| author | wenzelm | 
| Sat, 20 Aug 2011 20:24:12 +0200 | |
| changeset 44335 | 156be0e43336 | 
| parent 36778 | 739a9379e29b | 
| child 57514 | bdc2c6b40bf2 | 
| permissions | -rw-r--r-- | 
| 28952 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 haftmann parents: 
28001diff
changeset | 1 | (* Title: HOL/ex/Sqrt_Script.thy | 
| 13957 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 3 | Copyright 2001 University of Cambridge | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Square roots of primes are irrational (script version) *}
 | |
| 7 | ||
| 15149 | 8 | theory Sqrt_Script | 
| 32479 | 9 | imports Complex_Main "~~/src/HOL/Number_Theory/Primes" | 
| 15149 | 10 | begin | 
| 13957 | 11 | |
| 12 | text {*
 | |
| 13 | \medskip Contrast this linear Isabelle/Isar script with Markus | |
| 14 | Wenzel's more mathematical version. | |
| 15 | *} | |
| 16 | ||
| 17 | subsection {* Preliminaries *}
 | |
| 18 | ||
| 32479 | 19 | lemma prime_nonzero: "prime (p::nat) \<Longrightarrow> p \<noteq> 0" | 
| 20 | by (force simp add: prime_nat_def) | |
| 13957 | 21 | |
| 22 | lemma prime_dvd_other_side: | |
| 32479 | 23 | "(n::nat) * n = p * (k * k) \<Longrightarrow> prime p \<Longrightarrow> p dvd n" | 
| 24 | apply (subgoal_tac "p dvd n * n", blast dest: prime_dvd_mult_nat) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
21404diff
changeset | 25 | apply auto | 
| 13957 | 26 | done | 
| 27 | ||
| 32479 | 28 | lemma reduction: "prime (p::nat) \<Longrightarrow> | 
| 13957 | 29 | 0 < k \<Longrightarrow> k * k = p * (j * j) \<Longrightarrow> k < p * j \<and> 0 < j" | 
| 30 | apply (rule ccontr) | |
| 31 | apply (simp add: linorder_not_less) | |
| 32 | apply (erule disjE) | |
| 33 | apply (frule mult_le_mono, assumption) | |
| 34 | apply auto | |
| 32479 | 35 | apply (force simp add: prime_nat_def) | 
| 13957 | 36 | done | 
| 37 | ||
| 38 | lemma rearrange: "(j::nat) * (p * j) = k * k \<Longrightarrow> k * k = p * (j * j)" | |
| 39 | by (simp add: mult_ac) | |
| 40 | ||
| 41 | lemma prime_not_square: | |
| 32479 | 42 | "prime (p::nat) \<Longrightarrow> (\<And>k. 0 < k \<Longrightarrow> m * m \<noteq> p * (k * k))" | 
| 13957 | 43 | apply (induct m rule: nat_less_induct) | 
| 44 | apply clarify | |
| 45 | apply (frule prime_dvd_other_side, assumption) | |
| 46 | apply (erule dvdE) | |
| 47 | apply (simp add: nat_mult_eq_cancel_disj prime_nonzero) | |
| 48 | apply (blast dest: rearrange reduction) | |
| 49 | done | |
| 50 | ||
| 51 | ||
| 52 | subsection {* Main theorem *}
 | |
| 53 | ||
| 54 | text {*
 | |
| 55 |   The square root of any prime number (including @{text 2}) is
 | |
| 56 | irrational. | |
| 57 | *} | |
| 58 | ||
| 59 | theorem prime_sqrt_irrational: | |
| 32479 | 60 | "prime (p::nat) \<Longrightarrow> x * x = real p \<Longrightarrow> 0 \<le> x \<Longrightarrow> x \<notin> \<rat>" | 
| 28001 | 61 | apply (rule notI) | 
| 62 | apply (erule Rats_abs_nat_div_natE) | |
| 13957 | 63 | apply (simp del: real_of_nat_mult | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
32479diff
changeset | 64 | add: abs_if divide_eq_eq prime_not_square real_of_nat_mult [symmetric]) | 
| 13957 | 65 | done | 
| 66 | ||
| 67 | lemmas two_sqrt_irrational = | |
| 32479 | 68 | prime_sqrt_irrational [OF two_is_prime_nat] | 
| 13957 | 69 | |
| 70 | end |