| author | huffman | 
| Tue, 12 Oct 2010 06:20:05 -0700 | |
| changeset 40006 | 116e94f9543b | 
| parent 38642 | 8fa437809c67 | 
| child 44064 | 5bce8ff0d9ae | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 10 | header {* Rings *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Groups | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 17 | assumes left_distrib[algebra_simps, field_simps]: "(a + b) * c = a * c + b * c" | 
| 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 18 | assumes right_distrib[algebra_simps, field_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 21 | text{*For the @{text combine_numerals} simproc*}
 | |
| 22 | lemma combine_common_factor: | |
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 29667 | 24 | by (simp add: left_distrib add_ac) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 31 | |
| 22390 | 32 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 33 | |
| 29904 | 34 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 35 | begin | 
| 14504 | 36 | |
| 25186 | 37 | subclass semiring_0 | 
| 28823 | 38 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 39 | fix a :: 'a | 
| 29667 | 40 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: left_distrib [symmetric]) | 
| 41 | thus "0 * a = 0" by (simp only: add_left_cancel) | |
| 25152 | 42 | next | 
| 43 | fix a :: 'a | |
| 29667 | 44 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: right_distrib [symmetric]) | 
| 45 | thus "a * 0 = 0" by (simp only: add_left_cancel) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | qed | 
| 14940 | 47 | |
| 25186 | 48 | end | 
| 25152 | 49 | |
| 22390 | 50 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 51 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 52 | begin | 
| 14504 | 53 | |
| 25152 | 54 | subclass semiring | 
| 28823 | 55 | proof | 
| 14738 | 56 | fix a b c :: 'a | 
| 57 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 58 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 59 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 60 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 61 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 62 | qed | 
| 63 | ||
| 25152 | 64 | end | 
| 14504 | 65 | |
| 25152 | 66 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 67 | begin | |
| 68 | ||
| 27516 | 69 | subclass semiring_0 .. | 
| 25152 | 70 | |
| 71 | end | |
| 14504 | 72 | |
| 29904 | 73 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 74 | begin | 
| 14940 | 75 | |
| 27516 | 76 | subclass semiring_0_cancel .. | 
| 14940 | 77 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 78 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 79 | |
| 25186 | 80 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 81 | |
| 22390 | 82 | class zero_neq_one = zero + one + | 
| 25062 | 83 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 84 | begin | 
| 85 | ||
| 86 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 87 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 88 | |
| 89 | end | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 90 | |
| 22390 | 91 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 92 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 93 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 94 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 95 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 96 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 97 | |
| 28559 | 98 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where | 
| 37767 | 99 | "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 100 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 101 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 102 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 103 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 104 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 105 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 106 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 107 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 108 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 109 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd | 
| 22390 | 110 | (*previously almost_semiring*) | 
| 25152 | 111 | begin | 
| 14738 | 112 | |
| 27516 | 113 | subclass semiring_1 .. | 
| 25152 | 114 | |
| 29925 | 115 | lemma dvd_refl[simp]: "a dvd a" | 
| 28559 | 116 | proof | 
| 117 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 118 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 119 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 120 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | proof - | 
| 28559 | 124 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 125 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 126 | ultimately have "c = a * (v * w)" by (simp add: mult_assoc) | 
| 28559 | 127 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 130 | lemma dvd_0_left_iff [no_atp, simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 29667 | 131 | by (auto intro: dvd_refl elim!: dvdE) | 
| 28559 | 132 | |
| 133 | lemma dvd_0_right [iff]: "a dvd 0" | |
| 134 | proof | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | show "0 = a * 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 137 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 138 | lemma one_dvd [simp]: "1 dvd a" | 
| 29667 | 139 | by (auto intro!: dvdI) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | |
| 30042 | 141 | lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 29667 | 142 | by (auto intro!: mult_left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 143 | |
| 30042 | 144 | lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 145 | apply (subst mult_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | apply (erule dvd_mult) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | done | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 148 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 29667 | 150 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 152 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 29667 | 153 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 154 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 155 | lemma mult_dvd_mono: | 
| 30042 | 156 | assumes "a dvd b" | 
| 157 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | proof - | 
| 30042 | 160 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 161 | moreover from `c dvd d` obtain d' where "d = c * d'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 162 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 163 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 164 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 165 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 166 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 29667 | 167 | by (simp add: dvd_def mult_assoc, blast) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 168 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | unfolding mult_ac [of a] by (rule dvd_mult_left) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 171 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 29667 | 173 | by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 174 | |
| 29925 | 175 | lemma dvd_add[simp]: | 
| 176 | assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 177 | proof - | 
| 29925 | 178 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 179 | moreover from `a dvd c` obtain c' where "c = a * c'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 180 | ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | |
| 25152 | 184 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 185 | |
| 22390 | 186 | class no_zero_divisors = zero + times + | 
| 25062 | 187 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 36719 | 188 | begin | 
| 189 | ||
| 190 | lemma divisors_zero: | |
| 191 | assumes "a * b = 0" | |
| 192 | shows "a = 0 \<or> b = 0" | |
| 193 | proof (rule classical) | |
| 194 | assume "\<not> (a = 0 \<or> b = 0)" | |
| 195 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 196 | with no_zero_divisors have "a * b \<noteq> 0" by blast | |
| 197 | with assms show ?thesis by simp | |
| 198 | qed | |
| 199 | ||
| 200 | end | |
| 14504 | 201 | |
| 29904 | 202 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 203 | + zero_neq_one + monoid_mult | |
| 25267 | 204 | begin | 
| 14940 | 205 | |
| 27516 | 206 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 207 | |
| 27516 | 208 | subclass semiring_1 .. | 
| 25267 | 209 | |
| 210 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 211 | |
| 29904 | 212 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add | 
| 213 | + zero_neq_one + comm_monoid_mult | |
| 25267 | 214 | begin | 
| 14738 | 215 | |
| 27516 | 216 | subclass semiring_1_cancel .. | 
| 217 | subclass comm_semiring_0_cancel .. | |
| 218 | subclass comm_semiring_1 .. | |
| 25267 | 219 | |
| 220 | end | |
| 25152 | 221 | |
| 22390 | 222 | class ring = semiring + ab_group_add | 
| 25267 | 223 | begin | 
| 25152 | 224 | |
| 27516 | 225 | subclass semiring_0_cancel .. | 
| 25152 | 226 | |
| 227 | text {* Distribution rules *}
 | |
| 228 | ||
| 229 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
33676diff
changeset | 230 | by (rule minus_unique) (simp add: left_distrib [symmetric]) | 
| 25152 | 231 | |
| 232 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 34146 
14595e0c27e8
rename equals_zero_I to minus_unique (keep old name too)
 huffman parents: 
33676diff
changeset | 233 | by (rule minus_unique) (simp add: right_distrib [symmetric]) | 
| 25152 | 234 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 235 | text{*Extract signs from products*}
 | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 236 | lemmas mult_minus_left [simp, no_atp] = minus_mult_left [symmetric] | 
| 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 237 | lemmas mult_minus_right [simp,no_atp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 238 | |
| 25152 | 239 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 240 | by simp | 
| 25152 | 241 | |
| 242 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 243 | by simp | 
| 244 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 245 | lemma right_diff_distrib[algebra_simps, field_simps]: "a * (b - c) = a * b - a * c" | 
| 29667 | 246 | by (simp add: right_distrib diff_minus) | 
| 247 | ||
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 248 | lemma left_diff_distrib[algebra_simps, field_simps]: "(a - b) * c = a * c - b * c" | 
| 29667 | 249 | by (simp add: left_distrib diff_minus) | 
| 25152 | 250 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 251 | lemmas ring_distribs[no_atp] = | 
| 25152 | 252 | right_distrib left_distrib left_diff_distrib right_diff_distrib | 
| 253 | ||
| 25230 | 254 | lemma eq_add_iff1: | 
| 255 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 256 | by (simp add: algebra_simps) | 
| 25230 | 257 | |
| 258 | lemma eq_add_iff2: | |
| 259 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 260 | by (simp add: algebra_simps) | 
| 25230 | 261 | |
| 25152 | 262 | end | 
| 263 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 264 | lemmas ring_distribs[no_atp] = | 
| 25152 | 265 | right_distrib left_distrib left_diff_distrib right_diff_distrib | 
| 266 | ||
| 22390 | 267 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 268 | begin | 
| 14738 | 269 | |
| 27516 | 270 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 271 | subclass comm_semiring_0_cancel .. | 
| 25267 | 272 | |
| 273 | end | |
| 14738 | 274 | |
| 22390 | 275 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 276 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 277 | |
| 27516 | 278 | subclass semiring_1_cancel .. | 
| 25267 | 279 | |
| 280 | end | |
| 25152 | 281 | |
| 22390 | 282 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 283 | (*previously ring*) | |
| 25267 | 284 | begin | 
| 14738 | 285 | |
| 27516 | 286 | subclass ring_1 .. | 
| 287 | subclass comm_semiring_1_cancel .. | |
| 25267 | 288 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 289 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 290 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 291 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 292 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 293 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 294 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 295 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 296 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 297 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 298 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 299 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 300 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 301 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 302 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 303 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 304 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 305 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 306 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 307 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 308 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 309 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 310 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 311 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 312 | |
| 30042 | 313 | lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 35216 | 314 | by (simp only: diff_minus dvd_add dvd_minus_iff) | 
| 29409 | 315 | |
| 25267 | 316 | end | 
| 25152 | 317 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 318 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 25230 | 319 | begin | 
| 320 | ||
| 321 | lemma mult_eq_0_iff [simp]: | |
| 322 | shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" | |
| 323 | proof (cases "a = 0 \<or> b = 0") | |
| 324 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 325 | then show ?thesis using no_zero_divisors by simp | |
| 326 | next | |
| 327 | case True then show ?thesis by auto | |
| 328 | qed | |
| 329 | ||
| 26193 | 330 | text{*Cancellation of equalities with a common factor*}
 | 
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 331 | lemma mult_cancel_right [simp, no_atp]: | 
| 26193 | 332 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 333 | proof - | |
| 334 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 35216 | 335 | by (simp add: algebra_simps) | 
| 336 | thus ?thesis by (simp add: disj_commute) | |
| 26193 | 337 | qed | 
| 338 | ||
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 339 | lemma mult_cancel_left [simp, no_atp]: | 
| 26193 | 340 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 341 | proof - | |
| 342 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 35216 | 343 | by (simp add: algebra_simps) | 
| 344 | thus ?thesis by simp | |
| 26193 | 345 | qed | 
| 346 | ||
| 25230 | 347 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 348 | |
| 23544 | 349 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 350 | begin | 
| 351 | ||
| 36970 | 352 | lemma square_eq_1_iff: | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 353 | "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 354 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 355 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 356 | by (simp add: algebra_simps) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 357 | hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 358 | by simp | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 359 | thus ?thesis | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 360 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 361 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 362 | |
| 26274 | 363 | lemma mult_cancel_right1 [simp]: | 
| 364 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 365 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 366 | |
| 367 | lemma mult_cancel_right2 [simp]: | |
| 368 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 369 | by (insert mult_cancel_right [of a c 1], simp) | 
| 26274 | 370 | |
| 371 | lemma mult_cancel_left1 [simp]: | |
| 372 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 373 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 374 | |
| 375 | lemma mult_cancel_left2 [simp]: | |
| 376 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 377 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 378 | |
| 379 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 380 | |
| 22390 | 381 | class idom = comm_ring_1 + no_zero_divisors | 
| 25186 | 382 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 383 | |
| 27516 | 384 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 385 | |
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 386 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 387 | proof | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 388 | assume "a * a = b * b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 389 | then have "(a - b) * (a + b) = 0" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 390 | by (simp add: algebra_simps) | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 391 | then show "a = b \<or> a = - b" | 
| 35216 | 392 | by (simp add: eq_neg_iff_add_eq_0) | 
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 393 | next | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 394 | assume "a = b \<or> a = - b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 395 | then show "a * a = b * b" by auto | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 396 | qed | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 397 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 398 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 399 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 400 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 401 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 402 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 403 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 404 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 405 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 406 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 407 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 408 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 409 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 410 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 411 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 412 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 413 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 414 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 415 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 416 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 417 | |
| 25186 | 418 | end | 
| 25152 | 419 | |
| 35083 | 420 | class inverse = | 
| 421 | fixes inverse :: "'a \<Rightarrow> 'a" | |
| 422 | and divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "'/" 70) | |
| 423 | ||
| 22390 | 424 | class division_ring = ring_1 + inverse + | 
| 25062 | 425 | assumes left_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1" | 
| 426 | assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1" | |
| 35083 | 427 | assumes divide_inverse: "a / b = a * inverse b" | 
| 25186 | 428 | begin | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 429 | |
| 25186 | 430 | subclass ring_1_no_zero_divisors | 
| 28823 | 431 | proof | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 432 | fix a b :: 'a | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 433 | assume a: "a \<noteq> 0" and b: "b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 434 | show "a * b \<noteq> 0" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 435 | proof | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 436 | assume ab: "a * b = 0" | 
| 29667 | 437 | hence "0 = inverse a * (a * b) * inverse b" by simp | 
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 438 | also have "\<dots> = (inverse a * a) * (b * inverse b)" | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 439 | by (simp only: mult_assoc) | 
| 29667 | 440 | also have "\<dots> = 1" using a b by simp | 
| 441 | finally show False by simp | |
| 22987 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 442 | qed | 
| 
550709aa8e66
instance division_ring < no_zero_divisors; clean up field instance proofs
 huffman parents: 
22842diff
changeset | 443 | qed | 
| 20496 
23eb6034c06d
added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
 huffman parents: 
19404diff
changeset | 444 | |
| 26274 | 445 | lemma nonzero_imp_inverse_nonzero: | 
| 446 | "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0" | |
| 447 | proof | |
| 448 | assume ianz: "inverse a = 0" | |
| 449 | assume "a \<noteq> 0" | |
| 450 | hence "1 = a * inverse a" by simp | |
| 451 | also have "... = 0" by (simp add: ianz) | |
| 452 | finally have "1 = 0" . | |
| 453 | thus False by (simp add: eq_commute) | |
| 454 | qed | |
| 455 | ||
| 456 | lemma inverse_zero_imp_zero: | |
| 457 | "inverse a = 0 \<Longrightarrow> a = 0" | |
| 458 | apply (rule classical) | |
| 459 | apply (drule nonzero_imp_inverse_nonzero) | |
| 460 | apply auto | |
| 461 | done | |
| 462 | ||
| 463 | lemma inverse_unique: | |
| 464 | assumes ab: "a * b = 1" | |
| 465 | shows "inverse a = b" | |
| 466 | proof - | |
| 467 | have "a \<noteq> 0" using ab by (cases "a = 0") simp_all | |
| 29406 | 468 | moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) | 
| 469 | ultimately show ?thesis by (simp add: mult_assoc [symmetric]) | |
| 26274 | 470 | qed | 
| 471 | ||
| 29406 | 472 | lemma nonzero_inverse_minus_eq: | 
| 473 | "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a" | |
| 29667 | 474 | by (rule inverse_unique) simp | 
| 29406 | 475 | |
| 476 | lemma nonzero_inverse_inverse_eq: | |
| 477 | "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a" | |
| 29667 | 478 | by (rule inverse_unique) simp | 
| 29406 | 479 | |
| 480 | lemma nonzero_inverse_eq_imp_eq: | |
| 481 | assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0" | |
| 482 | shows "a = b" | |
| 483 | proof - | |
| 484 | from `inverse a = inverse b` | |
| 29667 | 485 | have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong) | 
| 29406 | 486 | with `a \<noteq> 0` and `b \<noteq> 0` show "a = b" | 
| 487 | by (simp add: nonzero_inverse_inverse_eq) | |
| 488 | qed | |
| 489 | ||
| 490 | lemma inverse_1 [simp]: "inverse 1 = 1" | |
| 29667 | 491 | by (rule inverse_unique) simp | 
| 29406 | 492 | |
| 26274 | 493 | lemma nonzero_inverse_mult_distrib: | 
| 29406 | 494 | assumes "a \<noteq> 0" and "b \<noteq> 0" | 
| 26274 | 495 | shows "inverse (a * b) = inverse b * inverse a" | 
| 496 | proof - | |
| 29667 | 497 | have "a * (b * inverse b) * inverse a = 1" using assms by simp | 
| 498 | hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult_assoc) | |
| 499 | thus ?thesis by (rule inverse_unique) | |
| 26274 | 500 | qed | 
| 501 | ||
| 502 | lemma division_ring_inverse_add: | |
| 503 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b" | |
| 29667 | 504 | by (simp add: algebra_simps) | 
| 26274 | 505 | |
| 506 | lemma division_ring_inverse_diff: | |
| 507 | "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b" | |
| 29667 | 508 | by (simp add: algebra_simps) | 
| 26274 | 509 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 510 | lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 511 | proof | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 512 | assume neq: "b \<noteq> 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 513 |   {
 | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 514 | hence "a = (a / b) * b" by (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 515 | also assume "a / b = 1" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 516 | finally show "a = b" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 517 | next | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 518 | assume "a = b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 519 | with neq show "a / b = 1" by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 520 | } | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 521 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 522 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 523 | lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 524 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 525 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 526 | lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 527 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 528 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 529 | lemma divide_zero_left [simp]: "0 / a = 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 530 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 531 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 532 | lemma inverse_eq_divide: "inverse a = 1 / a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 533 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 534 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 535 | lemma add_divide_distrib: "(a+b) / c = a/c + b/c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 536 | by (simp add: divide_inverse algebra_simps) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 537 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 538 | lemma divide_1 [simp]: "a / 1 = a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 539 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 540 | |
| 36304 
6984744e6b34
less special treatment of times_divide_eq [simp]
 haftmann parents: 
36301diff
changeset | 541 | lemma times_divide_eq_right [simp]: "a * (b / c) = (a * b) / c" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 542 | by (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 543 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 544 | lemma minus_divide_left: "- (a / b) = (-a) / b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 545 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 546 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 547 | lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a / b) = a / (- b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 548 | by (simp add: divide_inverse nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 549 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 550 | lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a) / (-b) = a / b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 551 | by (simp add: divide_inverse nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 552 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 553 | lemma divide_minus_left [simp, no_atp]: "(-a) / b = - (a / b)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 554 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 555 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 556 | lemma diff_divide_distrib: "(a - b) / c = a / c - b / c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 557 | by (simp add: diff_minus add_divide_distrib) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 558 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 559 | lemma nonzero_eq_divide_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 560 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 561 | assume [simp]: "c \<noteq> 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 562 | have "a = b / c \<longleftrightarrow> a * c = (b / c) * c" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 563 | also have "... \<longleftrightarrow> a * c = b" by (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 564 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 565 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 566 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 567 | lemma nonzero_divide_eq_eq [field_simps]: "c \<noteq> 0 \<Longrightarrow> b / c = a \<longleftrightarrow> b = a * c" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 568 | proof - | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 569 | assume [simp]: "c \<noteq> 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 570 | have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 571 | also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 572 | finally show ?thesis . | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 573 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 574 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 575 | lemma divide_eq_imp: "c \<noteq> 0 \<Longrightarrow> b = a * c \<Longrightarrow> b / c = a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 576 | by (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 577 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 578 | lemma eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 579 | by (drule sym) (simp add: divide_inverse mult_assoc) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 580 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 581 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 582 | |
| 36348 
89c54f51f55a
dropped group_simps, ring_simps, field_eq_simps; classes division_ring_inverse_zero, field_inverse_zero, linordered_field_inverse_zero
 haftmann parents: 
36304diff
changeset | 583 | class division_ring_inverse_zero = division_ring + | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 584 | assumes inverse_zero [simp]: "inverse 0 = 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 585 | begin | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 586 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 587 | lemma divide_zero [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 588 | "a / 0 = 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 589 | by (simp add: divide_inverse) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 590 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 591 | lemma divide_self_if [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 592 | "a / a = (if a = 0 then 0 else 1)" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 593 | by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 594 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 595 | lemma inverse_nonzero_iff_nonzero [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 596 | "inverse a = 0 \<longleftrightarrow> a = 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 597 | by rule (fact inverse_zero_imp_zero, simp) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 598 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 599 | lemma inverse_minus_eq [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 600 | "inverse (- a) = - inverse a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 601 | proof cases | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 602 | assume "a=0" thus ?thesis by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 603 | next | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 604 | assume "a\<noteq>0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 605 | thus ?thesis by (simp add: nonzero_inverse_minus_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 606 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 607 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 608 | lemma inverse_eq_imp_eq: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 609 | "inverse a = inverse b \<Longrightarrow> a = b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 610 | apply (cases "a=0 | b=0") | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 611 | apply (force dest!: inverse_zero_imp_zero | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 612 | simp add: eq_commute [of "0::'a"]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 613 | apply (force dest!: nonzero_inverse_eq_imp_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 614 | done | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 615 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 616 | lemma inverse_eq_iff_eq [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 617 | "inverse a = inverse b \<longleftrightarrow> a = b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 618 | by (force dest!: inverse_eq_imp_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 619 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 620 | lemma inverse_inverse_eq [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 621 | "inverse (inverse a) = a" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 622 | proof cases | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 623 | assume "a=0" thus ?thesis by simp | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 624 | next | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 625 | assume "a\<noteq>0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 626 | thus ?thesis by (simp add: nonzero_inverse_inverse_eq) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 627 | qed | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 628 | |
| 25186 | 629 | end | 
| 25152 | 630 | |
| 35302 | 631 | text {*
 | 
| 632 | The theory of partially ordered rings is taken from the books: | |
| 633 |   \begin{itemize}
 | |
| 634 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 635 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 636 |   \end{itemize}
 | |
| 637 | Most of the used notions can also be looked up in | |
| 638 |   \begin{itemize}
 | |
| 639 |   \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
 | |
| 640 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | |
| 641 |   \end{itemize}
 | |
| 642 | *} | |
| 643 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 644 | class ordered_semiring = semiring + comm_monoid_add + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 645 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 646 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 647 | begin | 
| 648 | ||
| 649 | lemma mult_mono: | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 650 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 651 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 652 | apply (erule mult_left_mono, assumption) | |
| 653 | done | |
| 654 | ||
| 655 | lemma mult_mono': | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 656 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 657 | apply (rule mult_mono) | 
| 658 | apply (fast intro: order_trans)+ | |
| 659 | done | |
| 660 | ||
| 661 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 662 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 663 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 25267 | 664 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 665 | |
| 27516 | 666 | subclass semiring_0_cancel .. | 
| 23521 | 667 | |
| 25230 | 668 | lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 669 | using mult_left_mono [of 0 b a] by simp | 
| 25230 | 670 | |
| 671 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 672 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 673 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 674 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 675 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 676 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 677 | text {* Legacy - use @{text mult_nonpos_nonneg} *}
 | 
| 25230 | 678 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 679 | by (drule mult_right_mono [of b 0], auto) | 
| 25230 | 680 | |
| 26234 | 681 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 682 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 683 | |
| 684 | end | |
| 685 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 686 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 687 | begin | 
| 25230 | 688 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 689 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 690 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 691 | subclass ordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 692 | |
| 25230 | 693 | lemma mult_left_less_imp_less: | 
| 694 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 695 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 25230 | 696 | |
| 697 | lemma mult_right_less_imp_less: | |
| 698 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 699 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 700 | |
| 25186 | 701 | end | 
| 25152 | 702 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 703 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 704 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 705 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 706 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 707 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 708 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 709 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 710 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 711 | by (simp add: add_mono mult_left_mono) | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 712 | thus ?thesis using assms unfolding left_distrib[symmetric] by simp | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 713 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 714 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 715 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 716 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 717 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 718 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 719 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 720 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 721 | |
| 27516 | 722 | subclass semiring_0_cancel .. | 
| 14940 | 723 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 724 | subclass linordered_semiring | 
| 28823 | 725 | proof | 
| 23550 | 726 | fix a b c :: 'a | 
| 727 | assume A: "a \<le> b" "0 \<le> c" | |
| 728 | from A show "c * a \<le> c * b" | |
| 25186 | 729 | unfolding le_less | 
| 730 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 731 | from A show "a * c \<le> b * c" | 
| 25152 | 732 | unfolding le_less | 
| 25186 | 733 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 734 | qed | 
| 735 | ||
| 25230 | 736 | lemma mult_left_le_imp_le: | 
| 737 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 738 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 25230 | 739 | |
| 740 | lemma mult_right_le_imp_le: | |
| 741 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 742 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 743 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 744 | lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 745 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 746 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 747 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 748 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 749 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 750 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 751 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 752 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 753 | text {* Legacy - use @{text mult_neg_pos} *}
 | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 754 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 755 | by (drule mult_strict_right_mono [of b 0], auto) | 
| 25230 | 756 | |
| 757 | lemma zero_less_mult_pos: | |
| 758 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 759 | apply (cases "b\<le>0") | 
| 25230 | 760 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 761 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 762 | apply (auto dest: less_not_sym) | 
| 763 | done | |
| 764 | ||
| 765 | lemma zero_less_mult_pos2: | |
| 766 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 767 | apply (cases "b\<le>0") | 
| 25230 | 768 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 769 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 770 | apply (auto dest: less_not_sym) | 
| 771 | done | |
| 772 | ||
| 26193 | 773 | text{*Strict monotonicity in both arguments*}
 | 
| 774 | lemma mult_strict_mono: | |
| 775 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 776 | shows "a * c < b * d" | |
| 777 | using assms apply (cases "c=0") | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 778 | apply (simp add: mult_pos_pos) | 
| 26193 | 779 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 780 | apply (force simp add: le_less) | 
| 26193 | 781 | apply (erule mult_strict_left_mono, assumption) | 
| 782 | done | |
| 783 | ||
| 784 | text{*This weaker variant has more natural premises*}
 | |
| 785 | lemma mult_strict_mono': | |
| 786 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 787 | shows "a * c < b * d" | |
| 29667 | 788 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 789 | |
| 790 | lemma mult_less_le_imp_less: | |
| 791 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 792 | shows "a * c < b * d" | |
| 793 | using assms apply (subgoal_tac "a * c < b * c") | |
| 794 | apply (erule less_le_trans) | |
| 795 | apply (erule mult_left_mono) | |
| 796 | apply simp | |
| 797 | apply (erule mult_strict_right_mono) | |
| 798 | apply assumption | |
| 799 | done | |
| 800 | ||
| 801 | lemma mult_le_less_imp_less: | |
| 802 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 803 | shows "a * c < b * d" | |
| 804 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 805 | apply (erule le_less_trans) | |
| 806 | apply (erule mult_strict_left_mono) | |
| 807 | apply simp | |
| 808 | apply (erule mult_right_mono) | |
| 809 | apply simp | |
| 810 | done | |
| 811 | ||
| 812 | lemma mult_less_imp_less_left: | |
| 813 | assumes less: "c * a < c * b" and nonneg: "0 \<le> c" | |
| 814 | shows "a < b" | |
| 815 | proof (rule ccontr) | |
| 816 | assume "\<not> a < b" | |
| 817 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 818 | hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) | |
| 29667 | 819 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 820 | qed | 
| 821 | ||
| 822 | lemma mult_less_imp_less_right: | |
| 823 | assumes less: "a * c < b * c" and nonneg: "0 \<le> c" | |
| 824 | shows "a < b" | |
| 825 | proof (rule ccontr) | |
| 826 | assume "\<not> a < b" | |
| 827 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 828 | hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) | |
| 29667 | 829 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 830 | qed | 
| 831 | ||
| 25230 | 832 | end | 
| 833 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 834 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 835 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 836 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 837 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 838 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 839 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 840 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 841 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 842 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 843 | from assms have "u * x + v * y < u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 844 | by (cases "u = 0") | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 845 | (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 846 | thus ?thesis using assms unfolding left_distrib[symmetric] by simp | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 847 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 848 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 849 | end | 
| 33319 | 850 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 851 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 852 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 853 | begin | 
| 25152 | 854 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 855 | subclass ordered_semiring | 
| 28823 | 856 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 857 | fix a b c :: 'a | 
| 23550 | 858 | assume "a \<le> b" "0 \<le> c" | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 859 | thus "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 23550 | 860 | thus "a * c \<le> b * c" by (simp only: mult_commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 861 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 862 | |
| 25267 | 863 | end | 
| 864 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 865 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 866 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 867 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 868 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 869 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 870 | subclass ordered_cancel_semiring .. | 
| 25267 | 871 | |
| 872 | end | |
| 873 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 874 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 875 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 876 | begin | 
| 877 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 878 | subclass linordered_semiring_strict | 
| 28823 | 879 | proof | 
| 23550 | 880 | fix a b c :: 'a | 
| 881 | assume "a < b" "0 < c" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 882 | thus "c * a < c * b" by (rule comm_mult_strict_left_mono) | 
| 23550 | 883 | thus "a * c < b * c" by (simp only: mult_commute) | 
| 884 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 885 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 886 | subclass ordered_cancel_comm_semiring | 
| 28823 | 887 | proof | 
| 23550 | 888 | fix a b c :: 'a | 
| 889 | assume "a \<le> b" "0 \<le> c" | |
| 890 | thus "c * a \<le> c * b" | |
| 25186 | 891 | unfolding le_less | 
| 26193 | 892 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 893 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 894 | |
| 25267 | 895 | end | 
| 25230 | 896 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 897 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 898 | begin | 
| 25230 | 899 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 900 | subclass ordered_ab_group_add .. | 
| 14270 | 901 | |
| 25230 | 902 | lemma less_add_iff1: | 
| 903 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 904 | by (simp add: algebra_simps) | 
| 25230 | 905 | |
| 906 | lemma less_add_iff2: | |
| 907 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 908 | by (simp add: algebra_simps) | 
| 25230 | 909 | |
| 910 | lemma le_add_iff1: | |
| 911 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 912 | by (simp add: algebra_simps) | 
| 25230 | 913 | |
| 914 | lemma le_add_iff2: | |
| 915 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 916 | by (simp add: algebra_simps) | 
| 25230 | 917 | |
| 918 | lemma mult_left_mono_neg: | |
| 919 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 920 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 921 | apply simp_all | 
| 25230 | 922 | done | 
| 923 | ||
| 924 | lemma mult_right_mono_neg: | |
| 925 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 926 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 927 | apply simp_all | 
| 25230 | 928 | done | 
| 929 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 930 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 931 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 932 | |
| 933 | lemma split_mult_pos_le: | |
| 934 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 29667 | 935 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 25186 | 936 | |
| 937 | end | |
| 14270 | 938 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 939 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 940 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 941 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 942 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 943 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 944 | subclass ordered_ab_group_add_abs | 
| 28823 | 945 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 946 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 947 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 35216 | 948 | by (auto simp add: abs_if not_less) | 
| 949 | (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric], | |
| 36977 
71c8973a604b
declare add_nonneg_nonneg [simp]; remove now-redundant lemmas realpow_two_le_order(2)
 huffman parents: 
36970diff
changeset | 950 | auto intro!: less_imp_le add_neg_neg) | 
| 35216 | 951 | qed (auto simp add: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 952 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 953 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 954 | using linear [of 0 a] | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 955 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 956 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 957 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 958 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 959 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 960 | end | 
| 23521 | 961 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 962 | (* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 963 | Basically, linordered_ring + no_zero_divisors = linordered_ring_strict. | 
| 25230 | 964 | *) | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 965 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 966 | + ordered_ab_group_add + abs_if | 
| 25230 | 967 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 968 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 969 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 970 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 971 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 972 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 973 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 974 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 975 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 976 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 977 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 978 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 979 | |
| 25917 | 980 | subclass ring_no_zero_divisors | 
| 28823 | 981 | proof | 
| 25917 | 982 | fix a b | 
| 983 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 984 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 985 | have "a * b < 0 \<or> 0 < a * b" | |
| 986 | proof (cases "a < 0") | |
| 987 | case True note A' = this | |
| 988 | show ?thesis proof (cases "b < 0") | |
| 989 | case True with A' | |
| 990 | show ?thesis by (auto dest: mult_neg_neg) | |
| 991 | next | |
| 992 | case False with B have "0 < b" by auto | |
| 993 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 994 | qed | |
| 995 | next | |
| 996 | case False with A have A': "0 < a" by auto | |
| 997 | show ?thesis proof (cases "b < 0") | |
| 998 | case True with A' | |
| 999 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 1000 | next | |
| 1001 | case False with B have "0 < b" by auto | |
| 1002 | with A' show ?thesis by (auto dest: mult_pos_pos) | |
| 1003 | qed | |
| 1004 | qed | |
| 1005 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 1006 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1007 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1008 | lemma zero_less_mult_iff: | 
| 25917 | 1009 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 1010 | apply (auto simp add: mult_pos_pos mult_neg_neg) | |
| 1011 | apply (simp_all add: not_less le_less) | |
| 1012 | apply (erule disjE) apply assumption defer | |
| 1013 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 1014 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 1015 | apply (erule disjE) apply assumption apply (drule sym) apply simp | |
| 1016 | apply (drule sym) apply simp | |
| 1017 | apply (blast dest: zero_less_mult_pos) | |
| 25230 | 1018 | apply (blast dest: zero_less_mult_pos2) | 
| 1019 | done | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 1020 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1021 | lemma zero_le_mult_iff: | 
| 25917 | 1022 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 29667 | 1023 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1024 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1025 | lemma mult_less_0_iff: | 
| 25917 | 1026 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 1027 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 1028 | apply force | |
| 25917 | 1029 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1030 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1031 | lemma mult_le_0_iff: | 
| 25917 | 1032 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 1033 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 35216 | 1034 | apply force | 
| 25917 | 1035 | done | 
| 1036 | ||
| 26193 | 1037 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 1038 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 1039 | ||
| 1040 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 1041 | an assumption, but effectively four when the comparison is a goal.*} | |
| 1042 | ||
| 1043 | lemma mult_less_cancel_right_disj: | |
| 1044 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 1045 | apply (cases "c = 0") | |
| 1046 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 1047 | mult_strict_right_mono_neg) | |
| 1048 | apply (auto simp add: not_less | |
| 1049 | not_le [symmetric, of "a*c"] | |
| 1050 | not_le [symmetric, of a]) | |
| 1051 | apply (erule_tac [!] notE) | |
| 1052 | apply (auto simp add: less_imp_le mult_right_mono | |
| 1053 | mult_right_mono_neg) | |
| 1054 | done | |
| 1055 | ||
| 1056 | lemma mult_less_cancel_left_disj: | |
| 1057 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 1058 | apply (cases "c = 0") | |
| 1059 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 1060 | mult_strict_left_mono_neg) | |
| 1061 | apply (auto simp add: not_less | |
| 1062 | not_le [symmetric, of "c*a"] | |
| 1063 | not_le [symmetric, of a]) | |
| 1064 | apply (erule_tac [!] notE) | |
| 1065 | apply (auto simp add: less_imp_le mult_left_mono | |
| 1066 | mult_left_mono_neg) | |
| 1067 | done | |
| 1068 | ||
| 1069 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 1070 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 1071 | ||
| 1072 | lemma mult_less_cancel_right: | |
| 1073 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 1074 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 1075 | ||
| 1076 | lemma mult_less_cancel_left: | |
| 1077 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 1078 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 1079 | ||
| 1080 | lemma mult_le_cancel_right: | |
| 1081 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 1082 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 1083 | |
| 1084 | lemma mult_le_cancel_left: | |
| 1085 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 1086 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 1087 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1088 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1089 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1090 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1091 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1092 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1093 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1094 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1095 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1096 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1097 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1098 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1099 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1100 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1101 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1102 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1103 | |
| 25917 | 1104 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1105 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1106 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1107 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1108 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1109 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1110 | mult_neg_pos mult_neg_neg | 
| 25230 | 1111 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1112 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 1113 | begin | 
| 25230 | 1114 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1115 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1116 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 1117 | |
| 25267 | 1118 | end | 
| 25230 | 1119 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1120 | class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1121 | (*previously linordered_semiring*) | 
| 25230 | 1122 | assumes zero_less_one [simp]: "0 < 1" | 
| 1123 | begin | |
| 1124 | ||
| 1125 | lemma pos_add_strict: | |
| 1126 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1127 | using add_strict_mono [of 0 a b c] by simp | 
| 25230 | 1128 | |
| 26193 | 1129 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 29667 | 1130 | by (rule zero_less_one [THEN less_imp_le]) | 
| 26193 | 1131 | |
| 1132 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 29667 | 1133 | by (simp add: not_le) | 
| 26193 | 1134 | |
| 1135 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 29667 | 1136 | by (simp add: not_less) | 
| 26193 | 1137 | |
| 1138 | lemma less_1_mult: | |
| 1139 | assumes "1 < m" and "1 < n" | |
| 1140 | shows "1 < m * n" | |
| 1141 | using assms mult_strict_mono [of 1 m 1 n] | |
| 1142 | by (simp add: less_trans [OF zero_less_one]) | |
| 1143 | ||
| 25230 | 1144 | end | 
| 1145 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1146 | class linordered_idom = comm_ring_1 + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1147 | linordered_comm_semiring_strict + ordered_ab_group_add + | 
| 25230 | 1148 | abs_if + sgn_if | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1149 | (*previously linordered_ring*) | 
| 25917 | 1150 | begin | 
| 1151 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1152 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1153 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1154 | subclass ordered_comm_ring .. | 
| 27516 | 1155 | subclass idom .. | 
| 25917 | 1156 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1157 | subclass linordered_semidom | 
| 28823 | 1158 | proof | 
| 26193 | 1159 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 1160 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 1161 | qed | 
| 1162 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1163 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 1164 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 1165 | using assms by (rule neqE) | |
| 1166 | ||
| 26274 | 1167 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 1168 | ||
| 1169 | lemma mult_le_cancel_right1: | |
| 1170 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1171 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 1172 | |
| 1173 | lemma mult_le_cancel_right2: | |
| 1174 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1175 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 1176 | |
| 1177 | lemma mult_le_cancel_left1: | |
| 1178 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 1179 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 1180 | |
| 1181 | lemma mult_le_cancel_left2: | |
| 1182 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1183 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 1184 | |
| 1185 | lemma mult_less_cancel_right1: | |
| 1186 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1187 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 1188 | |
| 1189 | lemma mult_less_cancel_right2: | |
| 1190 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1191 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 1192 | |
| 1193 | lemma mult_less_cancel_left1: | |
| 1194 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1195 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 1196 | |
| 1197 | lemma mult_less_cancel_left2: | |
| 1198 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1199 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 1200 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1201 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1202 | "sgn (sgn a) = sgn a" | 
| 29700 | 1203 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1204 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1205 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1206 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1207 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1208 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1209 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1210 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1211 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1212 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1213 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1214 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1215 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1216 | |
| 29940 | 1217 | lemma sgn_pos [simp]: | 
| 1218 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1219 | unfolding sgn_1_pos . | |
| 1220 | ||
| 1221 | lemma sgn_neg [simp]: | |
| 1222 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1223 | unfolding sgn_1_neg . | |
| 1224 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1225 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1226 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1227 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1228 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1229 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 29700 | 1230 | unfolding sgn_if abs_if by auto | 
| 1231 | ||
| 29940 | 1232 | lemma sgn_greater [simp]: | 
| 1233 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1234 | unfolding sgn_if by auto | |
| 1235 | ||
| 1236 | lemma sgn_less [simp]: | |
| 1237 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1238 | unfolding sgn_if by auto | |
| 1239 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1240 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 1241 | by (simp add: abs_if) | 
| 1242 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1243 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 1244 | by (simp add: abs_if) | 
| 29653 | 1245 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1246 | lemma dvd_if_abs_eq: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1247 | "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1248 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1249 | |
| 25917 | 1250 | end | 
| 25230 | 1251 | |
| 26274 | 1252 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1253 | |
| 35828 
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
 blanchet parents: 
35631diff
changeset | 1254 | lemmas mult_compare_simps[no_atp] = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1255 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1256 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1257 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1258 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1259 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1260 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1261 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1262 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1263 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1264 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1265 | text {* Reasoning about inequalities with division *}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1266 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1267 | context linordered_semidom | 
| 25193 | 1268 | begin | 
| 1269 | ||
| 1270 | lemma less_add_one: "a < a + 1" | |
| 14293 | 1271 | proof - | 
| 25193 | 1272 | have "a + 0 < a + 1" | 
| 23482 | 1273 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1274 | thus ?thesis by simp | 
| 1275 | qed | |
| 1276 | ||
| 25193 | 1277 | lemma zero_less_two: "0 < 1 + 1" | 
| 29667 | 1278 | by (blast intro: less_trans zero_less_one less_add_one) | 
| 25193 | 1279 | |
| 1280 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1281 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1282 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1283 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1284 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1285 | lemma mult_right_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1286 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1287 | by (auto simp add: mult_le_cancel_left2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1288 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1289 | lemma mult_left_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1290 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1291 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1292 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1293 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1294 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1295 | text {* Absolute Value *}
 | 
| 14293 | 1296 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1297 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1298 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1299 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1300 | lemma mult_sgn_abs: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1301 | "sgn x * \<bar>x\<bar> = x" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1302 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1303 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1304 | lemma abs_one [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1305 | "\<bar>1\<bar> = 1" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1306 | by (simp add: abs_if zero_less_one [THEN less_not_sym]) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1307 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1308 | end | 
| 24491 | 1309 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1310 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1311 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1312 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1313 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1314 | context linordered_idom | 
| 30961 | 1315 | begin | 
| 1316 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1317 | subclass ordered_ring_abs proof | 
| 35216 | 1318 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 1319 | |
| 1320 | lemma abs_mult: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1321 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 30961 | 1322 | by (rule abs_eq_mult) auto | 
| 1323 | ||
| 1324 | lemma abs_mult_self: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1325 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 30961 | 1326 | by (simp add: abs_if) | 
| 1327 | ||
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1328 | lemma abs_mult_less: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1329 | "\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1330 | proof - | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1331 | assume ac: "\<bar>a\<bar> < c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1332 | hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1333 | assume "\<bar>b\<bar> < d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1334 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1335 | qed | 
| 14293 | 1336 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1337 | lemma less_minus_self_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1338 | "a < - a \<longleftrightarrow> a < 0" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1339 | by (simp only: less_le less_eq_neg_nonpos equal_neg_zero) | 
| 14738 | 1340 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1341 | lemma abs_less_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1342 | "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1343 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 1344 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1345 | lemma abs_mult_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1346 | "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1347 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1348 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1349 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1350 | |
| 33364 | 1351 | code_modulename SML | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1352 | Rings Arith | 
| 33364 | 1353 | |
| 1354 | code_modulename OCaml | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1355 | Rings Arith | 
| 33364 | 1356 | |
| 1357 | code_modulename Haskell | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1358 | Rings Arith | 
| 33364 | 1359 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1360 | end |