author | wenzelm |
Thu, 01 Sep 2016 21:28:46 +0200 | |
changeset 63763 | 0f61ea70d384 |
parent 63167 | 0909deb8059b |
permissions | -rw-r--r-- |
43197 | 1 |
(* Title: HOL/Metis_Examples/Binary_Tree.thy |
2 |
Author: Lawrence C. Paulson, Cambridge University Computer Laboratory |
|
36487
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
blanchet
parents:
36484
diff
changeset
|
3 |
Author: Jasmin Blanchette, TU Muenchen |
23449 | 4 |
|
43197 | 5 |
Metis example featuring binary trees. |
23449 | 6 |
*) |
7 |
||
63167 | 8 |
section \<open>Metis Example Featuring Binary Trees\<close> |
23449 | 9 |
|
43197 | 10 |
theory Binary_Tree |
27104
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
11 |
imports Main |
791607529f6d
rep_datatype command now takes list of constructors as input arguments
haftmann
parents:
26312
diff
changeset
|
12 |
begin |
23449 | 13 |
|
50705
0e943b33d907
use new skolemizer for reconstructing skolemization steps in Isar proofs (because the old skolemizer messes up the order of the Skolem arguments)
blanchet
parents:
49962
diff
changeset
|
14 |
declare [[metis_new_skolem]] |
42103
6066a35f6678
Metis examples use the new Skolemizer to test it
blanchet
parents:
41144
diff
changeset
|
15 |
|
58310 | 16 |
datatype 'a bt = |
23449 | 17 |
Lf |
18 |
| Br 'a "'a bt" "'a bt" |
|
19 |
||
39246 | 20 |
primrec n_nodes :: "'a bt => nat" where |
21 |
"n_nodes Lf = 0" |
|
22 |
| "n_nodes (Br a t1 t2) = Suc (n_nodes t1 + n_nodes t2)" |
|
23 |
||
24 |
primrec n_leaves :: "'a bt => nat" where |
|
25 |
"n_leaves Lf = Suc 0" |
|
26 |
| "n_leaves (Br a t1 t2) = n_leaves t1 + n_leaves t2" |
|
23449 | 27 |
|
39246 | 28 |
primrec depth :: "'a bt => nat" where |
29 |
"depth Lf = 0" |
|
30 |
| "depth (Br a t1 t2) = Suc (max (depth t1) (depth t2))" |
|
23449 | 31 |
|
39246 | 32 |
primrec reflect :: "'a bt => 'a bt" where |
33 |
"reflect Lf = Lf" |
|
34 |
| "reflect (Br a t1 t2) = Br a (reflect t2) (reflect t1)" |
|
23449 | 35 |
|
39246 | 36 |
primrec bt_map :: "('a => 'b) => ('a bt => 'b bt)" where |
23449 | 37 |
"bt_map f Lf = Lf" |
39246 | 38 |
| "bt_map f (Br a t1 t2) = Br (f a) (bt_map f t1) (bt_map f t2)" |
23449 | 39 |
|
39246 | 40 |
primrec preorder :: "'a bt => 'a list" where |
23449 | 41 |
"preorder Lf = []" |
39246 | 42 |
| "preorder (Br a t1 t2) = [a] @ (preorder t1) @ (preorder t2)" |
23449 | 43 |
|
39246 | 44 |
primrec inorder :: "'a bt => 'a list" where |
23449 | 45 |
"inorder Lf = []" |
39246 | 46 |
| "inorder (Br a t1 t2) = (inorder t1) @ [a] @ (inorder t2)" |
23449 | 47 |
|
39246 | 48 |
primrec postorder :: "'a bt => 'a list" where |
23449 | 49 |
"postorder Lf = []" |
39246 | 50 |
| "postorder (Br a t1 t2) = (postorder t1) @ (postorder t2) @ [a]" |
23449 | 51 |
|
39246 | 52 |
primrec append :: "'a bt => 'a bt => 'a bt" where |
53 |
"append Lf t = t" |
|
54 |
| "append (Br a t1 t2) t = Br a (append t1 t) (append t2 t)" |
|
23449 | 55 |
|
63167 | 56 |
text \<open>\medskip BT simplification\<close> |
23449 | 57 |
|
58 |
lemma n_leaves_reflect: "n_leaves (reflect t) = n_leaves t" |
|
36484 | 59 |
proof (induct t) |
36487
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
blanchet
parents:
36484
diff
changeset
|
60 |
case Lf thus ?case |
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
blanchet
parents:
36484
diff
changeset
|
61 |
proof - |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50705
diff
changeset
|
62 |
let "?p\<^sub>1 x\<^sub>1" = "x\<^sub>1 \<noteq> n_leaves (reflect (Lf::'a bt))" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50705
diff
changeset
|
63 |
have "\<not> ?p\<^sub>1 (Suc 0)" by (metis reflect.simps(1) n_leaves.simps(1)) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
50705
diff
changeset
|
64 |
hence "\<not> ?p\<^sub>1 (n_leaves (Lf::'a bt))" by (metis n_leaves.simps(1)) |
36487
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
blanchet
parents:
36484
diff
changeset
|
65 |
thus "n_leaves (reflect (Lf::'a bt)) = n_leaves (Lf::'a bt)" by metis |
50fd056cc3ce
insert a nice proof found by Vampire, which demonstrates the use of "let" in Isar proofs
blanchet
parents:
36484
diff
changeset
|
66 |
qed |
36484 | 67 |
next |
68 |
case (Br a t1 t2) thus ?case |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55465
diff
changeset
|
69 |
by (metis n_leaves.simps(2) add.commute reflect.simps(2)) |
36484 | 70 |
qed |
23449 | 71 |
|
72 |
lemma n_nodes_reflect: "n_nodes (reflect t) = n_nodes t" |
|
36484 | 73 |
proof (induct t) |
74 |
case Lf thus ?case by (metis reflect.simps(1)) |
|
75 |
next |
|
76 |
case (Br a t1 t2) thus ?case |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55465
diff
changeset
|
77 |
by (metis add.commute n_nodes.simps(2) reflect.simps(2)) |
36484 | 78 |
qed |
23449 | 79 |
|
80 |
lemma depth_reflect: "depth (reflect t) = depth t" |
|
36484 | 81 |
apply (induct t) |
82 |
apply (metis depth.simps(1) reflect.simps(1)) |
|
54864
a064732223ad
abolished slightly odd global lattice interpretation for min/max
haftmann
parents:
53015
diff
changeset
|
83 |
by (metis depth.simps(2) max.commute reflect.simps(2)) |
23449 | 84 |
|
63167 | 85 |
text \<open> |
36484 | 86 |
The famous relationship between the numbers of leaves and nodes. |
63167 | 87 |
\<close> |
23449 | 88 |
|
89 |
lemma n_leaves_nodes: "n_leaves t = Suc (n_nodes t)" |
|
36484 | 90 |
apply (induct t) |
91 |
apply (metis n_leaves.simps(1) n_nodes.simps(1)) |
|
92 |
by auto |
|
23449 | 93 |
|
94 |
lemma reflect_reflect_ident: "reflect (reflect t) = t" |
|
36484 | 95 |
apply (induct t) |
96 |
apply (metis reflect.simps(1)) |
|
97 |
proof - |
|
98 |
fix a :: 'a and t1 :: "'a bt" and t2 :: "'a bt" |
|
99 |
assume A1: "reflect (reflect t1) = t1" |
|
100 |
assume A2: "reflect (reflect t2) = t2" |
|
101 |
have "\<And>V U. reflect (Br U V (reflect t1)) = Br U t1 (reflect V)" |
|
102 |
using A1 by (metis reflect.simps(2)) |
|
103 |
hence "\<And>V U. Br U t1 (reflect (reflect V)) = reflect (reflect (Br U t1 V))" |
|
104 |
by (metis reflect.simps(2)) |
|
105 |
hence "\<And>U. reflect (reflect (Br U t1 t2)) = Br U t1 t2" |
|
106 |
using A2 by metis |
|
107 |
thus "reflect (reflect (Br a t1 t2)) = Br a t1 t2" by blast |
|
108 |
qed |
|
23449 | 109 |
|
110 |
lemma bt_map_ident: "bt_map (%x. x) = (%y. y)" |
|
43197 | 111 |
apply (rule ext) |
23449 | 112 |
apply (induct_tac y) |
36484 | 113 |
apply (metis bt_map.simps(1)) |
36571 | 114 |
by (metis bt_map.simps(2)) |
23449 | 115 |
|
39246 | 116 |
lemma bt_map_append: "bt_map f (append t u) = append (bt_map f t) (bt_map f u)" |
23449 | 117 |
apply (induct t) |
39246 | 118 |
apply (metis append.simps(1) bt_map.simps(1)) |
119 |
by (metis append.simps(2) bt_map.simps(2)) |
|
23449 | 120 |
|
121 |
lemma bt_map_compose: "bt_map (f o g) t = bt_map f (bt_map g t)" |
|
36484 | 122 |
apply (induct t) |
123 |
apply (metis bt_map.simps(1)) |
|
124 |
by (metis bt_map.simps(2) o_eq_dest_lhs) |
|
23449 | 125 |
|
126 |
lemma bt_map_reflect: "bt_map f (reflect t) = reflect (bt_map f t)" |
|
36484 | 127 |
apply (induct t) |
128 |
apply (metis bt_map.simps(1) reflect.simps(1)) |
|
129 |
by (metis bt_map.simps(2) reflect.simps(2)) |
|
23449 | 130 |
|
131 |
lemma preorder_bt_map: "preorder (bt_map f t) = map f (preorder t)" |
|
36484 | 132 |
apply (induct t) |
55465 | 133 |
apply (metis bt_map.simps(1) list.map(1) preorder.simps(1)) |
36484 | 134 |
by simp |
23449 | 135 |
|
136 |
lemma inorder_bt_map: "inorder (bt_map f t) = map f (inorder t)" |
|
36484 | 137 |
proof (induct t) |
138 |
case Lf thus ?case |
|
139 |
proof - |
|
55465 | 140 |
have "map f [] = []" by (metis list.map(1)) |
36484 | 141 |
hence "map f [] = inorder Lf" by (metis inorder.simps(1)) |
142 |
hence "inorder (bt_map f Lf) = map f []" by (metis bt_map.simps(1)) |
|
143 |
thus "inorder (bt_map f Lf) = map f (inorder Lf)" by (metis inorder.simps(1)) |
|
144 |
qed |
|
145 |
next |
|
146 |
case (Br a t1 t2) thus ?case by simp |
|
147 |
qed |
|
23449 | 148 |
|
149 |
lemma postorder_bt_map: "postorder (bt_map f t) = map f (postorder t)" |
|
36484 | 150 |
apply (induct t) |
151 |
apply (metis Nil_is_map_conv bt_map.simps(1) postorder.simps(1)) |
|
152 |
by simp |
|
23449 | 153 |
|
154 |
lemma depth_bt_map [simp]: "depth (bt_map f t) = depth t" |
|
36484 | 155 |
apply (induct t) |
156 |
apply (metis bt_map.simps(1) depth.simps(1)) |
|
157 |
by simp |
|
23449 | 158 |
|
159 |
lemma n_leaves_bt_map [simp]: "n_leaves (bt_map f t) = n_leaves t" |
|
36484 | 160 |
apply (induct t) |
161 |
apply (metis bt_map.simps(1) n_leaves.simps(1)) |
|
162 |
proof - |
|
163 |
fix a :: 'b and t1 :: "'b bt" and t2 :: "'b bt" |
|
164 |
assume A1: "n_leaves (bt_map f t1) = n_leaves t1" |
|
165 |
assume A2: "n_leaves (bt_map f t2) = n_leaves t2" |
|
166 |
have "\<And>V U. n_leaves (Br U (bt_map f t1) V) = n_leaves t1 + n_leaves V" |
|
167 |
using A1 by (metis n_leaves.simps(2)) |
|
168 |
hence "\<And>V U. n_leaves (bt_map f (Br U t1 V)) = n_leaves t1 + n_leaves (bt_map f V)" |
|
169 |
by (metis bt_map.simps(2)) |
|
170 |
hence F1: "\<And>U. n_leaves (bt_map f (Br U t1 t2)) = n_leaves t1 + n_leaves t2" |
|
171 |
using A2 by metis |
|
172 |
have "n_leaves t1 + n_leaves t2 = n_leaves (Br a t1 t2)" |
|
173 |
by (metis n_leaves.simps(2)) |
|
174 |
thus "n_leaves (bt_map f (Br a t1 t2)) = n_leaves (Br a t1 t2)" |
|
175 |
using F1 by metis |
|
176 |
qed |
|
23449 | 177 |
|
178 |
lemma preorder_reflect: "preorder (reflect t) = rev (postorder t)" |
|
36484 | 179 |
apply (induct t) |
180 |
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1) |
|
181 |
reflect.simps(1)) |
|
39246 | 182 |
apply simp |
183 |
done |
|
23449 | 184 |
|
185 |
lemma inorder_reflect: "inorder (reflect t) = rev (inorder t)" |
|
36484 | 186 |
apply (induct t) |
187 |
apply (metis Nil_is_rev_conv inorder.simps(1) reflect.simps(1)) |
|
188 |
by simp |
|
189 |
(* Slow: |
|
190 |
by (metis append.simps(1) append_eq_append_conv2 inorder.simps(2) |
|
191 |
reflect.simps(2) rev.simps(2) rev_append) |
|
192 |
*) |
|
23449 | 193 |
|
194 |
lemma postorder_reflect: "postorder (reflect t) = rev (preorder t)" |
|
36484 | 195 |
apply (induct t) |
196 |
apply (metis Nil_is_rev_conv postorder.simps(1) preorder.simps(1) |
|
197 |
reflect.simps(1)) |
|
198 |
by (metis preorder_reflect reflect_reflect_ident rev_swap) |
|
23449 | 199 |
|
63167 | 200 |
text \<open> |
36484 | 201 |
Analogues of the standard properties of the append function for lists. |
63167 | 202 |
\<close> |
23449 | 203 |
|
39246 | 204 |
lemma append_assoc [simp]: "append (append t1 t2) t3 = append t1 (append t2 t3)" |
36484 | 205 |
apply (induct t1) |
39246 | 206 |
apply (metis append.simps(1)) |
207 |
by (metis append.simps(2)) |
|
23449 | 208 |
|
39246 | 209 |
lemma append_Lf2 [simp]: "append t Lf = t" |
36484 | 210 |
apply (induct t) |
39246 | 211 |
apply (metis append.simps(1)) |
212 |
by (metis append.simps(2)) |
|
36484 | 213 |
|
214 |
declare max_add_distrib_left [simp] |
|
23449 | 215 |
|
39246 | 216 |
lemma depth_append [simp]: "depth (append t1 t2) = depth t1 + depth t2" |
36484 | 217 |
apply (induct t1) |
39246 | 218 |
apply (metis append.simps(1) depth.simps(1) plus_nat.simps(1)) |
36484 | 219 |
by simp |
23449 | 220 |
|
39246 | 221 |
lemma n_leaves_append [simp]: |
222 |
"n_leaves (append t1 t2) = n_leaves t1 * n_leaves t2" |
|
36484 | 223 |
apply (induct t1) |
39246 | 224 |
apply (metis append.simps(1) n_leaves.simps(1) nat_mult_1 plus_nat.simps(1) |
45502
6246bef495ff
avoid theorem references like 'semiring_norm(111)'
huffman
parents:
43197
diff
changeset
|
225 |
Suc_eq_plus1) |
49962
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
webertj
parents:
45705
diff
changeset
|
226 |
by (simp add: distrib_right) |
23449 | 227 |
|
39246 | 228 |
lemma (*bt_map_append:*) |
229 |
"bt_map f (append t1 t2) = append (bt_map f t1) (bt_map f t2)" |
|
36484 | 230 |
apply (induct t1) |
39246 | 231 |
apply (metis append.simps(1) bt_map.simps(1)) |
232 |
by (metis bt_map_append) |
|
23449 | 233 |
|
234 |
end |