src/HOL/Deriv.thy
author wenzelm
Sat, 16 Aug 2014 12:15:56 +0200
changeset 57947 189d421ca72d
parent 57514 bdc2c6b40bf2
child 57953 69728243a614
permissions -rw-r--r--
updated syntax for localized commands;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     1
(*  Title       : Deriv.thy
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     2
    Author      : Jacques D. Fleuriot
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     3
    Copyright   : 1998  University of Cambridge
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
     4
    Author      : Brian Huffman
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     5
    Conversion to Isar and new proofs by Lawrence C Paulson, 2004
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     6
    GMVT by Benjamin Porter, 2005
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     7
*)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     8
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     9
header{* Differentiation *}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    10
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    11
theory Deriv
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51481
diff changeset
    12
imports Limits
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    13
begin
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    14
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    15
subsection {* Frechet derivative *}
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    16
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    17
definition
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    18
  has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow>  bool"
56182
528fae0816ea update syntax of has_*derivative to infix 50; fixed proofs
hoelzl
parents: 56181
diff changeset
    19
  (infix "(has'_derivative)" 50)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    20
where
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    21
  "(f has_derivative f') F \<longleftrightarrow>
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    22
    (bounded_linear f' \<and>
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    23
     ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) ---> 0) F)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    24
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    25
text {*
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    26
  Usually the filter @{term F} is @{term "at x within s"}.  @{term "(f has_derivative D)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    27
  (at x within s)"} means: @{term D} is the derivative of function @{term f} at point @{term x}
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    28
  within the set @{term s}. Where @{term s} is used to express left or right sided derivatives. In
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    29
  most cases @{term s} is either a variable or @{term UNIV}.
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    30
*}
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    31
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    32
lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    33
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    34
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    35
definition 
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    36
  has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    37
  (infix "(has'_field'_derivative)" 50)
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    38
where
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    39
  "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative op * D) F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    40
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    41
lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    42
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    43
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    44
definition
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    45
  has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    46
  (infix "has'_vector'_derivative" 50)
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    47
where
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    48
  "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    49
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    50
lemma has_vector_derivative_eq_rhs: "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    51
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    52
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    53
ML {*
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    54
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    55
structure Derivative_Intros = Named_Thms
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    56
(
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    57
  val name = @{binding derivative_intros}
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    58
  val description = "structural introduction rules for derivatives"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    59
)
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    60
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    61
*}
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    62
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    63
setup {*
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    64
  let
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    65
    val eq_thms = [@{thm has_derivative_eq_rhs}, @{thm DERIV_cong}, @{thm has_vector_derivative_eq_rhs}]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    66
    fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    67
  in
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    68
    Derivative_Intros.setup #>
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    69
    Global_Theory.add_thms_dynamic
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    70
      (@{binding derivative_eq_intros}, map_filter eq_rule o Derivative_Intros.get o Context.proof_of)
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    71
  end;
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    72
*}
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    73
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    74
text {*
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    75
  The following syntax is only used as a legacy syntax.
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    76
*}
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    77
abbreviation (input)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    78
  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    79
  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    80
where
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    81
  "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    82
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    83
lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    84
  by (simp add: has_derivative_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    85
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    86
lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    87
  using bounded_linear.linear[OF has_derivative_bounded_linear] .
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    88
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    89
lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    90
  by (simp add: has_derivative_def tendsto_const)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    91
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    92
lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    93
  by (simp add: has_derivative_def tendsto_const)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    94
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    95
lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    96
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    97
lemma (in bounded_linear) has_derivative:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    98
  "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    99
  using assms unfolding has_derivative_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   100
  apply safe
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
   101
  apply (erule bounded_linear_compose [OF bounded_linear])
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
   102
  apply (drule tendsto)
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
   103
  apply (simp add: scaleR diff add zero)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   104
  done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   105
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   106
lemmas has_derivative_scaleR_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   107
  bounded_linear.has_derivative [OF bounded_linear_scaleR_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   108
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   109
lemmas has_derivative_scaleR_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   110
  bounded_linear.has_derivative [OF bounded_linear_scaleR_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   111
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   112
lemmas has_derivative_mult_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   113
  bounded_linear.has_derivative [OF bounded_linear_mult_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   114
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   115
lemmas has_derivative_mult_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   116
  bounded_linear.has_derivative [OF bounded_linear_mult_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   117
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   118
lemma has_derivative_add[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   119
  assumes f: "(f has_derivative f') F" and g: "(g has_derivative g') F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   120
  shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   121
  unfolding has_derivative_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   122
proof safe
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   123
  let ?x = "Lim F (\<lambda>x. x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   124
  let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   125
  have "((\<lambda>x. ?D f f' x + ?D g g' x) ---> (0 + 0)) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   126
    using f g by (intro tendsto_add) (auto simp: has_derivative_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   127
  then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) ---> 0) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   128
    by (simp add: field_simps scaleR_add_right scaleR_diff_right)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   129
qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   130
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   131
lemma has_derivative_setsum[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   132
  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   133
  shows "((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   134
proof cases
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   135
  assume "finite I" from this f show ?thesis
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   136
    by induct (simp_all add: f)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   137
qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   138
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   139
lemma has_derivative_minus[simp, derivative_intros]: "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   140
  using has_derivative_scaleR_right[of f f' F "-1"] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   141
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   142
lemma has_derivative_diff[simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   143
  "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   144
  by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   145
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   146
lemma has_derivative_at_within:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   147
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   148
    (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) ---> 0) (at x within s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   149
  by (cases "at x within s = bot") (simp_all add: has_derivative_def Lim_ident_at)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   150
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   151
lemma has_derivative_iff_norm:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   152
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   153
    (bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) ---> 0) (at x within s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   154
  using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   155
  by (simp add: has_derivative_at_within divide_inverse ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   156
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   157
lemma has_derivative_at:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   158
  "(f has_derivative D) (at x) \<longleftrightarrow> (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) -- 0 --> 0)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   159
  unfolding has_derivative_iff_norm LIM_offset_zero_iff[of _ _ x] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   160
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   161
lemma field_has_derivative_at:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   162
  fixes x :: "'a::real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   163
  shows "(f has_derivative op * D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   164
  apply (unfold has_derivative_at)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   165
  apply (simp add: bounded_linear_mult_right)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   166
  apply (simp cong: LIM_cong add: nonzero_norm_divide [symmetric])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   167
  apply (subst diff_divide_distrib)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   168
  apply (subst times_divide_eq_left [symmetric])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   169
  apply (simp cong: LIM_cong)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   170
  apply (simp add: tendsto_norm_zero_iff LIM_zero_iff)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   171
  done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   172
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   173
lemma has_derivativeI:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   174
  "bounded_linear f' \<Longrightarrow> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) ---> 0) (at x within s) \<Longrightarrow>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   175
  (f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   176
  by (simp add: has_derivative_at_within)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   177
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   178
lemma has_derivativeI_sandwich:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   179
  assumes e: "0 < e" and bounded: "bounded_linear f'"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   180
    and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow> norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   181
    and "(H ---> 0) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   182
  shows "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   183
  unfolding has_derivative_iff_norm
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   184
proof safe
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   185
  show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) ---> 0) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   186
  proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   187
    show "(H ---> 0) (at x within s)" by fact
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   188
    show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   189
      unfolding eventually_at using e sandwich by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   190
  qed (auto simp: le_divide_eq tendsto_const)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   191
qed fact
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   192
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   193
lemma has_derivative_subset: "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   194
  by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   195
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   196
lemmas has_derivative_within_subset = has_derivative_subset 
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   197
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   198
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   199
subsection {* Continuity *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   200
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   201
lemma has_derivative_continuous:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   202
  assumes f: "(f has_derivative f') (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   203
  shows "continuous (at x within s) f"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   204
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   205
  from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   206
  note F.tendsto[tendsto_intros]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   207
  let ?L = "\<lambda>f. (f ---> 0) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   208
  have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   209
    using f unfolding has_derivative_iff_norm by blast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   210
  then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   211
    by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   212
  also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   213
    by (intro filterlim_cong) (simp_all add: eventually_at_filter)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   214
  finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   215
    by (rule tendsto_norm_zero_cancel)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   216
  then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   217
    by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   218
  then have "?L (\<lambda>y. f y - f x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   219
    by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   220
  from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   221
    by (simp add: continuous_within)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   222
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   223
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   224
subsection {* Composition *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   225
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   226
lemma tendsto_at_iff_tendsto_nhds_within: "f x = y \<Longrightarrow> (f ---> y) (at x within s) \<longleftrightarrow> (f ---> y) (inf (nhds x) (principal s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   227
  unfolding tendsto_def eventually_inf_principal eventually_at_filter
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   228
  by (intro ext all_cong imp_cong) (auto elim!: eventually_elim1)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   229
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   230
lemma has_derivative_in_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   231
  assumes f: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   232
  assumes g: "(g has_derivative g') (at (f x) within (f`s))"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   233
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   234
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   235
  from f interpret F: bounded_linear f' by (rule has_derivative_bounded_linear)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   236
  from g interpret G: bounded_linear g' by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   237
  from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   238
  from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   239
  note G.tendsto[tendsto_intros]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   240
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   241
  let ?L = "\<lambda>f. (f ---> 0) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   242
  let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   243
  let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   244
  let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   245
  def Nf \<equiv> "?N f f' x"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   246
  def Ng \<equiv> "\<lambda>y. ?N g g' (f x) (f y)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   247
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   248
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   249
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   250
    show "bounded_linear (\<lambda>x. g' (f' x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   251
      using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   252
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   253
    fix y::'a assume neq: "y \<noteq> x"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   254
    have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   255
      by (simp add: G.diff G.add field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   256
    also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   257
      by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   258
    also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   259
    proof (intro add_mono mult_left_mono)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   260
      have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   261
        by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   262
      also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   263
        by (rule norm_triangle_ineq)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   264
      also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   265
        using kF by (intro add_mono) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   266
      finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   267
        by (simp add: neq Nf_def field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   268
    qed (insert kG, simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   269
    finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   270
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   271
    have [tendsto_intros]: "?L Nf"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   272
      using f unfolding has_derivative_iff_norm Nf_def ..
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   273
    from f have "(f ---> f x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   274
      by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   275
    then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   276
      unfolding filterlim_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   277
      by (simp add: eventually_filtermap eventually_at_filter le_principal)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   278
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   279
    have "((?N g  g' (f x)) ---> 0) (at (f x) within f`s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   280
      using g unfolding has_derivative_iff_norm ..
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   281
    then have g': "((?N g  g' (f x)) ---> 0) (inf (nhds (f x)) (principal (f`s)))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   282
      by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   283
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   284
    have [tendsto_intros]: "?L Ng"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   285
      unfolding Ng_def by (rule filterlim_compose[OF g' f'])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   286
    show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) ---> 0) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   287
      by (intro tendsto_eq_intros) auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   288
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   289
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   290
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   291
lemma has_derivative_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   292
  "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   293
  ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   294
  by (blast intro: has_derivative_in_compose has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   295
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   296
lemma (in bounded_bilinear) FDERIV:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   297
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   298
  shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   299
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   300
  from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   301
  obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   302
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   303
  from pos_bounded obtain K where K: "0 < K" and norm_prod:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   304
    "\<And>a b. norm (a ** b) \<le> norm a * norm b * K" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   305
  let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   306
  let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   307
  def Ng =="?N g g'" and Nf =="?N f f'"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   308
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   309
  let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   310
  let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   311
  let ?F = "at x within s"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   312
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   313
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   314
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   315
    show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   316
      by (intro bounded_linear_add
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   317
        bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   318
        has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   319
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   320
    from g have "(g ---> g x) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   321
      by (intro continuous_within[THEN iffD1] has_derivative_continuous)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   322
    moreover from f g have "(Nf ---> 0) ?F" "(Ng ---> 0) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   323
      by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   324
    ultimately have "(?fun2 ---> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   325
      by (intro tendsto_intros) (simp_all add: LIM_zero_iff)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   326
    then show "(?fun2 ---> 0) ?F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   327
      by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   328
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   329
    fix y::'d assume "y \<noteq> x"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   330
    have "?fun1 y = norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   331
      by (simp add: diff_left diff_right add_left add_right field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   332
    also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   333
        norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   334
      by (intro divide_right_mono mult_mono'
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   335
                order_trans [OF norm_triangle_ineq add_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   336
                order_trans [OF norm_prod mult_right_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   337
                mult_nonneg_nonneg order_refl norm_ge_zero norm_F
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   338
                K [THEN order_less_imp_le])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   339
    also have "\<dots> = ?fun2 y"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   340
      by (simp add: add_divide_distrib Ng_def Nf_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   341
    finally show "?fun1 y \<le> ?fun2 y" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   342
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   343
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   344
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   345
lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   346
lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   347
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   348
lemma has_derivative_setprod[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   349
  fixes f :: "'i \<Rightarrow> 'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   350
  assumes f: "\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   351
  shows "((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   352
proof cases
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   353
  assume "finite I" from this f show ?thesis
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   354
  proof induct
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   355
    case (insert i I)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   356
    let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   357
    have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   358
      using insert by (intro has_derivative_mult) auto
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   359
    also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
57418
6ab1c7cb0b8d fact consolidation
haftmann
parents: 56541
diff changeset
   360
      using insert(1,2) by (auto simp add: setsum_right_distrib insert_Diff_if intro!: ext setsum.cong)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   361
    finally show ?case
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   362
      using insert by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   363
  qed simp  
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   364
qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   365
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   366
lemma has_derivative_power[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   367
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   368
  assumes f: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   369
  shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   370
  using has_derivative_setprod[OF f, of "{..< n}"] by (simp add: setprod_constant ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   371
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   372
lemma has_derivative_inverse':
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   373
  fixes x :: "'a::real_normed_div_algebra"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   374
  assumes x: "x \<noteq> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   375
  shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   376
        (is "(?inv has_derivative ?f) _")
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   377
proof (rule has_derivativeI_sandwich)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   378
  show "bounded_linear (\<lambda>h. - (?inv x * h * ?inv x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   379
    apply (rule bounded_linear_minus)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   380
    apply (rule bounded_linear_mult_const)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   381
    apply (rule bounded_linear_const_mult)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   382
    apply (rule bounded_linear_ident)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   383
    done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   384
next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   385
  show "0 < norm x" using x by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   386
next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   387
  show "((\<lambda>y. norm (?inv y - ?inv x) * norm (?inv x)) ---> 0) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   388
    apply (rule tendsto_mult_left_zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   389
    apply (rule tendsto_norm_zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   390
    apply (rule LIM_zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   391
    apply (rule tendsto_inverse)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   392
    apply (rule tendsto_ident_at)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   393
    apply (rule x)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   394
    done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   395
next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   396
  fix y::'a assume h: "y \<noteq> x" "dist y x < norm x"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   397
  then have "y \<noteq> 0"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   398
    by (auto simp: norm_conv_dist dist_commute)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   399
  have "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) = norm ((?inv y - ?inv x) * (y - x) * ?inv x) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   400
    apply (subst inverse_diff_inverse [OF `y \<noteq> 0` x])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   401
    apply (subst minus_diff_minus)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   402
    apply (subst norm_minus_cancel)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   403
    apply (simp add: left_diff_distrib)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   404
    done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   405
  also have "\<dots> \<le> norm (?inv y - ?inv x) * norm (y - x) * norm (?inv x) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   406
    apply (rule divide_right_mono [OF _ norm_ge_zero])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   407
    apply (rule order_trans [OF norm_mult_ineq])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   408
    apply (rule mult_right_mono [OF _ norm_ge_zero])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   409
    apply (rule norm_mult_ineq)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   410
    done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   411
  also have "\<dots> = norm (?inv y - ?inv x) * norm (?inv x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   412
    by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   413
  finally show "norm (?inv y - ?inv x - ?f (y -x)) / norm (y - x) \<le>
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   414
      norm (?inv y - ?inv x) * norm (?inv x)" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   415
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   416
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   417
lemma has_derivative_inverse[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   418
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   419
  assumes x:  "f x \<noteq> 0" and f: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   420
  shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x)))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   421
  using has_derivative_compose[OF f has_derivative_inverse', OF x] .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   422
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   423
lemma has_derivative_divide[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   424
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   425
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" 
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   426
  assumes x: "g x \<noteq> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   427
  shows "((\<lambda>x. f x / g x) has_derivative
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   428
                (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   429
  using has_derivative_mult[OF f has_derivative_inverse[OF x g]]
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   430
  by (simp add: field_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   431
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   432
text{*Conventional form requires mult-AC laws. Types real and complex only.*}
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   433
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   434
lemma has_derivative_divide'[derivative_intros]: 
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   435
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   436
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)" and x: "g x \<noteq> 0"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   437
  shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within s)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   438
proof -
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   439
  { fix h
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   440
    have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   441
          (f' h * g x - f x * g' h) / (g x * g x)"
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   442
      by (simp add: field_simps x)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   443
   }
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   444
  then show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   445
    using has_derivative_divide [OF f g] x
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   446
    by simp
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   447
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   448
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   449
subsection {* Uniqueness *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   450
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   451
text {*
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   452
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   453
This can not generally shown for @{const has_derivative}, as we need to approach the point from
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   454
all directions. There is a proof in @{text Multivariate_Analysis} for @{text euclidean_space}.
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   455
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   456
*}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   457
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   458
lemma has_derivative_zero_unique:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   459
  assumes "((\<lambda>x. 0) has_derivative F) (at x)" shows "F = (\<lambda>h. 0)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   460
proof -
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   461
  interpret F: bounded_linear F
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   462
    using assms by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   463
  let ?r = "\<lambda>h. norm (F h) / norm h"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   464
  have *: "?r -- 0 --> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   465
    using assms unfolding has_derivative_at by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   466
  show "F = (\<lambda>h. 0)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   467
  proof
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   468
    fix h show "F h = 0"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   469
    proof (rule ccontr)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
   470
      assume **: "F h \<noteq> 0"
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56480
diff changeset
   471
      hence h: "h \<noteq> 0" by (clarsimp simp add: F.zero)
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56480
diff changeset
   472
      with ** have "0 < ?r h" by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   473
      from LIM_D [OF * this] obtain s where s: "0 < s"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   474
        and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < s \<Longrightarrow> ?r x < ?r h" by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   475
      from dense [OF s] obtain t where t: "0 < t \<and> t < s" ..
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   476
      let ?x = "scaleR (t / norm h) h"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   477
      have "?x \<noteq> 0" and "norm ?x < s" using t h by simp_all
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   478
      hence "?r ?x < ?r h" by (rule r)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   479
      thus "False" using t h by (simp add: F.scaleR)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   480
    qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   481
  qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   482
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   483
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   484
lemma has_derivative_unique:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   485
  assumes "(f has_derivative F) (at x)" and "(f has_derivative F') (at x)" shows "F = F'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   486
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   487
  have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   488
    using has_derivative_diff [OF assms] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   489
  hence "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   490
    by (rule has_derivative_zero_unique)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   491
  thus "F = F'"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   492
    unfolding fun_eq_iff right_minus_eq .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   493
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   494
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   495
subsection {* Differentiability predicate *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   496
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   497
definition
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   498
  differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
56182
528fae0816ea update syntax of has_*derivative to infix 50; fixed proofs
hoelzl
parents: 56181
diff changeset
   499
  (infix "differentiable" 50)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   500
where
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   501
  "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   502
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   503
lemma differentiable_subset: "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   504
  unfolding differentiable_def by (blast intro: has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   505
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   506
lemmas differentiable_within_subset = differentiable_subset
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   507
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   508
lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   509
  unfolding differentiable_def by (blast intro: has_derivative_ident)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   510
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   511
lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   512
  unfolding differentiable_def by (blast intro: has_derivative_const)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   513
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   514
lemma differentiable_in_compose:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   515
  "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f (g x)) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   516
  unfolding differentiable_def by (blast intro: has_derivative_in_compose)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   517
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   518
lemma differentiable_compose:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   519
  "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f (g x)) differentiable (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   520
  by (blast intro: differentiable_in_compose differentiable_subset)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   521
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   522
lemma differentiable_sum [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   523
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   524
  unfolding differentiable_def by (blast intro: has_derivative_add)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   525
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   526
lemma differentiable_minus [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   527
  "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   528
  unfolding differentiable_def by (blast intro: has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   529
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   530
lemma differentiable_diff [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   531
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   532
  unfolding differentiable_def by (blast intro: has_derivative_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   533
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   534
lemma differentiable_mult [simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   535
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_algebra"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   536
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x * g x) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   537
  unfolding differentiable_def by (blast intro: has_derivative_mult)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   538
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   539
lemma differentiable_inverse [simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   540
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   541
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow> (\<lambda>x. inverse (f x)) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   542
  unfolding differentiable_def by (blast intro: has_derivative_inverse)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   543
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   544
lemma differentiable_divide [simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   545
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   546
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   547
  unfolding divide_inverse using assms by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   548
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   549
lemma differentiable_power [simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   550
  fixes f g :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   551
  shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   552
  unfolding differentiable_def by (blast intro: has_derivative_power)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   553
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   554
lemma differentiable_scaleR [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   555
  "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   556
  unfolding differentiable_def by (blast intro: has_derivative_scaleR)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   557
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   558
lemma has_derivative_imp_has_field_derivative:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   559
  "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   560
  unfolding has_field_derivative_def 
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   561
  by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   562
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   563
lemma has_field_derivative_imp_has_derivative: "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative op * D) F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   564
  by (simp add: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   565
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   566
lemma DERIV_subset: 
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   567
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s 
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   568
   \<Longrightarrow> (f has_field_derivative f') (at x within t)"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   569
  by (simp add: has_field_derivative_def has_derivative_within_subset)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   570
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   571
abbreviation (input)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   572
  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   573
  ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   574
where
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   575
  "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   576
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   577
abbreviation 
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   578
  has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
56182
528fae0816ea update syntax of has_*derivative to infix 50; fixed proofs
hoelzl
parents: 56181
diff changeset
   579
  (infix "(has'_real'_derivative)" 50)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   580
where
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   581
  "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   582
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   583
lemma real_differentiable_def:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   584
  "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   585
proof safe
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   586
  assume "f differentiable at x within s"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   587
  then obtain f' where *: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   588
    unfolding differentiable_def by auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   589
  then obtain c where "f' = (op * c)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   590
    by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   591
  with * show "\<exists>D. (f has_real_derivative D) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   592
    unfolding has_field_derivative_def by auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   593
qed (auto simp: differentiable_def has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   594
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   595
lemma real_differentiableE [elim?]:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   596
  assumes f: "f differentiable (at x within s)" obtains df where "(f has_real_derivative df) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   597
  using assms by (auto simp: real_differentiable_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   598
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   599
lemma differentiableD: "f differentiable (at x within s) \<Longrightarrow> \<exists>D. (f has_real_derivative D) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   600
  by (auto elim: real_differentiableE)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   601
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   602
lemma differentiableI: "(f has_real_derivative D) (at x within s) \<Longrightarrow> f differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   603
  by (force simp add: real_differentiable_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   604
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   605
lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   606
  apply (simp add: has_field_derivative_def has_derivative_at bounded_linear_mult_right LIM_zero_iff[symmetric, of _ D])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   607
  apply (subst (2) tendsto_norm_zero_iff[symmetric])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   608
  apply (rule filterlim_cong)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   609
  apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   610
  done
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   611
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   612
lemma mult_commute_abs: "(\<lambda>x. x * c) = op * (c::'a::ab_semigroup_mult)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   613
  by (simp add: fun_eq_iff mult.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   614
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   615
subsection {* Derivatives *}
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   616
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   617
lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) -- 0 --> D"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   618
  by (simp add: DERIV_def)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   619
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   620
lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   621
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   622
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   623
lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   624
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   625
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   626
lemma field_differentiable_add[derivative_intros]:
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   627
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow> 
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   628
    ((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   629
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   630
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   631
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   632
corollary DERIV_add:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   633
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   634
  ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   635
  by (rule field_differentiable_add)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   636
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   637
lemma field_differentiable_minus[derivative_intros]:
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   638
  "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   639
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   640
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   641
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   642
corollary DERIV_minus: "(f has_field_derivative D) (at x within s) \<Longrightarrow> ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   643
  by (rule field_differentiable_minus)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   644
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   645
lemma field_differentiable_diff[derivative_intros]:
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   646
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   647
  by (simp only: assms diff_conv_add_uminus field_differentiable_add field_differentiable_minus)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   648
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   649
corollary DERIV_diff:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   650
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   651
  ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   652
  by (rule field_differentiable_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   653
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   654
lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   655
  by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   656
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   657
corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   658
  by (rule DERIV_continuous)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   659
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   660
lemma DERIV_continuous_on:
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   661
  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative D) (at x)) \<Longrightarrow> continuous_on s f"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   662
  by (metis DERIV_continuous continuous_at_imp_continuous_on)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   663
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   664
lemma DERIV_mult':
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   665
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   666
  ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   667
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   668
     (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   669
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   670
lemma DERIV_mult[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   671
  "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   672
  ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   673
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   674
     (auto simp: field_simps dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   675
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   676
text {* Derivative of linear multiplication *}
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   677
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   678
lemma DERIV_cmult:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   679
  "(f has_field_derivative D) (at x within s) ==> ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   680
  by (drule DERIV_mult' [OF DERIV_const], simp)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   681
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   682
lemma DERIV_cmult_right:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   683
  "(f has_field_derivative D) (at x within s) ==> ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   684
  using DERIV_cmult by (force simp add: ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   685
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   686
lemma DERIV_cmult_Id [simp]: "(op * c has_field_derivative c) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   687
  by (cut_tac c = c and x = x in DERIV_ident [THEN DERIV_cmult], simp)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   688
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   689
lemma DERIV_cdivide:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   690
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   691
  using DERIV_cmult_right[of f D x s "1 / c"] by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   692
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   693
lemma DERIV_unique:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   694
  "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   695
  unfolding DERIV_def by (rule LIM_unique) 
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   696
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   697
lemma DERIV_setsum[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   698
  "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow> 
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   699
    ((\<lambda>x. setsum (f x) S) has_field_derivative setsum (f' x) S) F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   700
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_setsum])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   701
     (auto simp: setsum_right_distrib mult_commute_abs dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   702
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   703
lemma DERIV_inverse'[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   704
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   705
  ((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   706
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_inverse])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   707
     (auto dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   708
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   709
text {* Power of @{text "-1"} *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   710
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   711
lemma DERIV_inverse:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   712
  "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   713
  by (drule DERIV_inverse' [OF DERIV_ident]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   714
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   715
text {* Derivative of inverse *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   716
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   717
lemma DERIV_inverse_fun:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   718
  "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   719
  ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
   720
  by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   721
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   722
text {* Derivative of quotient *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   723
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   724
lemma DERIV_divide[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   725
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   726
  (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   727
  ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   728
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   729
     (auto dest: has_field_derivative_imp_has_derivative simp: field_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   730
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   731
lemma DERIV_quotient:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   732
  "(f has_field_derivative d) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   733
  (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow> 
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   734
  ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   735
  by (drule (2) DERIV_divide) (simp add: mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   736
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   737
lemma DERIV_power_Suc:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   738
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   739
  ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   740
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   741
     (auto simp: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   742
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   743
lemma DERIV_power[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   744
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   745
  ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   746
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   747
     (auto simp: has_field_derivative_def)
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31404
diff changeset
   748
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   749
lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   750
  apply (cut_tac DERIV_power [OF DERIV_ident])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   751
  apply (simp add: real_of_nat_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   752
  done
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   753
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   754
lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow> 
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   755
  ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   756
  using has_derivative_compose[of f "op * D" x s g "op * E"]
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   757
  unfolding has_field_derivative_def mult_commute_abs ac_simps .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   758
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   759
corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   760
  ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   761
  by (rule DERIV_chain')
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   762
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   763
text {* Standard version *}
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   764
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   765
lemma DERIV_chain:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   766
  "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow> 
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   767
  (f o g has_field_derivative Da * Db) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   768
  by (drule (1) DERIV_chain', simp add: o_def mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   769
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   770
lemma DERIV_image_chain: 
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   771
  "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   772
  (f o g has_field_derivative Da * Db) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   773
  using has_derivative_in_compose [of g "op * Db" x s f "op * Da "]
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   774
  by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   775
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   776
(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   777
lemma DERIV_chain_s:
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   778
  assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   779
      and "DERIV f x :> f'" 
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   780
      and "f x \<in> s"
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   781
    shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   782
  by (metis (full_types) DERIV_chain' mult.commute assms)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   783
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   784
lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   785
  assumes "(\<And>x. DERIV g x :> g'(x))"
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   786
      and "DERIV f x :> f'" 
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   787
    shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   788
  by (metis UNIV_I DERIV_chain_s [of UNIV] assms)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   789
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   790
declare
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   791
  DERIV_power[where 'a=real, unfolded real_of_nat_def[symmetric], derivative_intros]
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   792
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   793
text{*Alternative definition for differentiability*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   794
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   795
lemma DERIV_LIM_iff:
31338
d41a8ba25b67 generalize constants from Lim.thy to class metric_space
huffman
parents: 31336
diff changeset
   796
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a" shows
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
   797
     "((%h. (f(a + h) - f(a)) / h) -- 0 --> D) =
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   798
      ((%x. (f(x)-f(a)) / (x-a)) -- a --> D)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   799
apply (rule iffI)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   800
apply (drule_tac k="- a" in LIM_offset)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53381
diff changeset
   801
apply simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   802
apply (drule_tac k="a" in LIM_offset)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   803
apply (simp add: add.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   804
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   805
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   806
lemma DERIV_iff2: "(DERIV f x :> D) \<longleftrightarrow> (\<lambda>z. (f z - f x) / (z - x)) --x --> D"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   807
  by (simp add: DERIV_def DERIV_LIM_iff)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   808
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   809
lemma DERIV_cong_ev: "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   810
    DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   811
  unfolding DERIV_iff2
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   812
proof (rule filterlim_cong)
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
   813
  assume *: "eventually (\<lambda>x. f x = g x) (nhds x)"
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
   814
  moreover from * have "f x = g x" by (auto simp: eventually_nhds)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   815
  moreover assume "x = y" "u = v"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   816
  ultimately show "eventually (\<lambda>xa. (f xa - f x) / (xa - x) = (g xa - g y) / (xa - y)) (at x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   817
    by (auto simp: eventually_at_filter elim: eventually_elim1)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   818
qed simp_all
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   819
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   820
lemma DERIV_shift:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   821
  "(DERIV f (x + z) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (x + z)) x :> y)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   822
  by (simp add: DERIV_def field_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   823
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   824
lemma DERIV_mirror:
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   825
  "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x::real) :: real) x :> - y)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
   826
  by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   827
                tendsto_minus_cancel_left field_simps conj_commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   828
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   829
text {* Caratheodory formulation of derivative at a point *}
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   830
55970
6d123f0ae358 Some new proofs. Tidying up, esp to remove "apply rule".
paulson <lp15@cam.ac.uk>
parents: 55967
diff changeset
   831
lemma CARAT_DERIV: (*FIXME: SUPERSEDED BY THE ONE IN Deriv.thy. But still used by NSA/HDeriv.thy*)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   832
  "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   833
      (is "?lhs = ?rhs")
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   834
proof
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   835
  assume der: "DERIV f x :> l"
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
   836
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z-x)) \<and> isCont g x \<and> g x = l"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   837
  proof (intro exI conjI)
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
   838
    let ?g = "(%z. if z = x then l else (f z - f x) / (z-x))"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23412
diff changeset
   839
    show "\<forall>z. f z - f x = ?g z * (z-x)" by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   840
    show "isCont ?g x" using der
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   841
      by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   842
    show "?g x = l" by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   843
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   844
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   845
  assume "?rhs"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   846
  then obtain g where
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
   847
    "(\<forall>z. f z - f x = g z * (z-x))" and "isCont g x" and "g x = l" by blast
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   848
  thus "(DERIV f x :> l)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   849
     by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   850
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   851
31899
1a7ade46061b fixed document (DERIV_intros);
wenzelm
parents: 31880
diff changeset
   852
text {*
1a7ade46061b fixed document (DERIV_intros);
wenzelm
parents: 31880
diff changeset
   853
 Let's do the standard proof, though theorem
1a7ade46061b fixed document (DERIV_intros);
wenzelm
parents: 31880
diff changeset
   854
 @{text "LIM_mult2"} follows from a NS proof
1a7ade46061b fixed document (DERIV_intros);
wenzelm
parents: 31880
diff changeset
   855
*}
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   856
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   857
subsection {* Local extrema *}
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   858
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   859
text{*If @{term "0 < f'(x)"} then @{term x} is Locally Strictly Increasing At The Right*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   860
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   861
lemma DERIV_pos_inc_right:
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   862
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   863
  assumes der: "DERIV f x :> l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   864
      and l:   "0 < l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   865
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x + h)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   866
proof -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   867
  from l der [THEN DERIV_D, THEN LIM_D [where r = "l"]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   868
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53381
diff changeset
   869
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   870
  then obtain s
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   871
        where s:   "0 < s"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   872
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   873
    by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   874
  thus ?thesis
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   875
  proof (intro exI conjI strip)
23441
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
   876
    show "0<s" using s .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   877
    fix h::real
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   878
    assume "0 < h" "h < s"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   879
    with all [of h] show "f x < f (x+h)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53381
diff changeset
   880
    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   881
      assume "~ (f (x+h) - f x) / h < l" and h: "0 < h"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   882
      with l
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   883
      have "0 < (f (x+h) - f x) / h" by arith
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   884
      thus "f x < f (x+h)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   885
  by (simp add: pos_less_divide_eq h)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   886
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   887
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   888
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   889
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   890
lemma DERIV_neg_dec_left:
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   891
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   892
  assumes der: "DERIV f x :> l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   893
      and l:   "l < 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   894
  shows "\<exists>d > 0. \<forall>h > 0. h < d --> f(x) < f(x-h)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   895
proof -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   896
  from l der [THEN DERIV_D, THEN LIM_D [where r = "-l"]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   897
  have "\<exists>s > 0. (\<forall>z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l)"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53381
diff changeset
   898
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   899
  then obtain s
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   900
        where s:   "0 < s"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   901
          and all: "!!z. z \<noteq> 0 \<and> \<bar>z\<bar> < s \<longrightarrow> \<bar>(f(x+z) - f x) / z - l\<bar> < -l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   902
    by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   903
  thus ?thesis
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   904
  proof (intro exI conjI strip)
23441
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
   905
    show "0<s" using s .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   906
    fix h::real
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   907
    assume "0 < h" "h < s"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   908
    with all [of "-h"] show "f x < f (x-h)"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
   909
    proof (simp add: abs_if pos_less_divide_eq split add: split_if_asm)
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
   910
      assume " - ((f (x-h) - f x) / h) < l" and h: "0 < h"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   911
      with l
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   912
      have "0 < (f (x-h) - f x) / h" by arith
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   913
      thus "f x < f (x-h)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   914
  by (simp add: pos_less_divide_eq h)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   915
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   916
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   917
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   918
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   919
lemma DERIV_pos_inc_left:
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   920
  fixes f :: "real => real"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   921
  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x - h) < f(x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   922
  apply (rule DERIV_neg_dec_left [of "%x. - f x" "-l" x, simplified])
41368
8afa26855137 use DERIV_intros
hoelzl
parents: 37891
diff changeset
   923
  apply (auto simp add: DERIV_minus)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   924
  done
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   925
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   926
lemma DERIV_neg_dec_right:
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   927
  fixes f :: "real => real"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   928
  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d --> f(x) > f(x + h)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   929
  apply (rule DERIV_pos_inc_right [of "%x. - f x" "-l" x, simplified])
41368
8afa26855137 use DERIV_intros
hoelzl
parents: 37891
diff changeset
   930
  apply (auto simp add: DERIV_minus)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   931
  done
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   932
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   933
lemma DERIV_local_max:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   934
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   935
  assumes der: "DERIV f x :> l"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   936
      and d:   "0 < d"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   937
      and le:  "\<forall>y. \<bar>x-y\<bar> < d --> f(y) \<le> f(x)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   938
  shows "l = 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   939
proof (cases rule: linorder_cases [of l 0])
23441
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
   940
  case equal thus ?thesis .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   941
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   942
  case less
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   943
  from DERIV_neg_dec_left [OF der less]
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   944
  obtain d' where d': "0 < d'"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   945
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x-h)" by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   946
  from real_lbound_gt_zero [OF d d']
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   947
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   948
  with lt le [THEN spec [where x="x-e"]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   949
  show ?thesis by (auto simp add: abs_if)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   950
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   951
  case greater
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
   952
  from DERIV_pos_inc_right [OF der greater]
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   953
  obtain d' where d': "0 < d'"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   954
             and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)" by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   955
  from real_lbound_gt_zero [OF d d']
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   956
  obtain e where "0 < e \<and> e < d \<and> e < d'" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   957
  with lt le [THEN spec [where x="x+e"]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   958
  show ?thesis by (auto simp add: abs_if)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   959
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   960
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   961
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   962
text{*Similar theorem for a local minimum*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   963
lemma DERIV_local_min:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   964
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   965
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) \<le> f(y) |] ==> l = 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   966
by (drule DERIV_minus [THEN DERIV_local_max], auto)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   967
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   968
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   969
text{*In particular, if a function is locally flat*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   970
lemma DERIV_local_const:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   971
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   972
  shows "[| DERIV f x :> l; 0 < d; \<forall>y. \<bar>x-y\<bar> < d --> f(x) = f(y) |] ==> l = 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   973
by (auto dest!: DERIV_local_max)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   974
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   976
subsection {* Rolle's Theorem *}
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
   977
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   978
text{*Lemma about introducing open ball in open interval*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   979
lemma lemma_interval_lt:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   980
     "[| a < x;  x < b |]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   981
      ==> \<exists>d::real. 0 < d & (\<forall>y. \<bar>x-y\<bar> < d --> a < y & y < b)"
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
   982
22998
97e1f9c2cc46 avoid using redundant lemmas from RealDef.thy
huffman
parents: 22984
diff changeset
   983
apply (simp add: abs_less_iff)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   984
apply (insert linorder_linear [of "x-a" "b-x"], safe)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   985
apply (rule_tac x = "x-a" in exI)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   986
apply (rule_tac [2] x = "b-x" in exI, auto)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   987
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   988
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   989
lemma lemma_interval: "[| a < x;  x < b |] ==>
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   990
        \<exists>d::real. 0 < d &  (\<forall>y. \<bar>x-y\<bar> < d --> a \<le> y & y \<le> b)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   991
apply (drule lemma_interval_lt, auto)
44921
58eef4843641 tuned proofs
huffman
parents: 44890
diff changeset
   992
apply force
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   993
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   994
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   995
text{*Rolle's Theorem.
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   996
   If @{term f} is defined and continuous on the closed interval
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   997
   @{text "[a,b]"} and differentiable on the open interval @{text "(a,b)"},
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   998
   and @{term "f(a) = f(b)"},
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   999
   then there exists @{text "x0 \<in> (a,b)"} such that @{term "f'(x0) = 0"}*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1000
theorem Rolle:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1001
  assumes lt: "a < b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1002
      and eq: "f(a) = f(b)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1003
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1004
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable (at x)"
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1005
  shows "\<exists>z::real. a < z & z < b & DERIV f z :> 0"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1006
proof -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1007
  have le: "a \<le> b" using lt by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1008
  from isCont_eq_Ub [OF le con]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1009
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1010
             and alex: "a \<le> x" and xleb: "x \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1011
    by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1012
  from isCont_eq_Lb [OF le con]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1013
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1014
              and alex': "a \<le> x'" and x'leb: "x' \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1015
    by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1016
  show ?thesis
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1017
  proof cases
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1018
    assume axb: "a < x & x < b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1019
        --{*@{term f} attains its maximum within the interval*}
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1020
    hence ax: "a<x" and xb: "x<b" by arith + 
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1021
    from lemma_interval [OF ax xb]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1022
    obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1023
      by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1024
    hence bound': "\<forall>y. \<bar>x-y\<bar> < d \<longrightarrow> f y \<le> f x" using x_max
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1025
      by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1026
    from differentiableD [OF dif [OF axb]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1027
    obtain l where der: "DERIV f x :> l" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1028
    have "l=0" by (rule DERIV_local_max [OF der d bound'])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1029
        --{*the derivative at a local maximum is zero*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1030
    thus ?thesis using ax xb der by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1031
  next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1032
    assume notaxb: "~ (a < x & x < b)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1033
    hence xeqab: "x=a | x=b" using alex xleb by arith
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1034
    hence fb_eq_fx: "f b = f x" by (auto simp add: eq)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1035
    show ?thesis
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1036
    proof cases
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1037
      assume ax'b: "a < x' & x' < b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1038
        --{*@{term f} attains its minimum within the interval*}
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1039
      hence ax': "a<x'" and x'b: "x'<b" by arith+ 
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1040
      from lemma_interval [OF ax' x'b]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1041
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1042
  by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1043
      hence bound': "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> f x' \<le> f y" using x'_min
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1044
  by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1045
      from differentiableD [OF dif [OF ax'b]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1046
      obtain l where der: "DERIV f x' :> l" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1047
      have "l=0" by (rule DERIV_local_min [OF der d bound'])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1048
        --{*the derivative at a local minimum is zero*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1049
      thus ?thesis using ax' x'b der by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1050
    next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1051
      assume notax'b: "~ (a < x' & x' < b)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1052
        --{*@{term f} is constant througout the interval*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1053
      hence x'eqab: "x'=a | x'=b" using alex' x'leb by arith
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1054
      hence fb_eq_fx': "f b = f x'" by (auto simp add: eq)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1055
      from dense [OF lt]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1056
      obtain r where ar: "a < r" and rb: "r < b" by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1057
      from lemma_interval [OF ar rb]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1058
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1059
  by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1060
      have eq_fb: "\<forall>z. a \<le> z --> z \<le> b --> f z = f b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1061
      proof (clarify)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1062
        fix z::real
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1063
        assume az: "a \<le> z" and zb: "z \<le> b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1064
        show "f z = f b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1065
        proof (rule order_antisym)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1066
          show "f z \<le> f b" by (simp add: fb_eq_fx x_max az zb)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1067
          show "f b \<le> f z" by (simp add: fb_eq_fx' x'_min az zb)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1068
        qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1069
      qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1070
      have bound': "\<forall>y. \<bar>r-y\<bar> < d \<longrightarrow> f r = f y"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1071
      proof (intro strip)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1072
        fix y::real
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1073
        assume lt: "\<bar>r-y\<bar> < d"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1074
        hence "f y = f b" by (simp add: eq_fb bound)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1075
        thus "f r = f y" by (simp add: eq_fb ar rb order_less_imp_le)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1076
      qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1077
      from differentiableD [OF dif [OF conjI [OF ar rb]]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1078
      obtain l where der: "DERIV f r :> l" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1079
      have "l=0" by (rule DERIV_local_const [OF der d bound'])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1080
        --{*the derivative of a constant function is zero*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1081
      thus ?thesis using ar rb der by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1082
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1083
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1084
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1085
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1086
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1087
subsection{*Mean Value Theorem*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1088
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1089
lemma lemma_MVT:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1090
     "f a - (f b - f a)/(b-a) * a = f b - (f b - f a)/(b-a) * (b::real)"
51481
ef949192e5d6 move continuous_on_inv to HOL image (simplifies isCont_inverse_function)
hoelzl
parents: 51480
diff changeset
  1091
  by (cases "a = b") (simp_all add: field_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1092
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1093
theorem MVT:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1094
  assumes lt:  "a < b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1095
      and con: "\<forall>x. a \<le> x & x \<le> b --> isCont f x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1096
      and dif [rule_format]: "\<forall>x. a < x & x < b --> f differentiable (at x)"
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1097
  shows "\<exists>l z::real. a < z & z < b & DERIV f z :> l &
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1098
                   (f(b) - f(a) = (b-a) * l)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1099
proof -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1100
  let ?F = "%x. f x - ((f b - f a) / (b-a)) * x"
44233
aa74ce315bae add simp rules for isCont
huffman
parents: 44209
diff changeset
  1101
  have contF: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?F x"
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56369
diff changeset
  1102
    using con by (fast intro: continuous_intros)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1103
  have difF: "\<forall>x. a < x \<and> x < b \<longrightarrow> ?F differentiable (at x)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1104
  proof (clarify)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1105
    fix x::real
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1106
    assume ax: "a < x" and xb: "x < b"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1107
    from differentiableD [OF dif [OF conjI [OF ax xb]]]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1108
    obtain l where der: "DERIV f x :> l" ..
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1109
    show "?F differentiable (at x)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1110
      by (rule differentiableI [where D = "l - (f b - f a)/(b-a)"],
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1111
          blast intro: DERIV_diff DERIV_cmult_Id der)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1112
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1113
  from Rolle [where f = ?F, OF lt lemma_MVT contF difF]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1114
  obtain z where az: "a < z" and zb: "z < b" and der: "DERIV ?F z :> 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1115
    by blast
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1116
  have "DERIV (%x. ((f b - f a)/(b-a)) * x) z :> (f b - f a)/(b-a)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1117
    by (rule DERIV_cmult_Id)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1118
  hence derF: "DERIV (\<lambda>x. ?F x + (f b - f a) / (b - a) * x) z
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1119
                   :> 0 + (f b - f a) / (b - a)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1120
    by (rule DERIV_add [OF der])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1121
  show ?thesis
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1122
  proof (intro exI conjI)
23441
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
  1123
    show "a < z" using az .
ee218296d635 avoid using implicit prems in assumption
huffman
parents: 23431
diff changeset
  1124
    show "z < b" using zb .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1125
    show "f b - f a = (b - a) * ((f b - f a)/(b-a))" by (simp)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1126
    show "DERIV f z :> ((f b - f a)/(b-a))"  using derF by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1127
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1128
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1129
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1130
lemma MVT2:
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1131
     "[| a < b; \<forall>x. a \<le> x & x \<le> b --> DERIV f x :> f'(x) |]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1132
      ==> \<exists>z::real. a < z & z < b & (f b - f a = (b - a) * f'(z))"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1133
apply (drule MVT)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1134
apply (blast intro: DERIV_isCont)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1135
apply (force dest: order_less_imp_le simp add: real_differentiable_def)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1136
apply (blast dest: DERIV_unique order_less_imp_le)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1137
done
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1138
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1139
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1140
text{*A function is constant if its derivative is 0 over an interval.*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1141
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1142
lemma DERIV_isconst_end:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1143
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1144
  shows "[| a < b;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1145
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1146
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1147
        ==> f b = f a"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1148
apply (drule MVT, assumption)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1149
apply (blast intro: differentiableI)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1150
apply (auto dest!: DERIV_unique simp add: diff_eq_eq)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1151
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1152
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1153
lemma DERIV_isconst1:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1154
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1155
  shows "[| a < b;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1156
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1157
         \<forall>x. a < x & x < b --> DERIV f x :> 0 |]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1158
        ==> \<forall>x. a \<le> x & x \<le> b --> f x = f a"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1159
apply safe
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1160
apply (drule_tac x = a in order_le_imp_less_or_eq, safe)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1161
apply (drule_tac b = x in DERIV_isconst_end, auto)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1162
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1163
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1164
lemma DERIV_isconst2:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1165
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1166
  shows "[| a < b;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1167
         \<forall>x. a \<le> x & x \<le> b --> isCont f x;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1168
         \<forall>x. a < x & x < b --> DERIV f x :> 0;
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1169
         a \<le> x; x \<le> b |]
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1170
        ==> f x = f a"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1171
apply (blast dest: DERIV_isconst1)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1172
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1173
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1174
lemma DERIV_isconst3: fixes a b x y :: real
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1175
  assumes "a < b" and "x \<in> {a <..< b}" and "y \<in> {a <..< b}"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1176
  assumes derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1177
  shows "f x = f y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1178
proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1179
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1180
  let ?a = "min x y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1181
  let ?b = "max x y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1182
  
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1183
  have "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> DERIV f z :> 0"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1184
  proof (rule allI, rule impI)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1185
    fix z :: real assume "?a \<le> z \<and> z \<le> ?b"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1186
    hence "a < z" and "z < b" using `x \<in> {a <..< b}` and `y \<in> {a <..< b}` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1187
    hence "z \<in> {a<..<b}" by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1188
    thus "DERIV f z :> 0" by (rule derivable)
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1189
  qed
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1190
  hence isCont: "\<forall>z. ?a \<le> z \<and> z \<le> ?b \<longrightarrow> isCont f z"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1191
    and DERIV: "\<forall>z. ?a < z \<and> z < ?b \<longrightarrow> DERIV f z :> 0" using DERIV_isCont by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1192
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1193
  have "?a < ?b" using `x \<noteq> y` by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1194
  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1195
  show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1196
qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1197
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1198
lemma DERIV_isconst_all:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1199
  fixes f :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1200
  shows "\<forall>x. DERIV f x :> 0 ==> f(x) = f(y)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1201
apply (rule linorder_cases [of x y])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1202
apply (blast intro: sym DERIV_isCont DERIV_isconst_end)+
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1203
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1204
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1205
lemma DERIV_const_ratio_const:
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1206
  fixes f :: "real => real"
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1207
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a)) = (b-a) * k"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1208
apply (rule linorder_cases [of a b], auto)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1209
apply (drule_tac [!] f = f in MVT)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1210
apply (auto dest: DERIV_isCont DERIV_unique simp add: real_differentiable_def)
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53381
diff changeset
  1211
apply (auto dest: DERIV_unique simp add: ring_distribs)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1212
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1213
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1214
lemma DERIV_const_ratio_const2:
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1215
  fixes f :: "real => real"
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1216
  shows "[|a \<noteq> b; \<forall>x. DERIV f x :> k |] ==> (f(b) - f(a))/(b-a) = k"
56217
dc429a5b13c4 Some rationalisation of basic lemmas
paulson <lp15@cam.ac.uk>
parents: 56182
diff changeset
  1217
apply (rule_tac c1 = "b-a" in mult_right_cancel [THEN iffD1])
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1218
apply (auto dest!: DERIV_const_ratio_const simp add: mult.assoc)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1219
done
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1220
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1221
lemma real_average_minus_first [simp]: "((a + b) /2 - a) = (b-a)/(2::real)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1222
by (simp)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1223
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1224
lemma real_average_minus_second [simp]: "((b + a)/2 - a) = (b-a)/(2::real)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1225
by (simp)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1226
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1227
text{*Gallileo's "trick": average velocity = av. of end velocities*}
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1228
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1229
lemma DERIV_const_average:
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1230
  fixes v :: "real => real"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1231
  assumes neq: "a \<noteq> (b::real)"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1232
      and der: "\<forall>x. DERIV v x :> k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1233
  shows "v ((a + b)/2) = (v a + v b)/2"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1234
proof (cases rule: linorder_cases [of a b])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1235
  case equal with neq show ?thesis by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1236
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1237
  case less
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1238
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1239
    by (rule DERIV_const_ratio_const2 [OF neq der])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1240
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1241
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1242
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1243
  ultimately show ?thesis using neq by force
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1244
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1245
  case greater
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1246
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1247
    by (rule DERIV_const_ratio_const2 [OF neq der])
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1248
  hence "(b-a) * ((v b - v a) / (b-a)) = (b-a) * k" by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1249
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1250
    by (rule DERIV_const_ratio_const2 [OF _ der], simp add: neq)
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1251
  ultimately show ?thesis using neq by (force simp add: add.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1252
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1253
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1254
(* A function with positive derivative is increasing. 
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1255
   A simple proof using the MVT, by Jeremy Avigad. And variants.
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1256
*)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1257
lemma DERIV_pos_imp_increasing_open:
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1258
  fixes a::real and b::real and f::"real => real"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1259
  assumes "a < b" and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (EX y. DERIV f x :> y & y > 0)"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1260
      and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1261
  shows "f a < f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1262
proof (rule ccontr)
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1263
  assume f: "~ f a < f b"
33690
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1264
  have "EX l z. a < z & z < b & DERIV f z :> l
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1265
      & f b - f a = (b - a) * l"
33690
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1266
    apply (rule MVT)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1267
      using assms Deriv.differentiableI
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1268
      apply force+
33690
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1269
    done
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1270
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1271
      and "f b - f a = (b - a) * l"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1272
    by auto
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1273
  with assms f have "~(l > 0)"
36777
be5461582d0f avoid using real-specific versions of generic lemmas
huffman
parents: 35216
diff changeset
  1274
    by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1275
  with assms z show False
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1276
    by (metis DERIV_unique)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1277
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1278
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1279
lemma DERIV_pos_imp_increasing:
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1280
  fixes a::real and b::real and f::"real => real"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1281
  assumes "a < b" and "\<forall>x. a \<le> x & x \<le> b --> (EX y. DERIV f x :> y & y > 0)"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1282
  shows "f a < f b"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1283
by (metis DERIV_pos_imp_increasing_open [of a b f] assms DERIV_continuous less_imp_le)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1284
45791
d985ec974815 more systematic lemma name
noschinl
parents: 45600
diff changeset
  1285
lemma DERIV_nonneg_imp_nondecreasing:
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1286
  fixes a::real and b::real and f::"real => real"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1287
  assumes "a \<le> b" and
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1288
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<ge> 0)"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1289
  shows "f a \<le> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1290
proof (rule ccontr, cases "a = b")
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1291
  assume "~ f a \<le> f b" and "a = b"
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1292
  then show False by auto
37891
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1293
next
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1294
  assume A: "~ f a \<le> f b"
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1295
  assume B: "a ~= b"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1296
  with assms have "EX l z. a < z & z < b & DERIV f z :> l
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1297
      & f b - f a = (b - a) * l"
33690
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1298
    apply -
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1299
    apply (rule MVT)
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1300
      apply auto
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1301
      apply (metis DERIV_isCont)
36777
be5461582d0f avoid using real-specific versions of generic lemmas
huffman
parents: 35216
diff changeset
  1302
     apply (metis differentiableI less_le)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1303
    done
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1304
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l"
37891
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1305
      and C: "f b - f a = (b - a) * l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1306
    by auto
37891
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1307
  with A have "a < b" "f b < f a" by auto
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1308
  with C have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
45051
c478d1876371 discontinued legacy theorem names from RealDef.thy
huffman
parents: 44921
diff changeset
  1309
    (metis A add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1310
  with assms z show False
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1311
    by (metis DERIV_unique order_less_imp_le)
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1312
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1313
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1314
lemma DERIV_neg_imp_decreasing_open:
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1315
  fixes a::real and b::real and f::"real => real"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1316
  assumes "a < b" and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (EX y. DERIV f x :> y & y < 0)"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1317
      and con: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> isCont f x"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1318
  shows "f a > f b"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1319
proof -
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1320
  have "(%x. -f x) a < (%x. -f x) b"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1321
    apply (rule DERIV_pos_imp_increasing_open [of a b "%x. -f x"])
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1322
    using assms
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1323
    apply auto
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1324
    apply (metis field_differentiable_minus neg_0_less_iff_less)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1325
    done
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1326
  thus ?thesis
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1327
    by simp
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1328
qed
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1329
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1330
lemma DERIV_neg_imp_decreasing:
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1331
  fixes a::real and b::real and f::"real => real"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1332
  assumes "a < b" and
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1333
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y < 0)"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1334
  shows "f a > f b"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1335
by (metis DERIV_neg_imp_decreasing_open [of a b f] assms DERIV_continuous less_imp_le)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1336
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1337
lemma DERIV_nonpos_imp_nonincreasing:
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1338
  fixes a::real and b::real and f::"real => real"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1339
  assumes "a \<le> b" and
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1340
    "\<forall>x. a \<le> x & x \<le> b --> (\<exists>y. DERIV f x :> y & y \<le> 0)"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1341
  shows "f a \<ge> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1342
proof -
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1343
  have "(%x. -f x) a \<le> (%x. -f x) b"
45791
d985ec974815 more systematic lemma name
noschinl
parents: 45600
diff changeset
  1344
    apply (rule DERIV_nonneg_imp_nondecreasing [of a b "%x. -f x"])
33690
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1345
    using assms
889d06128608 simplified bulky metis proofs;
wenzelm
parents: 33659
diff changeset
  1346
    apply auto
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1347
    apply (metis DERIV_minus neg_0_le_iff_le)
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1348
    done
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1349
  thus ?thesis
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1350
    by simp
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1351
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1352
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1353
lemma DERIV_pos_imp_increasing_at_bot:
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1354
  fixes f :: "real => real"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1355
  assumes "\<And>x. x \<le> b \<Longrightarrow> (EX y. DERIV f x :> y & y > 0)"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1356
      and lim: "(f ---> flim) at_bot"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1357
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1358
proof -
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1359
  have "flim \<le> f (b - 1)"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1360
    apply (rule tendsto_ge_const [OF _ lim])
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1361
    apply (auto simp: trivial_limit_at_bot_linorder eventually_at_bot_linorder)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1362
    apply (rule_tac x="b - 2" in exI)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1363
    apply (force intro: order.strict_implies_order DERIV_pos_imp_increasing [where f=f] assms)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1364
    done
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1365
  also have "... < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1366
    by (force intro: DERIV_pos_imp_increasing [where f=f] assms)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1367
  finally show ?thesis .
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1368
qed
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1369
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1370
lemma DERIV_neg_imp_decreasing_at_top:
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1371
  fixes f :: "real => real"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1372
  assumes der: "\<And>x. x \<ge> b \<Longrightarrow> (EX y. DERIV f x :> y & y < 0)"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1373
      and lim: "(f ---> flim) at_top"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1374
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1375
  apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1376
  apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1377
  apply (metis filterlim_at_top_mirror lim)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1378
  done
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1379
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1380
text {* Derivative of inverse function *}
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1381
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1382
lemma DERIV_inverse_function:
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1383
  fixes f g :: "real \<Rightarrow> real"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1384
  assumes der: "DERIV f (g x) :> D"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1385
  assumes neq: "D \<noteq> 0"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1386
  assumes a: "a < x" and b: "x < b"
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1387
  assumes inj: "\<forall>y. a < y \<and> y < b \<longrightarrow> f (g y) = y"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1388
  assumes cont: "isCont g x"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1389
  shows "DERIV g x :> inverse D"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1390
unfolding DERIV_iff2
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1391
proof (rule LIM_equal2)
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1392
  show "0 < min (x - a) (b - x)"
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1393
    using a b by arith 
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1394
next
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1395
  fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1396
  assume "norm (y - x) < min (x - a) (b - x)"
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1397
  hence "a < y" and "y < b" 
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1398
    by (simp_all add: abs_less_iff)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1399
  thus "(g y - g x) / (y - x) =
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1400
        inverse ((f (g y) - x) / (g y - g x))"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1401
    by (simp add: inj)
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1402
next
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1403
  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) -- g x --> D"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1404
    by (rule der [unfolded DERIV_iff2])
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1405
  hence 1: "(\<lambda>z. (f z - x) / (z - g x)) -- g x --> D"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1406
    using inj a b by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1407
  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  1408
  proof (rule exI, safe)
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1409
    show "0 < min (x - a) (b - x)"
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1410
      using a b by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1411
  next
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1412
    fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1413
    assume "norm (y - x) < min (x - a) (b - x)"
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1414
    hence y: "a < y" "y < b"
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1415
      by (simp_all add: abs_less_iff)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1416
    assume "g y = g x"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1417
    hence "f (g y) = f (g x)" by simp
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1418
    hence "y = x" using inj y a b by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1419
    also assume "y \<noteq> x"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1420
    finally show False by simp
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1421
  qed
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1422
  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) -- x --> D"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1423
    using cont 1 2 by (rule isCont_LIM_compose2)
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1424
  thus "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x)))
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1425
        -- x --> inverse D"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44317
diff changeset
  1426
    using neq by (rule tendsto_inverse)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1427
qed
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1428
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1429
subsection {* Generalized Mean Value Theorem *}
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1430
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1431
theorem GMVT:
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1432
  fixes a b :: real
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1433
  assumes alb: "a < b"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1434
    and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1435
    and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1436
    and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1437
    and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1438
  shows "\<exists>g'c f'c c.
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1439
    DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> ((f b - f a) * g'c) = ((g b - g a) * f'c)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1440
proof -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1441
  let ?h = "\<lambda>x. (f b - f a)*(g x) - (g b - g a)*(f x)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1442
  from assms have "a < b" by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1443
  moreover have "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont ?h x"
44233
aa74ce315bae add simp rules for isCont
huffman
parents: 44209
diff changeset
  1444
    using fc gc by simp
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1445
  moreover have "\<forall>x. a < x \<and> x < b \<longrightarrow> ?h differentiable (at x)"
44233
aa74ce315bae add simp rules for isCont
huffman
parents: 44209
diff changeset
  1446
    using fd gd by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1447
  ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" by (rule MVT)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1448
  then obtain l where ldef: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1449
  then obtain c where cdef: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1450
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1451
  from cdef have cint: "a < c \<and> c < b" by auto
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1452
  with gd have "g differentiable (at c)" by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1453
  hence "\<exists>D. DERIV g c :> D" by (rule differentiableD)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1454
  then obtain g'c where g'cdef: "DERIV g c :> g'c" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1455
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1456
  from cdef have "a < c \<and> c < b" by auto
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1457
  with fd have "f differentiable (at c)" by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1458
  hence "\<exists>D. DERIV f c :> D" by (rule differentiableD)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1459
  then obtain f'c where f'cdef: "DERIV f c :> f'c" ..
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1460
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1461
  from cdef have "DERIV ?h c :> l" by auto
41368
8afa26855137 use DERIV_intros
hoelzl
parents: 37891
diff changeset
  1462
  moreover have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1463
    using g'cdef f'cdef by (auto intro!: derivative_eq_intros)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1464
  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1465
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1466
  {
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1467
    from cdef have "?h b - ?h a = (b - a) * l" by auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1468
    also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1469
    finally have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1470
  }
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1471
  moreover
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1472
  {
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1473
    have "?h b - ?h a =
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1474
         ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1475
          ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29472
diff changeset
  1476
      by (simp add: algebra_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1477
    hence "?h b - ?h a = 0" by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1478
  }
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1479
  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1480
  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1481
  hence "g'c * (f b - f a) = f'c * (g b - g a)" by simp
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1482
  hence "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1483
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1484
  with g'cdef f'cdef cint show ?thesis by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1485
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1486
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1487
lemma GMVT':
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1488
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1489
  assumes "a < b"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1490
  assumes isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1491
  assumes isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1492
  assumes DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1493
  assumes DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1494
  shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1495
proof -
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1496
  have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1497
    a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1498
    using assms by (intro GMVT) (force simp: real_differentiable_def)+
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1499
  then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1500
    using DERIV_f DERIV_g by (force dest: DERIV_unique)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1501
  then show ?thesis
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1502
    by auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1503
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1504
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1505
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1506
subsection {* L'Hopitals rule *}
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1507
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1508
lemma isCont_If_ge:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1509
  fixes a :: "'a :: linorder_topology"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1510
  shows "continuous (at_left a) g \<Longrightarrow> (f ---> g a) (at_right a) \<Longrightarrow> isCont (\<lambda>x. if x \<le> a then g x else f x) a"
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1511
  unfolding isCont_def continuous_within
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1512
  apply (intro filterlim_split_at)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1513
  apply (subst filterlim_cong[OF refl refl, where g=g])
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1514
  apply (simp_all add: eventually_at_filter less_le)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1515
  apply (subst filterlim_cong[OF refl refl, where g=f])
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1516
  apply (simp_all add: eventually_at_filter less_le)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1517
  done
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1518
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1519
lemma lhopital_right_0:
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1520
  fixes f0 g0 :: "real \<Rightarrow> real"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1521
  assumes f_0: "(f0 ---> 0) (at_right 0)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1522
  assumes g_0: "(g0 ---> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1523
  assumes ev:
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1524
    "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1525
    "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1526
    "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1527
    "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1528
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1529
  shows "((\<lambda> x. f0 x / g0 x) ---> x) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1530
proof -
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1531
  def f \<equiv> "\<lambda>x. if x \<le> 0 then 0 else f0 x"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1532
  then have "f 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1533
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1534
  def g \<equiv> "\<lambda>x. if x \<le> 0 then 0 else g0 x"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1535
  then have "g 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1536
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1537
  have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1538
      DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1539
    using ev by eventually_elim auto
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1540
  then obtain a where [arith]: "0 < a"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1541
    and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1542
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1543
    and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1544
    and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  1545
    unfolding eventually_at by (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1546
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1547
  have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1548
    using g0_neq_0 by (simp add: g_def)
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1549
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1550
  { fix x assume x: "0 < x" "x < a" then have "DERIV f x :> (f' x)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1551
      by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1552
         (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1553
  note f = this
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1554
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1555
  { fix x assume x: "0 < x" "x < a" then have "DERIV g x :> (g' x)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1556
      by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1557
         (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x]) }
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1558
  note g = this
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1559
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1560
  have "isCont f 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1561
    unfolding f_def by (intro isCont_If_ge f_0 continuous_const)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1562
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1563
  have "isCont g 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1564
    unfolding g_def by (intro isCont_If_ge g_0 continuous_const)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1565
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1566
  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1567
  proof (rule bchoice, rule)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1568
    fix x assume "x \<in> {0 <..< a}"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1569
    then have x[arith]: "0 < x" "x < a" by auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1570
    with g'_neq_0 g_neq_0 `g 0 = 0` have g': "\<And>x. 0 < x \<Longrightarrow> x < a  \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1571
      by auto
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1572
    have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1573
      using `isCont f 0` f by (auto intro: DERIV_isCont simp: le_less)
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1574
    moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1575
      using `isCont g 0` g by (auto intro: DERIV_isCont simp: le_less)
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1576
    ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1577
      using f g `x < a` by (intro GMVT') auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1578
    then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1579
      by blast
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1580
    moreover
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1581
    from * g'(1)[of c] g'(2) have "(f x - f 0)  / (g x - g 0) = f' c / g' c"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1582
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1583
    ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1584
      using `f 0 = 0` `g 0 = 0` by (auto intro!: exI[of _ c])
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1585
  qed
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1586
  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1587
  then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1588
    unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1589
  moreover
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1590
  from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1591
    by eventually_elim auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1592
  then have "((\<lambda>x. norm (\<zeta> x)) ---> 0) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1593
    by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1594
       (auto intro: tendsto_const tendsto_ident_at)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1595
  then have "(\<zeta> ---> 0) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1596
    by (rule tendsto_norm_zero_cancel)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1597
  with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1598
    by (auto elim!: eventually_elim1 simp: filterlim_at)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1599
  from this lim have "((\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) ---> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1600
    by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1601
  ultimately have "((\<lambda>t. f t / g t) ---> x) (at_right 0)" (is ?P)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1602
    by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1603
       (auto elim: eventually_elim1)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1604
  also have "?P \<longleftrightarrow> ?thesis"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1605
    by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1606
  finally show ?thesis .
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1607
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1608
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1609
lemma lhopital_right:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1610
  "((f::real \<Rightarrow> real) ---> 0) (at_right x) \<Longrightarrow> (g ---> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1611
    eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1612
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1613
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1614
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1615
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1616
  ((\<lambda> x. f x / g x) ---> y) (at_right x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1617
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1618
  by (rule lhopital_right_0)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1619
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1620
lemma lhopital_left:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1621
  "((f::real \<Rightarrow> real) ---> 0) (at_left x) \<Longrightarrow> (g ---> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1622
    eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1623
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1624
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1625
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1626
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1627
  ((\<lambda> x. f x / g x) ---> y) (at_left x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1628
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1629
  by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1630
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1631
lemma lhopital:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1632
  "((f::real \<Rightarrow> real) ---> 0) (at x) \<Longrightarrow> (g ---> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1633
    eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1634
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1635
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1636
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1637
    ((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1638
  ((\<lambda> x. f x / g x) ---> y) (at x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1639
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1640
  by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1641
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1642
lemma lhopital_right_0_at_top:
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1643
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1644
  assumes g_0: "LIM x at_right 0. g x :> at_top"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1645
  assumes ev:
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1646
    "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1647
    "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1648
    "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1649
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1650
  shows "((\<lambda> x. f x / g x) ---> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1651
  unfolding tendsto_iff
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1652
proof safe
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1653
  fix e :: real assume "0 < e"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1654
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1655
  with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1656
  have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)" by simp
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1657
  from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1658
  obtain a where [arith]: "0 < a"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1659
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1660
    and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1661
    and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1662
    and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1663
    unfolding eventually_at_le by (auto simp: dist_real_def)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1664
    
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1665
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1666
  from Df have
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1667
    "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1668
    unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1669
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1670
  moreover
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  1671
  have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1672
    using g_0 by (auto elim: eventually_elim1 simp: filterlim_at_top_dense)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1673
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1674
  moreover
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1675
  have inv_g: "((\<lambda>x. inverse (g x)) ---> 0) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1676
    using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1677
    by (rule filterlim_compose)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1678
  then have "((\<lambda>x. norm (1 - g a * inverse (g x))) ---> norm (1 - g a * 0)) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1679
    by (intro tendsto_intros)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1680
  then have "((\<lambda>x. norm (1 - g a / g x)) ---> 1) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1681
    by (simp add: inverse_eq_divide)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1682
  from this[unfolded tendsto_iff, rule_format, of 1]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1683
  have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1684
    by (auto elim!: eventually_elim1 simp: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1685
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1686
  moreover
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1687
  from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) ---> norm ((f a - x * g a) * 0)) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1688
    by (intro tendsto_intros)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1689
  then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) ---> 0) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1690
    by (simp add: inverse_eq_divide)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1691
  from this[unfolded tendsto_iff, rule_format, of "e / 2"] `0 < e`
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1692
  have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1693
    by (auto simp: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1694
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1695
  ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1696
  proof eventually_elim
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1697
    fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1698
    assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1699
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1700
    have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1701
      using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1702
    then obtain y where [arith]: "t < y" "y < a"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1703
      and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1704
      by blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1705
    from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1706
      using `g a < g t` g'_neq_0[of y] by (auto simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1707
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1708
    have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1709
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1710
    have "norm (f t / g t - x) \<le>
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1711
        norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1712
      unfolding * by (rule norm_triangle_ineq)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1713
    also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1714
      by (simp add: abs_mult D_eq dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1715
    also have "\<dots> < (e / 4) * 2 + e / 2"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1716
      using ineq Df[of y] `0 < e` by (intro add_le_less_mono mult_mono) auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1717
    finally show "dist (f t / g t) x < e"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1718
      by (simp add: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1719
  qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1720
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1721
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1722
lemma lhopital_right_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1723
  "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1724
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1725
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1726
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1727
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1728
    ((\<lambda> x. f x / g x) ---> y) (at_right x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1729
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1730
  by (rule lhopital_right_0_at_top)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1731
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1732
lemma lhopital_left_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1733
  "LIM x at_left x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1734
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1735
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1736
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1737
    ((\<lambda> x. (f' x / g' x)) ---> y) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1738
    ((\<lambda> x. f x / g x) ---> y) (at_left x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1739
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1740
  by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1741
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1742
lemma lhopital_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1743
  "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1744
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1745
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1746
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1747
    ((\<lambda> x. (f' x / g' x)) ---> y) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1748
    ((\<lambda> x. f x / g x) ---> y) (at x)"
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1749
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1750
  by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  1751
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1752
lemma lhospital_at_top_at_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1753
  fixes f g :: "real \<Rightarrow> real"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1754
  assumes g_0: "LIM x at_top. g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1755
  assumes g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1756
  assumes Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1757
  assumes Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1758
  assumes lim: "((\<lambda> x. (f' x / g' x)) ---> x) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1759
  shows "((\<lambda> x. f x / g x) ---> x) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1760
  unfolding filterlim_at_top_to_right
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1761
proof (rule lhopital_right_0_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1762
  let ?F = "\<lambda>x. f (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1763
  let ?G = "\<lambda>x. g (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1764
  let ?R = "at_right (0::real)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1765
  let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1766
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1767
  show "LIM x ?R. ?G x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1768
    using g_0 unfolding filterlim_at_top_to_right .
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1769
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1770
  show "eventually (\<lambda>x. DERIV ?G x  :> ?D g' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1771
    unfolding eventually_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1772
    using Dg eventually_ge_at_top[where c="1::real"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1773
    apply eventually_elim
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1774
    apply (rule DERIV_cong)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1775
    apply (rule DERIV_chain'[where f=inverse])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1776
    apply (auto intro!:  DERIV_inverse)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1777
    done
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1778
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1779
  show "eventually (\<lambda>x. DERIV ?F x  :> ?D f' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1780
    unfolding eventually_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1781
    using Df eventually_ge_at_top[where c="1::real"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1782
    apply eventually_elim
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1783
    apply (rule DERIV_cong)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1784
    apply (rule DERIV_chain'[where f=inverse])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1785
    apply (auto intro!:  DERIV_inverse)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1786
    done
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1787
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1788
  show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1789
    unfolding eventually_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1790
    using g' eventually_ge_at_top[where c="1::real"]
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1791
    by eventually_elim auto
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1792
    
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1793
  show "((\<lambda>x. ?D f' x / ?D g' x) ---> x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1794
    unfolding filterlim_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1795
    apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1796
    using eventually_ge_at_top[where c="1::real"]
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1797
    by eventually_elim simp
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1798
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1799
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1800
end