47613
|
1 |
(* Author: Tobias Nipkow *)
|
|
2 |
|
|
3 |
theory Abs_Int1
|
|
4 |
imports Abs_State
|
|
5 |
begin
|
|
6 |
|
|
7 |
lemma le_iff_le_annos_zip: "C1 \<sqsubseteq> C2 \<longleftrightarrow>
|
|
8 |
(\<forall> (a1,a2) \<in> set(zip (annos C1) (annos C2)). a1 \<sqsubseteq> a2) \<and> strip C1 = strip C2"
|
|
9 |
by(induct C1 C2 rule: le_acom.induct) (auto simp: size_annos_same2)
|
|
10 |
|
|
11 |
lemma le_iff_le_annos: "C1 \<sqsubseteq> C2 \<longleftrightarrow>
|
|
12 |
strip C1 = strip C2 \<and> (\<forall> i<size(annos C1). annos C1 ! i \<sqsubseteq> annos C2 ! i)"
|
|
13 |
by(auto simp add: le_iff_le_annos_zip set_zip) (metis size_annos_same2)
|
|
14 |
|
|
15 |
|
|
16 |
lemma mono_fun_wt[simp]: "wt F X \<Longrightarrow> F \<sqsubseteq> G \<Longrightarrow> x : X \<Longrightarrow> fun F x \<sqsubseteq> fun G x"
|
|
17 |
by(simp add: mono_fun wt_st_def)
|
|
18 |
|
|
19 |
lemma wt_bot[simp]: "wt (bot c) (vars c)"
|
|
20 |
by(simp add: wt_acom_def bot_def)
|
|
21 |
|
|
22 |
lemma wt_acom_simps[simp]: "wt (SKIP {P}) X \<longleftrightarrow> wt P X"
|
|
23 |
"wt (x ::= e {P}) X \<longleftrightarrow> x : X \<and> vars e \<subseteq> X \<and> wt P X"
|
|
24 |
"wt (C1;C2) X \<longleftrightarrow> wt C1 X \<and> wt C2 X"
|
|
25 |
"wt (IF b THEN C1 ELSE C2 {P}) X \<longleftrightarrow>
|
|
26 |
vars b \<subseteq> X \<and> wt C1 X \<and> wt C2 X \<and> wt P X"
|
|
27 |
"wt ({I} WHILE b DO C {P}) X \<longleftrightarrow>
|
|
28 |
wt I X \<and> vars b \<subseteq> X \<and> wt C X \<and> wt P X"
|
|
29 |
by(auto simp add: wt_acom_def)
|
|
30 |
|
|
31 |
lemma wt_post[simp]: "wt c X \<Longrightarrow> wt (post c) X"
|
|
32 |
by(induction c)(auto simp: wt_acom_def)
|
|
33 |
|
|
34 |
lemma lpfp_inv:
|
|
35 |
assumes "lpfp f x0 = Some x" and "\<And>x. P x \<Longrightarrow> P(f x)" and "P(bot x0)"
|
|
36 |
shows "P x"
|
|
37 |
using assms unfolding lpfp_def pfp_def
|
|
38 |
by (metis (lifting) while_option_rule)
|
|
39 |
|
|
40 |
|
|
41 |
subsection "Computable Abstract Interpretation"
|
|
42 |
|
|
43 |
text{* Abstract interpretation over type @{text st} instead of
|
|
44 |
functions. *}
|
|
45 |
|
|
46 |
context Gamma
|
|
47 |
begin
|
|
48 |
|
|
49 |
fun aval' :: "aexp \<Rightarrow> 'av st \<Rightarrow> 'av" where
|
|
50 |
"aval' (N n) S = num' n" |
|
|
51 |
"aval' (V x) S = fun S x" |
|
|
52 |
"aval' (Plus a1 a2) S = plus' (aval' a1 S) (aval' a2 S)"
|
|
53 |
|
|
54 |
lemma aval'_sound: "s : \<gamma>\<^isub>f S \<Longrightarrow> vars a \<subseteq> dom S \<Longrightarrow> aval a s : \<gamma>(aval' a S)"
|
|
55 |
by (induction a) (auto simp: gamma_num' gamma_plus' \<gamma>_st_def)
|
|
56 |
|
|
57 |
end
|
|
58 |
|
|
59 |
text{* The for-clause (here and elsewhere) only serves the purpose of fixing
|
|
60 |
the name of the type parameter @{typ 'av} which would otherwise be renamed to
|
|
61 |
@{typ 'a}. *}
|
|
62 |
|
|
63 |
locale Abs_Int = Gamma where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set"
|
|
64 |
begin
|
|
65 |
|
|
66 |
fun step' :: "'av st option \<Rightarrow> 'av st option acom \<Rightarrow> 'av st option acom" where
|
|
67 |
"step' S (SKIP {P}) = (SKIP {S})" |
|
|
68 |
"step' S (x ::= e {P}) =
|
|
69 |
x ::= e {case S of None \<Rightarrow> None | Some S \<Rightarrow> Some(update S x (aval' e S))}" |
|
|
70 |
"step' S (C1; C2) = step' S C1; step' (post C1) C2" |
|
|
71 |
"step' S (IF b THEN C1 ELSE C2 {P}) =
|
|
72 |
(IF b THEN step' S C1 ELSE step' S C2 {post C1 \<squnion> post C2})" |
|
|
73 |
"step' S ({Inv} WHILE b DO C {P}) =
|
|
74 |
{S \<squnion> post C} WHILE b DO step' Inv C {Inv}"
|
|
75 |
|
|
76 |
definition AI :: "com \<Rightarrow> 'av st option acom option" where
|
|
77 |
"AI c = lpfp (step' (top c)) c"
|
|
78 |
|
|
79 |
|
|
80 |
lemma strip_step'[simp]: "strip(step' S C) = strip C"
|
|
81 |
by(induct C arbitrary: S) (simp_all add: Let_def)
|
|
82 |
|
|
83 |
|
|
84 |
text{* Soundness: *}
|
|
85 |
|
|
86 |
lemma in_gamma_update:
|
|
87 |
"\<lbrakk> s : \<gamma>\<^isub>f S; i : \<gamma> a \<rbrakk> \<Longrightarrow> s(x := i) : \<gamma>\<^isub>f(update S x a)"
|
|
88 |
by(simp add: \<gamma>_st_def)
|
|
89 |
|
|
90 |
theorem step_preserves_le:
|
|
91 |
"\<lbrakk> S \<subseteq> \<gamma>\<^isub>o S'; C \<le> \<gamma>\<^isub>c C'; wt C' X; wt S' X \<rbrakk> \<Longrightarrow> step S C \<le> \<gamma>\<^isub>c (step' S' C')"
|
|
92 |
proof(induction C arbitrary: C' S S')
|
|
93 |
case SKIP thus ?case by(auto simp:SKIP_le map_acom_SKIP)
|
|
94 |
next
|
|
95 |
case Assign thus ?case
|
|
96 |
by(fastforce simp: Assign_le map_acom_Assign wt_st_def
|
|
97 |
intro: aval'_sound in_gamma_update split: option.splits)
|
|
98 |
next
|
47818
|
99 |
case Seq thus ?case apply (auto simp: Seq_le map_acom_Seq)
|
47613
|
100 |
by (metis le_post post_map_acom wt_post)
|
|
101 |
next
|
|
102 |
case (If b C1 C2 P)
|
|
103 |
then obtain C1' C2' P' where
|
|
104 |
"C' = IF b THEN C1' ELSE C2' {P'}"
|
|
105 |
"P \<subseteq> \<gamma>\<^isub>o P'" "C1 \<le> \<gamma>\<^isub>c C1'" "C2 \<le> \<gamma>\<^isub>c C2'"
|
|
106 |
by (fastforce simp: If_le map_acom_If)
|
|
107 |
moreover from this(1) `wt C' X` have wt: "wt C1' X" "wt C2' X"
|
|
108 |
by simp_all
|
|
109 |
moreover have "post C1 \<subseteq> \<gamma>\<^isub>o(post C1' \<squnion> post C2')"
|
|
110 |
by (metis (no_types) `C1 \<le> \<gamma>\<^isub>c C1'` join_ge1 le_post mono_gamma_o order_trans post_map_acom wt wt_post)
|
|
111 |
moreover have "post C2 \<subseteq> \<gamma>\<^isub>o(post C1' \<squnion> post C2')"
|
|
112 |
by (metis (no_types) `C2 \<le> \<gamma>\<^isub>c C2'` join_ge2 le_post mono_gamma_o order_trans post_map_acom wt wt_post)
|
|
113 |
ultimately show ?case using `S \<subseteq> \<gamma>\<^isub>o S'` `wt S' X`
|
|
114 |
by (simp add: If.IH subset_iff)
|
|
115 |
next
|
|
116 |
case (While I b C1 P)
|
|
117 |
then obtain C1' I' P' where
|
|
118 |
"C' = {I'} WHILE b DO C1' {P'}"
|
|
119 |
"I \<subseteq> \<gamma>\<^isub>o I'" "P \<subseteq> \<gamma>\<^isub>o P'" "C1 \<le> \<gamma>\<^isub>c C1'"
|
|
120 |
by (fastforce simp: map_acom_While While_le)
|
|
121 |
moreover from this(1) `wt C' X`
|
|
122 |
have wt: "wt C1' X" "wt I' X" by simp_all
|
|
123 |
moreover note compat = `wt S' X` wt_post[OF wt(1)]
|
|
124 |
moreover have "S \<union> post C1 \<subseteq> \<gamma>\<^isub>o (S' \<squnion> post C1')"
|
|
125 |
using `S \<subseteq> \<gamma>\<^isub>o S'` le_post[OF `C1 \<le> \<gamma>\<^isub>c C1'`, simplified]
|
|
126 |
by (metis (no_types) join_ge1[OF compat] join_ge2[OF compat] le_sup_iff mono_gamma_o order_trans)
|
|
127 |
ultimately show ?case by (simp add: While.IH subset_iff)
|
|
128 |
qed
|
|
129 |
|
|
130 |
lemma wt_step'[simp]:
|
|
131 |
"\<lbrakk> wt C X; wt S X \<rbrakk> \<Longrightarrow> wt (step' S C) X"
|
|
132 |
proof(induction C arbitrary: S)
|
|
133 |
case Assign thus ?case
|
|
134 |
by(auto simp: wt_st_def update_def split: option.splits)
|
|
135 |
qed auto
|
|
136 |
|
|
137 |
theorem AI_sound: "AI c = Some C \<Longrightarrow> CS c \<le> \<gamma>\<^isub>c C"
|
|
138 |
proof(simp add: CS_def AI_def)
|
|
139 |
assume 1: "lpfp (step' (top c)) c = Some C"
|
|
140 |
have "wt C (vars c)"
|
|
141 |
by(rule lpfp_inv[where P = "%C. wt C (vars c)", OF 1 _ wt_bot])
|
|
142 |
(erule wt_step'[OF _ wt_top])
|
|
143 |
have 2: "step' (top c) C \<sqsubseteq> C" by(rule lpfpc_pfp[OF 1])
|
|
144 |
have 3: "strip (\<gamma>\<^isub>c (step' (top c) C)) = c"
|
|
145 |
by(simp add: strip_lpfp[OF _ 1])
|
|
146 |
have "lfp (step UNIV) c \<le> \<gamma>\<^isub>c (step' (top c) C)"
|
|
147 |
proof(rule lfp_lowerbound[simplified,OF 3])
|
|
148 |
show "step UNIV (\<gamma>\<^isub>c (step' (top c) C)) \<le> \<gamma>\<^isub>c (step' (top c) C)"
|
|
149 |
proof(rule step_preserves_le[OF _ _ `wt C (vars c)` wt_top])
|
|
150 |
show "UNIV \<subseteq> \<gamma>\<^isub>o (top c)" by simp
|
|
151 |
show "\<gamma>\<^isub>c (step' (top c) C) \<le> \<gamma>\<^isub>c C" by(rule mono_gamma_c[OF 2])
|
|
152 |
qed
|
|
153 |
qed
|
|
154 |
from this 2 show "lfp (step UNIV) c \<le> \<gamma>\<^isub>c C"
|
|
155 |
by (blast intro: mono_gamma_c order_trans)
|
|
156 |
qed
|
|
157 |
|
|
158 |
end
|
|
159 |
|
|
160 |
|
|
161 |
subsubsection "Monotonicity"
|
|
162 |
|
|
163 |
lemma le_join_disj: "wt y X \<Longrightarrow> wt (z::_::SL_top_wt) X \<Longrightarrow> x \<sqsubseteq> y \<or> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<squnion> z"
|
|
164 |
by (metis join_ge1 join_ge2 preord_class.le_trans)
|
|
165 |
|
|
166 |
locale Abs_Int_mono = Abs_Int +
|
|
167 |
assumes mono_plus': "a1 \<sqsubseteq> b1 \<Longrightarrow> a2 \<sqsubseteq> b2 \<Longrightarrow> plus' a1 a2 \<sqsubseteq> plus' b1 b2"
|
|
168 |
begin
|
|
169 |
|
|
170 |
lemma mono_aval': "S1 \<sqsubseteq> S2 \<Longrightarrow> wt S1 X \<Longrightarrow> vars e \<subseteq> X \<Longrightarrow> aval' e S1 \<sqsubseteq> aval' e S2"
|
|
171 |
by(induction e) (auto simp: le_st_def mono_plus' wt_st_def)
|
|
172 |
|
|
173 |
theorem mono_step': "wt S1 X \<Longrightarrow> wt S2 X \<Longrightarrow> wt C1 X \<Longrightarrow> wt C2 X \<Longrightarrow>
|
|
174 |
S1 \<sqsubseteq> S2 \<Longrightarrow> C1 \<sqsubseteq> C2 \<Longrightarrow> step' S1 C1 \<sqsubseteq> step' S2 C2"
|
|
175 |
apply(induction C1 C2 arbitrary: S1 S2 rule: le_acom.induct)
|
|
176 |
apply (auto simp: Let_def mono_aval' mono_post
|
|
177 |
le_join_disj le_join_disj[OF wt_post wt_post]
|
|
178 |
split: option.split)
|
|
179 |
done
|
|
180 |
|
|
181 |
lemma mono_step'_top: "wt c (vars c0) \<Longrightarrow> wt c' (vars c0) \<Longrightarrow> c \<sqsubseteq> c' \<Longrightarrow> step' (top c0) c \<sqsubseteq> step' (top c0) c'"
|
|
182 |
by (metis wt_top mono_step' preord_class.le_refl)
|
|
183 |
|
|
184 |
end
|
|
185 |
|
|
186 |
|
|
187 |
subsubsection "Termination"
|
|
188 |
|
|
189 |
abbreviation sqless (infix "\<sqsubset>" 50) where
|
|
190 |
"x \<sqsubset> y == x \<sqsubseteq> y \<and> \<not> y \<sqsubseteq> x"
|
|
191 |
|
|
192 |
lemma pfp_termination:
|
|
193 |
fixes x0 :: "'a::preord" and m :: "'a \<Rightarrow> nat"
|
|
194 |
assumes mono: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
|
|
195 |
and m: "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubset> y \<Longrightarrow> m x > m y"
|
|
196 |
and I: "\<And>x y. I x \<Longrightarrow> I(f x)" and "I x0" and "x0 \<sqsubseteq> f x0"
|
|
197 |
shows "EX x. pfp f x0 = Some x"
|
|
198 |
proof(simp add: pfp_def, rule wf_while_option_Some[where P = "%x. I x & x \<sqsubseteq> f x"])
|
|
199 |
show "wf {(y,x). ((I x \<and> x \<sqsubseteq> f x) \<and> \<not> f x \<sqsubseteq> x) \<and> y = f x}"
|
|
200 |
by(rule wf_subset[OF wf_measure[of m]]) (auto simp: m I)
|
|
201 |
next
|
|
202 |
show "I x0 \<and> x0 \<sqsubseteq> f x0" using `I x0` `x0 \<sqsubseteq> f x0` by blast
|
|
203 |
next
|
|
204 |
fix x assume "I x \<and> x \<sqsubseteq> f x" thus "I(f x) \<and> f x \<sqsubseteq> f(f x)"
|
|
205 |
by (blast intro: I mono)
|
|
206 |
qed
|
|
207 |
|
|
208 |
lemma lpfp_termination:
|
|
209 |
fixes f :: "'a::preord option acom \<Rightarrow> 'a option acom"
|
|
210 |
and m :: "'a option acom \<Rightarrow> nat" and I :: "'a option acom \<Rightarrow> bool"
|
|
211 |
assumes "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubset> y \<Longrightarrow> m x > m y"
|
|
212 |
and "\<And>x y. I x \<Longrightarrow> I y \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
|
|
213 |
and "\<And>x y. I x \<Longrightarrow> I(f x)" and "I(bot c)"
|
|
214 |
and "\<And>C. strip (f C) = strip C"
|
|
215 |
shows "\<exists>c'. lpfp f c = Some c'"
|
|
216 |
unfolding lpfp_def
|
|
217 |
by(fastforce intro: pfp_termination[where I=I and m=m] assms bot_least
|
|
218 |
simp: assms(5))
|
|
219 |
|
|
220 |
|
|
221 |
locale Abs_Int_measure =
|
|
222 |
Abs_Int_mono where \<gamma>=\<gamma> for \<gamma> :: "'av::SL_top \<Rightarrow> val set" +
|
|
223 |
fixes m :: "'av \<Rightarrow> nat"
|
|
224 |
fixes h :: "nat"
|
|
225 |
assumes m1: "x \<sqsubseteq> y \<Longrightarrow> m x \<ge> m y"
|
|
226 |
assumes m2: "x \<sqsubset> y \<Longrightarrow> m x > m y"
|
|
227 |
assumes h: "m x \<le> h"
|
|
228 |
begin
|
|
229 |
|
|
230 |
definition "m_st S = (\<Sum> x \<in> dom S. m(fun S x))"
|
|
231 |
|
|
232 |
lemma m_st1: "S1 \<sqsubseteq> S2 \<Longrightarrow> m_st S1 \<ge> m_st S2"
|
|
233 |
proof(auto simp add: le_st_def m_st_def)
|
|
234 |
assume "\<forall>x\<in>dom S2. fun S1 x \<sqsubseteq> fun S2 x"
|
|
235 |
hence "\<forall>x\<in>dom S2. m(fun S1 x) \<ge> m(fun S2 x)" by (metis m1)
|
|
236 |
thus "(\<Sum>x\<in>dom S2. m (fun S2 x)) \<le> (\<Sum>x\<in>dom S2. m (fun S1 x))"
|
|
237 |
by (metis setsum_mono)
|
|
238 |
qed
|
|
239 |
|
|
240 |
lemma m_st2: "finite(dom S1) \<Longrightarrow> S1 \<sqsubset> S2 \<Longrightarrow> m_st S1 > m_st S2"
|
|
241 |
proof(auto simp add: le_st_def m_st_def)
|
|
242 |
assume "finite(dom S2)" and 0: "\<forall>x\<in>dom S2. fun S1 x \<sqsubseteq> fun S2 x"
|
|
243 |
hence 1: "\<forall>x\<in>dom S2. m(fun S1 x) \<ge> m(fun S2 x)" by (metis m1)
|
|
244 |
fix x assume "x \<in> dom S2" "\<not> fun S2 x \<sqsubseteq> fun S1 x"
|
|
245 |
hence 2: "\<exists>x\<in>dom S2. m(fun S1 x) > m(fun S2 x)" using 0 m2 by blast
|
|
246 |
from setsum_strict_mono_ex1[OF `finite(dom S2)` 1 2]
|
|
247 |
show "(\<Sum>x\<in>dom S2. m (fun S2 x)) < (\<Sum>x\<in>dom S2. m (fun S1 x))" .
|
|
248 |
qed
|
|
249 |
|
|
250 |
|
|
251 |
definition m_o :: "nat \<Rightarrow> 'av st option \<Rightarrow> nat" where
|
|
252 |
"m_o d opt = (case opt of None \<Rightarrow> h*d+1 | Some S \<Rightarrow> m_st S)"
|
|
253 |
|
|
254 |
definition m_c :: "'av st option acom \<Rightarrow> nat" where
|
|
255 |
"m_c c = (\<Sum>i<size(annos c). m_o (card(vars(strip c))) (annos c ! i))"
|
|
256 |
|
|
257 |
lemma m_st_h: "wt x X \<Longrightarrow> finite X \<Longrightarrow> m_st x \<le> h * card X"
|
|
258 |
by(simp add: wt_st_def m_st_def)
|
|
259 |
(metis nat_mult_commute of_nat_id setsum_bounded[OF h])
|
|
260 |
|
|
261 |
lemma m_o1: "finite X \<Longrightarrow> wt o1 X \<Longrightarrow> wt o2 X \<Longrightarrow>
|
|
262 |
o1 \<sqsubseteq> o2 \<Longrightarrow> m_o (card X) o1 \<ge> m_o (card X) o2"
|
|
263 |
proof(induction o1 o2 rule: le_option.induct)
|
|
264 |
case 1 thus ?case by (simp add: m_o_def)(metis m_st1)
|
|
265 |
next
|
|
266 |
case 2 thus ?case
|
|
267 |
by(simp add: wt_option_def m_o_def le_SucI m_st_h split: option.splits)
|
|
268 |
next
|
|
269 |
case 3 thus ?case by simp
|
|
270 |
qed
|
|
271 |
|
|
272 |
lemma m_o2: "finite X \<Longrightarrow> wt o1 X \<Longrightarrow> wt o2 X \<Longrightarrow>
|
|
273 |
o1 \<sqsubset> o2 \<Longrightarrow> m_o (card X) o1 > m_o (card X) o2"
|
|
274 |
proof(induction o1 o2 rule: le_option.induct)
|
|
275 |
case 1 thus ?case by (simp add: m_o_def wt_st_def m_st2)
|
|
276 |
next
|
|
277 |
case 2 thus ?case
|
|
278 |
by(auto simp add: m_o_def le_imp_less_Suc m_st_h)
|
|
279 |
next
|
|
280 |
case 3 thus ?case by simp
|
|
281 |
qed
|
|
282 |
|
|
283 |
lemma m_c2: "wt c1 (vars(strip c1)) \<Longrightarrow> wt c2 (vars(strip c2)) \<Longrightarrow>
|
|
284 |
c1 \<sqsubset> c2 \<Longrightarrow> m_c c1 > m_c c2"
|
|
285 |
proof(auto simp add: le_iff_le_annos m_c_def size_annos_same[of c1 c2] wt_acom_def)
|
|
286 |
let ?X = "vars(strip c2)"
|
|
287 |
let ?n = "card ?X"
|
|
288 |
assume V1: "\<forall>a\<in>set(annos c1). wt a ?X"
|
|
289 |
and V2: "\<forall>a\<in>set(annos c2). wt a ?X"
|
|
290 |
and strip_eq: "strip c1 = strip c2"
|
|
291 |
and 0: "\<forall>i<size(annos c2). annos c1 ! i \<sqsubseteq> annos c2 ! i"
|
|
292 |
hence 1: "\<forall>i<size(annos c2). m_o ?n (annos c1 ! i) \<ge> m_o ?n (annos c2 ! i)"
|
|
293 |
by (auto simp: all_set_conv_all_nth)
|
|
294 |
(metis finite_cvars m_o1 size_annos_same2)
|
|
295 |
fix i assume "i < size(annos c2)" "\<not> annos c2 ! i \<sqsubseteq> annos c1 ! i"
|
|
296 |
hence "m_o ?n (annos c1 ! i) > m_o ?n (annos c2 ! i)" (is "?P i")
|
|
297 |
by(metis m_o2[OF finite_cvars] V1 V2 strip_eq nth_mem size_annos_same 0)
|
|
298 |
hence 2: "\<exists>i < size(annos c2). ?P i" using `i < size(annos c2)` by blast
|
|
299 |
show "(\<Sum>i<size(annos c2). m_o ?n (annos c2 ! i))
|
|
300 |
< (\<Sum>i<size(annos c2). m_o ?n (annos c1 ! i))"
|
|
301 |
apply(rule setsum_strict_mono_ex1) using 1 2 by (auto)
|
|
302 |
qed
|
|
303 |
|
|
304 |
lemma AI_Some_measure: "\<exists>C. AI c = Some C"
|
|
305 |
unfolding AI_def
|
|
306 |
apply(rule lpfp_termination[where I = "%C. strip C = c \<and> wt C (vars c)"
|
|
307 |
and m="m_c"])
|
|
308 |
apply(simp_all add: m_c2 mono_step'_top)
|
|
309 |
done
|
|
310 |
|
|
311 |
end
|
|
312 |
|
|
313 |
end
|