src/Pure/Proof/proof_syntax.ML
author wenzelm
Wed Jun 18 18:55:08 2008 +0200 (2008-06-18)
changeset 27260 17d617c6b026
parent 26939 1035c89b4c02
child 28375 c879d88d038a
permissions -rw-r--r--
moved ProofContext.pretty_proof to ProofSyntax.pretty_proof;
read_term: imitate old behaviour (allow_dummies, mode_schematic);
berghofe@11522
     1
(*  Title:      Pure/Proof/proof_syntax.ML
berghofe@11522
     2
    ID:         $Id$
wenzelm@11539
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@11522
     4
berghofe@11522
     5
Function for parsing and printing proof terms.
berghofe@11522
     6
*)
berghofe@11522
     7
berghofe@11522
     8
signature PROOF_SYNTAX =
berghofe@11522
     9
sig
wenzelm@17078
    10
  val proofT: typ
wenzelm@17078
    11
  val add_proof_syntax: theory -> theory
wenzelm@17078
    12
  val disambiguate_names: theory -> Proofterm.proof ->
berghofe@11522
    13
    Proofterm.proof * Proofterm.proof Symtab.table
wenzelm@17078
    14
  val proof_of_term: theory -> Proofterm.proof Symtab.table ->
berghofe@11522
    15
    bool -> term -> Proofterm.proof
wenzelm@17078
    16
  val term_of_proof: Proofterm.proof -> term
wenzelm@17078
    17
  val cterm_of_proof: theory -> Proofterm.proof -> cterm * (cterm -> Proofterm.proof)
wenzelm@17078
    18
  val read_term: theory -> typ -> string -> term
wenzelm@17078
    19
  val read_proof: theory -> bool -> string -> Proofterm.proof
wenzelm@17078
    20
  val proof_syntax: Proofterm.proof -> theory -> theory
wenzelm@17078
    21
  val proof_of: bool -> thm -> Proofterm.proof
wenzelm@27260
    22
  val pretty_proof: Proof.context -> Proofterm.proof -> Pretty.T
wenzelm@27260
    23
  val pretty_proof_of: Proof.context -> bool -> thm -> Pretty.T
berghofe@11522
    24
end;
berghofe@11522
    25
berghofe@11522
    26
structure ProofSyntax : PROOF_SYNTAX =
berghofe@11522
    27
struct
berghofe@11522
    28
berghofe@11522
    29
open Proofterm;
berghofe@11522
    30
berghofe@11522
    31
(**** add special syntax for embedding proof terms ****)
berghofe@11522
    32
berghofe@11522
    33
val proofT = Type ("proof", []);
berghofe@11614
    34
val paramT = Type ("param", []);
berghofe@11614
    35
val paramsT = Type ("params", []);
berghofe@11522
    36
val idtT = Type ("idt", []);
wenzelm@24848
    37
val aT = TFree (Name.aT, []);
berghofe@11522
    38
berghofe@11522
    39
(** constants for theorems and axioms **)
berghofe@11522
    40
wenzelm@16425
    41
fun add_proof_atom_consts names thy =
wenzelm@16425
    42
  thy
wenzelm@22796
    43
  |> Sign.absolute_path
wenzelm@22796
    44
  |> Sign.add_consts_i (map (fn name => (name, proofT, NoSyn)) names);
berghofe@11522
    45
berghofe@11522
    46
(** constants for application and abstraction **)
berghofe@11614
    47
wenzelm@16425
    48
fun add_proof_syntax thy =
wenzelm@16425
    49
  thy
wenzelm@16425
    50
  |> Theory.copy
wenzelm@22796
    51
  |> Sign.root_path
wenzelm@22796
    52
  |> Sign.add_defsort_i []
wenzelm@22796
    53
  |> Sign.add_types [("proof", 0, NoSyn)]
wenzelm@22796
    54
  |> Sign.add_consts_i
berghofe@11614
    55
      [("Appt", [proofT, aT] ---> proofT, Mixfix ("(1_ %/ _)", [4, 5], 4)),
berghofe@11614
    56
       ("AppP", [proofT, proofT] ---> proofT, Mixfix ("(1_ %%/ _)", [4, 5], 4)),
berghofe@11522
    57
       ("Abst", (aT --> proofT) --> proofT, NoSyn),
berghofe@13199
    58
       ("AbsP", [propT, proofT --> proofT] ---> proofT, NoSyn),
berghofe@13199
    59
       ("Hyp", propT --> proofT, NoSyn),
berghofe@13199
    60
       ("Oracle", propT --> proofT, NoSyn),
berghofe@13199
    61
       ("MinProof", proofT, Delimfix "?")]
wenzelm@22796
    62
  |> Sign.add_nonterminals ["param", "params"]
wenzelm@22796
    63
  |> Sign.add_syntax_i
berghofe@11640
    64
      [("_Lam", [paramsT, proofT] ---> proofT, Mixfix ("(1Lam _./ _)", [0, 3], 3)),
berghofe@11614
    65
       ("_Lam0", [paramT, paramsT] ---> paramsT, Mixfix ("_/ _", [1, 0], 0)),
berghofe@11614
    66
       ("_Lam0", [idtT, paramsT] ---> paramsT, Mixfix ("_/ _", [1, 0], 0)),
berghofe@11614
    67
       ("_Lam1", [idtT, propT] ---> paramT, Mixfix ("_: _", [0, 0], 0)),
berghofe@11614
    68
       ("", paramT --> paramT, Delimfix "'(_')"),
berghofe@11614
    69
       ("", idtT --> paramsT, Delimfix "_"),
berghofe@11614
    70
       ("", paramT --> paramsT, Delimfix "_")]
wenzelm@22796
    71
  |> Sign.add_modesyntax_i ("xsymbols", true)
berghofe@11640
    72
      [("_Lam", [paramsT, proofT] ---> proofT, Mixfix ("(1\\<Lambda>_./ _)", [0, 3], 3)),
berghofe@11522
    73
       ("Appt", [proofT, aT] ---> proofT, Mixfix ("(1_ \\<cdot>/ _)", [4, 5], 4)),
wenzelm@16425
    74
       ("AppP", [proofT, proofT] ---> proofT, Mixfix ("(1_ \\<bullet>/ _)", [4, 5], 4))]
wenzelm@22796
    75
  |> Sign.add_modesyntax_i ("latex", false)
wenzelm@16425
    76
      [("_Lam", [paramsT, proofT] ---> proofT, Mixfix ("(1\\<^bold>\\<lambda>_./ _)", [0, 3], 3))]
wenzelm@22796
    77
  |> Sign.add_trrules_i (map Syntax.ParsePrintRule
berghofe@11522
    78
      [(Syntax.mk_appl (Constant "_Lam")
berghofe@11614
    79
          [Syntax.mk_appl (Constant "_Lam0") [Variable "l", Variable "m"], Variable "A"],
berghofe@11614
    80
        Syntax.mk_appl (Constant "_Lam")
berghofe@11614
    81
          [Variable "l", Syntax.mk_appl (Constant "_Lam") [Variable "m", Variable "A"]]),
berghofe@11614
    82
       (Syntax.mk_appl (Constant "_Lam")
berghofe@11522
    83
          [Syntax.mk_appl (Constant "_Lam1") [Variable "x", Variable "A"], Variable "B"],
berghofe@11522
    84
        Syntax.mk_appl (Constant "AbsP") [Variable "A",
berghofe@11522
    85
          (Syntax.mk_appl (Constant "_abs") [Variable "x", Variable "B"])]),
berghofe@11614
    86
       (Syntax.mk_appl (Constant "_Lam") [Variable "x", Variable "A"],
berghofe@11522
    87
        Syntax.mk_appl (Constant "Abst")
berghofe@11614
    88
          [(Syntax.mk_appl (Constant "_abs") [Variable "x", Variable "A"])])]);
berghofe@11522
    89
berghofe@11522
    90
berghofe@11522
    91
(**** create unambiguous theorem names ****)
berghofe@11522
    92
berghofe@11522
    93
fun disambiguate_names thy prf =
berghofe@11522
    94
  let
berghofe@17019
    95
    val thms = thms_of_proof prf Symtab.empty;
wenzelm@16866
    96
    val thms' = map (apsnd Thm.full_prop_of) (PureThy.all_thms_of thy);
berghofe@11522
    97
haftmann@21056
    98
    val tab = Symtab.fold (fn (key, ps) => fn tab =>
wenzelm@19473
    99
      let val prop = the_default (Bound 0) (AList.lookup (op =) thms' key)
wenzelm@27260
   100
      in fst (fold_rev (fn (prop', prf) => fn x as (tab, i) =>
berghofe@11522
   101
        if prop <> prop' then
wenzelm@17412
   102
          (Symtab.update (key ^ "_" ^ string_of_int i, prf) tab, i+1)
haftmann@21056
   103
        else x) ps (tab, 1))
haftmann@21056
   104
      end) thms Symtab.empty;
berghofe@11522
   105
berghofe@11522
   106
    fun rename (Abst (s, T, prf)) = Abst (s, T, rename prf)
berghofe@11522
   107
      | rename (AbsP (s, t, prf)) = AbsP (s, t, rename prf)
berghofe@11614
   108
      | rename (prf1 %% prf2) = rename prf1 %% rename prf2
berghofe@11614
   109
      | rename (prf % t) = rename prf % t
wenzelm@21646
   110
      | rename (prf' as PThm (s, prf, prop, Ts)) =
berghofe@11522
   111
          let
wenzelm@19473
   112
            val prop' = the_default (Bound 0) (AList.lookup (op =) thms' s);
wenzelm@19305
   113
            val ps = remove (op =) prop' (map fst (the (Symtab.lookup thms s)))
berghofe@11522
   114
          in if prop = prop' then prf' else
wenzelm@21646
   115
            PThm (s ^ "_" ^ string_of_int (length ps - find_index (fn p => p = prop) ps),
berghofe@11522
   116
              prf, prop, Ts)
berghofe@11522
   117
          end
berghofe@11522
   118
      | rename prf = prf
berghofe@11522
   119
berghofe@11522
   120
  in (rename prf, tab) end;
berghofe@11522
   121
berghofe@11522
   122
berghofe@11522
   123
(**** translation between proof terms and pure terms ****)
berghofe@11522
   124
berghofe@11522
   125
fun proof_of_term thy tab ty =
berghofe@11522
   126
  let
wenzelm@16350
   127
    val thms = PureThy.all_thms_of thy;
wenzelm@16350
   128
    val axms = Theory.all_axioms_of thy;
berghofe@11522
   129
wenzelm@20548
   130
    fun mk_term t = (if ty then I else map_types (K dummyT))
berghofe@11614
   131
      (Term.no_dummy_patterns t);
berghofe@11614
   132
berghofe@11522
   133
    fun prf_of [] (Bound i) = PBound i
berghofe@11522
   134
      | prf_of Ts (Const (s, Type ("proof", _))) =
skalberg@15531
   135
          change_type (if ty then SOME Ts else NONE)
wenzelm@21858
   136
            (case NameSpace.explode s of
berghofe@11614
   137
               "axm" :: xs =>
berghofe@11522
   138
                 let
wenzelm@21858
   139
                   val name = NameSpace.implode xs;
wenzelm@17223
   140
                   val prop = (case AList.lookup (op =) axms name of
skalberg@15531
   141
                       SOME prop => prop
skalberg@15531
   142
                     | NONE => error ("Unknown axiom " ^ quote name))
skalberg@15531
   143
                 in PAxm (name, prop, NONE) end
berghofe@11614
   144
             | "thm" :: xs =>
wenzelm@21858
   145
                 let val name = NameSpace.implode xs;
wenzelm@17223
   146
                 in (case AList.lookup (op =) thms name of
skalberg@15531
   147
                     SOME thm => fst (strip_combt (Thm.proof_of thm))
wenzelm@17412
   148
                   | NONE => (case Symtab.lookup tab name of
skalberg@15531
   149
                         SOME prf => prf
skalberg@15531
   150
                       | NONE => error ("Unknown theorem " ^ quote name)))
berghofe@11522
   151
                 end
berghofe@11522
   152
             | _ => error ("Illegal proof constant name: " ^ quote s))
berghofe@13199
   153
      | prf_of Ts (Const ("Hyp", _) $ prop) = Hyp prop
berghofe@11522
   154
      | prf_of Ts (v as Var ((_, Type ("proof", _)))) = Hyp v
berghofe@11522
   155
      | prf_of [] (Const ("Abst", _) $ Abs (s, T, prf)) =
berghofe@25245
   156
          if T = proofT then
berghofe@25245
   157
            error ("Term variable abstraction may not bind proof variable " ^ quote s)
berghofe@25245
   158
          else Abst (s, if ty then SOME T else NONE,
berghofe@11522
   159
            incr_pboundvars (~1) 0 (prf_of [] prf))
berghofe@11522
   160
      | prf_of [] (Const ("AbsP", _) $ t $ Abs (s, _, prf)) =
berghofe@11614
   161
          AbsP (s, case t of
skalberg@15531
   162
                Const ("dummy_pattern", _) => NONE
skalberg@15531
   163
              | _ $ Const ("dummy_pattern", _) => NONE
skalberg@15531
   164
              | _ => SOME (mk_term t),
berghofe@11522
   165
            incr_pboundvars 0 (~1) (prf_of [] prf))
berghofe@11522
   166
      | prf_of [] (Const ("AppP", _) $ prf1 $ prf2) =
berghofe@11614
   167
          prf_of [] prf1 %% prf_of [] prf2
berghofe@11522
   168
      | prf_of Ts (Const ("Appt", _) $ prf $ Const ("TYPE", Type (_, [T]))) =
berghofe@11522
   169
          prf_of (T::Ts) prf
berghofe@11614
   170
      | prf_of [] (Const ("Appt", _) $ prf $ t) = prf_of [] prf %
skalberg@15531
   171
          (case t of Const ("dummy_pattern", _) => NONE | _ => SOME (mk_term t))
berghofe@11522
   172
      | prf_of _ t = error ("Not a proof term:\n" ^
wenzelm@26939
   173
          Syntax.string_of_term_global thy t)
berghofe@11522
   174
berghofe@11522
   175
  in prf_of [] end;
berghofe@11522
   176
berghofe@11522
   177
berghofe@11522
   178
val AbsPt = Const ("AbsP", [propT, proofT --> proofT] ---> proofT);
berghofe@11522
   179
val AppPt = Const ("AppP", [proofT, proofT] ---> proofT);
berghofe@13199
   180
val Hypt = Const ("Hyp", propT --> proofT);
berghofe@13199
   181
val Oraclet = Const ("Oracle", propT --> proofT);
berghofe@13199
   182
val MinProoft = Const ("MinProof", proofT);
berghofe@11522
   183
wenzelm@19473
   184
val mk_tyapp = fold (fn T => fn prf => Const ("Appt",
wenzelm@19391
   185
  [proofT, Term.itselfT T] ---> proofT) $ prf $ Logic.mk_type T);
berghofe@11522
   186
wenzelm@21646
   187
fun term_of _ (PThm (name, _, _, NONE)) =
wenzelm@16195
   188
      Const (NameSpace.append "thm" name, proofT)
wenzelm@21646
   189
  | term_of _ (PThm (name, _, _, SOME Ts)) =
wenzelm@19473
   190
      mk_tyapp Ts (Const (NameSpace.append "thm" name, proofT))
wenzelm@16195
   191
  | term_of _ (PAxm (name, _, NONE)) = Const (NameSpace.append "axm" name, proofT)
skalberg@15531
   192
  | term_of _ (PAxm (name, _, SOME Ts)) =
wenzelm@19473
   193
      mk_tyapp Ts (Const (NameSpace.append "axm" name, proofT))
berghofe@11522
   194
  | term_of _ (PBound i) = Bound i
wenzelm@27260
   195
  | term_of Ts (Abst (s, opT, prf)) =
wenzelm@18939
   196
      let val T = the_default dummyT opT
berghofe@11522
   197
      in Const ("Abst", (T --> proofT) --> proofT) $
berghofe@11522
   198
        Abs (s, T, term_of (T::Ts) (incr_pboundvars 1 0 prf))
berghofe@11522
   199
      end
berghofe@11522
   200
  | term_of Ts (AbsP (s, t, prf)) =
wenzelm@18939
   201
      AbsPt $ the_default (Term.dummy_pattern propT) t $
berghofe@11522
   202
        Abs (s, proofT, term_of (proofT::Ts) (incr_pboundvars 0 1 prf))
berghofe@11614
   203
  | term_of Ts (prf1 %% prf2) =
berghofe@11522
   204
      AppPt $ term_of Ts prf1 $ term_of Ts prf2
wenzelm@27260
   205
  | term_of Ts (prf % opt) =
wenzelm@18939
   206
      let val t = the_default (Term.dummy_pattern dummyT) opt
berghofe@11522
   207
      in Const ("Appt",
berghofe@11522
   208
        [proofT, fastype_of1 (Ts, t) handle TERM _ => dummyT] ---> proofT) $
berghofe@11522
   209
          term_of Ts prf $ t
berghofe@11522
   210
      end
berghofe@11522
   211
  | term_of Ts (Hyp t) = Hypt $ t
berghofe@11522
   212
  | term_of Ts (Oracle (_, t, _)) = Oraclet $ t
berghofe@11522
   213
  | term_of Ts (MinProof _) = MinProoft;
berghofe@11522
   214
berghofe@11522
   215
val term_of_proof = term_of [];
berghofe@11522
   216
berghofe@11522
   217
fun cterm_of_proof thy prf =
berghofe@11522
   218
  let
berghofe@11522
   219
    val (prf', tab) = disambiguate_names thy prf;
wenzelm@16350
   220
    val thm_names = filter_out (equal "")
wenzelm@16350
   221
      (map fst (PureThy.all_thms_of thy) @ map fst (Symtab.dest tab));
wenzelm@16350
   222
    val axm_names = map fst (Theory.all_axioms_of thy);
wenzelm@16425
   223
    val thy' = thy
wenzelm@16425
   224
      |> add_proof_syntax
wenzelm@16425
   225
      |> add_proof_atom_consts
wenzelm@16195
   226
        (map (NameSpace.append "axm") axm_names @ map (NameSpace.append "thm") thm_names)
berghofe@11522
   227
  in
wenzelm@16425
   228
    (cterm_of thy' (term_of_proof prf'),
berghofe@11522
   229
     proof_of_term thy tab true o Thm.term_of)
berghofe@11522
   230
  end;
berghofe@11522
   231
berghofe@11522
   232
fun read_term thy =
berghofe@11522
   233
  let
wenzelm@16350
   234
    val thm_names = filter_out (equal "") (map fst (PureThy.all_thms_of thy));
wenzelm@16350
   235
    val axm_names = map fst (Theory.all_axioms_of thy);
wenzelm@27260
   236
    val ctxt = thy
wenzelm@16425
   237
      |> add_proof_syntax
wenzelm@16425
   238
      |> add_proof_atom_consts
wenzelm@16195
   239
        (map (NameSpace.append "axm") axm_names @ map (NameSpace.append "thm") thm_names)
wenzelm@27260
   240
      |> ProofContext.init
wenzelm@27260
   241
      |> ProofContext.allow_dummies
wenzelm@27260
   242
      |> ProofContext.set_mode ProofContext.mode_schematic;
wenzelm@27260
   243
  in
wenzelm@27260
   244
    fn ty => fn s =>
wenzelm@27260
   245
      (if ty = propT then Syntax.parse_prop else Syntax.parse_term) ctxt s
wenzelm@27260
   246
      |> TypeInfer.constrain ty |> Syntax.check_term ctxt
wenzelm@27260
   247
  end;
berghofe@11522
   248
berghofe@11522
   249
fun read_proof thy =
berghofe@11522
   250
  let val rd = read_term thy proofT
wenzelm@27260
   251
  in fn ty => fn s => proof_of_term thy Symtab.empty ty (Logic.varify (rd s)) end;
berghofe@11522
   252
wenzelm@17078
   253
fun proof_syntax prf =
berghofe@11522
   254
  let
wenzelm@19305
   255
    val thm_names = filter_out (equal "")
wenzelm@19305
   256
      (map fst (Symtab.dest (thms_of_proof prf Symtab.empty)));
berghofe@17019
   257
    val axm_names = map fst (Symtab.dest (axms_of_proof prf Symtab.empty));
berghofe@11522
   258
  in
wenzelm@17078
   259
    add_proof_syntax #>
wenzelm@17078
   260
    add_proof_atom_consts
wenzelm@17078
   261
      (map (NameSpace.append "thm") thm_names @ map (NameSpace.append "axm") axm_names)
berghofe@11522
   262
  end;
berghofe@11522
   263
wenzelm@17078
   264
fun proof_of full thm =
wenzelm@17078
   265
  let
wenzelm@26626
   266
    val thy = Thm.theory_of_thm thm;
wenzelm@17078
   267
    val prop = Thm.full_prop_of thm;
wenzelm@26626
   268
    val prf = Thm.proof_of thm;
wenzelm@17078
   269
    val prf' = (case strip_combt (fst (strip_combP prf)) of
wenzelm@17078
   270
        (PThm (_, prf', prop', _), _) => if prop = prop' then prf' else prf
wenzelm@17078
   271
      | _ => prf)
wenzelm@17078
   272
  in if full then Reconstruct.reconstruct_proof thy prop prf' else prf' end;
wenzelm@17078
   273
wenzelm@27260
   274
fun pretty_proof ctxt prf =
wenzelm@27260
   275
  ProofContext.pretty_term_abbrev
wenzelm@27260
   276
    (ProofContext.transfer_syntax (proof_syntax prf (ProofContext.theory_of ctxt)) ctxt)
wenzelm@27260
   277
    (term_of_proof prf);
wenzelm@17078
   278
wenzelm@27260
   279
fun pretty_proof_of ctxt full th =
wenzelm@27260
   280
  pretty_proof ctxt (proof_of full th);
berghofe@11522
   281
berghofe@11522
   282
end;