author | huffman |
Thu, 22 Sep 2011 12:55:19 -0700 | |
changeset 45049 | 13efaee97111 |
parent 41764 | 5268aef2fe83 |
child 45834 | 9c232d370244 |
permissions | -rw-r--r-- |
22803 | 1 |
(* Title: HOL/Library/While_Combinator.thy |
10251 | 2 |
Author: Tobias Nipkow |
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
3 |
Author: Alexander Krauss |
10251 | 4 |
Copyright 2000 TU Muenchen |
5 |
*) |
|
6 |
||
14706 | 7 |
header {* A general ``while'' combinator *} |
10251 | 8 |
|
15131 | 9 |
theory While_Combinator |
30738 | 10 |
imports Main |
15131 | 11 |
begin |
10251 | 12 |
|
37760 | 13 |
subsection {* Partial version *} |
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
14 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
15 |
definition while_option :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a option" where |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
16 |
"while_option b c s = (if (\<exists>k. ~ b ((c ^^ k) s)) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
17 |
then Some ((c ^^ (LEAST k. ~ b ((c ^^ k) s))) s) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
18 |
else None)" |
10251 | 19 |
|
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
20 |
theorem while_option_unfold[code]: |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
21 |
"while_option b c s = (if b s then while_option b c (c s) else Some s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
22 |
proof cases |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
23 |
assume "b s" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
24 |
show ?thesis |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
25 |
proof (cases "\<exists>k. ~ b ((c ^^ k) s)") |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
26 |
case True |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
27 |
then obtain k where 1: "~ b ((c ^^ k) s)" .. |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
28 |
with `b s` obtain l where "k = Suc l" by (cases k) auto |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
29 |
with 1 have "~ b ((c ^^ l) (c s))" by (auto simp: funpow_swap1) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
30 |
then have 2: "\<exists>l. ~ b ((c ^^ l) (c s))" .. |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
31 |
from 1 |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
32 |
have "(LEAST k. ~ b ((c ^^ k) s)) = Suc (LEAST l. ~ b ((c ^^ Suc l) s))" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
33 |
by (rule Least_Suc) (simp add: `b s`) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
34 |
also have "... = Suc (LEAST l. ~ b ((c ^^ l) (c s)))" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
35 |
by (simp add: funpow_swap1) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
36 |
finally |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
37 |
show ?thesis |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
38 |
using True 2 `b s` by (simp add: funpow_swap1 while_option_def) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
39 |
next |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
40 |
case False |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
41 |
then have "~ (\<exists>l. ~ b ((c ^^ Suc l) s))" by blast |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
42 |
then have "~ (\<exists>l. ~ b ((c ^^ l) (c s)))" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
43 |
by (simp add: funpow_swap1) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
44 |
with False `b s` show ?thesis by (simp add: while_option_def) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
45 |
qed |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
46 |
next |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
47 |
assume [simp]: "~ b s" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
48 |
have least: "(LEAST k. ~ b ((c ^^ k) s)) = 0" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
49 |
by (rule Least_equality) auto |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
50 |
moreover |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
51 |
have "\<exists>k. ~ b ((c ^^ k) s)" by (rule exI[of _ "0::nat"]) auto |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
52 |
ultimately show ?thesis unfolding while_option_def by auto |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
53 |
qed |
10251 | 54 |
|
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
55 |
lemma while_option_stop: |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
56 |
assumes "while_option b c s = Some t" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
57 |
shows "~ b t" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
58 |
proof - |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
59 |
from assms have ex: "\<exists>k. ~ b ((c ^^ k) s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
60 |
and t: "t = (c ^^ (LEAST k. ~ b ((c ^^ k) s))) s" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
61 |
by (auto simp: while_option_def split: if_splits) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
62 |
from LeastI_ex[OF ex] |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
63 |
show "~ b t" unfolding t . |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
64 |
qed |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
65 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
66 |
theorem while_option_rule: |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
67 |
assumes step: "!!s. P s ==> b s ==> P (c s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
68 |
and result: "while_option b c s = Some t" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
69 |
and init: "P s" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
70 |
shows "P t" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
71 |
proof - |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
72 |
def k == "LEAST k. ~ b ((c ^^ k) s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
73 |
from assms have t: "t = (c ^^ k) s" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
74 |
by (simp add: while_option_def k_def split: if_splits) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
75 |
have 1: "ALL i<k. b ((c ^^ i) s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
76 |
by (auto simp: k_def dest: not_less_Least) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
77 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
78 |
{ fix i assume "i <= k" then have "P ((c ^^ i) s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
79 |
by (induct i) (auto simp: init step 1) } |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
80 |
thus "P t" by (auto simp: t) |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
81 |
qed |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
82 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
83 |
|
37760 | 84 |
subsection {* Total version *} |
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
85 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
86 |
definition while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
87 |
where "while b c s = the (while_option b c s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
88 |
|
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
89 |
lemma while_unfold: |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
90 |
"while b c s = (if b s then while b c (c s) else s)" |
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
91 |
unfolding while_def by (subst while_option_unfold) simp |
10984 | 92 |
|
18372 | 93 |
lemma def_while_unfold: |
94 |
assumes fdef: "f == while test do" |
|
95 |
shows "f x = (if test x then f(do x) else x)" |
|
37757
dc78d2d9e90a
added "while_option", which needs no well-foundedness; defined "while" in terms of "while_option"
krauss
parents:
30738
diff
changeset
|
96 |
unfolding fdef by (fact while_unfold) |
14300 | 97 |
|
98 |
||
10251 | 99 |
text {* |
100 |
The proof rule for @{term while}, where @{term P} is the invariant. |
|
101 |
*} |
|
102 |
||
18372 | 103 |
theorem while_rule_lemma: |
104 |
assumes invariant: "!!s. P s ==> b s ==> P (c s)" |
|
105 |
and terminate: "!!s. P s ==> \<not> b s ==> Q s" |
|
106 |
and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}" |
|
107 |
shows "P s \<Longrightarrow> Q (while b c s)" |
|
19736 | 108 |
using wf |
109 |
apply (induct s) |
|
18372 | 110 |
apply simp |
111 |
apply (subst while_unfold) |
|
112 |
apply (simp add: invariant terminate) |
|
113 |
done |
|
10251 | 114 |
|
10653 | 115 |
theorem while_rule: |
10984 | 116 |
"[| P s; |
117 |
!!s. [| P s; b s |] ==> P (c s); |
|
118 |
!!s. [| P s; \<not> b s |] ==> Q s; |
|
10997 | 119 |
wf r; |
10984 | 120 |
!!s. [| P s; b s |] ==> (c s, s) \<in> r |] ==> |
121 |
Q (while b c s)" |
|
19736 | 122 |
apply (rule while_rule_lemma) |
123 |
prefer 4 apply assumption |
|
124 |
apply blast |
|
125 |
apply blast |
|
126 |
apply (erule wf_subset) |
|
127 |
apply blast |
|
128 |
done |
|
10653 | 129 |
|
41720 | 130 |
text{* Proving termination: *} |
131 |
||
132 |
theorem wf_while_option_Some: |
|
41764 | 133 |
assumes "wf {(t, s). (P s \<and> b s) \<and> t = c s}" |
134 |
and "!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s)" and "P s" |
|
41720 | 135 |
shows "EX t. while_option b c s = Some t" |
41764 | 136 |
using assms(1,3) |
41720 | 137 |
apply (induct s) |
41764 | 138 |
using assms(2) |
41720 | 139 |
apply (subst while_option_unfold) |
140 |
apply simp |
|
141 |
done |
|
142 |
||
143 |
theorem measure_while_option_Some: fixes f :: "'s \<Rightarrow> nat" |
|
41764 | 144 |
shows "(!!s. P s \<Longrightarrow> b s \<Longrightarrow> P(c s) \<and> f(c s) < f s) |
145 |
\<Longrightarrow> P s \<Longrightarrow> EX t. while_option b c s = Some t" |
|
146 |
by(blast intro: wf_while_option_Some[OF wf_if_measure, of P b f]) |
|
10251 | 147 |
|
148 |
end |