author | haftmann |
Fri, 01 Oct 2010 16:05:25 +0200 | |
changeset 39910 | 10097e0a9dbd |
parent 39246 | 9e58f0499f57 |
child 40825 | c55ee3793712 |
permissions | -rw-r--r-- |
14527 | 1 |
(* Title: HOL/Induct/QuoDataType |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
Copyright 2004 University of Cambridge |
|
4 |
*) |
|
5 |
||
6 |
header{*Defining an Initial Algebra by Quotienting a Free Algebra*} |
|
7 |
||
16417 | 8 |
theory QuoDataType imports Main begin |
14527 | 9 |
|
10 |
subsection{*Defining the Free Algebra*} |
|
11 |
||
12 |
text{*Messages with encryption and decryption as free constructors.*} |
|
13 |
datatype |
|
14 |
freemsg = NONCE nat |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30198
diff
changeset
|
15 |
| MPAIR freemsg freemsg |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30198
diff
changeset
|
16 |
| CRYPT nat freemsg |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
30198
diff
changeset
|
17 |
| DECRYPT nat freemsg |
14527 | 18 |
|
19 |
text{*The equivalence relation, which makes encryption and decryption inverses |
|
23746 | 20 |
provided the keys are the same. |
19736 | 21 |
|
23746 | 22 |
The first two rules are the desired equations. The next four rules |
14527 | 23 |
make the equations applicable to subterms. The last two rules are symmetry |
24 |
and transitivity.*} |
|
23746 | 25 |
|
26 |
inductive_set |
|
27 |
msgrel :: "(freemsg * freemsg) set" |
|
28 |
and msg_rel :: "[freemsg, freemsg] => bool" (infixl "\<sim>" 50) |
|
29 |
where |
|
30 |
"X \<sim> Y == (X,Y) \<in> msgrel" |
|
31 |
| CD: "CRYPT K (DECRYPT K X) \<sim> X" |
|
32 |
| DC: "DECRYPT K (CRYPT K X) \<sim> X" |
|
33 |
| NONCE: "NONCE N \<sim> NONCE N" |
|
34 |
| MPAIR: "\<lbrakk>X \<sim> X'; Y \<sim> Y'\<rbrakk> \<Longrightarrow> MPAIR X Y \<sim> MPAIR X' Y'" |
|
35 |
| CRYPT: "X \<sim> X' \<Longrightarrow> CRYPT K X \<sim> CRYPT K X'" |
|
36 |
| DECRYPT: "X \<sim> X' \<Longrightarrow> DECRYPT K X \<sim> DECRYPT K X'" |
|
37 |
| SYM: "X \<sim> Y \<Longrightarrow> Y \<sim> X" |
|
38 |
| TRANS: "\<lbrakk>X \<sim> Y; Y \<sim> Z\<rbrakk> \<Longrightarrow> X \<sim> Z" |
|
14527 | 39 |
|
40 |
||
41 |
text{*Proving that it is an equivalence relation*} |
|
42 |
||
43 |
lemma msgrel_refl: "X \<sim> X" |
|
18460 | 44 |
by (induct X) (blast intro: msgrel.intros)+ |
14527 | 45 |
|
46 |
theorem equiv_msgrel: "equiv UNIV msgrel" |
|
18460 | 47 |
proof - |
30198 | 48 |
have "refl msgrel" by (simp add: refl_on_def msgrel_refl) |
18460 | 49 |
moreover have "sym msgrel" by (simp add: sym_def, blast intro: msgrel.SYM) |
50 |
moreover have "trans msgrel" by (simp add: trans_def, blast intro: msgrel.TRANS) |
|
51 |
ultimately show ?thesis by (simp add: equiv_def) |
|
14527 | 52 |
qed |
53 |
||
54 |
||
55 |
subsection{*Some Functions on the Free Algebra*} |
|
56 |
||
57 |
subsubsection{*The Set of Nonces*} |
|
58 |
||
59 |
text{*A function to return the set of nonces present in a message. It will |
|
60 |
be lifted to the initial algrebra, to serve as an example of that process.*} |
|
39246 | 61 |
primrec freenonces :: "freemsg \<Rightarrow> nat set" where |
62 |
"freenonces (NONCE N) = {N}" |
|
63 |
| "freenonces (MPAIR X Y) = freenonces X \<union> freenonces Y" |
|
64 |
| "freenonces (CRYPT K X) = freenonces X" |
|
65 |
| "freenonces (DECRYPT K X) = freenonces X" |
|
14527 | 66 |
|
67 |
text{*This theorem lets us prove that the nonces function respects the |
|
68 |
equivalence relation. It also helps us prove that Nonce |
|
69 |
(the abstract constructor) is injective*} |
|
70 |
theorem msgrel_imp_eq_freenonces: "U \<sim> V \<Longrightarrow> freenonces U = freenonces V" |
|
18460 | 71 |
by (induct set: msgrel) auto |
14527 | 72 |
|
73 |
||
74 |
subsubsection{*The Left Projection*} |
|
75 |
||
76 |
text{*A function to return the left part of the top pair in a message. It will |
|
77 |
be lifted to the initial algrebra, to serve as an example of that process.*} |
|
39246 | 78 |
primrec freeleft :: "freemsg \<Rightarrow> freemsg" where |
79 |
"freeleft (NONCE N) = NONCE N" |
|
80 |
| "freeleft (MPAIR X Y) = X" |
|
81 |
| "freeleft (CRYPT K X) = freeleft X" |
|
82 |
| "freeleft (DECRYPT K X) = freeleft X" |
|
14527 | 83 |
|
84 |
text{*This theorem lets us prove that the left function respects the |
|
85 |
equivalence relation. It also helps us prove that MPair |
|
86 |
(the abstract constructor) is injective*} |
|
14658 | 87 |
theorem msgrel_imp_eqv_freeleft: |
88 |
"U \<sim> V \<Longrightarrow> freeleft U \<sim> freeleft V" |
|
18460 | 89 |
by (induct set: msgrel) (auto intro: msgrel.intros) |
14527 | 90 |
|
91 |
||
92 |
subsubsection{*The Right Projection*} |
|
93 |
||
94 |
text{*A function to return the right part of the top pair in a message.*} |
|
39246 | 95 |
primrec freeright :: "freemsg \<Rightarrow> freemsg" where |
96 |
"freeright (NONCE N) = NONCE N" |
|
97 |
| "freeright (MPAIR X Y) = Y" |
|
98 |
| "freeright (CRYPT K X) = freeright X" |
|
99 |
| "freeright (DECRYPT K X) = freeright X" |
|
14527 | 100 |
|
101 |
text{*This theorem lets us prove that the right function respects the |
|
102 |
equivalence relation. It also helps us prove that MPair |
|
103 |
(the abstract constructor) is injective*} |
|
14658 | 104 |
theorem msgrel_imp_eqv_freeright: |
105 |
"U \<sim> V \<Longrightarrow> freeright U \<sim> freeright V" |
|
18460 | 106 |
by (induct set: msgrel) (auto intro: msgrel.intros) |
14527 | 107 |
|
108 |
||
15152 | 109 |
subsubsection{*The Discriminator for Constructors*} |
14527 | 110 |
|
15152 | 111 |
text{*A function to distinguish nonces, mpairs and encryptions*} |
39246 | 112 |
primrec freediscrim :: "freemsg \<Rightarrow> int" where |
113 |
"freediscrim (NONCE N) = 0" |
|
114 |
| "freediscrim (MPAIR X Y) = 1" |
|
115 |
| "freediscrim (CRYPT K X) = freediscrim X + 2" |
|
116 |
| "freediscrim (DECRYPT K X) = freediscrim X - 2" |
|
14527 | 117 |
|
118 |
text{*This theorem helps us prove @{term "Nonce N \<noteq> MPair X Y"}*} |
|
15152 | 119 |
theorem msgrel_imp_eq_freediscrim: |
120 |
"U \<sim> V \<Longrightarrow> freediscrim U = freediscrim V" |
|
18460 | 121 |
by (induct set: msgrel) auto |
14527 | 122 |
|
123 |
||
124 |
subsection{*The Initial Algebra: A Quotiented Message Type*} |
|
125 |
||
126 |
typedef (Msg) msg = "UNIV//msgrel" |
|
18460 | 127 |
by (auto simp add: quotient_def) |
14527 | 128 |
|
129 |
||
130 |
text{*The abstract message constructors*} |
|
19736 | 131 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
132 |
Nonce :: "nat \<Rightarrow> msg" where |
19736 | 133 |
"Nonce N = Abs_Msg(msgrel``{NONCE N})" |
14527 | 134 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
135 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
136 |
MPair :: "[msg,msg] \<Rightarrow> msg" where |
19736 | 137 |
"MPair X Y = |
15120 | 138 |
Abs_Msg (\<Union>U \<in> Rep_Msg X. \<Union>V \<in> Rep_Msg Y. msgrel``{MPAIR U V})" |
14527 | 139 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
140 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
141 |
Crypt :: "[nat,msg] \<Rightarrow> msg" where |
19736 | 142 |
"Crypt K X = |
15120 | 143 |
Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{CRYPT K U})" |
14527 | 144 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
145 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
146 |
Decrypt :: "[nat,msg] \<Rightarrow> msg" where |
19736 | 147 |
"Decrypt K X = |
15120 | 148 |
Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{DECRYPT K U})" |
14527 | 149 |
|
150 |
||
151 |
text{*Reduces equality of equivalence classes to the @{term msgrel} relation: |
|
152 |
@{term "(msgrel `` {x} = msgrel `` {y}) = ((x,y) \<in> msgrel)"} *} |
|
153 |
lemmas equiv_msgrel_iff = eq_equiv_class_iff [OF equiv_msgrel UNIV_I UNIV_I] |
|
154 |
||
155 |
declare equiv_msgrel_iff [simp] |
|
156 |
||
157 |
||
158 |
text{*All equivalence classes belong to set of representatives*} |
|
15169 | 159 |
lemma [simp]: "msgrel``{U} \<in> Msg" |
14527 | 160 |
by (auto simp add: Msg_def quotient_def intro: msgrel_refl) |
161 |
||
162 |
lemma inj_on_Abs_Msg: "inj_on Abs_Msg Msg" |
|
163 |
apply (rule inj_on_inverseI) |
|
164 |
apply (erule Abs_Msg_inverse) |
|
165 |
done |
|
166 |
||
167 |
text{*Reduces equality on abstractions to equality on representatives*} |
|
168 |
declare inj_on_Abs_Msg [THEN inj_on_iff, simp] |
|
169 |
||
170 |
declare Abs_Msg_inverse [simp] |
|
171 |
||
172 |
||
173 |
subsubsection{*Characteristic Equations for the Abstract Constructors*} |
|
174 |
||
175 |
lemma MPair: "MPair (Abs_Msg(msgrel``{U})) (Abs_Msg(msgrel``{V})) = |
|
176 |
Abs_Msg (msgrel``{MPAIR U V})" |
|
177 |
proof - |
|
15169 | 178 |
have "(\<lambda>U V. msgrel `` {MPAIR U V}) respects2 msgrel" |
14527 | 179 |
by (simp add: congruent2_def msgrel.MPAIR) |
180 |
thus ?thesis |
|
14658 | 181 |
by (simp add: MPair_def UN_equiv_class2 [OF equiv_msgrel equiv_msgrel]) |
14527 | 182 |
qed |
183 |
||
184 |
lemma Crypt: "Crypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{CRYPT K U})" |
|
185 |
proof - |
|
15169 | 186 |
have "(\<lambda>U. msgrel `` {CRYPT K U}) respects msgrel" |
14527 | 187 |
by (simp add: congruent_def msgrel.CRYPT) |
188 |
thus ?thesis |
|
189 |
by (simp add: Crypt_def UN_equiv_class [OF equiv_msgrel]) |
|
190 |
qed |
|
191 |
||
192 |
lemma Decrypt: |
|
193 |
"Decrypt K (Abs_Msg(msgrel``{U})) = Abs_Msg (msgrel``{DECRYPT K U})" |
|
194 |
proof - |
|
15169 | 195 |
have "(\<lambda>U. msgrel `` {DECRYPT K U}) respects msgrel" |
14527 | 196 |
by (simp add: congruent_def msgrel.DECRYPT) |
197 |
thus ?thesis |
|
198 |
by (simp add: Decrypt_def UN_equiv_class [OF equiv_msgrel]) |
|
199 |
qed |
|
200 |
||
201 |
text{*Case analysis on the representation of a msg as an equivalence class.*} |
|
202 |
lemma eq_Abs_Msg [case_names Abs_Msg, cases type: msg]: |
|
203 |
"(!!U. z = Abs_Msg(msgrel``{U}) ==> P) ==> P" |
|
204 |
apply (rule Rep_Msg [of z, unfolded Msg_def, THEN quotientE]) |
|
205 |
apply (drule arg_cong [where f=Abs_Msg]) |
|
206 |
apply (auto simp add: Rep_Msg_inverse intro: msgrel_refl) |
|
207 |
done |
|
208 |
||
209 |
text{*Establishing these two equations is the point of the whole exercise*} |
|
14533 | 210 |
theorem CD_eq [simp]: "Crypt K (Decrypt K X) = X" |
14527 | 211 |
by (cases X, simp add: Crypt Decrypt CD) |
212 |
||
14533 | 213 |
theorem DC_eq [simp]: "Decrypt K (Crypt K X) = X" |
14527 | 214 |
by (cases X, simp add: Crypt Decrypt DC) |
215 |
||
216 |
||
217 |
subsection{*The Abstract Function to Return the Set of Nonces*} |
|
218 |
||
19736 | 219 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
220 |
nonces :: "msg \<Rightarrow> nat set" where |
19736 | 221 |
"nonces X = (\<Union>U \<in> Rep_Msg X. freenonces U)" |
14527 | 222 |
|
15169 | 223 |
lemma nonces_congruent: "freenonces respects msgrel" |
14527 | 224 |
by (simp add: congruent_def msgrel_imp_eq_freenonces) |
225 |
||
226 |
||
227 |
text{*Now prove the four equations for @{term nonces}*} |
|
228 |
||
229 |
lemma nonces_Nonce [simp]: "nonces (Nonce N) = {N}" |
|
230 |
by (simp add: nonces_def Nonce_def |
|
231 |
UN_equiv_class [OF equiv_msgrel nonces_congruent]) |
|
232 |
||
233 |
lemma nonces_MPair [simp]: "nonces (MPair X Y) = nonces X \<union> nonces Y" |
|
234 |
apply (cases X, cases Y) |
|
235 |
apply (simp add: nonces_def MPair |
|
236 |
UN_equiv_class [OF equiv_msgrel nonces_congruent]) |
|
237 |
done |
|
238 |
||
239 |
lemma nonces_Crypt [simp]: "nonces (Crypt K X) = nonces X" |
|
240 |
apply (cases X) |
|
241 |
apply (simp add: nonces_def Crypt |
|
242 |
UN_equiv_class [OF equiv_msgrel nonces_congruent]) |
|
243 |
done |
|
244 |
||
245 |
lemma nonces_Decrypt [simp]: "nonces (Decrypt K X) = nonces X" |
|
246 |
apply (cases X) |
|
247 |
apply (simp add: nonces_def Decrypt |
|
248 |
UN_equiv_class [OF equiv_msgrel nonces_congruent]) |
|
249 |
done |
|
250 |
||
251 |
||
252 |
subsection{*The Abstract Function to Return the Left Part*} |
|
253 |
||
19736 | 254 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
255 |
left :: "msg \<Rightarrow> msg" where |
19736 | 256 |
"left X = Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{freeleft U})" |
14527 | 257 |
|
15169 | 258 |
lemma left_congruent: "(\<lambda>U. msgrel `` {freeleft U}) respects msgrel" |
14658 | 259 |
by (simp add: congruent_def msgrel_imp_eqv_freeleft) |
14527 | 260 |
|
261 |
text{*Now prove the four equations for @{term left}*} |
|
262 |
||
263 |
lemma left_Nonce [simp]: "left (Nonce N) = Nonce N" |
|
264 |
by (simp add: left_def Nonce_def |
|
265 |
UN_equiv_class [OF equiv_msgrel left_congruent]) |
|
266 |
||
267 |
lemma left_MPair [simp]: "left (MPair X Y) = X" |
|
268 |
apply (cases X, cases Y) |
|
269 |
apply (simp add: left_def MPair |
|
270 |
UN_equiv_class [OF equiv_msgrel left_congruent]) |
|
271 |
done |
|
272 |
||
273 |
lemma left_Crypt [simp]: "left (Crypt K X) = left X" |
|
274 |
apply (cases X) |
|
275 |
apply (simp add: left_def Crypt |
|
276 |
UN_equiv_class [OF equiv_msgrel left_congruent]) |
|
277 |
done |
|
278 |
||
279 |
lemma left_Decrypt [simp]: "left (Decrypt K X) = left X" |
|
280 |
apply (cases X) |
|
281 |
apply (simp add: left_def Decrypt |
|
282 |
UN_equiv_class [OF equiv_msgrel left_congruent]) |
|
283 |
done |
|
284 |
||
285 |
||
286 |
subsection{*The Abstract Function to Return the Right Part*} |
|
287 |
||
19736 | 288 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
289 |
right :: "msg \<Rightarrow> msg" where |
19736 | 290 |
"right X = Abs_Msg (\<Union>U \<in> Rep_Msg X. msgrel``{freeright U})" |
14527 | 291 |
|
15169 | 292 |
lemma right_congruent: "(\<lambda>U. msgrel `` {freeright U}) respects msgrel" |
14658 | 293 |
by (simp add: congruent_def msgrel_imp_eqv_freeright) |
14527 | 294 |
|
295 |
text{*Now prove the four equations for @{term right}*} |
|
296 |
||
297 |
lemma right_Nonce [simp]: "right (Nonce N) = Nonce N" |
|
298 |
by (simp add: right_def Nonce_def |
|
299 |
UN_equiv_class [OF equiv_msgrel right_congruent]) |
|
300 |
||
301 |
lemma right_MPair [simp]: "right (MPair X Y) = Y" |
|
302 |
apply (cases X, cases Y) |
|
303 |
apply (simp add: right_def MPair |
|
304 |
UN_equiv_class [OF equiv_msgrel right_congruent]) |
|
305 |
done |
|
306 |
||
307 |
lemma right_Crypt [simp]: "right (Crypt K X) = right X" |
|
308 |
apply (cases X) |
|
309 |
apply (simp add: right_def Crypt |
|
310 |
UN_equiv_class [OF equiv_msgrel right_congruent]) |
|
311 |
done |
|
312 |
||
313 |
lemma right_Decrypt [simp]: "right (Decrypt K X) = right X" |
|
314 |
apply (cases X) |
|
315 |
apply (simp add: right_def Decrypt |
|
316 |
UN_equiv_class [OF equiv_msgrel right_congruent]) |
|
317 |
done |
|
318 |
||
319 |
||
320 |
subsection{*Injectivity Properties of Some Constructors*} |
|
321 |
||
322 |
lemma NONCE_imp_eq: "NONCE m \<sim> NONCE n \<Longrightarrow> m = n" |
|
323 |
by (drule msgrel_imp_eq_freenonces, simp) |
|
324 |
||
325 |
text{*Can also be proved using the function @{term nonces}*} |
|
326 |
lemma Nonce_Nonce_eq [iff]: "(Nonce m = Nonce n) = (m = n)" |
|
327 |
by (auto simp add: Nonce_def msgrel_refl dest: NONCE_imp_eq) |
|
328 |
||
329 |
lemma MPAIR_imp_eqv_left: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> X \<sim> X'" |
|
14658 | 330 |
by (drule msgrel_imp_eqv_freeleft, simp) |
14527 | 331 |
|
332 |
lemma MPair_imp_eq_left: |
|
333 |
assumes eq: "MPair X Y = MPair X' Y'" shows "X = X'" |
|
334 |
proof - |
|
335 |
from eq |
|
336 |
have "left (MPair X Y) = left (MPair X' Y')" by simp |
|
337 |
thus ?thesis by simp |
|
338 |
qed |
|
339 |
||
340 |
lemma MPAIR_imp_eqv_right: "MPAIR X Y \<sim> MPAIR X' Y' \<Longrightarrow> Y \<sim> Y'" |
|
14658 | 341 |
by (drule msgrel_imp_eqv_freeright, simp) |
14527 | 342 |
|
343 |
lemma MPair_imp_eq_right: "MPair X Y = MPair X' Y' \<Longrightarrow> Y = Y'" |
|
344 |
apply (cases X, cases X', cases Y, cases Y') |
|
345 |
apply (simp add: MPair) |
|
346 |
apply (erule MPAIR_imp_eqv_right) |
|
347 |
done |
|
348 |
||
349 |
theorem MPair_MPair_eq [iff]: "(MPair X Y = MPair X' Y') = (X=X' & Y=Y')" |
|
14533 | 350 |
by (blast dest: MPair_imp_eq_left MPair_imp_eq_right) |
14527 | 351 |
|
352 |
lemma NONCE_neqv_MPAIR: "NONCE m \<sim> MPAIR X Y \<Longrightarrow> False" |
|
15152 | 353 |
by (drule msgrel_imp_eq_freediscrim, simp) |
14527 | 354 |
|
355 |
theorem Nonce_neq_MPair [iff]: "Nonce N \<noteq> MPair X Y" |
|
356 |
apply (cases X, cases Y) |
|
357 |
apply (simp add: Nonce_def MPair) |
|
358 |
apply (blast dest: NONCE_neqv_MPAIR) |
|
359 |
done |
|
360 |
||
15152 | 361 |
text{*Example suggested by a referee*} |
362 |
theorem Crypt_Nonce_neq_Nonce: "Crypt K (Nonce M) \<noteq> Nonce N" |
|
363 |
by (auto simp add: Nonce_def Crypt dest: msgrel_imp_eq_freediscrim) |
|
364 |
||
365 |
text{*...and many similar results*} |
|
15172 | 366 |
theorem Crypt2_Nonce_neq_Nonce: "Crypt K (Crypt K' (Nonce M)) \<noteq> Nonce N" |
15152 | 367 |
by (auto simp add: Nonce_def Crypt dest: msgrel_imp_eq_freediscrim) |
368 |
||
14533 | 369 |
theorem Crypt_Crypt_eq [iff]: "(Crypt K X = Crypt K X') = (X=X')" |
370 |
proof |
|
371 |
assume "Crypt K X = Crypt K X'" |
|
372 |
hence "Decrypt K (Crypt K X) = Decrypt K (Crypt K X')" by simp |
|
373 |
thus "X = X'" by simp |
|
374 |
next |
|
375 |
assume "X = X'" |
|
376 |
thus "Crypt K X = Crypt K X'" by simp |
|
377 |
qed |
|
378 |
||
379 |
theorem Decrypt_Decrypt_eq [iff]: "(Decrypt K X = Decrypt K X') = (X=X')" |
|
380 |
proof |
|
381 |
assume "Decrypt K X = Decrypt K X'" |
|
382 |
hence "Crypt K (Decrypt K X) = Crypt K (Decrypt K X')" by simp |
|
383 |
thus "X = X'" by simp |
|
384 |
next |
|
385 |
assume "X = X'" |
|
386 |
thus "Decrypt K X = Decrypt K X'" by simp |
|
387 |
qed |
|
388 |
||
389 |
lemma msg_induct [case_names Nonce MPair Crypt Decrypt, cases type: msg]: |
|
390 |
assumes N: "\<And>N. P (Nonce N)" |
|
391 |
and M: "\<And>X Y. \<lbrakk>P X; P Y\<rbrakk> \<Longrightarrow> P (MPair X Y)" |
|
392 |
and C: "\<And>K X. P X \<Longrightarrow> P (Crypt K X)" |
|
393 |
and D: "\<And>K X. P X \<Longrightarrow> P (Decrypt K X)" |
|
394 |
shows "P msg" |
|
18460 | 395 |
proof (cases msg) |
396 |
case (Abs_Msg U) |
|
397 |
have "P (Abs_Msg (msgrel `` {U}))" |
|
14533 | 398 |
proof (induct U) |
399 |
case (NONCE N) |
|
400 |
with N show ?case by (simp add: Nonce_def) |
|
401 |
next |
|
402 |
case (MPAIR X Y) |
|
403 |
with M [of "Abs_Msg (msgrel `` {X})" "Abs_Msg (msgrel `` {Y})"] |
|
404 |
show ?case by (simp add: MPair) |
|
405 |
next |
|
406 |
case (CRYPT K X) |
|
407 |
with C [of "Abs_Msg (msgrel `` {X})"] |
|
408 |
show ?case by (simp add: Crypt) |
|
409 |
next |
|
410 |
case (DECRYPT K X) |
|
411 |
with D [of "Abs_Msg (msgrel `` {X})"] |
|
412 |
show ?case by (simp add: Decrypt) |
|
413 |
qed |
|
18460 | 414 |
with Abs_Msg show ?thesis by (simp only:) |
14533 | 415 |
qed |
416 |
||
15152 | 417 |
|
418 |
subsection{*The Abstract Discriminator*} |
|
419 |
||
420 |
text{*However, as @{text Crypt_Nonce_neq_Nonce} above illustrates, we don't |
|
421 |
need this function in order to prove discrimination theorems.*} |
|
422 |
||
19736 | 423 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21210
diff
changeset
|
424 |
discrim :: "msg \<Rightarrow> int" where |
39910 | 425 |
"discrim X = the_elem (\<Union>U \<in> Rep_Msg X. {freediscrim U})" |
15152 | 426 |
|
15169 | 427 |
lemma discrim_congruent: "(\<lambda>U. {freediscrim U}) respects msgrel" |
15152 | 428 |
by (simp add: congruent_def msgrel_imp_eq_freediscrim) |
429 |
||
430 |
text{*Now prove the four equations for @{term discrim}*} |
|
431 |
||
432 |
lemma discrim_Nonce [simp]: "discrim (Nonce N) = 0" |
|
433 |
by (simp add: discrim_def Nonce_def |
|
434 |
UN_equiv_class [OF equiv_msgrel discrim_congruent]) |
|
435 |
||
436 |
lemma discrim_MPair [simp]: "discrim (MPair X Y) = 1" |
|
437 |
apply (cases X, cases Y) |
|
438 |
apply (simp add: discrim_def MPair |
|
439 |
UN_equiv_class [OF equiv_msgrel discrim_congruent]) |
|
440 |
done |
|
441 |
||
442 |
lemma discrim_Crypt [simp]: "discrim (Crypt K X) = discrim X + 2" |
|
443 |
apply (cases X) |
|
444 |
apply (simp add: discrim_def Crypt |
|
445 |
UN_equiv_class [OF equiv_msgrel discrim_congruent]) |
|
446 |
done |
|
447 |
||
448 |
lemma discrim_Decrypt [simp]: "discrim (Decrypt K X) = discrim X - 2" |
|
449 |
apply (cases X) |
|
450 |
apply (simp add: discrim_def Decrypt |
|
451 |
UN_equiv_class [OF equiv_msgrel discrim_congruent]) |
|
452 |
done |
|
453 |
||
454 |
||
14527 | 455 |
end |
456 |