src/HOL/Ring_and_Field.thy
author chaieb
Sun, 17 Jun 2007 13:39:29 +0200
changeset 23406 167b53019d6f
parent 23400 a64b39e5809b
child 23413 5caa2710dd5b
permissions -rw-r--r--
added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     1
(*  Title:   HOL/Ring_and_Field.thy
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     2
    ID:      $Id$
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     3
    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, and Markus Wenzel,
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
     4
             with contributions by Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     5
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     6
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
     7
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
     9
theory Ring_and_Field
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    10
imports OrderedGroup
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    11
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    12
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    13
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    14
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    15
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    19
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    21
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    23
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    24
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    25
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    26
class semiring = ab_semigroup_add + semigroup_mult +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    27
  assumes left_distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    28
  assumes right_distrib: "a \<^loc>* (b \<^loc>+ c) = a \<^loc>* b \<^loc>+ a \<^loc>* c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    29
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    30
class mult_zero = times + zero +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    31
  assumes mult_zero_left [simp]: "\<^loc>0 \<^loc>* a = \<^loc>0"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    32
  assumes mult_zero_right [simp]: "a \<^loc>* \<^loc>0 = \<^loc>0"
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    33
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    34
class semiring_0 = semiring + comm_monoid_add + mult_zero
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    35
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    36
class semiring_0_cancel = semiring + comm_monoid_add + cancel_ab_semigroup_add
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    37
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    38
instance semiring_0_cancel \<subseteq> semiring_0
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    39
proof
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    40
  fix a :: 'a
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    41
  have "0 * a + 0 * a = 0 * a + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    42
    by (simp add: left_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    43
  thus "0 * a = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    44
    by (simp only: add_left_cancel)
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    45
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    46
  have "a * 0 + a * 0 = a * 0 + 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    47
    by (simp add: right_distrib [symmetric])
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    48
  thus "a * 0 = 0"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    49
    by (simp only: add_left_cancel)
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    50
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    51
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    52
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    53
  assumes distrib: "(a \<^loc>+ b) \<^loc>* c = a \<^loc>* c \<^loc>+ b \<^loc>* c"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    54
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    55
instance comm_semiring \<subseteq> semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    56
proof
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    57
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    58
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    59
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    60
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    61
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    62
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    63
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    64
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    65
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    66
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    67
instance comm_semiring_0 \<subseteq> semiring_0 ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    68
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    69
class comm_semiring_0_cancel = comm_semiring + comm_monoid_add + cancel_ab_semigroup_add
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    70
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    71
instance comm_semiring_0_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    72
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    73
instance comm_semiring_0_cancel \<subseteq> comm_semiring_0 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    74
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    75
class zero_neq_one = zero + one +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    76
  assumes zero_neq_one [simp]: "\<^loc>0 \<noteq> \<^loc>1"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    77
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    78
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    79
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    80
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    81
  (*previously almost_semiring*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    82
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    83
instance comm_semiring_1 \<subseteq> semiring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
    84
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    85
class no_zero_divisors = zero + times +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    86
  assumes no_zero_divisors: "a \<noteq> \<^loc>0 \<Longrightarrow> b \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* b \<noteq> \<^loc>0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    87
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    88
class semiring_1_cancel = semiring + comm_monoid_add + zero_neq_one
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    89
  + cancel_ab_semigroup_add + monoid_mult
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    90
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    91
instance semiring_1_cancel \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    92
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    93
instance semiring_1_cancel \<subseteq> semiring_1 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    94
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    95
class comm_semiring_1_cancel = comm_semiring + comm_monoid_add + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    96
  + zero_neq_one + cancel_ab_semigroup_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    97
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    98
instance comm_semiring_1_cancel \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    99
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   100
instance comm_semiring_1_cancel \<subseteq> comm_semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   101
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   102
instance comm_semiring_1_cancel \<subseteq> comm_semiring_1 ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   103
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   104
class ring = semiring + ab_group_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   105
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   106
instance ring \<subseteq> semiring_0_cancel ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   107
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   108
class comm_ring = comm_semiring + ab_group_add
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   109
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   110
instance comm_ring \<subseteq> ring ..
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   111
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   112
instance comm_ring \<subseteq> comm_semiring_0_cancel ..
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   113
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   114
class ring_1 = ring + zero_neq_one + monoid_mult
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   115
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   116
instance ring_1 \<subseteq> semiring_1_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   117
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   118
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   119
  (*previously ring*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   120
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   121
instance comm_ring_1 \<subseteq> ring_1 ..
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   122
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   123
instance comm_ring_1 \<subseteq> comm_semiring_1_cancel ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   124
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   125
class ring_no_zero_divisors = ring + no_zero_divisors
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   126
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   127
class dom = ring_1 + ring_no_zero_divisors
23326
71e99443e17d hid constant "dom"
nipkow
parents: 23095
diff changeset
   128
hide const dom
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   129
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   130
class idom = comm_ring_1 + no_zero_divisors
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   131
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   132
instance idom \<subseteq> dom ..
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   133
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   134
class division_ring = ring_1 + inverse +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   135
  assumes left_inverse [simp]:  "a \<noteq> \<^loc>0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   136
  assumes right_inverse [simp]: "a \<noteq> \<^loc>0 \<Longrightarrow> a \<^loc>* inverse a = \<^loc>1"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   137
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   138
instance division_ring \<subseteq> dom
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   139
proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   140
  fix a b :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   141
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   142
  show "a * b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   143
  proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   144
    assume ab: "a * b = 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   145
    hence "0 = inverse a * (a * b) * inverse b"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   146
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   147
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   148
      by (simp only: mult_assoc)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   149
    also have "\<dots> = 1"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   150
      using a b by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   151
    finally show False
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   152
      by simp
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   153
  qed
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   154
qed
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   155
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   156
class field = comm_ring_1 + inverse +
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   157
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a \<^loc>* a = \<^loc>1"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   158
  assumes divide_inverse: "a \<^loc>/ b = a \<^loc>* inverse b"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   159
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   160
instance field \<subseteq> division_ring
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   161
proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   162
  fix a :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   163
  assume "a \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   164
  thus "inverse a * a = 1" by (rule field_inverse)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   165
  thus "a * inverse a = 1" by (simp only: mult_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   166
qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   167
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   168
instance field \<subseteq> idom ..
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   169
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   170
class division_by_zero = zero + inverse +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   171
  assumes inverse_zero [simp]: "inverse \<^loc>0 = \<^loc>0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   172
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   173
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   174
subsection {* Distribution rules *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   175
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   176
theorems ring_distrib = right_distrib left_distrib
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   177
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   178
text{*For the @{text combine_numerals} simproc*}
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   179
lemma combine_common_factor:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   180
     "a*e + (b*e + c) = (a+b)*e + (c::'a::semiring)"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   181
by (simp add: left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   182
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   183
lemma minus_mult_left: "- (a * b) = (-a) * (b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   184
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   185
apply (simp add: left_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   186
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   187
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   188
lemma minus_mult_right: "- (a * b) = a * -(b::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   189
apply (rule equals_zero_I)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   190
apply (simp add: right_distrib [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   191
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   192
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   193
lemma minus_mult_minus [simp]: "(- a) * (- b) = a * (b::'a::ring)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   194
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   195
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   196
lemma minus_mult_commute: "(- a) * b = a * (- b::'a::ring)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   197
  by (simp add: minus_mult_left [symmetric] minus_mult_right [symmetric])
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   198
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   199
lemma right_diff_distrib: "a * (b - c) = a * b - a * (c::'a::ring)"
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   200
by (simp add: right_distrib diff_minus 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   201
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   202
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   203
lemma left_diff_distrib: "(a - b) * c = a * c - b * (c::'a::ring)"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   204
by (simp add: left_distrib diff_minus 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   205
              minus_mult_left [symmetric] minus_mult_right [symmetric]) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   206
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   207
class mult_mono = times + zero + ord +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   208
  assumes mult_left_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   209
  assumes mult_right_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> a \<^loc>* c \<sqsubseteq> b \<^loc>* c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   210
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   211
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   212
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   213
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   214
  + semiring + comm_monoid_add + cancel_ab_semigroup_add
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   215
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   216
instance pordered_cancel_semiring \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   217
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   218
instance pordered_cancel_semiring \<subseteq> pordered_semiring .. 
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   219
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   220
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   221
  assumes mult_strict_left_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   222
  assumes mult_strict_right_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> a \<^loc>* c \<sqsubset> b \<^loc>* c"
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   223
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   224
instance ordered_semiring_strict \<subseteq> semiring_0_cancel ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   225
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   226
instance ordered_semiring_strict \<subseteq> pordered_cancel_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   227
apply intro_classes
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   228
apply (cases "a < b & 0 < c")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   229
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   230
apply (auto simp add: mult_strict_left_mono order_le_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   231
apply (simp add: mult_strict_right_mono)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   232
done
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   233
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   234
class mult_mono1 = times + zero + ord +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   235
  assumes mult_mono: "a \<sqsubseteq> b \<Longrightarrow> \<^loc>0 \<sqsubseteq> c \<Longrightarrow> c \<^loc>* a \<sqsubseteq> c \<^loc>* b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   236
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   237
class pordered_comm_semiring = comm_semiring_0
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   238
  + pordered_ab_semigroup_add + mult_mono1
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   239
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   240
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   241
  + pordered_ab_semigroup_add + mult_mono1
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   242
  
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   243
instance pordered_cancel_comm_semiring \<subseteq> pordered_comm_semiring ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   244
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   245
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   246
  assumes mult_strict_mono: "a \<sqsubset> b \<Longrightarrow> \<^loc>0 \<sqsubset> c \<Longrightarrow> c \<^loc>* a \<sqsubset> c \<^loc>* b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   247
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   248
instance pordered_comm_semiring \<subseteq> pordered_semiring
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   249
proof
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   250
  fix a b c :: 'a
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   251
  assume A: "a <= b" "0 <= c"
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   252
  with mult_mono show "c * a <= c * b" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   253
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   254
  from mult_commute have "a * c = c * a" ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   255
  also from mult_mono A have "\<dots> <= c * b" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   256
  also from mult_commute have "c * b = b * c" ..
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   257
  finally show "a * c <= b * c" .
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   258
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   259
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   260
instance pordered_cancel_comm_semiring \<subseteq> pordered_cancel_semiring ..
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   261
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   262
instance ordered_comm_semiring_strict \<subseteq> ordered_semiring_strict
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   263
by (intro_classes, insert mult_strict_mono, simp_all add: mult_commute, blast+)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   264
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   265
instance ordered_comm_semiring_strict \<subseteq> pordered_cancel_comm_semiring
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   266
apply (intro_classes)
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   267
apply (cases "a < b & 0 < c")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   268
apply (auto simp add: mult_strict_left_mono order_less_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   269
apply (auto simp add: mult_strict_left_mono order_le_less)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   270
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   271
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   272
class pordered_ring = ring + pordered_cancel_semiring 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   273
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   274
instance pordered_ring \<subseteq> pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   275
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   276
class lordered_ring = pordered_ring + lordered_ab_group_abs
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   277
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   278
instance lordered_ring \<subseteq> lordered_ab_group_meet ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   279
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   280
instance lordered_ring \<subseteq> lordered_ab_group_join ..
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   281
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   282
class abs_if = minus + ord + zero +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   283
  assumes abs_if: "abs a = (if a \<sqsubset> 0 then (uminus a) else a)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   284
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   285
class ordered_ring_strict = ring + ordered_semiring_strict + abs_if + lordered_ab_group
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   286
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   287
instance ordered_ring_strict \<subseteq> lordered_ring
22422
ee19cdb07528 stepping towards uniform lattice theory development in HOL
haftmann
parents: 22390
diff changeset
   288
  by intro_classes (simp add: abs_if sup_eq_if)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   289
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   290
class pordered_comm_ring = comm_ring + pordered_comm_semiring
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   291
23073
d810dc04b96d add missing instance declarations
huffman
parents: 22993
diff changeset
   292
instance pordered_comm_ring \<subseteq> pordered_cancel_comm_semiring ..
d810dc04b96d add missing instance declarations
huffman
parents: 22993
diff changeset
   293
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   294
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   295
  (*previously ordered_semiring*)
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   296
  assumes zero_less_one [simp]: "\<^loc>0 \<sqsubset> \<^loc>1"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   297
22452
8a86fd2a1bf0 adjusted to new lattice theory developement in Lattices.thy / FixedPoint.thy
haftmann
parents: 22422
diff changeset
   298
class ordered_idom = comm_ring_1 + ordered_comm_semiring_strict + abs_if + lordered_ab_group
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   299
  (*previously ordered_ring*)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   300
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   301
instance ordered_idom \<subseteq> ordered_ring_strict ..
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   302
23073
d810dc04b96d add missing instance declarations
huffman
parents: 22993
diff changeset
   303
instance ordered_idom \<subseteq> pordered_comm_ring ..
d810dc04b96d add missing instance declarations
huffman
parents: 22993
diff changeset
   304
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   305
class ordered_field = field + ordered_idom
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   306
15923
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   307
lemmas linorder_neqE_ordered_idom =
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   308
 linorder_neqE[where 'a = "?'b::ordered_idom"]
01d5d0c1c078 fixed lin.arith
nipkow
parents: 15769
diff changeset
   309
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   310
lemma eq_add_iff1:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   311
     "(a*e + c = b*e + d) = ((a-b)*e + c = (d::'a::ring))"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   312
apply (simp add: diff_minus left_distrib)
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   313
apply (simp add: diff_minus left_distrib add_ac)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   314
apply (simp add: compare_rls minus_mult_left [symmetric])
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   315
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   316
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   317
lemma eq_add_iff2:
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   318
     "(a*e + c = b*e + d) = (c = (b-a)*e + (d::'a::ring))"
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   319
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   320
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   321
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   322
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   323
lemma less_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   324
     "(a*e + c < b*e + d) = ((a-b)*e + c < (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   325
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   326
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   327
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   328
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   329
lemma less_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   330
     "(a*e + c < b*e + d) = (c < (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   331
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   332
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   333
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   334
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   335
lemma le_add_iff1:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   336
     "(a*e + c \<le> b*e + d) = ((a-b)*e + c \<le> (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   337
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   338
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   339
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   340
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   341
lemma le_add_iff2:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   342
     "(a*e + c \<le> b*e + d) = (c \<le> (b-a)*e + (d::'a::pordered_ring))"
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   343
apply (simp add: diff_minus left_distrib add_ac)
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   344
apply (simp add: compare_rls minus_mult_left [symmetric]) 
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   345
done
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   346
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   347
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   348
subsection {* Ordering Rules for Multiplication *}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   349
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   350
lemma mult_left_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   351
     "[|c*a \<le> c*b; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   352
  by (force simp add: mult_strict_left_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   353
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   354
lemma mult_right_le_imp_le:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   355
     "[|a*c \<le> b*c; 0 < c|] ==> a \<le> (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   356
  by (force simp add: mult_strict_right_mono linorder_not_less [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   357
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   358
lemma mult_left_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   359
     "[|c*a < c*b; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   360
  by (force simp add: mult_left_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   361
 
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   362
lemma mult_right_less_imp_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   363
     "[|a*c < b*c; 0 \<le> c|] ==> a < (b::'a::ordered_semiring_strict)"
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   364
  by (force simp add: mult_right_mono linorder_not_le [symmetric])
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   365
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   366
lemma mult_strict_left_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   367
     "[|b < a; c < 0|] ==> c * a < c * (b::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   368
apply (drule mult_strict_left_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   369
apply (simp_all add: minus_mult_left [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   370
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   371
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   372
lemma mult_left_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   373
     "[|b \<le> a; c \<le> 0|] ==> c * a \<le>  c * (b::'a::pordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   374
apply (drule mult_left_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   375
apply (simp_all add: minus_mult_left [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   376
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   377
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   378
lemma mult_strict_right_mono_neg:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   379
     "[|b < a; c < 0|] ==> a * c < b * (c::'a::ordered_ring_strict)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   380
apply (drule mult_strict_right_mono [of _ _ "-c"])
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   381
apply (simp_all add: minus_mult_right [symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   382
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   383
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   384
lemma mult_right_mono_neg:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   385
     "[|b \<le> a; c \<le> 0|] ==> a * c \<le>  (b::'a::pordered_ring) * c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   386
apply (drule mult_right_mono [of _ _ "-c"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   387
apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   388
apply (simp_all add: minus_mult_right [symmetric]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   389
done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   390
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   391
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   392
subsection{* Products of Signs *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   393
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   394
lemma mult_pos_pos: "[| (0::'a::ordered_semiring_strict) < a; 0 < b |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   395
by (drule mult_strict_left_mono [of 0 b], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   396
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   397
lemma mult_nonneg_nonneg: "[| (0::'a::pordered_cancel_semiring) \<le> a; 0 \<le> b |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   398
by (drule mult_left_mono [of 0 b], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   399
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   400
lemma mult_pos_neg: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> a*b < 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   401
by (drule mult_strict_left_mono [of b 0], auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   402
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   403
lemma mult_nonneg_nonpos: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> a*b \<le> 0"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   404
by (drule mult_left_mono [of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   405
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   406
lemma mult_pos_neg2: "[| (0::'a::ordered_semiring_strict) < a; b < 0 |] ==> b*a < 0" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   407
by (drule mult_strict_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   408
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   409
lemma mult_nonneg_nonpos2: "[| (0::'a::pordered_cancel_semiring) \<le> a; b \<le> 0 |] ==> b*a \<le> 0" 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   410
by (drule mult_right_mono[of b 0], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   411
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   412
lemma mult_neg_neg: "[| a < (0::'a::ordered_ring_strict); b < 0 |] ==> 0 < a*b"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   413
by (drule mult_strict_right_mono_neg, auto)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   414
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   415
lemma mult_nonpos_nonpos: "[| a \<le> (0::'a::pordered_ring); b \<le> 0 |] ==> 0 \<le> a*b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   416
by (drule mult_right_mono_neg[of a 0 b ], auto)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   417
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   418
lemma zero_less_mult_pos:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   419
     "[| 0 < a*b; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   420
apply (cases "b\<le>0") 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   421
 apply (auto simp add: order_le_less linorder_not_less)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   422
apply (drule_tac mult_pos_neg [of a b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   423
 apply (auto dest: order_less_not_sym)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   424
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   425
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   426
lemma zero_less_mult_pos2:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   427
     "[| 0 < b*a; 0 < a|] ==> 0 < (b::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   428
apply (cases "b\<le>0") 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   429
 apply (auto simp add: order_le_less linorder_not_less)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   430
apply (drule_tac mult_pos_neg2 [of a b]) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   431
 apply (auto dest: order_less_not_sym)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   432
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   433
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   434
lemma zero_less_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   435
     "((0::'a::ordered_ring_strict) < a*b) = (0 < a & 0 < b | a < 0 & b < 0)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   436
apply (auto simp add: order_le_less linorder_not_less mult_pos_pos 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   437
  mult_neg_neg)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   438
apply (blast dest: zero_less_mult_pos) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   439
apply (blast dest: zero_less_mult_pos2)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   440
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   441
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   442
lemma mult_eq_0_iff [simp]:
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   443
  fixes a b :: "'a::ring_no_zero_divisors"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   444
  shows "(a * b = 0) = (a = 0 \<or> b = 0)"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   445
by (cases "a = 0 \<or> b = 0", auto dest: no_zero_divisors)
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   446
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   447
instance ordered_ring_strict \<subseteq> ring_no_zero_divisors
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   448
apply intro_classes
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   449
apply (auto simp add: linorder_not_less order_le_less linorder_neq_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   450
apply (force dest: mult_strict_right_mono_neg mult_strict_right_mono)+
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   451
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   452
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   453
lemma zero_le_mult_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   454
     "((0::'a::ordered_ring_strict) \<le> a*b) = (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   455
by (auto simp add: eq_commute [of 0] order_le_less linorder_not_less
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   456
                   zero_less_mult_iff)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   457
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   458
lemma mult_less_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   459
     "(a*b < (0::'a::ordered_ring_strict)) = (0 < a & b < 0 | a < 0 & 0 < b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   460
apply (insert zero_less_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   461
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   462
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   463
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   464
lemma mult_le_0_iff:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   465
     "(a*b \<le> (0::'a::ordered_ring_strict)) = (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   466
apply (insert zero_le_mult_iff [of "-a" b]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   467
apply (force simp add: minus_mult_left[symmetric]) 
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   468
done
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   469
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   470
lemma split_mult_pos_le: "(0 \<le> a & 0 \<le> b) | (a \<le> 0 & b \<le> 0) \<Longrightarrow> 0 \<le> a * (b::_::pordered_ring)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   471
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   472
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   473
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> (0::_::pordered_cancel_semiring)" 
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   474
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   475
23095
45f10b70e891 Squared things out.
obua
parents: 23073
diff changeset
   476
lemma zero_le_square[simp]: "(0::'a::ordered_ring_strict) \<le> a*a"
45f10b70e891 Squared things out.
obua
parents: 23073
diff changeset
   477
by (simp add: zero_le_mult_iff linorder_linear)
45f10b70e891 Squared things out.
obua
parents: 23073
diff changeset
   478
45f10b70e891 Squared things out.
obua
parents: 23073
diff changeset
   479
lemma not_square_less_zero[simp]: "\<not> (a * a < (0::'a::ordered_ring_strict))"
45f10b70e891 Squared things out.
obua
parents: 23073
diff changeset
   480
by (simp add: not_less)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   481
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   482
text{*Proving axiom @{text zero_less_one} makes all @{text ordered_semidom}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   483
      theorems available to members of @{term ordered_idom} *}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   484
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   485
instance ordered_idom \<subseteq> ordered_semidom
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   486
proof
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   487
  have "(0::'a) \<le> 1*1" by (rule zero_le_square)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   488
  thus "(0::'a) < 1" by (simp add: order_le_less) 
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   489
qed
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   490
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   491
instance ordered_idom \<subseteq> idom ..
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   492
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   493
text{*All three types of comparision involving 0 and 1 are covered.*}
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   494
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   495
lemmas one_neq_zero = zero_neq_one [THEN not_sym]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
   496
declare one_neq_zero [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   497
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   498
lemma zero_le_one [simp]: "(0::'a::ordered_semidom) \<le> 1"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   499
  by (rule zero_less_one [THEN order_less_imp_le]) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   500
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   501
lemma not_one_le_zero [simp]: "~ (1::'a::ordered_semidom) \<le> 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   502
by (simp add: linorder_not_le) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   503
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   504
lemma not_one_less_zero [simp]: "~ (1::'a::ordered_semidom) < 0"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   505
by (simp add: linorder_not_less) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   506
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   507
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   508
subsection{*More Monotonicity*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   509
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   510
text{*Strict monotonicity in both arguments*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   511
lemma mult_strict_mono:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   512
     "[|a<b; c<d; 0<b; 0\<le>c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   513
apply (cases "c=0")
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   514
 apply (simp add: mult_pos_pos) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   515
apply (erule mult_strict_right_mono [THEN order_less_trans])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   516
 apply (force simp add: order_le_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   517
apply (erule mult_strict_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   518
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   519
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   520
text{*This weaker variant has more natural premises*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   521
lemma mult_strict_mono':
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   522
     "[| a<b; c<d; 0 \<le> a; 0 \<le> c|] ==> a * c < b * (d::'a::ordered_semiring_strict)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   523
apply (rule mult_strict_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   524
apply (blast intro: order_le_less_trans)+
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   525
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   526
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   527
lemma mult_mono:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   528
     "[|a \<le> b; c \<le> d; 0 \<le> b; 0 \<le> c|] 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   529
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   530
apply (erule mult_right_mono [THEN order_trans], assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   531
apply (erule mult_left_mono, assumption)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   532
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   533
21258
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   534
lemma mult_mono':
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   535
     "[|a \<le> b; c \<le> d; 0 \<le> a; 0 \<le> c|] 
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   536
      ==> a * c  \<le>  b * (d::'a::pordered_semiring)"
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   537
apply (rule mult_mono)
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   538
apply (fast intro: order_trans)+
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   539
done
62f25a96f0c1 added lemma mult_mono'
huffman
parents: 21199
diff changeset
   540
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   541
lemma less_1_mult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::'a::ordered_semidom)"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   542
apply (insert mult_strict_mono [of 1 m 1 n]) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   543
apply (simp add:  order_less_trans [OF zero_less_one]) 
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   544
done
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
   545
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   546
lemma mult_less_le_imp_less: "(a::'a::ordered_semiring_strict) < b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   547
    c <= d ==> 0 <= a ==> 0 < c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   548
  apply (subgoal_tac "a * c < b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   549
  apply (erule order_less_le_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   550
  apply (erule mult_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   551
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   552
  apply (erule mult_strict_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   553
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   554
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   555
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   556
lemma mult_le_less_imp_less: "(a::'a::ordered_semiring_strict) <= b ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   557
    c < d ==> 0 < a ==> 0 <= c ==> a * c < b * d"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   558
  apply (subgoal_tac "a * c <= b * c")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   559
  apply (erule order_le_less_trans)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   560
  apply (erule mult_strict_left_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   561
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   562
  apply (erule mult_right_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   563
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   564
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   565
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   566
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   567
subsection{*Cancellation Laws for Relationships With a Common Factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   568
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   569
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   570
   also with the relations @{text "\<le>"} and equality.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   571
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   572
text{*These ``disjunction'' versions produce two cases when the comparison is
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   573
 an assumption, but effectively four when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   574
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   575
lemma mult_less_cancel_right_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   576
    "(a*c < b*c) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   577
apply (cases "c = 0")
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   578
apply (auto simp add: linorder_neq_iff mult_strict_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   579
                      mult_strict_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   580
apply (auto simp add: linorder_not_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   581
                      linorder_not_le [symmetric, of "a*c"]
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   582
                      linorder_not_le [symmetric, of a])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   583
apply (erule_tac [!] notE)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   584
apply (auto simp add: order_less_imp_le mult_right_mono 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   585
                      mult_right_mono_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   586
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   587
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   588
lemma mult_less_cancel_left_disj:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   589
    "(c*a < c*b) = ((0 < c & a < b) | (c < 0 & b < (a::'a::ordered_ring_strict)))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   590
apply (cases "c = 0")
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   591
apply (auto simp add: linorder_neq_iff mult_strict_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   592
                      mult_strict_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   593
apply (auto simp add: linorder_not_less 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   594
                      linorder_not_le [symmetric, of "c*a"]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   595
                      linorder_not_le [symmetric, of a])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   596
apply (erule_tac [!] notE)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   597
apply (auto simp add: order_less_imp_le mult_left_mono 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   598
                      mult_left_mono_neg)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   599
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   600
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   601
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   602
text{*The ``conjunction of implication'' lemmas produce two cases when the
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   603
comparison is a goal, but give four when the comparison is an assumption.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   604
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   605
lemma mult_less_cancel_right:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   606
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   607
  shows      "(a*c < b*c) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   608
by (insert mult_less_cancel_right_disj [of a c b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   609
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   610
lemma mult_less_cancel_left:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   611
  fixes c :: "'a :: ordered_ring_strict"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   612
  shows      "(c*a < c*b) = ((0 \<le> c --> a < b) & (c \<le> 0 --> b < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   613
by (insert mult_less_cancel_left_disj [of c a b], auto)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   614
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   615
lemma mult_le_cancel_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   616
     "(a*c \<le> b*c) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   617
by (simp add: linorder_not_less [symmetric] mult_less_cancel_right_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   618
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   619
lemma mult_le_cancel_left:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   620
     "(c*a \<le> c*b) = ((0<c --> a\<le>b) & (c<0 --> b \<le> (a::'a::ordered_ring_strict)))"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   621
by (simp add: linorder_not_less [symmetric] mult_less_cancel_left_disj)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   622
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   623
lemma mult_less_imp_less_left:
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   624
      assumes less: "c*a < c*b" and nonneg: "0 \<le> c"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   625
      shows "a < (b::'a::ordered_semiring_strict)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   626
proof (rule ccontr)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   627
  assume "~ a < b"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   628
  hence "b \<le> a" by (simp add: linorder_not_less)
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   629
  hence "c*b \<le> c*a" using nonneg by (rule mult_left_mono)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   630
  with this and less show False 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   631
    by (simp add: linorder_not_less [symmetric])
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   632
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   633
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   634
lemma mult_less_imp_less_right:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   635
  assumes less: "a*c < b*c" and nonneg: "0 <= c"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   636
  shows "a < (b::'a::ordered_semiring_strict)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   637
proof (rule ccontr)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   638
  assume "~ a < b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   639
  hence "b \<le> a" by (simp add: linorder_not_less)
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   640
  hence "b*c \<le> a*c" using nonneg by (rule mult_right_mono)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   641
  with this and less show False 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   642
    by (simp add: linorder_not_less [symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   643
qed  
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   644
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   645
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   646
lemma mult_cancel_right [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   647
  fixes a b c :: "'a::ring_no_zero_divisors"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   648
  shows "(a * c = b * c) = (c = 0 \<or> a = b)"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   649
proof -
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   650
  have "(a * c = b * c) = ((a - b) * c = 0)"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   651
    by (simp add: left_diff_distrib)
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   652
  thus ?thesis
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   653
    by (simp add: disj_commute)
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   654
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   655
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   656
lemma mult_cancel_left [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   657
  fixes a b c :: "'a::ring_no_zero_divisors"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   658
  shows "(c * a = c * b) = (c = 0 \<or> a = b)"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   659
proof -
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   660
  have "(c * a = c * b) = (c * (a - b) = 0)"
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   661
    by (simp add: right_diff_distrib)
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   662
  thus ?thesis
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   663
    by simp
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   664
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   665
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   666
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   667
subsubsection{*Special Cancellation Simprules for Multiplication*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   668
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   669
text{*These also produce two cases when the comparison is a goal.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   670
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   671
lemma mult_le_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   672
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   673
  shows "(c \<le> b*c) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   674
by (insert mult_le_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   675
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   676
lemma mult_le_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   677
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   678
  shows "(a*c \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   679
by (insert mult_le_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   680
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   681
lemma mult_le_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   682
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   683
  shows "(c \<le> c*b) = ((0<c --> 1\<le>b) & (c<0 --> b \<le> 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   684
by (insert mult_le_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   685
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   686
lemma mult_le_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   687
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   688
  shows "(c*a \<le> c) = ((0<c --> a\<le>1) & (c<0 --> 1 \<le> a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   689
by (insert mult_le_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   690
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   691
lemma mult_less_cancel_right1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   692
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   693
  shows "(c < b*c) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   694
by (insert mult_less_cancel_right [of 1 c b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   695
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   696
lemma mult_less_cancel_right2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   697
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   698
  shows "(a*c < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   699
by (insert mult_less_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   700
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   701
lemma mult_less_cancel_left1:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   702
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   703
  shows "(c < c*b) = ((0 \<le> c --> 1<b) & (c \<le> 0 --> b < 1))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   704
by (insert mult_less_cancel_left [of c 1 b], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   705
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   706
lemma mult_less_cancel_left2:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   707
  fixes c :: "'a :: ordered_idom"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   708
  shows "(c*a < c) = ((0 \<le> c --> a<1) & (c \<le> 0 --> 1 < a))"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   709
by (insert mult_less_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   710
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   711
lemma mult_cancel_right1 [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   712
  fixes c :: "'a :: dom"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   713
  shows "(c = b*c) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   714
by (insert mult_cancel_right [of 1 c b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   715
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   716
lemma mult_cancel_right2 [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   717
  fixes c :: "'a :: dom"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   718
  shows "(a*c = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   719
by (insert mult_cancel_right [of a c 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   720
 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   721
lemma mult_cancel_left1 [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   722
  fixes c :: "'a :: dom"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   723
  shows "(c = c*b) = (c = 0 | b=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   724
by (insert mult_cancel_left [of c 1 b], force)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   725
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   726
lemma mult_cancel_left2 [simp]:
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   727
  fixes c :: "'a :: dom"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   728
  shows "(c*a = c) = (c = 0 | a=1)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   729
by (insert mult_cancel_left [of c a 1], simp)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   730
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   731
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   732
text{*Simprules for comparisons where common factors can be cancelled.*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   733
lemmas mult_compare_simps =
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   734
    mult_le_cancel_right mult_le_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   735
    mult_le_cancel_right1 mult_le_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   736
    mult_le_cancel_left1 mult_le_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   737
    mult_less_cancel_right mult_less_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   738
    mult_less_cancel_right1 mult_less_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   739
    mult_less_cancel_left1 mult_less_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   740
    mult_cancel_right mult_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   741
    mult_cancel_right1 mult_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   742
    mult_cancel_left1 mult_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   743
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
   744
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   745
text{*This list of rewrites decides ring equalities by ordered rewriting.*}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   746
lemmas ring_eq_simps =  
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   747
(*  mult_ac*)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   748
  left_distrib right_distrib left_diff_distrib right_diff_distrib
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   749
  group_eq_simps
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   750
(*  add_ac
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   751
  add_diff_eq diff_add_eq diff_diff_eq diff_diff_eq2
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
   752
  diff_eq_eq eq_diff_eq *)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   753
    
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   754
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   755
subsection {* Fields *}
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   756
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   757
lemma right_inverse_eq: "b \<noteq> 0 ==> (a / b = 1) = (a = (b::'a::field))"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   758
proof
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   759
  assume neq: "b \<noteq> 0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   760
  {
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   761
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   762
    also assume "a / b = 1"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   763
    finally show "a = b" by simp
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   764
  next
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   765
    assume "a = b"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   766
    with neq show "a / b = 1" by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   767
  }
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   768
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   769
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   770
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 ==> inverse (a::'a::field) = 1/a"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   771
by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   772
23398
0b5a400c7595 made divide_self a simp rule
nipkow
parents: 23389
diff changeset
   773
lemma divide_self[simp]: "a \<noteq> 0 ==> a / (a::'a::field) = 1"
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   774
  by (simp add: divide_inverse)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
   775
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   776
lemma divide_zero [simp]: "a / 0 = (0::'a::{field,division_by_zero})"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   777
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   778
15228
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   779
lemma divide_self_if [simp]:
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   780
     "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   781
  by (simp add: divide_self)
4d332d10fa3d revised simprules for division
paulson
parents: 15197
diff changeset
   782
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   783
lemma divide_zero_left [simp]: "0/a = (0::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   784
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   785
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   786
lemma inverse_eq_divide: "inverse (a::'a::field) = 1/a"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   787
by (simp add: divide_inverse)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   788
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   789
lemma add_divide_distrib: "(a+b)/(c::'a::field) = a/c + b/c"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   790
by (simp add: divide_inverse left_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   791
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
   792
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   793
text{*Compared with @{text mult_eq_0_iff}, this version removes the requirement
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   794
      of an ordering.*}
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   795
lemma field_mult_eq_0_iff [simp]:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   796
  "(a*b = (0::'a::division_ring)) = (a = 0 | b = 0)"
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   797
by simp
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   798
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   799
text{*Cancellation of equalities with a common factor*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   800
lemma field_mult_cancel_right_lemma:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   801
      assumes cnz: "c \<noteq> (0::'a::division_ring)"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   802
         and eq:  "a*c = b*c"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   803
        shows "a=b"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   804
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   805
  have "(a * c) * inverse c = (b * c) * inverse c"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   806
    by (simp add: eq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   807
  thus "a=b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   808
    by (simp add: mult_assoc cnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   809
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   810
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   811
lemma field_mult_cancel_right [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   812
     "(a*c = b*c) = (c = (0::'a::division_ring) | a=b)"
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   813
by simp
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   814
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
   815
lemma field_mult_cancel_left [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   816
     "(c*a = c*b) = (c = (0::'a::division_ring) | a=b)"
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   817
by simp
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   818
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   819
lemma nonzero_imp_inverse_nonzero:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   820
  "a \<noteq> 0 ==> inverse a \<noteq> (0::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   821
proof
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   822
  assume ianz: "inverse a = 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   823
  assume "a \<noteq> 0"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   824
  hence "1 = a * inverse a" by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   825
  also have "... = 0" by (simp add: ianz)
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   826
  finally have "1 = (0::'a::division_ring)" .
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   827
  thus False by (simp add: eq_commute)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   828
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   829
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   830
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   831
subsection{*Basic Properties of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   832
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   833
lemma inverse_zero_imp_zero: "inverse a = 0 ==> a = (0::'a::division_ring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   834
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   835
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   836
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   837
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   838
lemma inverse_nonzero_imp_nonzero:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   839
   "inverse a = 0 ==> a = (0::'a::division_ring)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   840
apply (rule ccontr) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   841
apply (blast dest: nonzero_imp_inverse_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   842
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   843
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   844
lemma inverse_nonzero_iff_nonzero [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   845
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   846
by (force dest: inverse_nonzero_imp_nonzero) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   847
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   848
lemma nonzero_inverse_minus_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   849
      assumes [simp]: "a\<noteq>0"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   850
      shows "inverse(-a) = -inverse(a::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   851
proof -
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   852
  have "-a * inverse (- a) = -a * - inverse a"
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   853
    by simp
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   854
  thus ?thesis 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   855
    by (simp only: field_mult_cancel_left, simp)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   856
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   857
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   858
lemma inverse_minus_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   859
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   860
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   861
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   862
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   863
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   864
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   865
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   866
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   867
lemma nonzero_inverse_eq_imp_eq:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   868
      assumes inveq: "inverse a = inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   869
	  and anz:  "a \<noteq> 0"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
   870
	  and bnz:  "b \<noteq> 0"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   871
	 shows "a = (b::'a::division_ring)"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   872
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   873
  have "a * inverse b = a * inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   874
    by (simp add: inveq)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   875
  hence "(a * inverse b) * b = (a * inverse a) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   876
    by simp
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   877
  thus "a = b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   878
    by (simp add: mult_assoc anz bnz)
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
   879
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   880
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   881
lemma inverse_eq_imp_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   882
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   883
apply (cases "a=0 | b=0") 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   884
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   885
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   886
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   887
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   888
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   889
lemma inverse_eq_iff_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   890
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   891
by (force dest!: inverse_eq_imp_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   892
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   893
lemma nonzero_inverse_inverse_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   894
      assumes [simp]: "a \<noteq> 0"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   895
      shows "inverse(inverse (a::'a::division_ring)) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   896
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   897
  have "(inverse (inverse a) * inverse a) * a = a" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   898
    by (simp add: nonzero_imp_inverse_nonzero)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   899
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   900
    by (simp add: mult_assoc)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   901
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   902
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   903
lemma inverse_inverse_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   904
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   905
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   906
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   907
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   908
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   909
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   910
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   911
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   912
lemma inverse_1 [simp]: "inverse 1 = (1::'a::division_ring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   913
  proof -
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   914
  have "inverse 1 * 1 = (1::'a::division_ring)" 
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   915
    by (rule left_inverse [OF zero_neq_one [symmetric]])
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   916
  thus ?thesis  by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   917
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   918
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   919
lemma inverse_unique: 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   920
  assumes ab: "a*b = 1"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   921
  shows "inverse a = (b::'a::division_ring)"
15077
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   922
proof -
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   923
  have "a \<noteq> 0" using ab by auto
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   924
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   925
  ultimately show ?thesis by (simp add: mult_assoc [symmetric]) 
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   926
qed
89840837108e converting Hyperreal/Transcendental to Isar script
paulson
parents: 15010
diff changeset
   927
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   928
lemma nonzero_inverse_mult_distrib: 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   929
      assumes anz: "a \<noteq> 0"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   930
          and bnz: "b \<noteq> 0"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   931
      shows "inverse(a*b) = inverse(b) * inverse(a::'a::division_ring)"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   932
  proof -
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   933
  have "inverse(a*b) * (a * b) * inverse(b) = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   934
    by (simp add: field_mult_eq_0_iff anz bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   935
  hence "inverse(a*b) * a = inverse(b)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   936
    by (simp add: mult_assoc bnz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   937
  hence "inverse(a*b) * a * inverse(a) = inverse(b) * inverse(a)" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   938
    by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   939
  thus ?thesis
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   940
    by (simp add: mult_assoc anz)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   941
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   942
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   943
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   944
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   945
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   946
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   947
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   948
    assume "a \<noteq> 0 & b \<noteq> 0" 
22993
haftmann
parents: 22990
diff changeset
   949
    thus ?thesis
haftmann
parents: 22990
diff changeset
   950
      by (simp add: nonzero_inverse_mult_distrib mult_commute)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   951
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   952
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
22993
haftmann
parents: 22990
diff changeset
   953
    thus ?thesis
haftmann
parents: 22990
diff changeset
   954
      by force
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   955
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   956
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   957
lemma division_ring_inverse_add:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   958
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   959
   ==> inverse a + inverse b = inverse a * (a+b) * inverse b"
22993
haftmann
parents: 22990
diff changeset
   960
  by (simp add: right_distrib left_distrib mult_assoc)
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   961
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   962
lemma division_ring_inverse_diff:
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   963
  "[|(a::'a::division_ring) \<noteq> 0; b \<noteq> 0|]
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   964
   ==> inverse a - inverse b = inverse a * (b-a) * inverse b"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   965
by (simp add: right_diff_distrib left_diff_distrib mult_assoc)
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   966
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   967
text{*There is no slick version using division by zero.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   968
lemma inverse_add:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   969
     "[|a \<noteq> 0;  b \<noteq> 0|]
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   970
      ==> inverse a + inverse b = (a+b) * inverse a * inverse (b::'a::field)"
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   971
by (simp add: division_ring_inverse_add mult_ac)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   972
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   973
lemma inverse_divide [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   974
      "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
   975
  by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
   976
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
   977
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   978
subsection {* Calculations with fractions *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
   979
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   980
lemma nonzero_mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   981
  assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   982
    shows "(c*a)/(c*b) = a/(b::'a::field)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   983
proof -
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   984
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   985
    by (simp add: field_mult_eq_0_iff divide_inverse 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   986
                  nonzero_inverse_mult_distrib)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   987
  also have "... =  a * inverse b * (inverse c * c)"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   988
    by (simp only: mult_ac)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   989
  also have "... =  a * inverse b"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   990
    by simp
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   991
    finally show ?thesis 
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   992
    by (simp add: divide_inverse)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   993
qed
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   994
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   995
lemma mult_divide_cancel_left:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   996
     "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
   997
apply (cases "b = 0")
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   998
apply (simp_all add: nonzero_mult_divide_cancel_left)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
   999
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1000
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1001
lemma nonzero_mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1002
     "[|b\<noteq>0; c\<noteq>0|] ==> (a*c) / (b*c) = a/(b::'a::field)"
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1003
by (simp add: mult_commute [of _ c] nonzero_mult_divide_cancel_left) 
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1004
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1005
lemma mult_divide_cancel_right:
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1006
     "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1007
apply (cases "b = 0")
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1008
apply (simp_all add: nonzero_mult_divide_cancel_right)
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1009
done
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1010
lemma divide_1 [simp]: "a/1 = (a::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1011
  by (simp add: divide_inverse)
14284
f1abe67c448a re-organisation of Real/RealArith0.ML; more `Isar scripts
paulson
parents: 14277
diff changeset
  1012
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1013
lemma times_divide_eq_right: "a * (b/c) = (a*b) / (c::'a::field)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1014
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1015
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1016
lemma times_divide_eq_left: "(b/c) * a = (b*a) / (c::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1017
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1018
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1019
lemma divide_divide_eq_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1020
     "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1021
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1022
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1023
lemma divide_divide_eq_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1024
     "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1025
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1026
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1027
lemma add_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1028
    x / y + w / z = (x * z + w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1029
  apply (subgoal_tac "x / y = (x * z) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1030
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1031
  apply (subgoal_tac "w / z = (w * y) / (y * z)")
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1032
  apply (erule ssubst)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1033
  apply (rule add_divide_distrib [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1034
  apply (subst mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1035
  apply (erule nonzero_mult_divide_cancel_left [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1036
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1037
  apply (erule nonzero_mult_divide_cancel_right [THEN sym])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1038
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1039
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1040
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1041
23406
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1042
lemma nonzero_mult_divide_cancel_right':
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1043
  "b \<noteq> 0 \<Longrightarrow> a * b / b = (a::'a::field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1044
proof -
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1045
  assume b: "b \<noteq> 0"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1046
  have "a * b / b = a * (b / b)" by (simp add: times_divide_eq_right)
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1047
  also have "\<dots> = a" by (simp add: divide_self b)
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1048
  finally show "a * b / b = a" .
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1049
qed
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1050
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1051
lemma nonzero_mult_divide_cancel_left':
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1052
  "a \<noteq> 0 \<Longrightarrow> a * b / a = (b::'a::field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1053
proof -
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1054
  assume b: "a \<noteq> 0"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1055
  have "a * b / a = b * a / a" by (simp add: mult_commute)
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1056
  also have "\<dots> = b * (a / a)" by (simp add: times_divide_eq_right)
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1057
  also have "\<dots> = b" by (simp add: divide_self b)
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1058
  finally show "a * b / a = b" .
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1059
qed
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1060
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1061
subsubsection{*Special Cancellation Simprules for Division*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1062
23400
a64b39e5809b The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents: 23398
diff changeset
  1063
(* FIXME need not be a simp-rule once "divide_cancel_factor" has been fixed *)
a64b39e5809b The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents: 23398
diff changeset
  1064
lemma mult_divide_cancel_left_if[simp]:
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1065
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1066
  shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1067
by (simp add: mult_divide_cancel_left)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1068
23400
a64b39e5809b The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents: 23398
diff changeset
  1069
(* Not needed anymore because now subsumed by simproc "divide_cancel_factor"
a64b39e5809b The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents: 23398
diff changeset
  1070
lemma mult_divide_cancel_right_if:
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1071
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1072
  shows "(a*c) / (b*c) = (if c=0 then 0 else a/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1073
by (simp add: mult_divide_cancel_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1074
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1075
lemma mult_divide_cancel_left_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1076
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1077
  shows "c / (c*b) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1078
apply (insert mult_divide_cancel_left_if [of c 1 b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1079
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1080
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1081
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1082
lemma mult_divide_cancel_left_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1083
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1084
  shows "(c*a) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1085
apply (insert mult_divide_cancel_left_if [of c a 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1086
apply (simp del: mult_divide_cancel_left_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1087
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1088
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1089
lemma mult_divide_cancel_right_if1 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1090
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1091
  shows "c / (b*c) = (if c=0 then 0 else 1/b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1092
apply (insert mult_divide_cancel_right_if [of 1 c b]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1093
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1094
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1095
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1096
lemma mult_divide_cancel_right_if2 [simp]:
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1097
  fixes c :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1098
  shows "(a*c) / c = (if c=0 then 0 else a)" 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1099
apply (insert mult_divide_cancel_right_if [of a c 1]) 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1100
apply (simp del: mult_divide_cancel_right_if)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1101
done
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1102
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1103
text{*Two lemmas for cancelling the denominator*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1104
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1105
lemma times_divide_self_right [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1106
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1107
  shows "a * (b/a) = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1108
by (simp add: times_divide_eq_right)
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1109
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1110
lemma times_divide_self_left [simp]: 
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1111
  fixes a :: "'a :: {field,division_by_zero}"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1112
  shows "(b/a) * a = (if a=0 then 0 else b)"
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1113
by (simp add: times_divide_eq_left)
23400
a64b39e5809b The simprocs "divide_cancel_factor" and "ring_eq_cancel_factor" no
nipkow
parents: 23398
diff changeset
  1114
*)
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1115
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1116
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1117
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1118
lemma nonzero_minus_divide_left: "b \<noteq> 0 ==> - (a/b) = (-a) / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1119
by (simp add: divide_inverse minus_mult_left)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1120
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1121
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a/b) = a / -(b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1122
by (simp add: divide_inverse nonzero_inverse_minus_eq minus_mult_right)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1123
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1124
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a)/(-b) = a / (b::'a::field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1125
by (simp add: divide_inverse nonzero_inverse_minus_eq)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1126
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1127
lemma minus_divide_left: "- (a/b) = (-a) / (b::'a::field)"
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1128
by (simp add: divide_inverse minus_mult_left [symmetric])
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1129
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1130
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1131
by (simp add: divide_inverse minus_mult_right [symmetric])
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1132
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1133
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1134
text{*The effect is to extract signs from divisions*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1135
lemmas divide_minus_left = minus_divide_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1136
lemmas divide_minus_right = minus_divide_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1137
declare divide_minus_left [simp]   divide_minus_right [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1138
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1139
text{*Also, extract signs from products*}
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1140
lemmas mult_minus_left = minus_mult_left [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1141
lemmas mult_minus_right = minus_mult_right [symmetric]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1142
declare mult_minus_left [simp]   mult_minus_right [simp]
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1143
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1144
lemma minus_divide_divide [simp]:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1145
     "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1146
apply (cases "b=0", simp) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1147
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1148
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1149
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1150
lemma diff_divide_distrib: "(a-b)/(c::'a::field) = a/c - b/c"
14387
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1151
by (simp add: diff_minus add_divide_distrib) 
e96d5c42c4b0 Polymorphic treatment of binary arithmetic using axclasses
paulson
parents: 14377
diff changeset
  1152
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1153
lemma diff_frac_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1154
    x / y - w / z = (x * z - w * y) / (y * z)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1155
  apply (subst diff_def)+
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1156
  apply (subst minus_divide_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1157
  apply (subst add_frac_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1158
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1159
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1160
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1161
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1162
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1163
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1164
lemma positive_imp_inverse_positive: 
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1165
      assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1166
  proof -
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1167
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1168
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1169
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1170
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1171
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1172
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1173
lemma negative_imp_inverse_negative:
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1174
     "a < 0 ==> inverse a < (0::'a::ordered_field)"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1175
  by (insert positive_imp_inverse_positive [of "-a"], 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1176
      simp add: nonzero_inverse_minus_eq order_less_imp_not_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1177
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1178
lemma inverse_le_imp_le:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1179
      assumes invle: "inverse a \<le> inverse b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1180
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1181
	 shows "b \<le> (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1182
  proof (rule classical)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1183
  assume "~ b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1184
  hence "a < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1185
    by (simp add: linorder_not_le)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1186
  hence bpos: "0 < b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1187
    by (blast intro: apos order_less_trans)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1188
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1189
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1190
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1191
    by (simp add: bpos order_less_imp_le mult_right_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1192
  thus "b \<le> a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1193
    by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1194
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1195
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1196
lemma inverse_positive_imp_positive:
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1197
  assumes inv_gt_0: "0 < inverse a"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1198
    and nz: "a \<noteq> 0"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1199
  shows "0 < (a::'a::ordered_field)"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1200
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1201
  have "0 < inverse (inverse a)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1202
    using inv_gt_0 by (rule positive_imp_inverse_positive)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1203
  thus "0 < a"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1204
    using nz by (simp add: nonzero_inverse_inverse_eq)
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1205
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1206
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1207
lemma inverse_positive_iff_positive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1208
      "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1209
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1210
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1211
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1212
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1213
lemma inverse_negative_imp_negative:
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1214
  assumes inv_less_0: "inverse a < 0"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1215
    and nz:  "a \<noteq> 0"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1216
  shows "a < (0::'a::ordered_field)"
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1217
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1218
  have "inverse (inverse a) < 0"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1219
    using inv_less_0 by (rule negative_imp_inverse_negative)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1220
  thus "a < 0"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1221
    using nz by (simp add: nonzero_inverse_inverse_eq)
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1222
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1223
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1224
lemma inverse_negative_iff_negative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1225
      "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1226
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1227
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1228
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1229
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1230
lemma inverse_nonnegative_iff_nonnegative [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1231
      "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1232
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1233
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1234
lemma inverse_nonpositive_iff_nonpositive [simp]:
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1235
      "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1236
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1237
23406
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1238
lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1239
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1240
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1241
  have m1: "- (1::'a) < 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1242
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1243
  have "(- 1) + x < x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1244
  thus "\<exists>y. y < x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1245
qed
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1246
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1247
lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1248
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1249
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1250
  have m1: " (1::'a) > 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1251
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1252
  have "1 + x > x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1253
  thus "\<exists>y. y > x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1254
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1255
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1256
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1257
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1258
lemma less_imp_inverse_less:
14269
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1259
      assumes less: "a < b"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1260
	  and apos:  "0 < a"
502a7c95de73 conversion of some Real theories to Isar scripts
paulson
parents: 14268
diff changeset
  1261
	shows "inverse b < inverse (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1262
  proof (rule ccontr)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1263
  assume "~ inverse b < inverse a"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1264
  hence "inverse a \<le> inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1265
    by (simp add: linorder_not_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1266
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1267
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1268
  thus False
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1269
    by (rule notE [OF _ less])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1270
  qed
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1271
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1272
lemma inverse_less_imp_less:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1273
   "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1274
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1275
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1276
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1277
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1278
text{*Both premises are essential. Consider -1 and 1.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1279
lemma inverse_less_iff_less [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1280
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1281
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1282
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1283
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1284
lemma le_imp_inverse_le:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1285
   "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1286
  by (force simp add: order_le_less less_imp_inverse_less)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1287
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1288
lemma inverse_le_iff_le [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1289
     "[|0 < a; 0 < b|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1290
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1291
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1292
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1293
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1294
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1295
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1296
lemma inverse_le_imp_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1297
   "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1298
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1299
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1300
   prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1301
  apply (insert inverse_le_imp_le [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1302
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1303
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1304
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1305
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1306
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1307
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1308
   prefer 2 apply (blast intro: order_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1309
  apply (insert less_imp_inverse_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1310
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1311
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1312
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1313
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1314
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1315
  apply (rule classical) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1316
  apply (subgoal_tac "a < 0") 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1317
   prefer 2
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1318
   apply (force simp add: linorder_not_less intro: order_le_less_trans) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1319
  apply (insert inverse_less_imp_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1320
  apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1321
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1322
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1323
lemma inverse_less_iff_less_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1324
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1325
      ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1326
  apply (insert inverse_less_iff_less [of "-b" "-a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1327
  apply (simp del: inverse_less_iff_less 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1328
	      add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1329
  done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1330
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1331
lemma le_imp_inverse_le_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1332
   "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1333
  by (force simp add: order_le_less less_imp_inverse_less_neg)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1334
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1335
lemma inverse_le_iff_le_neg [simp]:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1336
     "[|a < 0; b < 0|] 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1337
      ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1338
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1339
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1340
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1341
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1342
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1343
lemma one_less_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1344
    "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"proof cases
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1345
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1346
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1347
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1348
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1349
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1350
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1351
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1352
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1353
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1354
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1355
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1356
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1357
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1358
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1359
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1360
lemma inverse_eq_1_iff [simp]:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1361
    "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1362
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1363
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1364
lemma one_le_inverse_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1365
   "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1366
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1367
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1368
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1369
lemma inverse_less_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1370
   "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1371
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1372
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1373
lemma inverse_le_1_iff:
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1374
   "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1375
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1376
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1377
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1378
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1379
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1380
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1381
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1382
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1383
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1384
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1385
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1386
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1387
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1388
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1389
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1390
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1391
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1392
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1393
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1394
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1395
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1396
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1397
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1398
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1399
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1400
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1401
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1402
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1403
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1404
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1405
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1406
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1407
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1408
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1409
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1410
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1411
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1412
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1413
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1414
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1415
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1416
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1417
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1418
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1419
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1420
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1421
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1422
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1423
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1424
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1425
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1426
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1427
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1428
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1429
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1430
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1431
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1432
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1433
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1434
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1435
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1436
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1437
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1438
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1439
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1440
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1441
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1442
  hence "(a < b/c) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1443
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1444
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1445
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1446
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1447
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1448
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1449
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1450
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1451
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1452
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1453
  hence "(a < b/c) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1454
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1455
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1456
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1457
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1458
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1459
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1460
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1461
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1462
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1463
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1464
             else  a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1465
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1466
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1467
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1468
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1469
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1470
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1471
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1472
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1473
  hence "(b/c < a) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1474
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1475
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1476
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1477
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1478
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1479
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1480
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1481
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1482
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1483
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1484
  hence "(b/c < a) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1485
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1486
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1487
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1488
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1489
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1490
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1491
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1492
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1493
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1494
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1495
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1496
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1497
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1498
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1499
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1500
lemma nonzero_eq_divide_eq: "c\<noteq>0 ==> ((a::'a::field) = b/c) = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1501
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1502
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1503
  have "(a = b/c) = (a*c = (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1504
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1505
  also have "... = (a*c = b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1506
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1507
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1508
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1509
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1510
lemma eq_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1511
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1512
by (simp add: nonzero_eq_divide_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1513
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1514
lemma nonzero_divide_eq_eq: "c\<noteq>0 ==> (b/c = (a::'a::field)) = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1515
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1516
  assume [simp]: "c\<noteq>0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1517
  have "(b/c = a) = ((b/c)*c = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1518
    by (simp add: field_mult_cancel_right)
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1519
  also have "... = (b = a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1520
    by (simp add: divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1521
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1522
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1523
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1524
lemma divide_eq_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1525
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1526
by (force simp add: nonzero_divide_eq_eq) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1527
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1528
lemma divide_eq_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1529
    b = a * c ==> b / c = a"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1530
  by (subst divide_eq_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1531
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1532
lemma eq_divide_imp: "(c::'a::{division_by_zero,field}) ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1533
    a * c = b ==> a = b / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1534
  by (subst eq_divide_eq, simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1535
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1536
lemma frac_eq_eq: "(y::'a::field) ~= 0 ==> z ~= 0 ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1537
    (x / y = w / z) = (x * z = w * y)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1538
  apply (subst nonzero_eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1539
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1540
  apply (subst times_divide_eq_left)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1541
  apply (erule nonzero_divide_eq_eq) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1542
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1543
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1544
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1545
subsection{*Division and Signs*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1546
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1547
lemma zero_less_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1548
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1549
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1550
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1551
lemma divide_less_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1552
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1553
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1554
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1555
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1556
lemma zero_le_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1557
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1558
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1559
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1560
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1561
lemma divide_le_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1562
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1563
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1564
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1565
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1566
lemma divide_eq_0_iff [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1567
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1568
by (simp add: divide_inverse field_mult_eq_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1569
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1570
lemma divide_pos_pos: "0 < (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1571
    0 < y ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1572
  apply (subst pos_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1573
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1574
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1575
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1576
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1577
lemma divide_nonneg_pos: "0 <= (x::'a::ordered_field) ==> 0 < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1578
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1579
  apply (subst pos_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1580
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1581
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1582
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1583
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1584
lemma divide_neg_pos: "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1585
  apply (subst pos_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1586
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1587
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1588
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1589
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1590
lemma divide_nonpos_pos: "(x::'a::ordered_field) <= 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1591
    0 < y ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1592
  apply (subst pos_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1593
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1594
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1595
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1596
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1597
lemma divide_pos_neg: "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1598
  apply (subst neg_divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1599
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1600
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1601
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1602
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1603
lemma divide_nonneg_neg: "0 <= (x::'a::ordered_field) ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1604
    y < 0 ==> x / y <= 0"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1605
  apply (subst neg_divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1606
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1607
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1608
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1609
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1610
lemma divide_neg_neg: "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1611
  apply (subst neg_less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1612
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1613
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1614
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1615
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1616
lemma divide_nonpos_neg: "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1617
    0 <= x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1618
  apply (subst neg_le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1619
  apply assumption
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1620
  apply simp
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1621
done
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1622
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1623
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1624
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1625
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1626
lemma divide_cancel_right [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1627
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1628
apply (cases "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1629
apply (simp add: divide_inverse field_mult_cancel_right) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1630
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1631
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1632
lemma divide_cancel_left [simp]:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1633
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1634
apply (cases "c=0", simp) 
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1635
apply (simp add: divide_inverse field_mult_cancel_left) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1636
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1637
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1638
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1639
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1640
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1641
text{*Simplify expressions equated with 1*}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1642
lemma divide_eq_1_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1643
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1644
apply (cases "b=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1645
apply (simp add: right_inverse_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1646
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1647
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1648
lemma one_eq_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1649
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1650
by (simp add: eq_commute [of 1])  
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1651
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1652
lemma zero_eq_1_divide_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1653
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1654
apply (cases "a=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1655
apply (auto simp add: nonzero_eq_divide_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1656
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1657
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1658
lemma one_divide_eq_0_iff [simp]:
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1659
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1660
apply (cases "a=0", simp) 
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1661
apply (insert zero_neq_one [THEN not_sym]) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1662
apply (auto simp add: nonzero_divide_eq_eq) 
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1663
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1664
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1665
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
18623
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1666
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1667
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1668
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1669
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1670
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1671
declare zero_less_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1672
declare divide_less_0_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1673
declare zero_le_divide_1_iff [simp]
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1674
declare divide_le_0_1_iff [simp]
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1675
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1676
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1677
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1678
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1679
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1680
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1681
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1682
              positive_imp_inverse_positive) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1683
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1684
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1685
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1686
  by (force simp add: divide_strict_right_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1687
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1688
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1689
    ==> c <= 0 ==> b / c <= a / c"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1690
  apply (drule divide_right_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1691
  apply auto
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1692
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1693
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1694
lemma divide_strict_right_mono_neg:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1695
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1696
apply (drule divide_strict_right_mono [of _ _ "-c"], simp) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1697
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric]) 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1698
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1699
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1700
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1701
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1702
lemma divide_strict_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1703
       "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1704
by (force simp add: zero_less_mult_iff divide_inverse mult_strict_left_mono 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1705
      order_less_imp_not_eq order_less_imp_not_eq2  
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1706
      less_imp_inverse_less less_imp_inverse_less_neg) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1707
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1708
lemma divide_left_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1709
     "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1710
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1711
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1712
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1713
  apply (cases "c=0", simp add: divide_inverse)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1714
  apply (force simp add: divide_strict_left_mono order_le_less) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1715
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1716
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1717
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1718
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1719
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1720
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1721
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1722
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1723
lemma divide_strict_left_mono_neg:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1724
     "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1725
  apply (subgoal_tac "a \<noteq> 0 & b \<noteq> 0") 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1726
   prefer 2 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1727
   apply (force simp add: zero_less_mult_iff order_less_imp_not_eq) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1728
  apply (drule divide_strict_left_mono [of _ _ "-c"]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1729
   apply (simp_all add: mult_commute nonzero_minus_divide_left [symmetric]) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1730
  done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1731
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1732
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1733
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1734
lemma le_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1735
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1736
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1737
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1738
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1739
lemma divide_le_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1740
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1741
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1742
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1743
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1744
lemma less_divide_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1745
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1746
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1747
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1748
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1749
lemma divide_less_eq_1:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1750
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1751
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1752
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1753
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1754
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1755
subsection{*Conditional Simplification Rules: No Case Splits*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1756
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1757
lemma le_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1758
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1759
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1760
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1761
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1762
lemma le_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1763
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1764
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1765
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1766
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1767
lemma divide_le_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1768
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1769
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1770
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1771
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1772
lemma divide_le_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1773
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1774
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1775
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1776
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1777
lemma less_divide_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1778
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1779
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1780
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1781
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1782
lemma less_divide_eq_1_neg [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1783
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1784
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1785
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1786
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1787
lemma divide_less_eq_1_pos [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1788
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1789
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1790
by (auto simp add: divide_less_eq)
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1791
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1792
lemma divide_less_eq_1_neg [simp]:
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1793
  fixes a :: "'a :: {ordered_field,division_by_zero}"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1794
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1795
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1796
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1797
lemma eq_divide_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1798
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1799
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1800
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1801
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1802
lemma divide_eq_eq_1 [simp]:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1803
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1804
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1805
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1806
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1807
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1808
subsection {* Reasoning about inequalities with division *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1809
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1810
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1811
    ==> x * y <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1812
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1813
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1814
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1815
    ==> y * x <= x"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1816
  by (auto simp add: mult_compare_simps);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1817
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1818
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1819
    x / y <= z";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1820
  by (subst pos_divide_le_eq, assumption+);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1821
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1822
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1823
    z <= x / y";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1824
  by (subst pos_le_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1825
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1826
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1827
    x / y < z"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1828
  by (subst pos_divide_less_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1829
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1830
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1831
    z < x / y"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1832
  by (subst pos_less_divide_eq, assumption+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1833
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1834
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1835
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1836
  apply (rule mult_imp_div_pos_le)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1837
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1838
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1839
  apply (rule mult_imp_le_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1840
  apply (rule mult_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1841
  apply simp_all
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1842
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1843
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1844
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1845
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1846
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1847
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1848
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1849
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1850
  apply (erule mult_less_le_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1851
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1852
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1853
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1854
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1855
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1856
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1857
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1858
  apply (subst times_divide_eq_left);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1859
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1860
  apply (erule mult_le_less_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1861
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1862
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1863
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1864
lemmas times_divide_eq = times_divide_eq_right times_divide_eq_left
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1865
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1866
text{*It's not obvious whether these should be simprules or not. 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1867
  Their effect is to gather terms into one big fraction, like
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1868
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1869
  seem to need them.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1870
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1871
declare times_divide_eq [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1872
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1873
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1874
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1875
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1876
lemma less_add_one: "a < (a+1::'a::ordered_semidom)"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1877
proof -
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1878
  have "a+0 < (a+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1879
    by (blast intro: zero_less_one add_strict_left_mono) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1880
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1881
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1882
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1883
lemma zero_less_two: "0 < (1+1::'a::ordered_semidom)"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1884
  by (blast intro: order_less_trans zero_less_one less_add_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1885
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1886
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1887
by (simp add: zero_less_two pos_less_divide_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1888
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1889
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1890
by (simp add: zero_less_two pos_divide_less_eq right_distrib) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1891
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1892
lemma dense: "a < b ==> \<exists>r::'a::ordered_field. a < r & r < b"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1893
by (blast intro!: less_half_sum gt_half_sum)
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1894
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1895
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1896
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1897
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1898
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1899
  by (simp add: abs_if zero_less_one [THEN order_less_not_sym]) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1900
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1901
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1902
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1903
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1904
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1905
  have a: "(abs a) * (abs b) = ?x"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1906
    by (simp only: abs_prts[of a] abs_prts[of b] ring_eq_simps)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1907
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1908
    fix u v :: 'a
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1909
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1910
              u * v = pprt a * pprt b + pprt a * nprt b + 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  1911
                      nprt a * pprt b + nprt a * nprt b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1912
      apply (subst prts[of u], subst prts[of v])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1913
      apply (simp add: left_distrib right_distrib add_ac) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1914
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1915
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1916
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1917
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1918
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1919
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1920
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1921
    apply (rule_tac y="0::'a" in order_trans)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1922
    apply (rule addm2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1923
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1924
    apply (rule addm)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1925
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1926
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1927
  have yx: "?y <= ?x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  1928
    apply (simp add:diff_def)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1929
    apply (rule_tac y=0 in order_trans)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1930
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1931
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1932
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1933
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1934
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1935
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1936
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1937
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1938
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1939
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1940
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1941
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1942
lemma abs_eq_mult: 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1943
  assumes "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1944
  shows "abs (a*b) = abs a * abs (b::'a::lordered_ring)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1945
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1946
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1947
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1948
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1949
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1950
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1951
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1952
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1953
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1954
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1955
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1956
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1957
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1958
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1959
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1960
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1961
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1962
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1963
      apply (auto simp add: 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1964
	ring_eq_simps 
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  1965
	iff2imp[OF zero_le_iff_zero_nprt] iff2imp[OF le_zero_iff_zero_pprt]
15197
19e735596e51 Added antisymmetry simproc
nipkow
parents: 15178
diff changeset
  1966
	iff2imp[OF le_zero_iff_pprt_id] iff2imp[OF zero_le_iff_nprt_id])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1967
	apply(drule (1) mult_nonneg_nonpos[of a b], simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1968
	apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1969
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1970
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1971
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1972
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1973
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1974
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1975
      apply (insert prems)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  1976
      apply (auto simp add: ring_eq_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1977
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1978
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1979
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1980
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1981
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1982
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1983
lemma abs_mult: "abs (a * b) = abs a * abs (b::'a::ordered_idom)" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1984
by (simp add: abs_eq_mult linorder_linear)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1985
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1986
lemma abs_mult_self: "abs a * abs a = a * (a::'a::ordered_idom)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1987
by (simp add: abs_if) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1988
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1989
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1990
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1991
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1992
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1993
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1994
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1995
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1996
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1997
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  1998
      inverse (abs a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1999
apply (cases "a=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2000
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2001
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2002
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2003
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2004
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2005
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2006
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2007
lemma abs_divide [simp]:
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2008
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  2009
apply (cases "b=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2010
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2011
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2012
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2013
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2014
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2015
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2016
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2017
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2018
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2019
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2020
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2021
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2022
lemma eq_minus_self_iff: "(a = -a) = (a = (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2023
by (force simp add: order_eq_iff le_minus_self_iff minus_le_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2024
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2025
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2026
by (simp add: order_less_le le_minus_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2027
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2028
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2029
apply (simp add: order_less_le abs_le_iff)  
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2030
apply (auto simp add: abs_if minus_le_self_iff eq_minus_self_iff)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2031
apply (simp add: le_minus_self_iff linorder_neq_iff) 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2032
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2033
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2034
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2035
    (abs y) * x = abs (y * x)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2036
  apply (subst abs_mult);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2037
  apply simp;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2038
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2039
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2040
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2041
    abs x / y = abs (x / y)";
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2042
  apply (subst abs_divide);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2043
  apply (simp add: order_less_imp_le);
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2044
done;
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2045
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2046
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2047
subsection {* Bounds of products via negative and positive Part *}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2048
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2049
lemma mult_le_prts:
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2050
  assumes
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2051
  "a1 <= (a::'a::lordered_ring)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2052
  "a <= a2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2053
  "b1 <= b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2054
  "b <= b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2055
  shows
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2056
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2057
proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2058
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2059
    apply (subst prts[symmetric])+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2060
    apply simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2061
    done
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2062
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2063
    by (simp add: ring_eq_simps)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2064
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2065
    by (simp_all add: prems mult_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2066
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2067
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2068
    have "pprt a * nprt b <= pprt a * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2069
      by (simp add: mult_left_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2070
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2071
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2072
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2073
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2074
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2075
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2076
  proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2077
    have "nprt a * pprt b <= nprt a2 * pprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2078
      by (simp add: mult_right_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2079
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2080
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2081
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2082
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2083
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2084
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2085
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2086
    have "nprt a * nprt b <= nprt a * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2087
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2088
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2089
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2090
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2091
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2092
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2093
  ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2094
    by - (rule add_mono | simp)+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2095
qed
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2096
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2097
lemma mult_ge_prts:
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2098
  assumes
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2099
  "a1 <= (a::'a::lordered_ring)"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2100
  "a <= a2"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2101
  "b1 <= b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2102
  "b <= b2"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2103
  shows
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2104
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2105
proof - 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2106
  from prems have a1:"- a2 <= -a" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2107
  from prems have a2: "-a <= -a1" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2108
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2109
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2110
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2111
    by (simp only: minus_le_iff)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2112
  then show ?thesis by simp
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2113
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2114
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2115
22842
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2116
subsection {* Theorems for proof tools *}
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2117
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2118
lemma add_mono_thms_ordered_semiring:
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2119
  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2120
  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2121
    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2122
    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2123
    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2124
by (rule add_mono, clarify+)+
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2125
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2126
lemma add_mono_thms_ordered_field:
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2127
  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2128
  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2129
    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2130
    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2131
    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2132
    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2133
by (auto intro: add_strict_right_mono add_strict_left_mono
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2134
  add_less_le_mono add_le_less_mono add_strict_mono)
6d2fd4e0f984 added auxiliary lemmas for proof tools
haftmann
parents: 22548
diff changeset
  2135
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2136
end