author | nipkow |
Thu, 08 Dec 2011 09:10:54 +0100 | |
changeset 45785 | 192243fd94a5 |
parent 35762 | af3ff2ba4c54 |
child 52457 | c3b4b74a54fd |
permissions | -rw-r--r-- |
24584 | 1 |
(* Title: FOLP/intprover.ML |
1459 | 2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1992 University of Cambridge |
4 |
||
5 |
A naive prover for intuitionistic logic |
|
6 |
||
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
7 |
BEWARE OF NAME CLASHES WITH CLASSICAL TACTICS -- use IntPr.fast_tac ... |
0 | 8 |
|
9 |
Completeness (for propositional logic) is proved in |
|
10 |
||
11 |
Roy Dyckhoff. |
|
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
12 |
Contraction-Free Sequent Calculi for IntPruitionistic Logic. |
0 | 13 |
J. Symbolic Logic (in press) |
14 |
*) |
|
15 |
||
16 |
signature INT_PROVER = |
|
17 |
sig |
|
18 |
val best_tac: int -> tactic |
|
19 |
val fast_tac: int -> tactic |
|
20 |
val inst_step_tac: int -> tactic |
|
21 |
val safe_step_tac: int -> tactic |
|
22 |
val safe_brls: (bool * thm) list |
|
23 |
val safe_tac: tactic |
|
24 |
val step_tac: int -> tactic |
|
25 |
val haz_brls: (bool * thm) list |
|
26 |
end; |
|
27 |
||
28 |
||
2603
4988dda71c0b
Renamed structure Int (intuitionistic prover) to IntPr to prevent clash
paulson
parents:
2572
diff
changeset
|
29 |
structure IntPr : INT_PROVER = |
0 | 30 |
struct |
31 |
||
32 |
(*Negation is treated as a primitive symbol, with rules notI (introduction), |
|
33 |
not_to_imp (converts the assumption ~P to P-->False), and not_impE |
|
34 |
(handles double negations). Could instead rewrite by not_def as the first |
|
35 |
step of an intuitionistic proof. |
|
36 |
*) |
|
4440 | 37 |
val safe_brls = sort (make_ord lessb) |
26322 | 38 |
[ (true, @{thm FalseE}), (false, @{thm TrueI}), (false, @{thm refl}), |
39 |
(false, @{thm impI}), (false, @{thm notI}), (false, @{thm allI}), |
|
40 |
(true, @{thm conjE}), (true, @{thm exE}), |
|
41 |
(false, @{thm conjI}), (true, @{thm conj_impE}), |
|
42 |
(true, @{thm disj_impE}), (true, @{thm disjE}), |
|
43 |
(false, @{thm iffI}), (true, @{thm iffE}), (true, @{thm not_to_imp}) ]; |
|
0 | 44 |
|
45 |
val haz_brls = |
|
26322 | 46 |
[ (false, @{thm disjI1}), (false, @{thm disjI2}), (false, @{thm exI}), |
47 |
(true, @{thm allE}), (true, @{thm not_impE}), (true, @{thm imp_impE}), (true, @{thm iff_impE}), |
|
48 |
(true, @{thm all_impE}), (true, @{thm ex_impE}), (true, @{thm impE}) ]; |
|
0 | 49 |
|
50 |
(*0 subgoals vs 1 or more: the p in safep is for positive*) |
|
51 |
val (safe0_brls, safep_brls) = |
|
17496 | 52 |
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls; |
0 | 53 |
|
54 |
(*Attack subgoals using safe inferences*) |
|
55 |
val safe_step_tac = FIRST' [uniq_assume_tac, |
|
9263 | 56 |
int_uniq_mp_tac, |
1459 | 57 |
biresolve_tac safe0_brls, |
58 |
hyp_subst_tac, |
|
59 |
biresolve_tac safep_brls] ; |
|
0 | 60 |
|
61 |
(*Repeatedly attack subgoals using safe inferences*) |
|
62 |
val safe_tac = DETERM (REPEAT_FIRST safe_step_tac); |
|
63 |
||
64 |
(*These steps could instantiate variables and are therefore unsafe.*) |
|
65 |
val inst_step_tac = assume_tac APPEND' mp_tac; |
|
66 |
||
67 |
(*One safe or unsafe step. *) |
|
68 |
fun step_tac i = FIRST [safe_tac, inst_step_tac i, biresolve_tac haz_brls i]; |
|
69 |
||
70 |
(*Dumb but fast*) |
|
71 |
val fast_tac = SELECT_GOAL (DEPTH_SOLVE (step_tac 1)); |
|
72 |
||
73 |
(*Slower but smarter than fast_tac*) |
|
74 |
val best_tac = |
|
75 |
SELECT_GOAL (BEST_FIRST (has_fewer_prems 1, size_of_thm) (step_tac 1)); |
|
76 |
||
77 |
end; |