--- a/src/FOLP/FOLP.ML Thu Jul 06 12:27:37 2000 +0200
+++ b/src/FOLP/FOLP.ML Thu Jul 06 13:11:32 2000 +0200
@@ -6,48 +6,30 @@
Tactics and lemmas for FOLP (Classical First-Order Logic with Proofs)
*)
-open FOLP;
-
-signature FOLP_LEMMAS =
- sig
- val disjCI : thm
- val excluded_middle : thm
- val exCI : thm
- val ex_classical : thm
- val iffCE : thm
- val impCE : thm
- val notnotD : thm
- val swap : thm
- end;
-
-
-structure FOLP_Lemmas : FOLP_LEMMAS =
-struct
-
(*** Classical introduction rules for | and EX ***)
-val disjCI = prove_goal FOLP.thy
- "(!!x. x:~Q ==> f(x):P) ==> ?p : P|Q"
- (fn prems=>
- [ (rtac classical 1),
- (REPEAT (ares_tac (prems@[disjI1,notI]) 1)),
- (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ]);
+val prems= goal FOLP.thy
+ "(!!x. x:~Q ==> f(x):P) ==> ?p : P|Q";
+by (rtac classical 1);
+by (REPEAT (ares_tac (prems@[disjI1,notI]) 1));
+by (REPEAT (ares_tac (prems@[disjI2,notE]) 1)) ;
+qed "disjCI";
(*introduction rule involving only EX*)
-val ex_classical = prove_goal FOLP.thy
- "( !!u. u:~(EX x. P(x)) ==> f(u):P(a)) ==> ?p : EX x. P(x)"
- (fn prems=>
- [ (rtac classical 1),
- (eresolve_tac (prems RL [exI]) 1) ]);
+val prems= goal FOLP.thy
+ "( !!u. u:~(EX x. P(x)) ==> f(u):P(a)) ==> ?p : EX x. P(x)";
+by (rtac classical 1);
+by (eresolve_tac (prems RL [exI]) 1) ;
+qed "ex_classical";
(*version of above, simplifying ~EX to ALL~ *)
-val exCI = prove_goal FOLP.thy
- "(!!u. u:ALL x. ~P(x) ==> f(u):P(a)) ==> ?p : EX x. P(x)"
- (fn [prem]=>
- [ (rtac ex_classical 1),
- (resolve_tac [notI RS allI RS prem] 1),
- (etac notE 1),
- (etac exI 1) ]);
+val [prem]= goal FOLP.thy
+ "(!!u. u:ALL x. ~P(x) ==> f(u):P(a)) ==> ?p : EX x. P(x)";
+by (rtac ex_classical 1);
+by (resolve_tac [notI RS allI RS prem] 1);
+by (etac notE 1);
+by (etac exI 1) ;
+qed "exCI";
val excluded_middle = prove_goal FOLP.thy "?p : ~P | P"
(fn _=> [ rtac disjCI 1, assume_tac 1 ]);
@@ -57,39 +39,38 @@
(*Classical implies (-->) elimination. *)
-val impCE = prove_goal FOLP.thy
- "[| p:P-->Q; !!x. x:~P ==> f(x):R; !!y. y:Q ==> g(y):R |] ==> ?p : R"
- (fn major::prems=>
- [ (resolve_tac [excluded_middle RS disjE] 1),
- (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ]);
+val major::prems= goal FOLP.thy
+ "[| p:P-->Q; !!x. x:~P ==> f(x):R; !!y. y:Q ==> g(y):R |] ==> ?p : R";
+by (resolve_tac [excluded_middle RS disjE] 1);
+by (DEPTH_SOLVE (ares_tac (prems@[major RS mp]) 1)) ;
+qed "impCE";
(*Double negation law*)
-val notnotD = prove_goal FOLP.thy "p:~~P ==> ?p : P"
- (fn [major]=>
- [ (rtac classical 1), (eresolve_tac [major RS notE] 1) ]);
+Goal "p:~~P ==> ?p : P";
+by (rtac classical 1);
+by (etac notE 1);
+by (assume_tac 1);
+qed "notnotD";
(*** Tactics for implication and contradiction ***)
(*Classical <-> elimination. Proof substitutes P=Q in
~P ==> ~Q and P ==> Q *)
-val iffCE = prove_goalw FOLP.thy [iff_def]
+val prems = goalw FOLP.thy [iff_def]
"[| p:P<->Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R; \
-\ !!x y.[| x:~P; y:~Q |] ==> g(x,y):R |] ==> ?p : R"
- (fn prems =>
- [ (rtac conjE 1),
- (REPEAT (DEPTH_SOLVE_1
- (etac impCE 1 ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ]);
+\ !!x y.[| x:~P; y:~Q |] ==> g(x,y):R |] ==> ?p : R";
+by (rtac conjE 1);
+by (REPEAT (DEPTH_SOLVE_1 (etac impCE 1
+ ORELSE mp_tac 1 ORELSE ares_tac prems 1))) ;
+qed "iffCE";
(*Should be used as swap since ~P becomes redundant*)
-val swap = prove_goal FOLP.thy
- "p:~P ==> (!!x. x:~Q ==> f(x):P) ==> ?p : Q"
- (fn major::prems=>
- [ (rtac classical 1),
- (rtac (major RS notE) 1),
- (REPEAT (ares_tac prems 1)) ]);
+val major::prems= goal FOLP.thy
+ "p:~P ==> (!!x. x:~Q ==> f(x):P) ==> ?p : Q";
+by (rtac classical 1);
+by (rtac (major RS notE) 1);
+by (REPEAT (ares_tac prems 1)) ;
+qed "swap";
-end;
-
-open FOLP_Lemmas;
--- a/src/FOLP/IFOLP.ML Thu Jul 06 12:27:37 2000 +0200
+++ b/src/FOLP/IFOLP.ML Thu Jul 06 13:11:32 2000 +0200
@@ -5,95 +5,30 @@
Tactics and lemmas for IFOLP (Intuitionistic First-Order Logic with Proofs)
*)
-
-open IFOLP;
-
-signature IFOLP_LEMMAS =
- sig
- val allE: thm
- val all_cong: thm
- val all_dupE: thm
- val all_impE: thm
- val box_equals: thm
- val conjE: thm
- val conj_cong: thm
- val conj_impE: thm
- val contrapos: thm
- val disj_cong: thm
- val disj_impE: thm
- val eq_cong: thm
- val ex1I: thm
- val ex1E: thm
- val ex1_equalsE: thm
-(* val ex1_cong: thm****)
- val ex_cong: thm
- val ex_impE: thm
- val iffD1: thm
- val iffD2: thm
- val iffE: thm
- val iffI: thm
- val iff_cong: thm
- val iff_impE: thm
- val iff_refl: thm
- val iff_sym: thm
- val iff_trans: thm
- val impE: thm
- val imp_cong: thm
- val imp_impE: thm
- val mp_tac: int -> tactic
- val notE: thm
- val notI: thm
- val not_cong: thm
- val not_impE: thm
- val not_sym: thm
- val not_to_imp: thm
- val pred1_cong: thm
- val pred2_cong: thm
- val pred3_cong: thm
- val pred_congs: thm list
- val refl: thm
- val rev_mp: thm
- val simp_equals: thm
- val subst: thm
- val ssubst: thm
- val subst_context: thm
- val subst_context2: thm
- val subst_context3: thm
- val sym: thm
- val trans: thm
- val TrueI: thm
- val uniq_assume_tac: int -> tactic
- val uniq_mp_tac: int -> tactic
- end;
-
-
-structure IFOLP_Lemmas : IFOLP_LEMMAS =
-struct
-
-val TrueI = TrueI;
-
(*** Sequent-style elimination rules for & --> and ALL ***)
-val conjE = prove_goal IFOLP.thy
- "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R"
- (fn prems=>
- [ (REPEAT (resolve_tac prems 1
- ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN
- resolve_tac prems 1))) ]);
+val prems= Goal
+ "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R";
+by (REPEAT (resolve_tac prems 1
+ ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN resolve_tac prems 1))) ;
+qed "conjE";
-val impE = prove_goal IFOLP.thy
- "[| p:P-->Q; q:P; !!x. x:Q ==> r(x):R |] ==> ?p:R"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
+val prems= Goal
+ "[| p:P-->Q; q:P; !!x. x:Q ==> r(x):R |] ==> ?p:R";
+by (REPEAT (resolve_tac (prems@[mp]) 1)) ;
+qed "impE";
-val allE = prove_goal IFOLP.thy
- "[| p:ALL x. P(x); !!y. y:P(x) ==> q(y):R |] ==> ?p:R"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
+val prems= Goal
+ "[| p:ALL x. P(x); !!y. y:P(x) ==> q(y):R |] ==> ?p:R";
+by (REPEAT (resolve_tac (prems@[spec]) 1)) ;
+qed "allE";
(*Duplicates the quantifier; for use with eresolve_tac*)
-val all_dupE = prove_goal IFOLP.thy
+val prems= Goal
"[| p:ALL x. P(x); !!y z.[| y:P(x); z:ALL x. P(x) |] ==> q(y,z):R \
-\ |] ==> ?p:R"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]);
+\ |] ==> ?p:R";
+by (REPEAT (resolve_tac (prems@[spec]) 1)) ;
+qed "all_dupE";
(*** Negation rules, which translate between ~P and P-->False ***)
@@ -107,24 +42,26 @@
(REPEAT (resolve_tac prems 1)) ]);
(*This is useful with the special implication rules for each kind of P. *)
-val not_to_imp = prove_goal IFOLP.thy
- "[| p:~P; !!x. x:(P-->False) ==> q(x):Q |] ==> ?p:Q"
- (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]);
+val prems= Goal
+ "[| p:~P; !!x. x:(P-->False) ==> q(x):Q |] ==> ?p:Q";
+by (REPEAT (ares_tac (prems@[impI,notE]) 1)) ;
+qed "not_to_imp";
(* For substitution int an assumption P, reduce Q to P-->Q, substitute into
this implication, then apply impI to move P back into the assumptions.
To specify P use something like
eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1 *)
-val rev_mp = prove_goal IFOLP.thy "[| p:P; q:P --> Q |] ==> ?p:Q"
- (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]);
+Goal "[| p:P; q:P --> Q |] ==> ?p:Q";
+by (REPEAT (ares_tac [mp] 1)) ;
+qed "rev_mp";
(*Contrapositive of an inference rule*)
-val contrapos = prove_goal IFOLP.thy "[| p:~Q; !!y. y:P==>q(y):Q |] ==> ?a:~P"
- (fn [major,minor]=>
- [ (rtac (major RS notE RS notI) 1),
- (etac minor 1) ]);
+val [major,minor]= Goal "[| p:~Q; !!y. y:P==>q(y):Q |] ==> ?a:~P";
+by (rtac (major RS notE RS notI) 1);
+by (etac minor 1) ;
+qed "contrapos";
(** Unique assumption tactic.
Ignores proof objects.
@@ -155,7 +92,7 @@
fun mp_tac i = eresolve_tac [notE,make_elim mp] i THEN assume_tac i;
(*Like mp_tac but instantiates no variables*)
-fun uniq_mp_tac i = eresolve_tac [notE,impE] i THEN uniq_assume_tac i;
+fun int_uniq_mp_tac i = eresolve_tac [notE,impE] i THEN uniq_assume_tac i;
(*** If-and-only-if ***)
@@ -178,20 +115,20 @@
val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q; q:Q |] ==> ?p:P"
(fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]);
-val iff_refl = prove_goal IFOLP.thy "?p:P <-> P"
- (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]);
+Goal "?p:P <-> P";
+by (REPEAT (ares_tac [iffI] 1)) ;
+qed "iff_refl";
-val iff_sym = prove_goal IFOLP.thy "p:Q <-> P ==> ?p:P <-> Q"
- (fn [major] =>
- [ (rtac (major RS iffE) 1),
- (rtac iffI 1),
- (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]);
+Goal "p:Q <-> P ==> ?p:P <-> Q";
+by (etac iffE 1);
+by (rtac iffI 1);
+by (REPEAT (eresolve_tac [asm_rl,mp] 1)) ;
+qed "iff_sym";
-val iff_trans = prove_goal IFOLP.thy "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (rtac iffI 1),
- (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]);
+Goal "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R";
+by (rtac iffI 1);
+by (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ;
+qed "iff_trans";
(*** Unique existence. NOTE THAT the following 2 quantifications
@@ -200,17 +137,18 @@
do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential.
***)
-val ex1I = prove_goalw IFOLP.thy [ex1_def]
- "[| p:P(a); !!x u. u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)"
- (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]);
+val prems = goalw IFOLP.thy [ex1_def]
+ "[| p:P(a); !!x u. u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)";
+by (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ;
+qed "ex1I";
-val ex1E = prove_goalw IFOLP.thy [ex1_def]
+val prems = goalw IFOLP.thy [ex1_def]
"[| p:EX! x. P(x); \
\ !!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\
-\ ?a : R"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]);
+\ ?a : R";
+by (cut_facts_tac prems 1);
+by (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ;
+qed "ex1E";
(*** <-> congruence rules for simplification ***)
@@ -291,89 +229,83 @@
(fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1),
rtac impI 1, atac 1 ]);
-val sym = prove_goal IFOLP.thy "q:a=b ==> ?c:b=a"
- (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]);
+Goal "q:a=b ==> ?c:b=a";
+by (etac subst 1);
+by (rtac refl 1) ;
+qed "sym";
-val trans = prove_goal IFOLP.thy "[| p:a=b; q:b=c |] ==> ?d:a=c"
- (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]);
+Goal "[| p:a=b; q:b=c |] ==> ?d:a=c";
+by (etac subst 1 THEN assume_tac 1);
+qed "trans";
(** ~ b=a ==> ~ a=b **)
-val not_sym = prove_goal IFOLP.thy "p:~ b=a ==> ?q:~ a=b"
- (fn [prem] => [ (rtac (prem RS contrapos) 1), (etac sym 1) ]);
+Goal "p:~ b=a ==> ?q:~ a=b";
+by (etac contrapos 1);
+by (etac sym 1) ;
+qed "not_sym";
(*calling "standard" reduces maxidx to 0*)
val ssubst = standard (sym RS subst);
(*A special case of ex1E that would otherwise need quantifier expansion*)
-val ex1_equalsE = prove_goal IFOLP.thy
- "[| p:EX! x. P(x); q:P(a); r:P(b) |] ==> ?d:a=b"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (etac ex1E 1),
- (rtac trans 1),
- (rtac sym 2),
- (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]);
+Goal "[| p:EX! x. P(x); q:P(a); r:P(b) |] ==> ?d:a=b";
+by (etac ex1E 1);
+by (rtac trans 1);
+by (rtac sym 2);
+by (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ;
+qed "ex1_equalsE";
(** Polymorphic congruence rules **)
-val subst_context = prove_goal IFOLP.thy
- "[| p:a=b |] ==> ?d:t(a)=t(b)"
- (fn prems=>
- [ (resolve_tac (prems RL [ssubst]) 1),
- (rtac refl 1) ]);
+Goal "[| p:a=b |] ==> ?d:t(a)=t(b)";
+by (etac ssubst 1);
+by (rtac refl 1) ;
+qed "subst_context";
-val subst_context2 = prove_goal IFOLP.thy
- "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)"
- (fn prems=>
- [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
+Goal "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)";
+by (REPEAT (etac ssubst 1));
+by (rtac refl 1) ;
+qed "subst_context2";
-val subst_context3 = prove_goal IFOLP.thy
- "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)"
- (fn prems=>
- [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]);
+Goal "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)";
+by (REPEAT (etac ssubst 1));
+by (rtac refl 1) ;
+qed "subst_context3";
(*Useful with eresolve_tac for proving equalties from known equalities.
a = b
| |
c = d *)
-val box_equals = prove_goal IFOLP.thy
- "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d"
- (fn prems=>
- [ (rtac trans 1),
- (rtac trans 1),
- (rtac sym 1),
- (REPEAT (resolve_tac prems 1)) ]);
+Goal "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d";
+by (rtac trans 1);
+by (rtac trans 1);
+by (rtac sym 1);
+by (REPEAT (assume_tac 1)) ;
+qed "box_equals";
(*Dual of box_equals: for proving equalities backwards*)
-val simp_equals = prove_goal IFOLP.thy
- "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b"
- (fn prems=>
- [ (rtac trans 1),
- (rtac trans 1),
- (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]);
+Goal "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b";
+by (rtac trans 1);
+by (rtac trans 1);
+by (REPEAT (eresolve_tac [asm_rl, sym] 1)) ;
+qed "simp_equals";
(** Congruence rules for predicate letters **)
-val pred1_cong = prove_goal IFOLP.thy
- "p:a=a' ==> ?p:P(a) <-> P(a')"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (rtac iffI 1),
- (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
+Goal "p:a=a' ==> ?p:P(a) <-> P(a')";
+by (rtac iffI 1);
+by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
+qed "pred1_cong";
-val pred2_cong = prove_goal IFOLP.thy
- "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (rtac iffI 1),
- (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
+Goal "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')";
+by (rtac iffI 1);
+by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
+qed "pred2_cong";
-val pred3_cong = prove_goal IFOLP.thy
- "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')"
- (fn prems =>
- [ (cut_facts_tac prems 1),
- (rtac iffI 1),
- (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]);
+Goal "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')";
+by (rtac iffI 1);
+by (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ;
+qed "pred3_cong";
(*special cases for free variables P, Q, R, S -- up to 3 arguments*)
@@ -394,51 +326,46 @@
R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic
(preprint, University of St Andrews, 1991) ***)
-val conj_impE = prove_goal IFOLP.thy
- "[| p:(P&Q)-->S; !!x. x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]);
+val major::prems= Goal
+ "[| p:(P&Q)-->S; !!x. x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R";
+by (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ;
+qed "conj_impE";
-val disj_impE = prove_goal IFOLP.thy
- "[| p:(P|Q)-->S; !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R"
- (fn major::prems=>
- [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]);
+val major::prems= Goal
+ "[| p:(P|Q)-->S; !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R";
+by (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ;
+qed "disj_impE";
(*Simplifies the implication. Classical version is stronger.
Still UNSAFE since Q must be provable -- backtracking needed. *)
-val imp_impE = prove_goal IFOLP.thy
+val major::prems= Goal
"[| p:(P-->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; !!x. x:S ==> r(x):R |] ==> \
-\ ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]);
+\ ?p:R";
+by (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ;
+qed "imp_impE";
(*Simplifies the implication. Classical version is stronger.
Still UNSAFE since ~P must be provable -- backtracking needed. *)
-val not_impE = prove_goal IFOLP.thy
- "[| p:~P --> S; !!y. y:P ==> q(y):False; !!y. y:S ==> r(y):R |] ==> ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]);
+val major::prems= Goal
+ "[| p:~P --> S; !!y. y:P ==> q(y):False; !!y. y:S ==> r(y):R |] ==> ?p:R";
+by (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ;
+qed "not_impE";
(*Simplifies the implication. UNSAFE. *)
-val iff_impE = prove_goal IFOLP.thy
+val major::prems= Goal
"[| p:(P<->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; \
-\ !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P; !!x. x:S ==> s(x):R |] ==> ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]);
+\ !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P; !!x. x:S ==> s(x):R |] ==> ?p:R";
+by (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ;
+qed "iff_impE";
(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*)
-val all_impE = prove_goal IFOLP.thy
- "[| p:(ALL x. P(x))-->S; !!x. q:P(x); !!y. y:S ==> r(y):R |] ==> ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]);
+val major::prems= Goal
+ "[| p:(ALL x. P(x))-->S; !!x. q:P(x); !!y. y:S ==> r(y):R |] ==> ?p:R";
+by (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ;
+qed "all_impE";
(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *)
-val ex_impE = prove_goal IFOLP.thy
- "[| p:(EX x. P(x))-->S; !!y. y:P(a)-->S ==> q(y):R |] ==> ?p:R"
- (fn major::prems=>
- [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]);
-
-end;
-
-open IFOLP_Lemmas;
-
+val major::prems= Goal
+ "[| p:(EX x. P(x))-->S; !!y. y:P(a)-->S ==> q(y):R |] ==> ?p:R";
+by (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ;
+qed "ex_impE";