10251
|
1 |
(* Title: HOL/Library/While.thy
|
|
2 |
ID: $Id$
|
|
3 |
Author: Tobias Nipkow
|
|
4 |
Copyright 2000 TU Muenchen
|
|
5 |
*)
|
|
6 |
|
|
7 |
header {*
|
|
8 |
\title{A general ``while'' combinator}
|
|
9 |
\author{Tobias Nipkow}
|
|
10 |
*}
|
|
11 |
|
|
12 |
theory While_Combinator = Main:
|
|
13 |
|
|
14 |
text {*
|
|
15 |
We define a while-combinator @{term while} and prove: (a) an
|
|
16 |
unrestricted unfolding law (even if while diverges!) (I got this
|
|
17 |
idea from Wolfgang Goerigk), and (b) the invariant rule for reasoning
|
|
18 |
about @{term while}.
|
|
19 |
*}
|
|
20 |
|
|
21 |
consts while_aux :: "('a => bool) \<times> ('a => 'a) \<times> 'a => 'a"
|
|
22 |
recdef while_aux
|
|
23 |
"same_fst (\<lambda>b. True) (\<lambda>b. same_fst (\<lambda>c. True) (\<lambda>c.
|
|
24 |
{(t, s). b s \<and> c s = t \<and>
|
|
25 |
\<not> (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))}))"
|
|
26 |
"while_aux (b, c, s) =
|
|
27 |
(if (\<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1)))
|
|
28 |
then arbitrary
|
|
29 |
else if b s then while_aux (b, c, c s)
|
|
30 |
else s)"
|
|
31 |
|
10774
|
32 |
recdef_tc while_aux_tc: while_aux
|
|
33 |
apply (rule wf_same_fst)
|
|
34 |
apply (rule wf_same_fst)
|
|
35 |
apply (simp add: wf_iff_no_infinite_down_chain)
|
|
36 |
apply blast
|
|
37 |
done
|
|
38 |
|
10251
|
39 |
constdefs
|
|
40 |
while :: "('a => bool) => ('a => 'a) => 'a => 'a"
|
|
41 |
"while b c s == while_aux (b, c, s)"
|
|
42 |
|
|
43 |
lemma while_aux_unfold:
|
|
44 |
"while_aux (b, c, s) =
|
|
45 |
(if \<exists>f. f 0 = s \<and> (\<forall>i. b (f i) \<and> c (f i) = f (i + 1))
|
|
46 |
then arbitrary
|
|
47 |
else if b s then while_aux (b, c, c s)
|
|
48 |
else s)"
|
|
49 |
apply (rule while_aux_tc [THEN while_aux.simps [THEN trans]])
|
|
50 |
apply (simp add: same_fst_def)
|
|
51 |
apply (rule refl)
|
|
52 |
done
|
|
53 |
|
|
54 |
text {*
|
|
55 |
The recursion equation for @{term while}: directly executable!
|
|
56 |
*}
|
|
57 |
|
|
58 |
theorem while_unfold:
|
|
59 |
"while b c s = (if b s then while b c (c s) else s)"
|
|
60 |
apply (unfold while_def)
|
|
61 |
apply (rule while_aux_unfold [THEN trans])
|
|
62 |
apply auto
|
|
63 |
apply (subst while_aux_unfold)
|
|
64 |
apply simp
|
|
65 |
apply clarify
|
|
66 |
apply (erule_tac x = "\<lambda>i. f (Suc i)" in allE)
|
|
67 |
apply blast
|
|
68 |
done
|
|
69 |
|
10984
|
70 |
hide const while_aux
|
|
71 |
|
10251
|
72 |
text {*
|
|
73 |
The proof rule for @{term while}, where @{term P} is the invariant.
|
|
74 |
*}
|
|
75 |
|
10653
|
76 |
theorem while_rule_lemma[rule_format]:
|
10984
|
77 |
"[| !!s. P s ==> b s ==> P (c s);
|
|
78 |
!!s. P s ==> \<not> b s ==> Q s;
|
|
79 |
wf {(t, s). P s \<and> b s \<and> t = c s} |] ==>
|
10251
|
80 |
P s --> Q (while b c s)"
|
|
81 |
proof -
|
|
82 |
case antecedent
|
|
83 |
assume wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
|
|
84 |
show ?thesis
|
|
85 |
apply (induct s rule: wf [THEN wf_induct])
|
|
86 |
apply simp
|
|
87 |
apply clarify
|
|
88 |
apply (subst while_unfold)
|
|
89 |
apply (simp add: antecedent)
|
|
90 |
done
|
|
91 |
qed
|
|
92 |
|
10653
|
93 |
theorem while_rule:
|
10984
|
94 |
"[| P s;
|
|
95 |
!!s. [| P s; b s |] ==> P (c s);
|
|
96 |
!!s. [| P s; \<not> b s |] ==> Q s;
|
|
97 |
wf r;
|
|
98 |
!!s. [| P s; b s |] ==> (c s, s) \<in> r |] ==>
|
|
99 |
Q (while b c s)"
|
10653
|
100 |
apply (rule while_rule_lemma)
|
|
101 |
prefer 4 apply assumption
|
|
102 |
apply blast
|
|
103 |
apply blast
|
|
104 |
apply(erule wf_subset)
|
|
105 |
apply blast
|
|
106 |
done
|
|
107 |
|
10984
|
108 |
text {*
|
|
109 |
\medskip An application: computation of the @{term lfp} on finite
|
|
110 |
sets via iteration.
|
|
111 |
*}
|
|
112 |
|
|
113 |
theorem lfp_conv_while:
|
|
114 |
"[| mono f; finite U; f U = U |] ==>
|
|
115 |
lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
|
|
116 |
apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and
|
|
117 |
r = "((Pow U <*> UNIV) <*> (Pow U <*> UNIV)) \<inter>
|
|
118 |
inv_image finite_psubset (op - U o fst)" in while_rule)
|
|
119 |
apply (subst lfp_unfold)
|
|
120 |
apply assumption
|
|
121 |
apply (simp add: monoD)
|
|
122 |
apply (subst lfp_unfold)
|
|
123 |
apply assumption
|
|
124 |
apply clarsimp
|
|
125 |
apply (blast dest: monoD)
|
|
126 |
apply (fastsimp intro!: lfp_lowerbound)
|
|
127 |
apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])
|
|
128 |
apply (clarsimp simp add: inv_image_def finite_psubset_def order_less_le)
|
|
129 |
apply (blast intro!: finite_Diff dest: monoD)
|
|
130 |
done
|
|
131 |
|
|
132 |
|
|
133 |
(*
|
|
134 |
text {*
|
|
135 |
An example of using the @{term while} combinator.
|
|
136 |
*}
|
|
137 |
|
|
138 |
lemma aux: "{f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
|
|
139 |
apply blast
|
|
140 |
done
|
|
141 |
|
|
142 |
theorem "P (lfp (\<lambda>N::int set. {#0} \<union> {(n + #2) mod #6 | n. n \<in> N})) =
|
|
143 |
P {#0, #4, #2}"
|
|
144 |
apply (subst lfp_conv_while [where ?U = "{#0, #1, #2, #3, #4, #5}"])
|
|
145 |
apply (rule monoI)
|
|
146 |
apply blast
|
|
147 |
apply simp
|
|
148 |
apply (simp add: aux set_eq_subset)
|
|
149 |
txt {* The fixpoint computation is performed purely by rewriting: *}
|
|
150 |
apply (simp add: while_unfold aux set_eq_subset del: subset_empty)
|
|
151 |
done
|
|
152 |
*)
|
10251
|
153 |
|
|
154 |
end
|