    fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *\<^sub>R x) = x"
 | 
|
2786  | 
have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by auto  | 
|
2787  | 
    hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
 | 
|
2788  | 
show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule)  | 
|
2789  | 
fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto  | 
|
2790  | 
qed(insert as(2)[unfolded **], auto)  | 
|
2791  | 
next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1"  | 
|
2792  | 
    show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *\<^sub>R x) = x"
 | 
|
2793  | 
apply(rule_tac x="\<lambda>y. inner y x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE)  | 
|
2794  | 
unfolding sumbas using as(2) and basis_expansion_unique [where 'a=real, unfolded smult_conv_scaleR] by(auto simp add:inner_basis) qed qed  | 
|
2795  | 
||
2796  | 
lemma interior_std_simplex:  | 
|
2797  | 
  "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
 | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2798  | 
  {x::real^'n. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
 | 
| 33175 | 2799  | 
apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball  | 
2800  | 
unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof-  | 
|
2801  | 
fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1"  | 
|
2802  | 
show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof-  | 
|
2803  | 
fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0`  | 
|
2804  | 
unfolding dist_norm by(auto simp add: norm_basis vector_component_simps basis_component elim:allE[where x=i])  | 
|
2805  | 
next guess a using UNIV_witness[where 'a='n] ..  | 
|
2806  | 
have **:"dist x (x + (e / 2) *\<^sub>R basis a) < e" using `e>0` and norm_basis[of a]  | 
|
2807  | 
unfolding dist_norm by(auto simp add: vector_component_simps basis_component intro!: mult_strict_left_mono_comm)  | 
|
2808  | 
have "\<And>i. (x + (e / 2) *\<^sub>R basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps)  | 
|
2809  | 
hence *:"setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto)  | 
|
2810  | 
have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *\<^sub>R basis a)) UNIV" unfolding * setsum_addf  | 
|
2811  | 
using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta')  | 
|
2812  | 
also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto  | 
|
2813  | 
finally show "setsum (op $ x) UNIV < 1" by auto qed  | 
|
2814  | 
next  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2815  | 
fix x::"real^'n" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1"  | 
| 33175 | 2816  | 
guess a using UNIV_witness[where 'a='b] ..  | 
2817  | 
  let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
 | 
|
2818  | 
have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto  | 
|
2819  | 
moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq)  | 
|
2820  | 
ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1"  | 
|
2821  | 
apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof-  | 
|
2822  | 
fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d"  | 
|
2823  | 
have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono)  | 
|
2824  | 
fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i]  | 
|
2825  | 
using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add:vector_component_simps norm_minus_commute)  | 
|
2826  | 
thus "y $ i \<le> x $ i + ?d" by auto qed  | 
|
2827  | 
also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq)  | 
|
2828  | 
finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule)  | 
|
2829  | 
fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1]  | 
|
2830  | 
using Min_gr_iff[of "op $ x ` dimset x"] dimindex_ge_1 by auto  | 
|
2831  | 
thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by(auto simp add: vector_component_simps)  | 
|
2832  | 
qed auto qed auto qed  | 
|
2833  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2834  | 
lemma interior_std_simplex_nonempty: obtains a::"real^'n" where  | 
| 33175 | 2835  | 
  "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
 | 
2836  | 
  let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b::real^'n. inverse (2 * real CARD('n)) *\<^sub>R b) {(basis i) | i. i \<in> ?D}"
 | 
|
2837  | 
  have *:"{basis i :: real ^ 'n | i. i \<in> ?D} = basis ` ?D" by auto
 | 
|
2838  | 
  { fix i have "?a $ i = inverse (2 * real CARD('n))"
 | 
|
2839  | 
unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def  | 
|
2840  | 
    apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
 | 
|
2841  | 
unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) }  | 
|
2842  | 
note ** = this  | 
|
2843  | 
show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule)  | 
|
2844  | 
fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next  | 
|
2845  | 
    have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
 | 
|
2846  | 
also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps)  | 
|
2847  | 
finally show "setsum (op $ ?a) ?D < 1" by auto qed qed  | 
|
2848  | 
||
2849  | 
subsection {* Paths. *}
 | 
|
2850  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
2851  | 
definition "path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow> continuous_on {0 .. 1} g"
 | 
| 33175 | 2852  | 
|
2853  | 
definition "pathstart (g::real^1 \<Rightarrow> real^'n) = g 0"  | 
|
2854  | 
||
2855  | 
definition "pathfinish (g::real^1 \<Rightarrow> real^'n) = g 1"  | 
|
2856  | 
||
2857  | 
definition "path_image (g::real^1 \<Rightarrow> real^'n) = g ` {0 .. 1}"
 | 
|
2858  | 
||
2859  | 
definition "reversepath (g::real^1 \<Rightarrow> real^'n) = (\<lambda>x. g(1 - x))"  | 
|
2860  | 
||
2861  | 
definition joinpaths:: "(real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n)" (infixr "+++" 75)  | 
|
2862  | 
where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *\<^sub>R x) else g2(2 *\<^sub>R x - 1))"  | 
|
2863  | 
definition "simple_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>  | 
|
2864  | 
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | 
|
2865  | 
||
2866  | 
definition "injective_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow>  | 
|
2867  | 
  (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | 
|
2868  | 
||
2869  | 
subsection {* Some lemmas about these concepts. *}
 | 
|
2870  | 
||
2871  | 
lemma injective_imp_simple_path:  | 
|
2872  | 
"injective_path g \<Longrightarrow> simple_path g"  | 
|
2873  | 
unfolding injective_path_def simple_path_def by auto  | 
|
2874  | 
||
2875  | 
lemma path_image_nonempty: "path_image g \<noteq> {}"
 | 
|
2876  | 
unfolding path_image_def image_is_empty interval_eq_empty by auto  | 
|
2877  | 
||
2878  | 
lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g"  | 
|
2879  | 
unfolding pathstart_def path_image_def apply(rule imageI)  | 
|
2880  | 
unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto  | 
|
2881  | 
||
2882  | 
lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g"  | 
|
2883  | 
unfolding pathfinish_def path_image_def apply(rule imageI)  | 
|
2884  | 
unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto  | 
|
2885  | 
||
2886  | 
lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)"  | 
|
2887  | 
unfolding path_def path_image_def apply(rule connected_continuous_image, assumption)  | 
|
2888  | 
by(rule convex_connected, rule convex_interval)  | 
|
2889  | 
||
2890  | 
lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)"  | 
|
2891  | 
unfolding path_def path_image_def apply(rule compact_continuous_image, assumption)  | 
|
2892  | 
by(rule compact_interval)  | 
|
2893  | 
||
2894  | 
lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g"  | 
|
2895  | 
unfolding reversepath_def by auto  | 
|
2896  | 
||
2897  | 
lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g"  | 
|
2898  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
2899  | 
||
2900  | 
lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g"  | 
|
2901  | 
unfolding pathstart_def reversepath_def pathfinish_def by auto  | 
|
2902  | 
||
2903  | 
lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1"  | 
|
2904  | 
unfolding pathstart_def joinpaths_def pathfinish_def by auto  | 
|
2905  | 
||
2906  | 
lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" proof-  | 
|
2907  | 
have "2 *\<^sub>R 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps)  | 
|
2908  | 
thus ?thesis unfolding pathstart_def joinpaths_def pathfinish_def  | 
|
2909  | 
unfolding vec_1[THEN sym] dest_vec1_vec by auto qed  | 
|
2910  | 
||
2911  | 
lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof-  | 
|
2912  | 
have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g"  | 
|
2913  | 
unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE)  | 
|
| 
33758
 
53078b0d21f5
Renamed vector_less_eq_def to the more usual name vector_le_def.
 
hoelzl 
parents: 
33715 
diff
changeset
 | 
2914  | 
apply(rule_tac x="1 - xa" in bexI) by(auto simp add:vector_le_def vector_component_simps elim!:ballE)  | 
| 33175 | 2915  | 
show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed  | 
2916  | 
||
2917  | 
lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof-  | 
|
2918  | 
have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def  | 
|
2919  | 
apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"])  | 
|
2920  | 
apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id)  | 
|
| 34964 | 2921  | 
    apply(rule continuous_on_subset[of "{0..1}"], assumption) by auto
 | 
| 33175 | 2922  | 
show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed  | 
2923  | 
||
2924  | 
lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath  | 
|
2925  | 
||
2926  | 
lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2"  | 
|
2927  | 
unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof-  | 
|
2928  | 
  assume as:"continuous_on {0..1} (g1 +++ g2)"
 | 
|
2929  | 
have *:"g1 = (\<lambda>x. g1 (2 *\<^sub>R x)) \<circ> (\<lambda>x. (1/2) *\<^sub>R x)"  | 
|
2930  | 
"g2 = (\<lambda>x. g2 (2 *\<^sub>R x - 1)) \<circ> (\<lambda>x. (1/2) *\<^sub>R (x + 1))" unfolding o_def by auto  | 
|
2931  | 
  have "op *\<^sub>R (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
 | 
|
| 34964 | 2932  | 
unfolding image_smult_interval by auto  | 
| 33175 | 2933  | 
  thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
 | 
2934  | 
apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose)  | 
|
2935  | 
apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer  | 
|
2936  | 
apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3  | 
|
2937  | 
    apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
 | 
|
2938  | 
apply(rule) defer apply rule proof-  | 
|
2939  | 
    fix x assume "x \<in> op *\<^sub>R (1 / 2) ` {0::real^1..1}"
 | 
|
2940  | 
hence "dest_vec1 x \<le> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)  | 
|
2941  | 
thus "(g1 +++ g2) x = g1 (2 *\<^sub>R x)" unfolding joinpaths_def by auto next  | 
|
2942  | 
    fix x assume "x \<in> (\<lambda>x. (1 / 2) *\<^sub>R (x + 1)) ` {0::real^1..1}"
 | 
|
2943  | 
hence "dest_vec1 x \<ge> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps)  | 
|
2944  | 
thus "(g1 +++ g2) x = g2 (2 *\<^sub>R x - 1)" proof(cases "dest_vec1 x = 1 / 2")  | 
|
2945  | 
case True hence "x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)  | 
|
2946  | 
thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by auto  | 
|
2947  | 
qed (auto simp add:le_less joinpaths_def) qed  | 
|
2948  | 
next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | 
|
2949  | 
  have *:"{0 .. 1::real^1} = {0.. (1/2)*\<^sub>R 1} \<union> {(1/2) *\<^sub>R 1 .. 1}" by(auto simp add: vector_component_simps) 
 | 
|
2950  | 
  have **:"op *\<^sub>R 2 ` {0..(1 / 2) *\<^sub>R 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
 | 
|
2951  | 
defer apply(rule_tac x="(1/2)*\<^sub>R x" in bexI) by(auto simp add: vector_component_simps)  | 
|
2952  | 
  have ***:"(\<lambda>x. 2 *\<^sub>R x - 1) ` {(1 / 2) *\<^sub>R 1..1} = {0..1::real^1}"
 | 
|
2953  | 
unfolding image_affinity_interval[of _ "- 1", unfolded diff_def[symmetric]] and interval_eq_empty_1  | 
|
2954  | 
by(auto simp add: vector_component_simps)  | 
|
2955  | 
have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *\<^sub>R 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps)  | 
|
2956  | 
  show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply(rule closed_interval)+ proof-
 | 
|
2957  | 
    show "continuous_on {0..(1 / 2) *\<^sub>R 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *\<^sub>R x)"]) defer
 | 
|
2958  | 
unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id)  | 
|
2959  | 
unfolding ** apply(rule as(1)) unfolding joinpaths_def by(auto simp add: vector_component_simps) next  | 
|
2960  | 
    show "continuous_on {(1/2)*\<^sub>R1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *\<^sub>R x - 1)"]) defer
 | 
|
2961  | 
apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const)  | 
|
2962  | 
unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def]  | 
|
2963  | 
by(auto simp add: vector_component_simps ****) qed qed  | 
|
2964  | 
||
2965  | 
lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof  | 
|
2966  | 
fix x assume "x \<in> path_image (g1 +++ g2)"  | 
|
2967  | 
  then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *\<^sub>R y) else g2 (2 *\<^sub>R y - 1))"
 | 
|
2968  | 
unfolding path_image_def image_iff joinpaths_def by auto  | 
|
2969  | 
thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "dest_vec1 y \<le> 1/2")  | 
|
2970  | 
apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1)  | 
|
2971  | 
by(auto intro!: imageI simp add: vector_component_simps) qed  | 
|
2972  | 
||
2973  | 
lemma subset_path_image_join:  | 
|
2974  | 
assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s"  | 
|
2975  | 
using path_image_join_subset[of g1 g2] and assms by auto  | 
|
2976  | 
||
2977  | 
lemma path_image_join:  | 
|
2978  | 
assumes "path g1" "path g2" "pathfinish g1 = pathstart g2"  | 
|
2979  | 
shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)"  | 
|
2980  | 
apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE)  | 
|
2981  | 
fix x assume "x \<in> path_image g1"  | 
|
2982  | 
  then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
 | 
|
2983  | 
thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff  | 
|
2984  | 
apply(rule_tac x="(1/2) *\<^sub>R y" in bexI) by(auto simp add: vector_component_simps) next  | 
|
2985  | 
fix x assume "x \<in> path_image g2"  | 
|
2986  | 
  then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
 | 
|
2987  | 
moreover have *:"y $ 1 = 0 \<Longrightarrow> y = 0" unfolding Cart_eq by auto  | 
|
2988  | 
ultimately show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff  | 
|
2989  | 
apply(rule_tac x="(1/2) *\<^sub>R (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def]  | 
|
2990  | 
by(auto simp add: vector_component_simps) qed  | 
|
2991  | 
||
2992  | 
lemma not_in_path_image_join:  | 
|
2993  | 
assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)"  | 
|
2994  | 
using assms and path_image_join_subset[of g1 g2] by auto  | 
|
2995  | 
||
2996  | 
lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)"  | 
|
2997  | 
using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+  | 
|
2998  | 
apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE)  | 
|
2999  | 
unfolding mem_interval_1 by(auto simp add:vector_component_simps)  | 
|
3000  | 
||
| 34964 | 3001  | 
(** move this **)  | 
3002  | 
declare vector_scaleR_component[simp]  | 
|
| 33175 | 3003  | 
|
3004  | 
lemma simple_path_join_loop:  | 
|
3005  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1"  | 
|
3006  | 
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | 
|
3007  | 
shows "simple_path(g1 +++ g2)"  | 
|
3008  | 
unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2"  | 
|
3009  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
|
3010  | 
  fix x y::"real^1" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | 
|
3011  | 
show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x$1 \<le> 1/2",case_tac[!] "y$1 \<le> 1/2", unfold not_le)  | 
|
3012  | 
assume as:"x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2"  | 
|
| 34964 | 3013  | 
hence "g1 (2 *\<^sub>R x) = g1 (2 *\<^sub>R y)" using xy(3) unfolding joinpaths_def by auto  | 
| 33175 | 3014  | 
    moreover have "2 *\<^sub>R x \<in> {0..1}" "2 *\<^sub>R y \<in> {0..1}" using xy(1,2) as
 | 
| 34964 | 3015  | 
unfolding mem_interval_1 by(auto simp add:vector_component_simps)  | 
| 33175 | 3016  | 
ultimately show ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] by auto  | 
3017  | 
next assume as:"x $ 1 > 1 / 2" "y $ 1 > 1 / 2"  | 
|
| 34964 | 3018  | 
hence "g2 (2 *\<^sub>R x - 1) = g2 (2 *\<^sub>R y - 1)" using xy(3) unfolding joinpaths_def by auto  | 
3019  | 
    moreover have "2 *\<^sub>R x - 1 \<in> {0..1}" "2 *\<^sub>R y - 1 \<in> {0..1}" using xy(1,2) as unfolding mem_interval_1 by(auto simp add:vector_component_simps)
 | 
|
| 33175 | 3020  | 
ultimately show ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] by auto  | 
3021  | 
next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2"  | 
|
3022  | 
hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def  | 
|
3023  | 
using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)  | 
|
3024  | 
moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def  | 
|
3025  | 
using inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(2)[unfolded mem_interval_1]  | 
|
3026  | 
apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)  | 
|
3027  | 
ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
3028  | 
hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)[unfolded mem_interval_1]  | 
|
3029  | 
using inj(1)[of "2 *\<^sub>R x" 0] by(auto simp add:vector_component_simps)  | 
|
3030  | 
moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym]  | 
|
3031  | 
unfolding joinpaths_def pathfinish_def using as(2) and xy(2)[unfolded mem_interval_1]  | 
|
3032  | 
using inj(2)[of "2 *\<^sub>R y - 1" 1] by (auto simp add:vector_component_simps Cart_eq)  | 
|
3033  | 
ultimately show ?thesis by auto  | 
|
3034  | 
next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2"  | 
|
3035  | 
hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def  | 
|
3036  | 
using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)  | 
|
3037  | 
moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def  | 
|
3038  | 
using inj(2)[of "2 *\<^sub>R x - 1" 0] and xy(1)[unfolded mem_interval_1]  | 
|
3039  | 
apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq)  | 
|
3040  | 
ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto  | 
|
3041  | 
hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)[unfolded mem_interval_1]  | 
|
3042  | 
using inj(1)[of "2 *\<^sub>R y" 0] by(auto simp add:vector_component_simps)  | 
|
3043  | 
moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym]  | 
|
3044  | 
unfolding joinpaths_def pathfinish_def using as(1) and xy(1)[unfolded mem_interval_1]  | 
|
3045  | 
using inj(2)[of "2 *\<^sub>R x - 1" 1] by(auto simp add:vector_component_simps Cart_eq)  | 
|
3046  | 
ultimately show ?thesis by auto qed qed  | 
|
3047  | 
||
3048  | 
lemma injective_path_join:  | 
|
3049  | 
assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2"  | 
|
3050  | 
  "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | 
|
3051  | 
shows "injective_path(g1 +++ g2)"  | 
|
3052  | 
unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2"  | 
|
3053  | 
note inj = assms(1,2)[unfolded injective_path_def, rule_format]  | 
|
| 34964 | 3054  | 
have *:"\<And>x y::real^1. 2 *\<^sub>R x = 1 \<Longrightarrow> 2 *\<^sub>R y = 1 \<Longrightarrow> x = y" unfolding Cart_eq forall_1 by(auto simp del:dest_vec1_eq)  | 
| 33175 | 3055  | 
  fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | 
3056  | 
show "x = y" proof(cases "x$1 \<le> 1/2", case_tac[!] "y$1 \<le> 1/2", unfold not_le)  | 
|
3057  | 
assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*\<^sub>R x" "2*\<^sub>R y"] and xy  | 
|
3058  | 
unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)  | 
|
3059  | 
next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*\<^sub>R x - 1" "2*\<^sub>R y - 1"] and xy  | 
|
3060  | 
unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps)  | 
|
3061  | 
next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2"  | 
|
3062  | 
hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def  | 
|
3063  | 
using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)  | 
|
3064  | 
hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto  | 
|
3065  | 
thus ?thesis using as and inj(1)[of "2 *\<^sub>R x" 1] inj(2)[of "2 *\<^sub>R y - 1" 0] and xy(1,2)  | 
|
3066  | 
unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1  | 
|
| 34964 | 3067  | 
by(auto simp add:vector_component_simps intro:*)  | 
| 33175 | 3068  | 
next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2"  | 
3069  | 
hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def  | 
|
3070  | 
using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI)  | 
|
3071  | 
hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto  | 
|
3072  | 
thus ?thesis using as and inj(2)[of "2 *\<^sub>R x - 1" 0] inj(1)[of "2 *\<^sub>R y" 1] and xy(1,2)  | 
|
3073  | 
unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1  | 
|
| 34964 | 3074  | 
by(auto simp add:vector_component_simps intro:*) qed qed  | 
| 33175 | 3075  | 
|
3076  | 
lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join  | 
|
3077  | 
||
3078  | 
subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | 
|
3079  | 
||
3080  | 
definition "shiftpath a (f::real^1 \<Rightarrow> real^'n) =  | 
|
3081  | 
(\<lambda>x. if dest_vec1 (a + x) \<le> 1 then f(a + x) else f(a + x - 1))"  | 
|
3082  | 
||
3083  | 
lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a"  | 
|
3084  | 
unfolding pathstart_def shiftpath_def by auto  | 
|
3085  | 
||
3086  | 
(** move this **)  | 
|
3087  | 
declare forall_1[simp] ex_1[simp]  | 
|
3088  | 
||
3089  | 
lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g"  | 
|
3090  | 
shows "pathfinish(shiftpath a g) = g a"  | 
|
3091  | 
using assms unfolding pathstart_def pathfinish_def shiftpath_def  | 
|
3092  | 
by(auto simp add: vector_component_simps)  | 
|
3093  | 
||
3094  | 
lemma endpoints_shiftpath:  | 
|
3095  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | 
|
3096  | 
shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a"  | 
|
3097  | 
using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath)  | 
|
3098  | 
||
3099  | 
lemma closed_shiftpath:  | 
|
3100  | 
  assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
3101  | 
shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)"  | 
|
3102  | 
using endpoints_shiftpath[OF assms] by auto  | 
|
3103  | 
||
3104  | 
lemma path_shiftpath:  | 
|
3105  | 
  assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | 
|
3106  | 
shows "path(shiftpath a g)" proof-  | 
|
3107  | 
  have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by(auto simp add: vector_component_simps)
 | 
|
3108  | 
have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)"  | 
|
3109  | 
using assms(2)[unfolded pathfinish_def pathstart_def] by auto  | 
|
3110  | 
show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union)  | 
|
3111  | 
apply(rule closed_interval)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3  | 
|
3112  | 
apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3  | 
|
3113  | 
apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+  | 
|
3114  | 
apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]])  | 
|
3115  | 
using assms(3) and ** by(auto simp add:vector_component_simps field_simps Cart_eq) qed  | 
|
3116  | 
||
3117  | 
lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | 
|
3118  | 
shows "shiftpath (1 - a) (shiftpath a g) x = g x"  | 
|
3119  | 
using assms unfolding pathfinish_def pathstart_def shiftpath_def  | 
|
3120  | 
by(auto simp add: vector_component_simps)  | 
|
3121  | 
||
3122  | 
lemma path_image_shiftpath:  | 
|
3123  | 
  assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | 
|
3124  | 
shows "path_image(shiftpath a g) = path_image g" proof-  | 
|
3125  | 
  { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real^1}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a $ 1 + x $ 1 \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | 
|
3126  | 
    hence "\<exists>y\<in>{0..1} \<inter> {x. a $ 1 + x $ 1 \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
 | 
|
3127  | 
case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI)  | 
|
3128  | 
using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1)  | 
|
3129  | 
by(auto simp add:vector_component_simps field_simps atomize_not) next  | 
|
3130  | 
case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI)  | 
|
3131  | 
by(auto simp add:vector_component_simps field_simps) qed }  | 
|
3132  | 
thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def  | 
|
3133  | 
by(auto simp add:vector_component_simps image_iff) qed  | 
|
3134  | 
||
3135  | 
subsection {* Special case of straight-line paths. *}
 | 
|
3136  | 
||
3137  | 
definition  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
3138  | 
linepath :: "real ^ 'n \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 1 \<Rightarrow> real ^ 'n" where  | 
| 33175 | 3139  | 
"linepath a b = (\<lambda>x. (1 - dest_vec1 x) *\<^sub>R a + dest_vec1 x *\<^sub>R b)"  | 
3140  | 
||
3141  | 
lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a"  | 
|
3142  | 
unfolding pathstart_def linepath_def by auto  | 
|
3143  | 
||
3144  | 
lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b"  | 
|
3145  | 
unfolding pathfinish_def linepath_def by auto  | 
|
3146  | 
||
3147  | 
lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"  | 
|
3148  | 
unfolding linepath_def  | 
|
3149  | 
by (intro continuous_intros continuous_dest_vec1)  | 
|
3150  | 
||
3151  | 
lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)"  | 
|
3152  | 
using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on)  | 
|
3153  | 
||
3154  | 
lemma path_linepath[intro]: "path(linepath a b)"  | 
|
3155  | 
unfolding path_def by(rule continuous_on_linepath)  | 
|
3156  | 
||
3157  | 
lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)"  | 
|
3158  | 
unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer  | 
|
3159  | 
unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *\<^sub>R 1" in bexI)  | 
|
3160  | 
by(auto simp add:vector_component_simps)  | 
|
3161  | 
||
3162  | 
lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a"  | 
|
3163  | 
unfolding reversepath_def linepath_def by(rule ext, auto simp add:vector_component_simps)  | 
|
3164  | 
||
3165  | 
lemma injective_path_linepath: assumes "a \<noteq> b" shows "injective_path(linepath a b)" proof-  | 
|
3166  | 
  { obtain i where i:"a$i \<noteq> b$i" using assms[unfolded Cart_eq] by auto
 | 
|
3167  | 
fix x y::"real^1" assume "x $ 1 *\<^sub>R b + y $ 1 *\<^sub>R a = x $ 1 *\<^sub>R a + y $ 1 *\<^sub>R b"  | 
|
3168  | 
hence "x$1 * (b$i - a$i) = y$1 * (b$i - a$i)" unfolding Cart_eq by(auto simp add:field_simps vector_component_simps)  | 
|
3169  | 
hence "x = y" unfolding mult_cancel_right Cart_eq using i(1) by(auto simp add:field_simps) }  | 
|
3170  | 
thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps algebra_simps) qed  | 
|
3171  | 
||
3172  | 
lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath)  | 
|
3173  | 
||
3174  | 
subsection {* Bounding a point away from a path. *}
 | 
|
3175  | 
||
3176  | 
lemma not_on_path_ball: assumes "path g" "z \<notin> path_image g"  | 
|
3177  | 
  shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
 | 
|
3178  | 
obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y"  | 
|
3179  | 
using distance_attains_inf[OF _ path_image_nonempty, of g z]  | 
|
3180  | 
using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto  | 
|
3181  | 
thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed  | 
|
3182  | 
||
3183  | 
lemma not_on_path_cball: assumes "path g" "z \<notin> path_image g"  | 
|
3184  | 
  shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
 | 
|
3185  | 
  obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
 | 
|
3186  | 
moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto  | 
|
3187  | 
ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed  | 
|
3188  | 
||
3189  | 
subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | 
|
3190  | 
||
3191  | 
definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
3192  | 
||
3193  | 
lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def  | 
|
3194  | 
||
3195  | 
lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s"  | 
|
3196  | 
using assms unfolding path_defs by auto  | 
|
3197  | 
||
3198  | 
lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x"  | 
|
3199  | 
unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms  | 
|
3200  | 
by(auto intro!:continuous_on_intros)  | 
|
3201  | 
||
3202  | 
lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s"  | 
|
3203  | 
by(auto intro!: path_component_mem path_component_refl)  | 
|
3204  | 
||
3205  | 
lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x"  | 
|
3206  | 
using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI)  | 
|
3207  | 
by(auto simp add: reversepath_simps)  | 
|
3208  | 
||
3209  | 
lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z"  | 
|
3210  | 
using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join)  | 
|
3211  | 
||
3212  | 
lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y"  | 
|
3213  | 
unfolding path_component_def by auto  | 
|
3214  | 
||
3215  | 
subsection {* Can also consider it as a set, as the name suggests. *}
 | 
|
3216  | 
||
3217  | 
lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
 | 
|
3218  | 
apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto  | 
|
3219  | 
||
3220  | 
lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto  | 
|
3221  | 
||
3222  | 
lemma path_component_subset: "(path_component s x) \<subseteq> s"  | 
|
3223  | 
apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def)  | 
|
3224  | 
||
3225  | 
lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
 | 
|
3226  | 
apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set  | 
|
3227  | 
apply(drule path_component_mem(1)) using path_component_refl by auto  | 
|
3228  | 
||
3229  | 
subsection {* Path connectedness of a space. *}
 | 
|
3230  | 
||
3231  | 
definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)"  | 
|
3232  | 
||
3233  | 
lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)"  | 
|
3234  | 
unfolding path_connected_def path_component_def by auto  | 
|
3235  | 
||
3236  | 
lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)"  | 
|
3237  | 
unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset)  | 
|
3238  | 
unfolding subset_eq mem_path_component_set Ball_def mem_def by auto  | 
|
3239  | 
||
3240  | 
subsection {* Some useful lemmas about path-connectedness. *}
 | 
|
3241  | 
||
3242  | 
lemma convex_imp_path_connected: assumes "convex s" shows "path_connected s"  | 
|
3243  | 
unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI)  | 
|
3244  | 
unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto  | 
|
3245  | 
||
3246  | 
lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s"  | 
|
3247  | 
unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof-  | 
|
3248  | 
  fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | 
|
3249  | 
then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto  | 
|
3250  | 
then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2"  | 
|
3251  | 
using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto  | 
|
3252  | 
  have *:"connected {0..1::real^1}" by(auto intro!: convex_connected convex_interval)
 | 
|
3253  | 
  have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
 | 
|
3254  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
 | 
|
3255  | 
  moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt by(auto intro!: exI)
 | 
|
3256  | 
  ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | 
|
3257  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)]  | 
|
3258  | 
using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed  | 
|
3259  | 
||
3260  | 
lemma open_path_component: assumes "open s" shows "open(path_component s x)"  | 
|
3261  | 
unfolding open_contains_ball proof  | 
|
3262  | 
fix y assume as:"y \<in> path_component s x"  | 
|
3263  | 
hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto  | 
|
3264  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto  | 
|
3265  | 
show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof-  | 
|
3266  | 
fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer  | 
|
3267  | 
apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0`  | 
|
3268  | 
using as[unfolded mem_def] by auto qed qed  | 
|
3269  | 
||
3270  | 
lemma open_non_path_component: assumes "open s" shows "open(s - path_component s x)" unfolding open_contains_ball proof  | 
|
3271  | 
fix y assume as:"y\<in>s - path_component s x"  | 
|
3272  | 
then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto  | 
|
3273  | 
show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr)  | 
|
3274  | 
fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x"  | 
|
3275  | 
hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0`  | 
|
3276  | 
apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)])  | 
|
3277  | 
apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto  | 
|
3278  | 
thus False using as by auto qed(insert e(2), auto) qed  | 
|
3279  | 
||
3280  | 
lemma connected_open_path_connected: assumes "open s" "connected s" shows "path_connected s"  | 
|
3281  | 
unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule)  | 
|
3282  | 
fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr)  | 
|
3283  | 
assume "y \<notin> path_component s x" moreover  | 
|
3284  | 
    have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
 | 
|
3285  | 
ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)]  | 
|
3286  | 
using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto  | 
|
3287  | 
qed qed  | 
|
3288  | 
||
3289  | 
lemma path_connected_continuous_image:  | 
|
3290  | 
assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)"  | 
|
3291  | 
unfolding path_connected_def proof(rule,rule)  | 
|
3292  | 
fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s"  | 
|
3293  | 
then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto  | 
|
3294  | 
guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] ..  | 
|
3295  | 
thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'"  | 
|
3296  | 
unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs  | 
|
3297  | 
    using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
 | 
|
3298  | 
||
3299  | 
lemma homeomorphic_path_connectedness:  | 
|
3300  | 
"s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)"  | 
|
3301  | 
unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule  | 
|
3302  | 
apply(drule_tac f=f in path_connected_continuous_image) prefer 3  | 
|
3303  | 
apply(drule_tac f=g in path_connected_continuous_image) by auto  | 
|
3304  | 
||
3305  | 
lemma path_connected_empty: "path_connected {}"
 | 
|
3306  | 
unfolding path_connected_def by auto  | 
|
3307  | 
||
3308  | 
lemma path_connected_singleton: "path_connected {a}"
 | 
|
3309  | 
unfolding path_connected_def apply(rule,rule)  | 
|
3310  | 
apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment scaleR_left_diff_distrib)  | 
|
3311  | 
||
3312  | 
lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | 
|
3313  | 
shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule)  | 
|
3314  | 
fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t"  | 
|
3315  | 
from assms(3) obtain z where "z \<in> s \<inter> t" by auto  | 
|
3316  | 
thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply-  | 
|
3317  | 
apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z])  | 
|
3318  | 
by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed  | 
|
3319  | 
||
3320  | 
subsection {* sphere is path-connected. *}
 | 
|
3321  | 
||
3322  | 
lemma path_connected_punctured_universe:  | 
|
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
3323  | 
 assumes "2 \<le> CARD('n::finite)" shows "path_connected((UNIV::(real^'n) set) - {a})" proof-
 | 
| 33175 | 3324  | 
  obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
 | 
3325  | 
  let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
 | 
|
3326  | 
let ?basis = "\<lambda>k. basis (\<psi> k)"  | 
|
3327  | 
  let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. inner (basis (\<psi> i)) x \<noteq> 0}"
 | 
|
3328  | 
  have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
 | 
|
3329  | 
    have *:"\<And>k. ?A (Suc k) = {x. inner (?basis (Suc k)) x < 0} \<union> {x. inner (?basis (Suc k)) x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
 | 
|
3330  | 
apply(erule UnE)+ unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI)  | 
|
3331  | 
by(auto elim!: ballE simp add: not_less le_Suc_eq)  | 
|
3332  | 
    fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
 | 
|
3333  | 
case (Suc k) show ?case proof(cases "k = 1")  | 
|
3334  | 
        case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
 | 
|
3335  | 
hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto  | 
|
3336  | 
        hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < inner (?basis (Suc k)) x} \<inter> (?A k)" 
 | 
|
3337  | 
          "?basis k - ?basis (Suc k) \<in> {x. 0 > inner (?basis (Suc k)) x} \<inter> ({x. 0 < inner (?basis (Suc k)) x} \<union> (?A k))" using d
 | 
|
3338  | 
by(auto simp add: inner_basis vector_component_simps intro!:bexI[where x=k])  | 
|
3339  | 
show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un)  | 
|
3340  | 
prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt)  | 
|
3341  | 
apply(rule Suc(1)) apply(rule_tac[2-3] ccontr) using d ** False by auto  | 
|
3342  | 
      next case True hence d:"1\<in>{1..CARD('n)}" "2\<in>{1..CARD('n)}" using Suc(2) by auto
 | 
|
3343  | 
have ***:"Suc 1 = 2" by auto  | 
|
3344  | 
        have **:"\<And>s t P Q. s \<union> t \<union> {x. P x \<or> Q x} = (s \<union> {x. P x}) \<union> (t \<union> {x. Q x})" by auto
 | 
|
| 34964 | 3345  | 
        have nequals0I:"\<And>x A. x\<in>A \<Longrightarrow> A \<noteq> {}" by auto
 | 
| 33175 | 3346  | 
have "\<psi> 2 \<noteq> \<psi> (Suc 0)" apply(rule ccontr) using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto  | 
3347  | 
thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply -  | 
|
3348  | 
apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected)  | 
|
3349  | 
apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I)  | 
|
3350  | 
apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I)  | 
|
3351  | 
apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I)  | 
|
3352  | 
using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps inner_basis)  | 
|
3353  | 
qed qed auto qed note lem = this  | 
|
3354  | 
||
3355  | 
  have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0) \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)"
 | 
|
3356  | 
apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof-  | 
|
3357  | 
fix x::"real^'n" and i assume as:"inner (basis i) x \<noteq> 0"  | 
|
3358  | 
    have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
 | 
|
3359  | 
    then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
 | 
|
3360  | 
    thus "\<exists>i\<in>{1..CARD('n)}. inner (basis (\<psi> i)) x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
 | 
|
3361  | 
  have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
 | 
|
3362  | 
apply rule apply(rule_tac x="x - a" in bexI) by auto  | 
|
3363  | 
have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. inner (basis i) x \<noteq> 0)" unfolding Cart_eq by(auto simp add: inner_basis)  | 
|
3364  | 
show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+  | 
|
3365  | 
    unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
 | 
|
3366  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
3367  | 
lemma path_connected_sphere: assumes "2 \<le> CARD('n::finite)" shows "path_connected {x::real^'n. norm(x - a) = r}" proof(cases "r\<le>0")
 | 
| 33175 | 3368  | 
case True thus ?thesis proof(cases "r=0")  | 
3369  | 
    case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
 | 
|
3370  | 
thus ?thesis using path_connected_empty by auto  | 
|
3371  | 
qed(auto intro!:path_connected_singleton) next  | 
|
3372  | 
  case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *\<^sub>R x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
 | 
|
3373  | 
unfolding image_iff apply(rule_tac x="(1/r) *\<^sub>R (x - a)" in bexI) unfolding mem_Collect_eq norm_scaleR by (auto simp add: scaleR_right_diff_distrib)  | 
|
3374  | 
  have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *\<^sub>R x) ` (UNIV - {0})" apply(rule set_ext,rule)
 | 
|
3375  | 
unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq by(auto split:split_if_asm)  | 
|
3376  | 
  have "continuous_on (UNIV - {0}) (\<lambda>x::real^'n. 1 / norm x)" unfolding o_def continuous_on_eq_continuous_within
 | 
|
3377  | 
apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within)  | 
|
3378  | 
apply(rule continuous_at_norm[unfolded o_def]) by auto  | 
|
3379  | 
thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms]  | 
|
3380  | 
by(auto intro!: path_connected_continuous_image continuous_on_intros continuous_on_mul) qed  | 
|
3381  | 
||
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
3382  | 
lemma connected_sphere: "2 \<le> CARD('n) \<Longrightarrow> connected {x::real^'n. norm(x - a) = r}"
 | 
| 33175 | 3383  | 
using path_connected_sphere path_connected_imp_connected by auto  | 
| 
34291
 
4e896680897e
finite annotation on cartesian product is now implicit.
 
hoelzl 
parents: 
34289 
diff
changeset
 | 
3384  | 
|
| 33175 | 3385  | 
end  |