43158
|
1 |
(* Author: Tobias Nipkow *)
|
|
2 |
|
|
3 |
theory Sec_Typing imports Sec_Type_Expr
|
|
4 |
begin
|
|
5 |
|
|
6 |
subsection "Syntax Directed Typing"
|
|
7 |
|
|
8 |
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
|
|
9 |
Skip:
|
|
10 |
"l \<turnstile> SKIP" |
|
|
11 |
Assign:
|
|
12 |
"\<lbrakk> sec x \<ge> sec_aexp a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |
|
47818
|
13 |
Seq:
|
43158
|
14 |
"\<lbrakk> l \<turnstile> c\<^isub>1; l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^isub>1;c\<^isub>2" |
|
|
15 |
If:
|
|
16 |
"\<lbrakk> max (sec_bexp b) l \<turnstile> c\<^isub>1; max (sec_bexp b) l \<turnstile> c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
|
|
17 |
While:
|
|
18 |
"max (sec_bexp b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c"
|
|
19 |
|
|
20 |
code_pred (expected_modes: i => i => bool) sec_type .
|
|
21 |
|
|
22 |
value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
|
|
23 |
value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x'' ::= N 0 ELSE SKIP"
|
|
24 |
value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"
|
|
25 |
|
|
26 |
inductive_cases [elim!]:
|
|
27 |
"l \<turnstile> x ::= a" "l \<turnstile> c\<^isub>1;c\<^isub>2" "l \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2" "l \<turnstile> WHILE b DO c"
|
|
28 |
|
|
29 |
|
|
30 |
text{* An important property: anti-monotonicity. *}
|
|
31 |
|
|
32 |
lemma anti_mono: "\<lbrakk> l \<turnstile> c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c"
|
45015
|
33 |
apply(induction arbitrary: l' rule: sec_type.induct)
|
43158
|
34 |
apply (metis sec_type.intros(1))
|
|
35 |
apply (metis le_trans sec_type.intros(2))
|
|
36 |
apply (metis sec_type.intros(3))
|
|
37 |
apply (metis If le_refl sup_mono sup_nat_def)
|
|
38 |
apply (metis While le_refl sup_mono sup_nat_def)
|
|
39 |
done
|
|
40 |
|
|
41 |
lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t; l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)"
|
45015
|
42 |
proof(induction rule: big_step_induct)
|
43158
|
43 |
case Skip thus ?case by simp
|
|
44 |
next
|
|
45 |
case Assign thus ?case by auto
|
|
46 |
next
|
47818
|
47 |
case Seq thus ?case by auto
|
43158
|
48 |
next
|
|
49 |
case (IfTrue b s c1)
|
|
50 |
hence "max (sec_bexp b) l \<turnstile> c1" by auto
|
|
51 |
hence "l \<turnstile> c1" by (metis le_maxI2 anti_mono)
|
45015
|
52 |
thus ?case using IfTrue.IH by metis
|
43158
|
53 |
next
|
|
54 |
case (IfFalse b s c2)
|
|
55 |
hence "max (sec_bexp b) l \<turnstile> c2" by auto
|
|
56 |
hence "l \<turnstile> c2" by (metis le_maxI2 anti_mono)
|
45015
|
57 |
thus ?case using IfFalse.IH by metis
|
43158
|
58 |
next
|
|
59 |
case WhileFalse thus ?case by auto
|
|
60 |
next
|
|
61 |
case (WhileTrue b s1 c)
|
|
62 |
hence "max (sec_bexp b) l \<turnstile> c" by auto
|
|
63 |
hence "l \<turnstile> c" by (metis le_maxI2 anti_mono)
|
|
64 |
thus ?case using WhileTrue by metis
|
|
65 |
qed
|
|
66 |
|
|
67 |
|
|
68 |
theorem noninterference:
|
|
69 |
"\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t'; 0 \<turnstile> c; s = t (\<le> l) \<rbrakk>
|
|
70 |
\<Longrightarrow> s' = t' (\<le> l)"
|
45015
|
71 |
proof(induction arbitrary: t t' rule: big_step_induct)
|
43158
|
72 |
case Skip thus ?case by auto
|
|
73 |
next
|
|
74 |
case (Assign x a s)
|
|
75 |
have [simp]: "t' = t(x := aval a t)" using Assign by auto
|
|
76 |
have "sec x >= sec_aexp a" using `0 \<turnstile> x ::= a` by auto
|
|
77 |
show ?case
|
|
78 |
proof auto
|
|
79 |
assume "sec x \<le> l"
|
|
80 |
with `sec x >= sec_aexp a` have "sec_aexp a \<le> l" by arith
|
|
81 |
thus "aval a s = aval a t"
|
|
82 |
by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`])
|
|
83 |
next
|
|
84 |
fix y assume "y \<noteq> x" "sec y \<le> l"
|
|
85 |
thus "s y = t y" using `s = t (\<le> l)` by simp
|
|
86 |
qed
|
|
87 |
next
|
47818
|
88 |
case Seq thus ?case by blast
|
43158
|
89 |
next
|
|
90 |
case (IfTrue b s c1 s' c2)
|
|
91 |
have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfTrue.prems(2) by auto
|
|
92 |
show ?case
|
|
93 |
proof cases
|
|
94 |
assume "sec_bexp b \<le> l"
|
|
95 |
hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
96 |
hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le)
|
45015
|
97 |
with IfTrue.IH IfTrue.prems(1,3) `sec_bexp b \<turnstile> c1` anti_mono
|
43158
|
98 |
show ?thesis by auto
|
|
99 |
next
|
|
100 |
assume "\<not> sec_bexp b \<le> l"
|
|
101 |
have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
|
|
102 |
by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
|
45823
|
103 |
from confinement[OF IfTrue.hyps(2) `sec_bexp b \<turnstile> c1`] `\<not> sec_bexp b \<le> l`
|
43158
|
104 |
have "s = s' (\<le> l)" by auto
|
|
105 |
moreover
|
|
106 |
from confinement[OF IfTrue.prems(1) 1] `\<not> sec_bexp b \<le> l`
|
|
107 |
have "t = t' (\<le> l)" by auto
|
|
108 |
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto
|
|
109 |
qed
|
|
110 |
next
|
|
111 |
case (IfFalse b s c2 s' c1)
|
|
112 |
have "sec_bexp b \<turnstile> c1" "sec_bexp b \<turnstile> c2" using IfFalse.prems(2) by auto
|
|
113 |
show ?case
|
|
114 |
proof cases
|
|
115 |
assume "sec_bexp b \<le> l"
|
|
116 |
hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
117 |
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)
|
45015
|
118 |
with IfFalse.IH IfFalse.prems(1,3) `sec_bexp b \<turnstile> c2` anti_mono
|
43158
|
119 |
show ?thesis by auto
|
|
120 |
next
|
|
121 |
assume "\<not> sec_bexp b \<le> l"
|
|
122 |
have 1: "sec_bexp b \<turnstile> IF b THEN c1 ELSE c2"
|
|
123 |
by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c1` `sec_bexp b \<turnstile> c2`)
|
|
124 |
from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec_bexp b \<le> l`
|
|
125 |
have "s = s' (\<le> l)" by auto
|
|
126 |
moreover
|
|
127 |
from confinement[OF IfFalse.prems(1) 1] `\<not> sec_bexp b \<le> l`
|
|
128 |
have "t = t' (\<le> l)" by auto
|
|
129 |
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto
|
|
130 |
qed
|
|
131 |
next
|
|
132 |
case (WhileFalse b s c)
|
|
133 |
have "sec_bexp b \<turnstile> c" using WhileFalse.prems(2) by auto
|
|
134 |
show ?case
|
|
135 |
proof cases
|
|
136 |
assume "sec_bexp b \<le> l"
|
|
137 |
hence "s = t (\<le> sec_bexp b)" using `s = t (\<le> l)` by auto
|
|
138 |
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)
|
|
139 |
with WhileFalse.prems(1,3) show ?thesis by auto
|
|
140 |
next
|
|
141 |
assume "\<not> sec_bexp b \<le> l"
|
|
142 |
have 1: "sec_bexp b \<turnstile> WHILE b DO c"
|
|
143 |
by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c`)
|
|
144 |
from confinement[OF WhileFalse.prems(1) 1] `\<not> sec_bexp b \<le> l`
|
|
145 |
have "t = t' (\<le> l)" by auto
|
|
146 |
thus "s = t' (\<le> l)" using `s = t (\<le> l)` by auto
|
|
147 |
qed
|
|
148 |
next
|
|
149 |
case (WhileTrue b s1 c s2 s3 t1 t3)
|
|
150 |
let ?w = "WHILE b DO c"
|
|
151 |
have "sec_bexp b \<turnstile> c" using WhileTrue.prems(2) by auto
|
|
152 |
show ?case
|
|
153 |
proof cases
|
|
154 |
assume "sec_bexp b \<le> l"
|
|
155 |
hence "s1 = t1 (\<le> sec_bexp b)" using `s1 = t1 (\<le> l)` by auto
|
|
156 |
hence "bval b t1"
|
|
157 |
using `bval b s1` by(simp add: bval_eq_if_eq_le)
|
|
158 |
then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3"
|
|
159 |
using `(?w,t1) \<Rightarrow> t3` by auto
|
45015
|
160 |
from WhileTrue.IH(2)[OF `(?w,t2) \<Rightarrow> t3` `0 \<turnstile> ?w`
|
|
161 |
WhileTrue.IH(1)[OF `(c,t1) \<Rightarrow> t2` anti_mono[OF `sec_bexp b \<turnstile> c`]
|
43158
|
162 |
`s1 = t1 (\<le> l)`]]
|
|
163 |
show ?thesis by simp
|
|
164 |
next
|
|
165 |
assume "\<not> sec_bexp b \<le> l"
|
|
166 |
have 1: "sec_bexp b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: `sec_bexp b \<turnstile> c`)
|
45015
|
167 |
from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] `\<not> sec_bexp b \<le> l`
|
43158
|
168 |
have "s1 = s3 (\<le> l)" by auto
|
|
169 |
moreover
|
|
170 |
from confinement[OF WhileTrue.prems(1) 1] `\<not> sec_bexp b \<le> l`
|
|
171 |
have "t1 = t3 (\<le> l)" by auto
|
|
172 |
ultimately show "s3 = t3 (\<le> l)" using `s1 = t1 (\<le> l)` by auto
|
|
173 |
qed
|
|
174 |
qed
|
|
175 |
|
|
176 |
|
|
177 |
subsection "The Standard Typing System"
|
|
178 |
|
|
179 |
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
|
|
180 |
standard formulation, however, is slightly different, replacing the maximum
|
|
181 |
computation by an antimonotonicity rule. We introduce the standard system now
|
|
182 |
and show the equivalence with our formulation. *}
|
|
183 |
|
|
184 |
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
|
|
185 |
Skip':
|
|
186 |
"l \<turnstile>' SKIP" |
|
|
187 |
Assign':
|
|
188 |
"\<lbrakk> sec x \<ge> sec_aexp a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |
|
47818
|
189 |
Seq':
|
43158
|
190 |
"\<lbrakk> l \<turnstile>' c\<^isub>1; l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^isub>1;c\<^isub>2" |
|
|
191 |
If':
|
|
192 |
"\<lbrakk> sec_bexp b \<le> l; l \<turnstile>' c\<^isub>1; l \<turnstile>' c\<^isub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^isub>1 ELSE c\<^isub>2" |
|
|
193 |
While':
|
|
194 |
"\<lbrakk> sec_bexp b \<le> l; l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" |
|
|
195 |
anti_mono':
|
|
196 |
"\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"
|
|
197 |
|
|
198 |
lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"
|
45015
|
199 |
apply(induction rule: sec_type.induct)
|
43158
|
200 |
apply (metis Skip')
|
|
201 |
apply (metis Assign')
|
47818
|
202 |
apply (metis Seq')
|
43158
|
203 |
apply (metis min_max.inf_sup_ord(3) min_max.sup_absorb2 nat_le_linear If' anti_mono')
|
|
204 |
by (metis less_or_eq_imp_le min_max.sup_absorb1 min_max.sup_absorb2 nat_le_linear While' anti_mono')
|
|
205 |
|
|
206 |
|
|
207 |
lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"
|
45015
|
208 |
apply(induction rule: sec_type'.induct)
|
43158
|
209 |
apply (metis Skip)
|
|
210 |
apply (metis Assign)
|
47818
|
211 |
apply (metis Seq)
|
43158
|
212 |
apply (metis min_max.sup_absorb2 If)
|
|
213 |
apply (metis min_max.sup_absorb2 While)
|
|
214 |
by (metis anti_mono)
|
|
215 |
|
|
216 |
subsection "A Bottom-Up Typing System"
|
|
217 |
|
|
218 |
inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
|
|
219 |
Skip2:
|
|
220 |
"\<turnstile> SKIP : l" |
|
|
221 |
Assign2:
|
|
222 |
"sec x \<ge> sec_aexp a \<Longrightarrow> \<turnstile> x ::= a : sec x" |
|
47818
|
223 |
Seq2:
|
43158
|
224 |
"\<lbrakk> \<turnstile> c\<^isub>1 : l\<^isub>1; \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^isub>1;c\<^isub>2 : min l\<^isub>1 l\<^isub>2 " |
|
|
225 |
If2:
|
|
226 |
"\<lbrakk> sec_bexp b \<le> min l\<^isub>1 l\<^isub>2; \<turnstile> c\<^isub>1 : l\<^isub>1; \<turnstile> c\<^isub>2 : l\<^isub>2 \<rbrakk>
|
|
227 |
\<Longrightarrow> \<turnstile> IF b THEN c\<^isub>1 ELSE c\<^isub>2 : min l\<^isub>1 l\<^isub>2" |
|
|
228 |
While2:
|
|
229 |
"\<lbrakk> sec_bexp b \<le> l; \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l"
|
|
230 |
|
|
231 |
|
|
232 |
lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c"
|
45015
|
233 |
apply(induction rule: sec_type2.induct)
|
43158
|
234 |
apply (metis Skip')
|
|
235 |
apply (metis Assign' eq_imp_le)
|
47818
|
236 |
apply (metis Seq' anti_mono' min_max.inf.commute min_max.inf_le2)
|
43158
|
237 |
apply (metis If' anti_mono' min_max.inf_absorb2 min_max.le_iff_inf nat_le_linear)
|
|
238 |
by (metis While')
|
|
239 |
|
|
240 |
lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"
|
45015
|
241 |
apply(induction rule: sec_type'.induct)
|
43158
|
242 |
apply (metis Skip2 le_refl)
|
|
243 |
apply (metis Assign2)
|
47818
|
244 |
apply (metis Seq2 min_max.inf_greatest)
|
43158
|
245 |
apply (metis If2 inf_greatest inf_nat_def le_trans)
|
|
246 |
apply (metis While2 le_trans)
|
|
247 |
by (metis le_trans)
|
|
248 |
|
|
249 |
end
|