| author | hoelzl | 
| Wed, 10 Oct 2012 12:12:18 +0200 | |
| changeset 49776 | 199d1d5bb17e | 
| parent 47694 | 05663f75964c | 
| child 49785 | 0a8adca22974 | 
| permissions | -rw-r--r-- | 
| 42067 | 1  | 
(* Title: HOL/Probability/Information.thy  | 
2  | 
Author: Johannes Hölzl, TU München  | 
|
3  | 
Author: Armin Heller, TU München  | 
|
4  | 
*)  | 
|
5  | 
||
6  | 
header {*Information theory*}
 | 
|
7  | 
||
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
8  | 
theory Information  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
41095 
diff
changeset
 | 
9  | 
imports  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
10  | 
Independent_Family  | 
| 
43556
 
0d78c8d31d0d
move conditional expectation to its own theory file
 
hoelzl 
parents: 
43340 
diff
changeset
 | 
11  | 
Radon_Nikodym  | 
| 
41413
 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 
wenzelm 
parents: 
41095 
diff
changeset
 | 
12  | 
"~~/src/HOL/Library/Convex"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
13  | 
begin  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
14  | 
|
| 39097 | 15  | 
lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y"  | 
16  | 
by (subst log_le_cancel_iff) auto  | 
|
17  | 
||
18  | 
lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y"  | 
|
19  | 
by (subst log_less_cancel_iff) auto  | 
|
20  | 
||
21  | 
lemma setsum_cartesian_product':  | 
|
22  | 
"(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. setsum (\<lambda>y. f (x, y)) B)"  | 
|
23  | 
unfolding setsum_cartesian_product by simp  | 
|
24  | 
||
| 36624 | 25  | 
section "Convex theory"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
26  | 
|
| 36624 | 27  | 
lemma log_setsum:  | 
28  | 
  assumes "finite s" "s \<noteq> {}"
 | 
|
29  | 
assumes "b > 1"  | 
|
30  | 
assumes "(\<Sum> i \<in> s. a i) = 1"  | 
|
31  | 
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0"  | 
|
32  | 
  assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> {0 <..}"
 | 
|
33  | 
shows "log b (\<Sum> i \<in> s. a i * y i) \<ge> (\<Sum> i \<in> s. a i * log b (y i))"  | 
|
34  | 
proof -  | 
|
35  | 
  have "convex_on {0 <..} (\<lambda> x. - log b x)"
 | 
|
36  | 
by (rule minus_log_convex[OF `b > 1`])  | 
|
37  | 
hence "- log b (\<Sum> i \<in> s. a i * y i) \<le> (\<Sum> i \<in> s. a i * - log b (y i))"  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
43920 
diff
changeset
 | 
38  | 
using convex_on_setsum[of _ _ "\<lambda> x. - log b x"] assms pos_is_convex by fastforce  | 
| 36624 | 39  | 
thus ?thesis by (auto simp add:setsum_negf le_imp_neg_le)  | 
40  | 
qed  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
41  | 
|
| 36624 | 42  | 
lemma log_setsum':  | 
43  | 
  assumes "finite s" "s \<noteq> {}"
 | 
|
44  | 
assumes "b > 1"  | 
|
45  | 
assumes "(\<Sum> i \<in> s. a i) = 1"  | 
|
46  | 
assumes pos: "\<And> i. i \<in> s \<Longrightarrow> 0 \<le> a i"  | 
|
47  | 
"\<And> i. \<lbrakk> i \<in> s ; 0 < a i \<rbrakk> \<Longrightarrow> 0 < y i"  | 
|
48  | 
shows "log b (\<Sum> i \<in> s. a i * y i) \<ge> (\<Sum> i \<in> s. a i * log b (y i))"  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
49  | 
proof -  | 
| 36624 | 50  | 
  have "\<And>y. (\<Sum> i \<in> s - {i. a i = 0}. a i * y i) = (\<Sum> i \<in> s. a i * y i)"
 | 
51  | 
using assms by (auto intro!: setsum_mono_zero_cong_left)  | 
|
52  | 
  moreover have "log b (\<Sum> i \<in> s - {i. a i = 0}. a i * y i) \<ge> (\<Sum> i \<in> s - {i. a i = 0}. a i * log b (y i))"
 | 
|
53  | 
proof (rule log_setsum)  | 
|
54  | 
    have "setsum a (s - {i. a i = 0}) = setsum a s"
 | 
|
55  | 
using assms(1) by (rule setsum_mono_zero_cong_left) auto  | 
|
56  | 
    thus sum_1: "setsum a (s - {i. a i = 0}) = 1"
 | 
|
57  | 
      "finite (s - {i. a i = 0})" using assms by simp_all
 | 
|
58  | 
||
59  | 
    show "s - {i. a i = 0} \<noteq> {}"
 | 
|
60  | 
proof  | 
|
61  | 
      assume *: "s - {i. a i = 0} = {}"
 | 
|
62  | 
      hence "setsum a (s - {i. a i = 0}) = 0" by (simp add: * setsum_empty)
 | 
|
63  | 
with sum_1 show False by simp  | 
|
| 38656 | 64  | 
qed  | 
| 36624 | 65  | 
|
66  | 
    fix i assume "i \<in> s - {i. a i = 0}"
 | 
|
67  | 
hence "i \<in> s" "a i \<noteq> 0" by simp_all  | 
|
68  | 
    thus "0 \<le> a i" "y i \<in> {0<..}" using pos[of i] by auto
 | 
|
69  | 
qed fact+  | 
|
70  | 
ultimately show ?thesis by simp  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
71  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
72  | 
|
| 36624 | 73  | 
lemma log_setsum_divide:  | 
74  | 
  assumes "finite S" and "S \<noteq> {}" and "1 < b"
 | 
|
75  | 
assumes "(\<Sum>x\<in>S. g x) = 1"  | 
|
76  | 
assumes pos: "\<And>x. x \<in> S \<Longrightarrow> g x \<ge> 0" "\<And>x. x \<in> S \<Longrightarrow> f x \<ge> 0"  | 
|
77  | 
assumes g_pos: "\<And>x. \<lbrakk> x \<in> S ; 0 < g x \<rbrakk> \<Longrightarrow> 0 < f x"  | 
|
78  | 
shows "- (\<Sum>x\<in>S. g x * log b (g x / f x)) \<le> log b (\<Sum>x\<in>S. f x)"  | 
|
79  | 
proof -  | 
|
80  | 
have log_mono: "\<And>x y. 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log b x \<le> log b y"  | 
|
81  | 
using `1 < b` by (subst log_le_cancel_iff) auto  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
82  | 
|
| 36624 | 83  | 
have "- (\<Sum>x\<in>S. g x * log b (g x / f x)) = (\<Sum>x\<in>S. g x * log b (f x / g x))"  | 
84  | 
proof (unfold setsum_negf[symmetric], rule setsum_cong)  | 
|
85  | 
fix x assume x: "x \<in> S"  | 
|
86  | 
show "- (g x * log b (g x / f x)) = g x * log b (f x / g x)"  | 
|
87  | 
proof (cases "g x = 0")  | 
|
88  | 
case False  | 
|
89  | 
with pos[OF x] g_pos[OF x] have "0 < f x" "0 < g x" by simp_all  | 
|
90  | 
thus ?thesis using `1 < b` by (simp add: log_divide field_simps)  | 
|
91  | 
qed simp  | 
|
92  | 
qed rule  | 
|
93  | 
also have "... \<le> log b (\<Sum>x\<in>S. g x * (f x / g x))"  | 
|
94  | 
proof (rule log_setsum')  | 
|
95  | 
fix x assume x: "x \<in> S" "0 < g x"  | 
|
96  | 
with g_pos[OF x] show "0 < f x / g x" by (safe intro!: divide_pos_pos)  | 
|
97  | 
qed fact+  | 
|
98  | 
  also have "... = log b (\<Sum>x\<in>S - {x. g x = 0}. f x)" using `finite S`
 | 
|
99  | 
by (auto intro!: setsum_mono_zero_cong_right arg_cong[where f="log b"]  | 
|
100  | 
split: split_if_asm)  | 
|
101  | 
also have "... \<le> log b (\<Sum>x\<in>S. f x)"  | 
|
102  | 
proof (rule log_mono)  | 
|
103  | 
    have "0 = (\<Sum>x\<in>S - {x. g x = 0}. 0)" by simp
 | 
|
104  | 
    also have "... < (\<Sum>x\<in>S - {x. g x = 0}. f x)" (is "_ < ?sum")
 | 
|
105  | 
proof (rule setsum_strict_mono)  | 
|
106  | 
      show "finite (S - {x. g x = 0})" using `finite S` by simp
 | 
|
107  | 
      show "S - {x. g x = 0} \<noteq> {}"
 | 
|
108  | 
proof  | 
|
109  | 
        assume "S - {x. g x = 0} = {}"
 | 
|
110  | 
hence "(\<Sum>x\<in>S. g x) = 0" by (subst setsum_0') auto  | 
|
111  | 
with `(\<Sum>x\<in>S. g x) = 1` show False by simp  | 
|
112  | 
qed  | 
|
113  | 
      fix x assume "x \<in> S - {x. g x = 0}"
 | 
|
114  | 
thus "0 < f x" using g_pos[of x] pos(1)[of x] by auto  | 
|
115  | 
qed  | 
|
116  | 
finally show "0 < ?sum" .  | 
|
117  | 
    show "(\<Sum>x\<in>S - {x. g x = 0}. f x) \<le> (\<Sum>x\<in>S. f x)"
 | 
|
118  | 
using `finite S` pos by (auto intro!: setsum_mono2)  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
119  | 
qed  | 
| 36624 | 120  | 
finally show ?thesis .  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
121  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
122  | 
|
| 39097 | 123  | 
lemma split_pairs:  | 
| 40859 | 124  | 
"((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and  | 
125  | 
"(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto  | 
|
| 38656 | 126  | 
|
127  | 
section "Information theory"  | 
|
128  | 
||
| 40859 | 129  | 
locale information_space = prob_space +  | 
| 38656 | 130  | 
fixes b :: real assumes b_gt_1: "1 < b"  | 
131  | 
||
| 40859 | 132  | 
context information_space  | 
| 38656 | 133  | 
begin  | 
134  | 
||
| 40859 | 135  | 
text {* Introduce some simplification rules for logarithm of base @{term b}. *}
 | 
136  | 
||
137  | 
lemma log_neg_const:  | 
|
138  | 
assumes "x \<le> 0"  | 
|
139  | 
shows "log b x = log b 0"  | 
|
| 36624 | 140  | 
proof -  | 
| 40859 | 141  | 
  { fix u :: real
 | 
142  | 
have "x \<le> 0" by fact  | 
|
143  | 
also have "0 < exp u"  | 
|
144  | 
using exp_gt_zero .  | 
|
145  | 
finally have "exp u \<noteq> x"  | 
|
146  | 
by auto }  | 
|
147  | 
then show "log b x = log b 0"  | 
|
148  | 
by (simp add: log_def ln_def)  | 
|
| 38656 | 149  | 
qed  | 
150  | 
||
| 40859 | 151  | 
lemma log_mult_eq:  | 
152  | 
"log b (A * B) = (if 0 < A * B then log b \<bar>A\<bar> + log b \<bar>B\<bar> else log b 0)"  | 
|
153  | 
using log_mult[of b "\<bar>A\<bar>" "\<bar>B\<bar>"] b_gt_1 log_neg_const[of "A * B"]  | 
|
154  | 
by (auto simp: zero_less_mult_iff mult_le_0_iff)  | 
|
| 38656 | 155  | 
|
| 40859 | 156  | 
lemma log_inverse_eq:  | 
157  | 
"log b (inverse B) = (if 0 < B then - log b B else log b 0)"  | 
|
158  | 
using log_inverse[of b B] log_neg_const[of "inverse B"] b_gt_1 by simp  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
159  | 
|
| 40859 | 160  | 
lemma log_divide_eq:  | 
161  | 
"log b (A / B) = (if 0 < A * B then log b \<bar>A\<bar> - log b \<bar>B\<bar> else log b 0)"  | 
|
162  | 
unfolding divide_inverse log_mult_eq log_inverse_eq abs_inverse  | 
|
163  | 
by (auto simp: zero_less_mult_iff mult_le_0_iff)  | 
|
| 38656 | 164  | 
|
| 40859 | 165  | 
lemmas log_simps = log_mult_eq log_inverse_eq log_divide_eq  | 
| 38656 | 166  | 
|
167  | 
end  | 
|
168  | 
||
| 39097 | 169  | 
subsection "Kullback$-$Leibler divergence"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
170  | 
|
| 39097 | 171  | 
text {* The Kullback$-$Leibler divergence is also known as relative entropy or
 | 
172  | 
Kullback$-$Leibler distance. *}  | 
|
173  | 
||
174  | 
definition  | 
|
| 47694 | 175  | 
"entropy_density b M N = log b \<circ> real \<circ> RN_deriv M N"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
176  | 
|
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
177  | 
definition  | 
| 47694 | 178  | 
"KL_divergence b M N = integral\<^isup>L N (entropy_density b M N)"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
179  | 
|
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
180  | 
lemma (in information_space) measurable_entropy_density:  | 
| 47694 | 181  | 
assumes ac: "absolutely_continuous M N" "sets N = events"  | 
182  | 
shows "entropy_density b M N \<in> borel_measurable M"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
183  | 
proof -  | 
| 47694 | 184  | 
from borel_measurable_RN_deriv[OF ac] b_gt_1 show ?thesis  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
185  | 
unfolding entropy_density_def  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
186  | 
by (intro measurable_comp) auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
187  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
188  | 
|
| 47694 | 189  | 
lemma (in sigma_finite_measure) KL_density:  | 
190  | 
fixes f :: "'a \<Rightarrow> real"  | 
|
191  | 
assumes "1 < b"  | 
|
192  | 
assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x"  | 
|
193  | 
shows "KL_divergence b M (density M f) = (\<integral>x. f x * log b (f x) \<partial>M)"  | 
|
194  | 
unfolding KL_divergence_def  | 
|
195  | 
proof (subst integral_density)  | 
|
196  | 
show "entropy_density b M (density M (\<lambda>x. ereal (f x))) \<in> borel_measurable M"  | 
|
| 49776 | 197  | 
using f  | 
| 47694 | 198  | 
by (auto simp: comp_def entropy_density_def intro!: borel_measurable_log borel_measurable_RN_deriv_density)  | 
199  | 
have "density M (RN_deriv M (density M f)) = density M f"  | 
|
200  | 
using f by (intro density_RN_deriv_density) auto  | 
|
201  | 
then have eq: "AE x in M. RN_deriv M (density M f) x = f x"  | 
|
202  | 
using f  | 
|
203  | 
by (intro density_unique)  | 
|
204  | 
(auto intro!: borel_measurable_log borel_measurable_RN_deriv_density simp: RN_deriv_density_nonneg)  | 
|
205  | 
show "(\<integral>x. f x * entropy_density b M (density M (\<lambda>x. ereal (f x))) x \<partial>M) = (\<integral>x. f x * log b (f x) \<partial>M)"  | 
|
206  | 
apply (intro integral_cong_AE)  | 
|
207  | 
using eq  | 
|
208  | 
apply eventually_elim  | 
|
209  | 
apply (auto simp: entropy_density_def)  | 
|
210  | 
done  | 
|
211  | 
qed fact+  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
212  | 
|
| 47694 | 213  | 
lemma (in sigma_finite_measure) KL_density_density:  | 
214  | 
fixes f g :: "'a \<Rightarrow> real"  | 
|
215  | 
assumes "1 < b"  | 
|
216  | 
assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x"  | 
|
217  | 
assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x"  | 
|
218  | 
assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0"  | 
|
219  | 
shows "KL_divergence b (density M f) (density M g) = (\<integral>x. g x * log b (g x / f x) \<partial>M)"  | 
|
220  | 
proof -  | 
|
221  | 
interpret Mf: sigma_finite_measure "density M f"  | 
|
222  | 
using f by (subst sigma_finite_iff_density_finite) auto  | 
|
223  | 
have "KL_divergence b (density M f) (density M g) =  | 
|
224  | 
KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))"  | 
|
225  | 
using f g ac by (subst density_density_divide) simp_all  | 
|
226  | 
also have "\<dots> = (\<integral>x. (g x / f x) * log b (g x / f x) \<partial>density M f)"  | 
|
227  | 
using f g `1 < b` by (intro Mf.KL_density) (auto simp: AE_density divide_nonneg_nonneg)  | 
|
228  | 
also have "\<dots> = (\<integral>x. g x * log b (g x / f x) \<partial>M)"  | 
|
229  | 
using ac f g `1 < b` by (subst integral_density) (auto intro!: integral_cong_AE)  | 
|
230  | 
finally show ?thesis .  | 
|
231  | 
qed  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
232  | 
|
| 47694 | 233  | 
lemma (in information_space) KL_gt_0:  | 
234  | 
fixes D :: "'a \<Rightarrow> real"  | 
|
235  | 
assumes "prob_space (density M D)"  | 
|
236  | 
assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x"  | 
|
237  | 
assumes int: "integrable M (\<lambda>x. D x * log b (D x))"  | 
|
238  | 
assumes A: "density M D \<noteq> M"  | 
|
239  | 
shows "0 < KL_divergence b M (density M D)"  | 
|
240  | 
proof -  | 
|
241  | 
interpret N: prob_space "density M D" by fact  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
242  | 
|
| 47694 | 243  | 
obtain A where "A \<in> sets M" "emeasure (density M D) A \<noteq> emeasure M A"  | 
244  | 
using measure_eqI[of "density M D" M] `density M D \<noteq> M` by auto  | 
|
245  | 
||
246  | 
  let ?D_set = "{x\<in>space M. D x \<noteq> 0}"
 | 
|
247  | 
have [simp, intro]: "?D_set \<in> sets M"  | 
|
248  | 
using D by auto  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
249  | 
|
| 43920 | 250  | 
have D_neg: "(\<integral>\<^isup>+ x. ereal (- D x) \<partial>M) = 0"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
251  | 
using D by (subst positive_integral_0_iff_AE) auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
252  | 
|
| 47694 | 253  | 
have "(\<integral>\<^isup>+ x. ereal (D x) \<partial>M) = emeasure (density M D) (space M)"  | 
254  | 
using D by (simp add: emeasure_density cong: positive_integral_cong)  | 
|
| 43920 | 255  | 
then have D_pos: "(\<integral>\<^isup>+ x. ereal (D x) \<partial>M) = 1"  | 
| 47694 | 256  | 
using N.emeasure_space_1 by simp  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
257  | 
|
| 47694 | 258  | 
have "integrable M D" "integral\<^isup>L M D = 1"  | 
259  | 
using D D_pos D_neg unfolding integrable_def lebesgue_integral_def by simp_all  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
260  | 
|
| 47694 | 261  | 
have "0 \<le> 1 - measure M ?D_set"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
262  | 
using prob_le_1 by (auto simp: field_simps)  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
263  | 
also have "\<dots> = (\<integral> x. D x - indicator ?D_set x \<partial>M)"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
264  | 
using `integrable M D` `integral\<^isup>L M D = 1`  | 
| 47694 | 265  | 
by (simp add: emeasure_eq_measure)  | 
266  | 
also have "\<dots> < (\<integral> x. D x * (ln b * log b (D x)) \<partial>M)"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
267  | 
proof (rule integral_less_AE)  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
268  | 
show "integrable M (\<lambda>x. D x - indicator ?D_set x)"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
269  | 
using `integrable M D`  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
270  | 
by (intro integral_diff integral_indicator) auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
271  | 
next  | 
| 47694 | 272  | 
from integral_cmult(1)[OF int, of "ln b"]  | 
273  | 
show "integrable M (\<lambda>x. D x * (ln b * log b (D x)))"  | 
|
274  | 
by (simp add: ac_simps)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
275  | 
next  | 
| 47694 | 276  | 
    show "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<noteq> 0"
 | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
277  | 
proof  | 
| 47694 | 278  | 
      assume eq_0: "emeasure M {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} = 0"
 | 
279  | 
then have disj: "AE x in M. D x = 1 \<or> D x = 0"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
280  | 
using D(1) by (auto intro!: AE_I[OF subset_refl] sets_Collect)  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
281  | 
|
| 47694 | 282  | 
      have "emeasure M {x\<in>space M. D x = 1} = (\<integral>\<^isup>+ x. indicator {x\<in>space M. D x = 1} x \<partial>M)"
 | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
283  | 
using D(1) by auto  | 
| 47694 | 284  | 
also have "\<dots> = (\<integral>\<^isup>+ x. ereal (D x) \<partial>M)"  | 
| 43920 | 285  | 
using disj by (auto intro!: positive_integral_cong_AE simp: indicator_def one_ereal_def)  | 
| 47694 | 286  | 
finally have "AE x in M. D x = 1"  | 
287  | 
using D D_pos by (intro AE_I_eq_1) auto  | 
|
| 43920 | 288  | 
then have "(\<integral>\<^isup>+x. indicator A x\<partial>M) = (\<integral>\<^isup>+x. ereal (D x) * indicator A x\<partial>M)"  | 
289  | 
by (intro positive_integral_cong_AE) (auto simp: one_ereal_def[symmetric])  | 
|
| 47694 | 290  | 
also have "\<dots> = density M D A"  | 
291  | 
using `A \<in> sets M` D by (simp add: emeasure_density)  | 
|
292  | 
finally show False using `A \<in> sets M` `emeasure (density M D) A \<noteq> emeasure M A` by simp  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
293  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
294  | 
    show "{x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<in> sets M"
 | 
| 47694 | 295  | 
using D(1) by (auto intro: sets_Collect_conj)  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
296  | 
|
| 47694 | 297  | 
    show "AE t in M. t \<in> {x\<in>space M. D x \<noteq> 1 \<and> D x \<noteq> 0} \<longrightarrow>
 | 
298  | 
D t - indicator ?D_set t \<noteq> D t * (ln b * log b (D t))"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
299  | 
using D(2)  | 
| 47694 | 300  | 
proof (eventually_elim, safe)  | 
301  | 
fix t assume Dt: "t \<in> space M" "D t \<noteq> 1" "D t \<noteq> 0" "0 \<le> D t"  | 
|
302  | 
and eq: "D t - indicator ?D_set t = D t * (ln b * log b (D t))"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
303  | 
|
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
304  | 
have "D t - 1 = D t - indicator ?D_set t"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
305  | 
using Dt by simp  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
306  | 
also note eq  | 
| 47694 | 307  | 
also have "D t * (ln b * log b (D t)) = - D t * ln (1 / D t)"  | 
308  | 
using b_gt_1 `D t \<noteq> 0` `0 \<le> D t`  | 
|
309  | 
by (simp add: log_def ln_div less_le)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
310  | 
finally have "ln (1 / D t) = 1 / D t - 1"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
311  | 
using `D t \<noteq> 0` by (auto simp: field_simps)  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
312  | 
from ln_eq_minus_one[OF _ this] `D t \<noteq> 0` `0 \<le> D t` `D t \<noteq> 1`  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
313  | 
show False by auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
314  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
315  | 
|
| 47694 | 316  | 
show "AE t in M. D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))"  | 
317  | 
using D(2) AE_space  | 
|
318  | 
proof eventually_elim  | 
|
319  | 
fix t assume "t \<in> space M" "0 \<le> D t"  | 
|
320  | 
show "D t - indicator ?D_set t \<le> D t * (ln b * log b (D t))"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
321  | 
proof cases  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
322  | 
assume asm: "D t \<noteq> 0"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
323  | 
then have "0 < D t" using `0 \<le> D t` by auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
324  | 
then have "0 < 1 / D t" by auto  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
325  | 
have "D t - indicator ?D_set t \<le> - D t * (1 / D t - 1)"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
326  | 
using asm `t \<in> space M` by (simp add: field_simps)  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
327  | 
also have "- D t * (1 / D t - 1) \<le> - D t * ln (1 / D t)"  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
328  | 
using ln_le_minus_one `0 < 1 / D t` by (intro mult_left_mono_neg) auto  | 
| 47694 | 329  | 
also have "\<dots> = D t * (ln b * log b (D t))"  | 
330  | 
using `0 < D t` b_gt_1  | 
|
331  | 
by (simp_all add: log_def ln_div)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
332  | 
finally show ?thesis by simp  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
333  | 
qed simp  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
334  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
335  | 
qed  | 
| 47694 | 336  | 
also have "\<dots> = (\<integral> x. ln b * (D x * log b (D x)) \<partial>M)"  | 
337  | 
by (simp add: ac_simps)  | 
|
338  | 
also have "\<dots> = ln b * (\<integral> x. D x * log b (D x) \<partial>M)"  | 
|
339  | 
using int by (rule integral_cmult)  | 
|
340  | 
finally show ?thesis  | 
|
341  | 
using b_gt_1 D by (subst KL_density) (auto simp: zero_less_mult_iff)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
342  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
343  | 
|
| 47694 | 344  | 
lemma (in sigma_finite_measure) KL_same_eq_0: "KL_divergence b M M = 0"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
345  | 
proof -  | 
| 47694 | 346  | 
have "AE x in M. 1 = RN_deriv M M x"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
347  | 
proof (rule RN_deriv_unique)  | 
| 47694 | 348  | 
show "(\<lambda>x. 1) \<in> borel_measurable M" "AE x in M. 0 \<le> (1 :: ereal)" by auto  | 
349  | 
show "density M (\<lambda>x. 1) = M"  | 
|
350  | 
apply (auto intro!: measure_eqI emeasure_density)  | 
|
351  | 
apply (subst emeasure_density)  | 
|
352  | 
apply auto  | 
|
353  | 
done  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
354  | 
qed  | 
| 47694 | 355  | 
then have "AE x in M. log b (real (RN_deriv M M x)) = 0"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
356  | 
by (elim AE_mp) simp  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
357  | 
from integral_cong_AE[OF this]  | 
| 47694 | 358  | 
have "integral\<^isup>L M (entropy_density b M M) = 0"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
359  | 
by (simp add: entropy_density_def comp_def)  | 
| 47694 | 360  | 
then show "KL_divergence b M M = 0"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
361  | 
unfolding KL_divergence_def  | 
| 47694 | 362  | 
by auto  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
363  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
364  | 
|
| 47694 | 365  | 
lemma (in information_space) KL_eq_0_iff_eq:  | 
366  | 
fixes D :: "'a \<Rightarrow> real"  | 
|
367  | 
assumes "prob_space (density M D)"  | 
|
368  | 
assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x"  | 
|
369  | 
assumes int: "integrable M (\<lambda>x. D x * log b (D x))"  | 
|
370  | 
shows "KL_divergence b M (density M D) = 0 \<longleftrightarrow> density M D = M"  | 
|
371  | 
using KL_same_eq_0[of b] KL_gt_0[OF assms]  | 
|
372  | 
by (auto simp: less_le)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
373  | 
|
| 47694 | 374  | 
lemma (in information_space) KL_eq_0_iff_eq_ac:  | 
375  | 
fixes D :: "'a \<Rightarrow> real"  | 
|
376  | 
assumes "prob_space N"  | 
|
377  | 
assumes ac: "absolutely_continuous M N" "sets N = sets M"  | 
|
378  | 
assumes int: "integrable N (entropy_density b M N)"  | 
|
379  | 
shows "KL_divergence b M N = 0 \<longleftrightarrow> N = M"  | 
|
| 
41833
 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 
hoelzl 
parents: 
41689 
diff
changeset
 | 
380  | 
proof -  | 
| 47694 | 381  | 
interpret N: prob_space N by fact  | 
382  | 
have "finite_measure N" by unfold_locales  | 
|
383  | 
from real_RN_deriv[OF this ac] guess D . note D = this  | 
|
384  | 
||
385  | 
have "N = density M (RN_deriv M N)"  | 
|
386  | 
using ac by (rule density_RN_deriv[symmetric])  | 
|
387  | 
also have "\<dots> = density M D"  | 
|
388  | 
using borel_measurable_RN_deriv[OF ac] D by (auto intro!: density_cong)  | 
|
389  | 
finally have N: "N = density M D" .  | 
|
| 
41833
 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 
hoelzl 
parents: 
41689 
diff
changeset
 | 
390  | 
|
| 47694 | 391  | 
from absolutely_continuous_AE[OF ac(2,1) D(2)] D b_gt_1 ac measurable_entropy_density  | 
392  | 
have "integrable N (\<lambda>x. log b (D x))"  | 
|
393  | 
by (intro integrable_cong_AE[THEN iffD2, OF _ _ _ int])  | 
|
394  | 
(auto simp: N entropy_density_def)  | 
|
395  | 
with D b_gt_1 have "integrable M (\<lambda>x. D x * log b (D x))"  | 
|
396  | 
by (subst integral_density(2)[symmetric]) (auto simp: N[symmetric] comp_def)  | 
|
397  | 
with `prob_space N` D show ?thesis  | 
|
398  | 
unfolding N  | 
|
399  | 
by (intro KL_eq_0_iff_eq) auto  | 
|
| 
41833
 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 
hoelzl 
parents: 
41689 
diff
changeset
 | 
400  | 
qed  | 
| 
 
563bea92b2c0
add lemma KL_divergence_vimage, mutual_information_generic
 
hoelzl 
parents: 
41689 
diff
changeset
 | 
401  | 
|
| 47694 | 402  | 
lemma (in information_space) KL_nonneg:  | 
403  | 
assumes "prob_space (density M D)"  | 
|
404  | 
assumes D: "D \<in> borel_measurable M" "AE x in M. 0 \<le> D x"  | 
|
405  | 
assumes int: "integrable M (\<lambda>x. D x * log b (D x))"  | 
|
406  | 
shows "0 \<le> KL_divergence b M (density M D)"  | 
|
407  | 
using KL_gt_0[OF assms] by (cases "density M D = M") (auto simp: KL_same_eq_0)  | 
|
| 40859 | 408  | 
|
| 47694 | 409  | 
lemma (in sigma_finite_measure) KL_density_density_nonneg:  | 
410  | 
fixes f g :: "'a \<Rightarrow> real"  | 
|
411  | 
assumes "1 < b"  | 
|
412  | 
assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" "prob_space (density M f)"  | 
|
413  | 
assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" "prob_space (density M g)"  | 
|
414  | 
assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0"  | 
|
415  | 
assumes int: "integrable M (\<lambda>x. g x * log b (g x / f x))"  | 
|
416  | 
shows "0 \<le> KL_divergence b (density M f) (density M g)"  | 
|
417  | 
proof -  | 
|
418  | 
interpret Mf: prob_space "density M f" by fact  | 
|
419  | 
interpret Mf: information_space "density M f" b by default fact  | 
|
420  | 
have eq: "density (density M f) (\<lambda>x. g x / f x) = density M g" (is "?DD = _")  | 
|
421  | 
using f g ac by (subst density_density_divide) simp_all  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
422  | 
|
| 47694 | 423  | 
have "0 \<le> KL_divergence b (density M f) (density (density M f) (\<lambda>x. g x / f x))"  | 
424  | 
proof (rule Mf.KL_nonneg)  | 
|
425  | 
show "prob_space ?DD" unfolding eq by fact  | 
|
426  | 
from f g show "(\<lambda>x. g x / f x) \<in> borel_measurable (density M f)"  | 
|
427  | 
by auto  | 
|
428  | 
show "AE x in density M f. 0 \<le> g x / f x"  | 
|
429  | 
using f g by (auto simp: AE_density divide_nonneg_nonneg)  | 
|
430  | 
show "integrable (density M f) (\<lambda>x. g x / f x * log b (g x / f x))"  | 
|
431  | 
using `1 < b` f g ac  | 
|
432  | 
by (subst integral_density)  | 
|
433  | 
(auto intro!: integrable_cong_AE[THEN iffD2, OF _ _ _ int] measurable_If)  | 
|
434  | 
qed  | 
|
435  | 
also have "\<dots> = KL_divergence b (density M f) (density M g)"  | 
|
436  | 
using f g ac by (subst density_density_divide) simp_all  | 
|
437  | 
finally show ?thesis .  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
438  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
439  | 
|
| 39097 | 440  | 
subsection {* Mutual Information *}
 | 
441  | 
||
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
442  | 
definition (in prob_space)  | 
| 38656 | 443  | 
"mutual_information b S T X Y =  | 
| 47694 | 444  | 
KL_divergence b (distr M S X \<Otimes>\<^isub>M distr M T Y) (distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)))"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
445  | 
|
| 47694 | 446  | 
lemma (in information_space) mutual_information_indep_vars:  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
447  | 
fixes S T X Y  | 
| 47694 | 448  | 
defines "P \<equiv> distr M S X \<Otimes>\<^isub>M distr M T Y"  | 
449  | 
defines "Q \<equiv> distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
450  | 
shows "indep_var S X T Y \<longleftrightarrow>  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
451  | 
(random_variable S X \<and> random_variable T Y \<and>  | 
| 47694 | 452  | 
absolutely_continuous P Q \<and> integrable Q (entropy_density b P Q) \<and>  | 
453  | 
mutual_information b S T X Y = 0)"  | 
|
454  | 
unfolding indep_var_distribution_eq  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
455  | 
proof safe  | 
| 47694 | 456  | 
assume rv: "random_variable S X" "random_variable T Y"  | 
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
457  | 
|
| 47694 | 458  | 
interpret X: prob_space "distr M S X"  | 
459  | 
by (rule prob_space_distr) fact  | 
|
460  | 
interpret Y: prob_space "distr M T Y"  | 
|
461  | 
by (rule prob_space_distr) fact  | 
|
462  | 
interpret XY: pair_prob_space "distr M S X" "distr M T Y" by default  | 
|
463  | 
interpret P: information_space P b unfolding P_def by default (rule b_gt_1)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
464  | 
|
| 47694 | 465  | 
interpret Q: prob_space Q unfolding Q_def  | 
466  | 
by (rule prob_space_distr) (simp add: comp_def measurable_pair_iff rv)  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
467  | 
|
| 47694 | 468  | 
  { assume "distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"
 | 
469  | 
then have [simp]: "Q = P" unfolding Q_def P_def by simp  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
470  | 
|
| 47694 | 471  | 
show ac: "absolutely_continuous P Q" by (simp add: absolutely_continuous_def)  | 
472  | 
then have ed: "entropy_density b P Q \<in> borel_measurable P"  | 
|
473  | 
by (rule P.measurable_entropy_density) simp  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
474  | 
|
| 47694 | 475  | 
have "AE x in P. 1 = RN_deriv P Q x"  | 
476  | 
proof (rule P.RN_deriv_unique)  | 
|
477  | 
show "density P (\<lambda>x. 1) = Q"  | 
|
478  | 
unfolding `Q = P` by (intro measure_eqI) (auto simp: emeasure_density)  | 
|
479  | 
qed auto  | 
|
480  | 
then have ae_0: "AE x in P. entropy_density b P Q x = 0"  | 
|
481  | 
by eventually_elim (auto simp: entropy_density_def)  | 
|
482  | 
then have "integrable P (entropy_density b P Q) \<longleftrightarrow> integrable Q (\<lambda>x. 0)"  | 
|
483  | 
using ed unfolding `Q = P` by (intro integrable_cong_AE) auto  | 
|
484  | 
then show "integrable Q (entropy_density b P Q)" by simp  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
485  | 
|
| 47694 | 486  | 
show "mutual_information b S T X Y = 0"  | 
487  | 
unfolding mutual_information_def KL_divergence_def P_def[symmetric] Q_def[symmetric] `Q = P`  | 
|
488  | 
using ae_0 by (simp cong: integral_cong_AE) }  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
489  | 
|
| 47694 | 490  | 
  { assume ac: "absolutely_continuous P Q"
 | 
491  | 
assume int: "integrable Q (entropy_density b P Q)"  | 
|
492  | 
assume I_eq_0: "mutual_information b S T X Y = 0"  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
493  | 
|
| 47694 | 494  | 
have eq: "Q = P"  | 
495  | 
proof (rule P.KL_eq_0_iff_eq_ac[THEN iffD1])  | 
|
496  | 
show "prob_space Q" by unfold_locales  | 
|
497  | 
show "absolutely_continuous P Q" by fact  | 
|
498  | 
show "integrable Q (entropy_density b P Q)" by fact  | 
|
499  | 
show "sets Q = sets P" by (simp add: P_def Q_def sets_pair_measure)  | 
|
500  | 
show "KL_divergence b P Q = 0"  | 
|
501  | 
using I_eq_0 unfolding mutual_information_def by (simp add: P_def Q_def)  | 
|
502  | 
qed  | 
|
503  | 
then show "distr M S X \<Otimes>\<^isub>M distr M T Y = distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"  | 
|
504  | 
unfolding P_def Q_def .. }  | 
|
| 
43340
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
505  | 
qed  | 
| 
 
60e181c4eae4
lemma: independence is equal to mutual information = 0
 
hoelzl 
parents: 
42148 
diff
changeset
 | 
506  | 
|
| 40859 | 507  | 
abbreviation (in information_space)  | 
508  | 
  mutual_information_Pow ("\<I>'(_ ; _')") where
 | 
|
| 47694 | 509  | 
"\<I>(X ; Y) \<equiv> mutual_information b (count_space (X`space M)) (count_space (Y`space M)) X Y"  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
510  | 
|
| 47694 | 511  | 
lemma (in information_space)  | 
512  | 
fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"  | 
|
513  | 
assumes "sigma_finite_measure S" "sigma_finite_measure T"  | 
|
514  | 
assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py"  | 
|
515  | 
assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy"  | 
|
516  | 
defines "f \<equiv> \<lambda>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"  | 
|
517  | 
shows mutual_information_distr: "mutual_information b S T X Y = integral\<^isup>L (S \<Otimes>\<^isub>M T) f" (is "?M = ?R")  | 
|
518  | 
and mutual_information_nonneg: "integrable (S \<Otimes>\<^isub>M T) f \<Longrightarrow> 0 \<le> mutual_information b S T X Y"  | 
|
| 40859 | 519  | 
proof -  | 
| 47694 | 520  | 
have X: "random_variable S X"  | 
521  | 
using Px by (auto simp: distributed_def)  | 
|
522  | 
have Y: "random_variable T Y"  | 
|
523  | 
using Py by (auto simp: distributed_def)  | 
|
524  | 
interpret S: sigma_finite_measure S by fact  | 
|
525  | 
interpret T: sigma_finite_measure T by fact  | 
|
526  | 
interpret ST: pair_sigma_finite S T ..  | 
|
527  | 
interpret X: prob_space "distr M S X" using X by (rule prob_space_distr)  | 
|
528  | 
interpret Y: prob_space "distr M T Y" using Y by (rule prob_space_distr)  | 
|
529  | 
interpret XY: pair_prob_space "distr M S X" "distr M T Y" ..  | 
|
530  | 
let ?P = "S \<Otimes>\<^isub>M T"  | 
|
531  | 
let ?D = "distr M ?P (\<lambda>x. (X x, Y x))"  | 
|
532  | 
||
533  | 
  { fix A assume "A \<in> sets S"
 | 
|
534  | 
with X Y have "emeasure (distr M S X) A = emeasure ?D (A \<times> space T)"  | 
|
535  | 
by (auto simp: emeasure_distr measurable_Pair measurable_space  | 
|
536  | 
intro!: arg_cong[where f="emeasure M"]) }  | 
|
537  | 
note marginal_eq1 = this  | 
|
538  | 
  { fix A assume "A \<in> sets T"
 | 
|
539  | 
with X Y have "emeasure (distr M T Y) A = emeasure ?D (space S \<times> A)"  | 
|
540  | 
by (auto simp: emeasure_distr measurable_Pair measurable_space  | 
|
541  | 
intro!: arg_cong[where f="emeasure M"]) }  | 
|
542  | 
note marginal_eq2 = this  | 
|
543  | 
||
544  | 
have eq: "(\<lambda>x. ereal (Px (fst x) * Py (snd x))) = (\<lambda>(x, y). ereal (Px x) * ereal (Py y))"  | 
|
545  | 
by auto  | 
|
546  | 
||
547  | 
have distr_eq: "distr M S X \<Otimes>\<^isub>M distr M T Y = density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))"  | 
|
548  | 
unfolding Px(1)[THEN distributed_distr_eq_density] Py(1)[THEN distributed_distr_eq_density] eq  | 
|
549  | 
proof (subst pair_measure_density)  | 
|
550  | 
show "(\<lambda>x. ereal (Px x)) \<in> borel_measurable S" "(\<lambda>y. ereal (Py y)) \<in> borel_measurable T"  | 
|
551  | 
"AE x in S. 0 \<le> ereal (Px x)" "AE y in T. 0 \<le> ereal (Py y)"  | 
|
552  | 
using Px Py by (auto simp: distributed_def)  | 
|
553  | 
show "sigma_finite_measure (density S Px)" unfolding Px(1)[THEN distributed_distr_eq_density, symmetric] ..  | 
|
554  | 
show "sigma_finite_measure (density T Py)" unfolding Py(1)[THEN distributed_distr_eq_density, symmetric] ..  | 
|
555  | 
qed (fact | simp)+  | 
|
556  | 
||
557  | 
have M: "?M = KL_divergence b (density ?P (\<lambda>x. ereal (Px (fst x) * Py (snd x)))) (density ?P (\<lambda>x. ereal (Pxy x)))"  | 
|
558  | 
unfolding mutual_information_def distr_eq Pxy(1)[THEN distributed_distr_eq_density] ..  | 
|
559  | 
||
560  | 
from Px Py have f: "(\<lambda>x. Px (fst x) * Py (snd x)) \<in> borel_measurable ?P"  | 
|
561  | 
by (intro borel_measurable_times) (auto intro: distributed_real_measurable measurable_fst'' measurable_snd'')  | 
|
562  | 
have PxPy_nonneg: "AE x in ?P. 0 \<le> Px (fst x) * Py (snd x)"  | 
|
563  | 
proof (rule ST.AE_pair_measure)  | 
|
564  | 
    show "{x \<in> space ?P. 0 \<le> Px (fst x) * Py (snd x)} \<in> sets ?P"
 | 
|
565  | 
using f by auto  | 
|
566  | 
show "AE x in S. AE y in T. 0 \<le> Px (fst (x, y)) * Py (snd (x, y))"  | 
|
567  | 
using Px Py by (auto simp: zero_le_mult_iff dest!: distributed_real_AE)  | 
|
568  | 
qed  | 
|
569  | 
||
570  | 
have "(AE x in ?P. Px (fst x) = 0 \<longrightarrow> Pxy x = 0)"  | 
|
571  | 
by (rule subdensity_real[OF measurable_fst Pxy Px]) auto  | 
|
572  | 
moreover  | 
|
573  | 
have "(AE x in ?P. Py (snd x) = 0 \<longrightarrow> Pxy x = 0)"  | 
|
574  | 
by (rule subdensity_real[OF measurable_snd Pxy Py]) auto  | 
|
575  | 
ultimately have ac: "AE x in ?P. Px (fst x) * Py (snd x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
576  | 
by eventually_elim auto  | 
|
577  | 
||
578  | 
show "?M = ?R"  | 
|
579  | 
unfolding M f_def  | 
|
580  | 
using b_gt_1 f PxPy_nonneg Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] ac  | 
|
581  | 
by (rule ST.KL_density_density)  | 
|
582  | 
||
583  | 
assume int: "integrable (S \<Otimes>\<^isub>M T) f"  | 
|
584  | 
show "0 \<le> ?M" unfolding M  | 
|
585  | 
proof (rule ST.KL_density_density_nonneg  | 
|
586  | 
[OF b_gt_1 f PxPy_nonneg _ Pxy[THEN distributed_real_measurable] Pxy[THEN distributed_real_AE] _ ac int[unfolded f_def]])  | 
|
587  | 
show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Pxy x))) "  | 
|
588  | 
unfolding distributed_distr_eq_density[OF Pxy, symmetric]  | 
|
589  | 
using distributed_measurable[OF Pxy] by (rule prob_space_distr)  | 
|
590  | 
show "prob_space (density (S \<Otimes>\<^isub>M T) (\<lambda>x. ereal (Px (fst x) * Py (snd x))))"  | 
|
591  | 
unfolding distr_eq[symmetric] by unfold_locales  | 
|
| 40859 | 592  | 
qed  | 
593  | 
qed  | 
|
594  | 
||
595  | 
lemma (in information_space)  | 
|
| 47694 | 596  | 
fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"  | 
597  | 
assumes "sigma_finite_measure S" "sigma_finite_measure T"  | 
|
598  | 
assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py"  | 
|
599  | 
assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy"  | 
|
600  | 
assumes ae: "AE x in S. AE y in T. Pxy (x, y) = Px x * Py y"  | 
|
601  | 
shows mutual_information_eq_0: "mutual_information b S T X Y = 0"  | 
|
| 36624 | 602  | 
proof -  | 
| 47694 | 603  | 
interpret S: sigma_finite_measure S by fact  | 
604  | 
interpret T: sigma_finite_measure T by fact  | 
|
605  | 
interpret ST: pair_sigma_finite S T ..  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
606  | 
|
| 47694 | 607  | 
have "AE x in S \<Otimes>\<^isub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0"  | 
608  | 
by (rule subdensity_real[OF measurable_fst Pxy Px]) auto  | 
|
609  | 
moreover  | 
|
610  | 
have "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
611  | 
by (rule subdensity_real[OF measurable_snd Pxy Py]) auto  | 
|
612  | 
moreover  | 
|
613  | 
have "AE x in S \<Otimes>\<^isub>M T. Pxy x = Px (fst x) * Py (snd x)"  | 
|
614  | 
using distributed_real_measurable[OF Px] distributed_real_measurable[OF Py] distributed_real_measurable[OF Pxy]  | 
|
615  | 
by (intro ST.AE_pair_measure) (auto simp: ae intro!: measurable_snd'' measurable_fst'')  | 
|
616  | 
ultimately have "AE x in S \<Otimes>\<^isub>M T. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) = 0"  | 
|
617  | 
by eventually_elim simp  | 
|
618  | 
then have "(\<integral>x. Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) \<partial>(S \<Otimes>\<^isub>M T)) = (\<integral>x. 0 \<partial>(S \<Otimes>\<^isub>M T))"  | 
|
619  | 
by (rule integral_cong_AE)  | 
|
620  | 
then show ?thesis  | 
|
621  | 
by (subst mutual_information_distr[OF assms(1-5)]) simp  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
622  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
623  | 
|
| 47694 | 624  | 
lemma (in information_space) mutual_information_simple_distributed:  | 
625  | 
assumes X: "simple_distributed M X Px" and Y: "simple_distributed M Y Py"  | 
|
626  | 
assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"  | 
|
627  | 
shows "\<I>(X ; Y) = (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x))`space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"  | 
|
628  | 
proof (subst mutual_information_distr[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]])  | 
|
629  | 
note fin = simple_distributed_joint_finite[OF XY, simp]  | 
|
630  | 
show "sigma_finite_measure (count_space (X ` space M))"  | 
|
631  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
632  | 
show "sigma_finite_measure (count_space (Y ` space M))"  | 
|
633  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
634  | 
let ?Pxy = "\<lambda>x. (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)"  | 
|
635  | 
let ?f = "\<lambda>x. ?Pxy x * log b (?Pxy x / (Px (fst x) * Py (snd x)))"  | 
|
636  | 
have "\<And>x. ?f x = (if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x))) else 0)"  | 
|
637  | 
by auto  | 
|
638  | 
with fin show "(\<integral> x. ?f x \<partial>(count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M))) =  | 
|
639  | 
(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y)))"  | 
|
640  | 
by (auto simp add: pair_measure_count_space lebesgue_integral_count_space_finite setsum_cases split_beta'  | 
|
641  | 
intro!: setsum_cong)  | 
|
642  | 
qed  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
643  | 
|
| 47694 | 644  | 
lemma (in information_space)  | 
645  | 
fixes Pxy :: "'b \<times> 'c \<Rightarrow> real" and Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"  | 
|
646  | 
assumes Px: "simple_distributed M X Px" and Py: "simple_distributed M Y Py"  | 
|
647  | 
assumes Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"  | 
|
648  | 
assumes ae: "\<forall>x\<in>space M. Pxy (X x, Y x) = Px (X x) * Py (Y x)"  | 
|
649  | 
shows mutual_information_eq_0_simple: "\<I>(X ; Y) = 0"  | 
|
650  | 
proof (subst mutual_information_simple_distributed[OF Px Py Pxy])  | 
|
651  | 
have "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) =  | 
|
652  | 
(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. 0)"  | 
|
653  | 
by (intro setsum_cong) (auto simp: ae)  | 
|
654  | 
then show "(\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M.  | 
|
655  | 
Pxy (x, y) * log b (Pxy (x, y) / (Px x * Py y))) = 0" by simp  | 
|
656  | 
qed  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
657  | 
|
| 39097 | 658  | 
subsection {* Entropy *}
 | 
659  | 
||
| 47694 | 660  | 
definition (in prob_space) entropy :: "real \<Rightarrow> 'b measure \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> real" where
 | 
661  | 
"entropy b S X = - KL_divergence b S (distr M S X)"  | 
|
662  | 
||
| 40859 | 663  | 
abbreviation (in information_space)  | 
664  | 
  entropy_Pow ("\<H>'(_')") where
 | 
|
| 47694 | 665  | 
"\<H>(X) \<equiv> entropy b (count_space (X`space M)) X"  | 
| 
41981
 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 
hoelzl 
parents: 
41833 
diff
changeset
 | 
666  | 
|
| 47694 | 667  | 
lemma (in information_space) entropy_distr:  | 
668  | 
fixes X :: "'a \<Rightarrow> 'b"  | 
|
669  | 
assumes "sigma_finite_measure MX" and X: "distributed M MX X f"  | 
|
670  | 
shows "entropy b MX X = - (\<integral>x. f x * log b (f x) \<partial>MX)"  | 
|
671  | 
proof -  | 
|
672  | 
interpret MX: sigma_finite_measure MX by fact  | 
|
673  | 
from X show ?thesis  | 
|
674  | 
unfolding entropy_def X[THEN distributed_distr_eq_density]  | 
|
675  | 
by (subst MX.KL_density[OF b_gt_1]) (simp_all add: distributed_real_AE distributed_real_measurable)  | 
|
| 39097 | 676  | 
qed  | 
| 36624 | 677  | 
|
| 47694 | 678  | 
lemma (in information_space) entropy_uniform:  | 
679  | 
assumes "sigma_finite_measure MX"  | 
|
680  | 
assumes A: "A \<in> sets MX" "emeasure MX A \<noteq> 0" "emeasure MX A \<noteq> \<infinity>"  | 
|
681  | 
assumes X: "distributed M MX X (\<lambda>x. 1 / measure MX A * indicator A x)"  | 
|
682  | 
shows "entropy b MX X = log b (measure MX A)"  | 
|
683  | 
proof (subst entropy_distr[OF _ X])  | 
|
684  | 
let ?f = "\<lambda>x. 1 / measure MX A * indicator A x"  | 
|
685  | 
have "- (\<integral>x. ?f x * log b (?f x) \<partial>MX) =  | 
|
686  | 
- (\<integral>x. (log b (1 / measure MX A) / measure MX A) * indicator A x \<partial>MX)"  | 
|
687  | 
by (auto intro!: integral_cong simp: indicator_def)  | 
|
688  | 
also have "\<dots> = - log b (inverse (measure MX A))"  | 
|
689  | 
using A by (subst integral_cmult(2))  | 
|
690  | 
(simp_all add: measure_def real_of_ereal_eq_0 integral_cmult inverse_eq_divide)  | 
|
691  | 
also have "\<dots> = log b (measure MX A)"  | 
|
692  | 
using b_gt_1 A by (subst log_inverse) (auto simp add: measure_def less_le real_of_ereal_eq_0  | 
|
693  | 
emeasure_nonneg real_of_ereal_pos)  | 
|
694  | 
finally show "- (\<integral>x. ?f x * log b (?f x) \<partial>MX) = log b (measure MX A)" by simp  | 
|
695  | 
qed fact+  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
696  | 
|
| 47694 | 697  | 
lemma (in information_space) entropy_simple_distributed:  | 
698  | 
fixes X :: "'a \<Rightarrow> 'b"  | 
|
699  | 
assumes X: "simple_distributed M X f"  | 
|
700  | 
shows "\<H>(X) = - (\<Sum>x\<in>X`space M. f x * log b (f x))"  | 
|
701  | 
proof (subst entropy_distr[OF _ simple_distributed[OF X]])  | 
|
702  | 
show "sigma_finite_measure (count_space (X ` space M))"  | 
|
703  | 
using X by (simp add: sigma_finite_measure_count_space_finite simple_distributed_def)  | 
|
704  | 
show "- (\<integral>x. f x * log b (f x) \<partial>(count_space (X`space M))) = - (\<Sum>x\<in>X ` space M. f x * log b (f x))"  | 
|
705  | 
using X by (auto simp add: lebesgue_integral_count_space_finite)  | 
|
| 39097 | 706  | 
qed  | 
707  | 
||
| 40859 | 708  | 
lemma (in information_space) entropy_le_card_not_0:  | 
| 47694 | 709  | 
assumes X: "simple_distributed M X f"  | 
710  | 
  shows "\<H>(X) \<le> log b (card (X ` space M \<inter> {x. f x \<noteq> 0}))"
 | 
|
| 39097 | 711  | 
proof -  | 
| 47694 | 712  | 
have "\<H>(X) = (\<Sum>x\<in>X`space M. f x * log b (1 / f x))"  | 
713  | 
unfolding entropy_simple_distributed[OF X] setsum_negf[symmetric]  | 
|
714  | 
using X by (auto dest: simple_distributed_nonneg intro!: setsum_cong simp: log_simps less_le)  | 
|
715  | 
also have "\<dots> \<le> log b (\<Sum>x\<in>X`space M. f x * (1 / f x))"  | 
|
716  | 
using not_empty b_gt_1 `simple_distributed M X f`  | 
|
717  | 
by (intro log_setsum') (auto simp: simple_distributed_nonneg simple_distributed_setsum_space)  | 
|
718  | 
also have "\<dots> = log b (\<Sum>x\<in>X`space M. if f x \<noteq> 0 then 1 else 0)"  | 
|
| 
41981
 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 
hoelzl 
parents: 
41833 
diff
changeset
 | 
719  | 
by (intro arg_cong[where f="\<lambda>X. log b X"] setsum_cong) auto  | 
| 39097 | 720  | 
finally show ?thesis  | 
| 47694 | 721  | 
using `simple_distributed M X f` by (auto simp: setsum_cases real_eq_of_nat)  | 
| 39097 | 722  | 
qed  | 
723  | 
||
| 40859 | 724  | 
lemma (in information_space) entropy_le_card:  | 
| 47694 | 725  | 
assumes "simple_distributed M X f"  | 
| 40859 | 726  | 
shows "\<H>(X) \<le> log b (real (card (X ` space M)))"  | 
| 39097 | 727  | 
proof cases  | 
| 47694 | 728  | 
  assume "X ` space M \<inter> {x. f x \<noteq> 0} = {}"
 | 
729  | 
then have "\<And>x. x\<in>X`space M \<Longrightarrow> f x = 0" by auto  | 
|
| 39097 | 730  | 
moreover  | 
731  | 
have "0 < card (X`space M)"  | 
|
| 47694 | 732  | 
using `simple_distributed M X f` not_empty by (auto simp: card_gt_0_iff)  | 
| 39097 | 733  | 
then have "log b 1 \<le> log b (real (card (X`space M)))"  | 
734  | 
using b_gt_1 by (intro log_le) auto  | 
|
| 47694 | 735  | 
ultimately show ?thesis using assms by (simp add: entropy_simple_distributed)  | 
| 39097 | 736  | 
next  | 
| 47694 | 737  | 
  assume False: "X ` space M \<inter> {x. f x \<noteq> 0} \<noteq> {}"
 | 
738  | 
  have "card (X ` space M \<inter> {x. f x \<noteq> 0}) \<le> card (X ` space M)"
 | 
|
739  | 
(is "?A \<le> ?B") using assms not_empty  | 
|
740  | 
by (auto intro!: card_mono simp: simple_function_def simple_distributed_def)  | 
|
| 40859 | 741  | 
note entropy_le_card_not_0[OF assms]  | 
| 39097 | 742  | 
also have "log b (real ?A) \<le> log b (real ?B)"  | 
| 40859 | 743  | 
using b_gt_1 False not_empty `?A \<le> ?B` assms  | 
| 47694 | 744  | 
by (auto intro!: log_le simp: card_gt_0_iff simp: simple_distributed_def)  | 
| 39097 | 745  | 
finally show ?thesis .  | 
746  | 
qed  | 
|
747  | 
||
748  | 
subsection {* Conditional Mutual Information *}
 | 
|
749  | 
||
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
750  | 
definition (in prob_space)  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
751  | 
"conditional_mutual_information b MX MY MZ X Y Z \<equiv>  | 
| 
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
752  | 
mutual_information b MX (MY \<Otimes>\<^isub>M MZ) X (\<lambda>x. (Y x, Z x)) -  | 
| 
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
753  | 
mutual_information b MX MZ X Z"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
754  | 
|
| 40859 | 755  | 
abbreviation (in information_space)  | 
756  | 
  conditional_mutual_information_Pow ("\<I>'( _ ; _ | _ ')") where
 | 
|
| 36624 | 757  | 
"\<I>(X ; Y | Z) \<equiv> conditional_mutual_information b  | 
| 47694 | 758  | 
(count_space (X ` space M)) (count_space (Y ` space M)) (count_space (Z ` space M)) X Y Z"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
759  | 
|
| 40859 | 760  | 
lemma (in information_space) conditional_mutual_information_generic_eq:  | 
| 47694 | 761  | 
assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T" and P: "sigma_finite_measure P"  | 
762  | 
assumes Px: "distributed M S X Px"  | 
|
763  | 
assumes Pz: "distributed M P Z Pz"  | 
|
764  | 
assumes Pyz: "distributed M (T \<Otimes>\<^isub>M P) (\<lambda>x. (Y x, Z x)) Pyz"  | 
|
765  | 
assumes Pxz: "distributed M (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) Pxz"  | 
|
766  | 
assumes Pxyz: "distributed M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x)) Pxyz"  | 
|
767  | 
assumes I1: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Px x * Pyz (y, z))))"  | 
|
768  | 
assumes I2: "integrable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). Pxyz (x, y, z) * log b (Pxz (x, z) / (Px x * Pz z)))"  | 
|
769  | 
shows "conditional_mutual_information b S T P X Y Z  | 
|
770  | 
= (\<integral>(x, y, z). Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))"  | 
|
| 40859 | 771  | 
proof -  | 
| 47694 | 772  | 
interpret S: sigma_finite_measure S by fact  | 
773  | 
interpret T: sigma_finite_measure T by fact  | 
|
774  | 
interpret P: sigma_finite_measure P by fact  | 
|
775  | 
interpret TP: pair_sigma_finite T P ..  | 
|
776  | 
interpret SP: pair_sigma_finite S P ..  | 
|
777  | 
interpret SPT: pair_sigma_finite "S \<Otimes>\<^isub>M P" T ..  | 
|
778  | 
interpret STP: pair_sigma_finite S "T \<Otimes>\<^isub>M P" ..  | 
|
779  | 
have TP: "sigma_finite_measure (T \<Otimes>\<^isub>M P)" ..  | 
|
780  | 
have SP: "sigma_finite_measure (S \<Otimes>\<^isub>M P)" ..  | 
|
781  | 
have YZ: "random_variable (T \<Otimes>\<^isub>M P) (\<lambda>x. (Y x, Z x))"  | 
|
782  | 
using Pyz by (simp add: distributed_measurable)  | 
|
783  | 
||
784  | 
have Pxyz_f: "\<And>M f. f \<in> measurable M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) \<Longrightarrow> (\<lambda>x. Pxyz (f x)) \<in> borel_measurable M"  | 
|
785  | 
using measurable_comp[OF _ Pxyz[THEN distributed_real_measurable]] by (auto simp: comp_def)  | 
|
786  | 
||
787  | 
  { fix f g h M
 | 
|
788  | 
assume f: "f \<in> measurable M S" and g: "g \<in> measurable M P" and h: "h \<in> measurable M (S \<Otimes>\<^isub>M P)"  | 
|
789  | 
from measurable_comp[OF h Pxz[THEN distributed_real_measurable]]  | 
|
790  | 
measurable_comp[OF f Px[THEN distributed_real_measurable]]  | 
|
791  | 
measurable_comp[OF g Pz[THEN distributed_real_measurable]]  | 
|
792  | 
have "(\<lambda>x. log b (Pxz (h x) / (Px (f x) * Pz (g x)))) \<in> borel_measurable M"  | 
|
793  | 
by (simp add: comp_def b_gt_1) }  | 
|
794  | 
note borel_log = this  | 
|
795  | 
||
796  | 
have measurable_cut: "(\<lambda>(x, y, z). (x, z)) \<in> measurable (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (S \<Otimes>\<^isub>M P)"  | 
|
797  | 
by (auto simp add: split_beta' comp_def intro!: measurable_Pair measurable_snd')  | 
|
798  | 
||
799  | 
from Pxz Pxyz have distr_eq: "distr M (S \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Z x)) =  | 
|
800  | 
distr (distr M (S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P) (\<lambda>x. (X x, Y x, Z x))) (S \<Otimes>\<^isub>M P) (\<lambda>(x, y, z). (x, z))"  | 
|
801  | 
by (subst distr_distr[OF measurable_cut]) (auto dest: distributed_measurable simp: comp_def)  | 
|
| 40859 | 802  | 
|
| 47694 | 803  | 
have "mutual_information b S P X Z =  | 
804  | 
(\<integral>x. Pxz x * log b (Pxz x / (Px (fst x) * Pz (snd x))) \<partial>(S \<Otimes>\<^isub>M P))"  | 
|
805  | 
by (rule mutual_information_distr[OF S P Px Pz Pxz])  | 
|
806  | 
also have "\<dots> = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))"  | 
|
807  | 
using b_gt_1 Pxz Px Pz  | 
|
808  | 
by (subst distributed_transform_integral[OF Pxyz Pxz, where T="\<lambda>(x, y, z). (x, z)"])  | 
|
809  | 
(auto simp: split_beta' intro!: measurable_Pair measurable_snd' measurable_snd'' measurable_fst'' borel_measurable_times  | 
|
810  | 
dest!: distributed_real_measurable)  | 
|
811  | 
finally have mi_eq:  | 
|
812  | 
"mutual_information b S P X Z = (\<integral>(x,y,z). Pxyz (x,y,z) * log b (Pxz (x,z) / (Px x * Pz z)) \<partial>(S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P))" .  | 
|
813  | 
||
814  | 
have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Px (fst x) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
815  | 
by (intro subdensity_real[of fst, OF _ Pxyz Px]) auto  | 
|
816  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
817  | 
by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz Pz]) (auto intro: measurable_snd')  | 
|
818  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
819  | 
by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz Pxz]) (auto intro: measurable_Pair measurable_snd')  | 
|
820  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
821  | 
by (intro subdensity_real[of snd, OF _ Pxyz Pyz]) (auto intro: measurable_Pair)  | 
|
822  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Px (fst x)"  | 
|
823  | 
using Px by (intro STP.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'' dest: distributed_real_AE distributed_real_measurable)  | 
|
824  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pyz (snd x)"  | 
|
825  | 
using Pyz by (intro STP.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable)  | 
|
826  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pz (snd (snd x))"  | 
|
827  | 
using Pz Pz[THEN distributed_real_measurable] by (auto intro!: measurable_snd'' TP.AE_pair_measure STP.AE_pair_measure AE_I2[of S] dest: distributed_real_AE)  | 
|
828  | 
moreover have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P. 0 \<le> Pxz (fst x, snd (snd x))"  | 
|
829  | 
using Pxz[THEN distributed_real_AE, THEN SP.AE_pair]  | 
|
830  | 
using measurable_comp[OF measurable_Pair[OF measurable_fst measurable_comp[OF measurable_snd measurable_snd]] Pxz[THEN distributed_real_measurable], of T]  | 
|
831  | 
using measurable_comp[OF measurable_snd measurable_Pair2[OF Pxz[THEN distributed_real_measurable]], of _ T]  | 
|
832  | 
by (auto intro!: TP.AE_pair_measure STP.AE_pair_measure simp: comp_def)  | 
|
833  | 
moreover note Pxyz[THEN distributed_real_AE]  | 
|
834  | 
ultimately have "AE x in S \<Otimes>\<^isub>M T \<Otimes>\<^isub>M P.  | 
|
835  | 
Pxyz x * log b (Pxyz x / (Px (fst x) * Pyz (snd x))) -  | 
|
836  | 
Pxyz x * log b (Pxz (fst x, snd (snd x)) / (Px (fst x) * Pz (snd (snd x)))) =  | 
|
837  | 
Pxyz x * log b (Pxyz x * Pz (snd (snd x)) / (Pxz (fst x, snd (snd x)) * Pyz (snd x))) "  | 
|
838  | 
proof eventually_elim  | 
|
839  | 
case (goal1 x)  | 
|
840  | 
show ?case  | 
|
| 40859 | 841  | 
proof cases  | 
| 47694 | 842  | 
assume "Pxyz x \<noteq> 0"  | 
843  | 
with goal1 have "0 < Px (fst x)" "0 < Pz (snd (snd x))" "0 < Pxz (fst x, snd (snd x))" "0 < Pyz (snd x)" "0 < Pxyz x"  | 
|
844  | 
by auto  | 
|
845  | 
then show ?thesis  | 
|
846  | 
using b_gt_1 by (simp add: log_simps mult_pos_pos less_imp_le field_simps)  | 
|
| 40859 | 847  | 
qed simp  | 
848  | 
qed  | 
|
| 47694 | 849  | 
with I1 I2 show ?thesis  | 
| 40859 | 850  | 
unfolding conditional_mutual_information_def  | 
| 47694 | 851  | 
apply (subst mi_eq)  | 
852  | 
apply (subst mutual_information_distr[OF S TP Px Pyz Pxyz])  | 
|
853  | 
apply (subst integral_diff(2)[symmetric])  | 
|
854  | 
apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff)  | 
|
855  | 
done  | 
|
| 40859 | 856  | 
qed  | 
857  | 
||
858  | 
lemma (in information_space) conditional_mutual_information_eq:  | 
|
| 47694 | 859  | 
assumes Pz: "simple_distributed M Z Pz"  | 
860  | 
assumes Pyz: "simple_distributed M (\<lambda>x. (Y x, Z x)) Pyz"  | 
|
861  | 
assumes Pxz: "simple_distributed M (\<lambda>x. (X x, Z x)) Pxz"  | 
|
862  | 
assumes Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz"  | 
|
863  | 
shows "\<I>(X ; Y | Z) =  | 
|
864  | 
(\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x))`space M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"  | 
|
865  | 
proof (subst conditional_mutual_information_generic_eq[OF _ _ _ _  | 
|
866  | 
simple_distributed[OF Pz] simple_distributed_joint[OF Pyz] simple_distributed_joint[OF Pxz]  | 
|
867  | 
simple_distributed_joint2[OF Pxyz]])  | 
|
868  | 
note simple_distributed_joint2_finite[OF Pxyz, simp]  | 
|
869  | 
show "sigma_finite_measure (count_space (X ` space M))"  | 
|
870  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
871  | 
show "sigma_finite_measure (count_space (Y ` space M))"  | 
|
872  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
873  | 
show "sigma_finite_measure (count_space (Z ` space M))"  | 
|
874  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
875  | 
have "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) \<Otimes>\<^isub>M count_space (Z ` space M) =  | 
|
876  | 
count_space (X`space M \<times> Y`space M \<times> Z`space M)"  | 
|
877  | 
(is "?P = ?C")  | 
|
878  | 
by (simp add: pair_measure_count_space)  | 
|
| 40859 | 879  | 
|
| 47694 | 880  | 
  let ?Px = "\<lambda>x. measure M (X -` {x} \<inter> space M)"
 | 
881  | 
have "(\<lambda>x. (X x, Z x)) \<in> measurable M (count_space (X ` space M) \<Otimes>\<^isub>M count_space (Z ` space M))"  | 
|
882  | 
using simple_distributed_joint[OF Pxz] by (rule distributed_measurable)  | 
|
883  | 
from measurable_comp[OF this measurable_fst]  | 
|
884  | 
have "random_variable (count_space (X ` space M)) X"  | 
|
885  | 
by (simp add: comp_def)  | 
|
886  | 
then have "simple_function M X"  | 
|
887  | 
unfolding simple_function_def by auto  | 
|
888  | 
then have "simple_distributed M X ?Px"  | 
|
889  | 
by (rule simple_distributedI) auto  | 
|
890  | 
then show "distributed M (count_space (X ` space M)) X ?Px"  | 
|
891  | 
by (rule simple_distributed)  | 
|
892  | 
||
893  | 
let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then Pxyz x else 0)"  | 
|
894  | 
let ?g = "(\<lambda>x. if x \<in> (\<lambda>x. (Y x, Z x)) ` space M then Pyz x else 0)"  | 
|
895  | 
let ?h = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Z x)) ` space M then Pxz x else 0)"  | 
|
896  | 
show  | 
|
897  | 
"integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?f (x, y, z) / (?Px x * ?g (y, z))))"  | 
|
898  | 
"integrable ?P (\<lambda>(x, y, z). ?f (x, y, z) * log b (?h (x, z) / (?Px x * Pz z)))"  | 
|
899  | 
by (auto intro!: integrable_count_space simp: pair_measure_count_space)  | 
|
900  | 
let ?i = "\<lambda>x y z. ?f (x, y, z) * log b (?f (x, y, z) / (?h (x, z) * (?g (y, z) / Pz z)))"  | 
|
901  | 
let ?j = "\<lambda>x y z. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z)))"  | 
|
902  | 
have "(\<lambda>(x, y, z). ?i x y z) = (\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x)) ` space M then ?j (fst x) (fst (snd x)) (snd (snd x)) else 0)"  | 
|
903  | 
by (auto intro!: ext)  | 
|
904  | 
then show "(\<integral> (x, y, z). ?i x y z \<partial>?P) = (\<Sum>(x, y, z)\<in>(\<lambda>x. (X x, Y x, Z x)) ` space M. ?j x y z)"  | 
|
905  | 
by (auto intro!: setsum_cong simp add: `?P = ?C` lebesgue_integral_count_space_finite simple_distributed_finite setsum_cases split_beta')  | 
|
| 36624 | 906  | 
qed  | 
907  | 
||
| 47694 | 908  | 
lemma (in information_space) conditional_mutual_information_nonneg:  | 
909  | 
assumes X: "simple_function M X" and Y: "simple_function M Y" and Z: "simple_function M Z"  | 
|
910  | 
shows "0 \<le> \<I>(X ; Y | Z)"  | 
|
911  | 
proof -  | 
|
912  | 
  def Pz \<equiv> "\<lambda>x. if x \<in> Z`space M then measure M (Z -` {x} \<inter> space M) else 0"
 | 
|
913  | 
  def Pxz \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, Z x))`space M then measure M ((\<lambda>x. (X x, Z x)) -` {x} \<inter> space M) else 0"
 | 
|
914  | 
  def Pyz \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (Y x, Z x))`space M then measure M ((\<lambda>x. (Y x, Z x)) -` {x} \<inter> space M) else 0"
 | 
|
915  | 
  def Pxyz \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x, Z x))`space M then measure M ((\<lambda>x. (X x, Y x, Z x)) -` {x} \<inter> space M) else 0"
 | 
|
916  | 
let ?M = "X`space M \<times> Y`space M \<times> Z`space M"  | 
|
| 36624 | 917  | 
|
| 47694 | 918  | 
note XZ = simple_function_Pair[OF X Z]  | 
919  | 
note YZ = simple_function_Pair[OF Y Z]  | 
|
920  | 
note XYZ = simple_function_Pair[OF X simple_function_Pair[OF Y Z]]  | 
|
921  | 
have Pz: "simple_distributed M Z Pz"  | 
|
922  | 
using Z by (rule simple_distributedI) (auto simp: Pz_def)  | 
|
923  | 
have Pxz: "simple_distributed M (\<lambda>x. (X x, Z x)) Pxz"  | 
|
924  | 
using XZ by (rule simple_distributedI) (auto simp: Pxz_def)  | 
|
925  | 
have Pyz: "simple_distributed M (\<lambda>x. (Y x, Z x)) Pyz"  | 
|
926  | 
using YZ by (rule simple_distributedI) (auto simp: Pyz_def)  | 
|
927  | 
have Pxyz: "simple_distributed M (\<lambda>x. (X x, Y x, Z x)) Pxyz"  | 
|
928  | 
using XYZ by (rule simple_distributedI) (auto simp: Pxyz_def)  | 
|
| 40859 | 929  | 
|
| 47694 | 930  | 
  { fix z assume z: "z \<in> Z ` space M" then have "(\<Sum>x\<in>X ` space M. Pxz (x, z)) = Pz z"
 | 
931  | 
using distributed_marginal_eq_joint_simple[OF X Pz Pxz z]  | 
|
932  | 
by (auto intro!: setsum_cong simp: Pxz_def) }  | 
|
933  | 
note marginal1 = this  | 
|
| 40859 | 934  | 
|
| 47694 | 935  | 
  { fix z assume z: "z \<in> Z ` space M" then have "(\<Sum>y\<in>Y ` space M. Pyz (y, z)) = Pz z"
 | 
936  | 
using distributed_marginal_eq_joint_simple[OF Y Pz Pyz z]  | 
|
937  | 
by (auto intro!: setsum_cong simp: Pyz_def) }  | 
|
938  | 
note marginal2 = this  | 
|
939  | 
||
940  | 
have "- \<I>(X ; Y | Z) = - (\<Sum>(x, y, z) \<in> ?M. Pxyz (x, y, z) * log b (Pxyz (x, y, z) / (Pxz (x, z) * (Pyz (y,z) / Pz z))))"  | 
|
941  | 
unfolding conditional_mutual_information_eq[OF Pz Pyz Pxz Pxyz]  | 
|
942  | 
using X Y Z by (auto intro!: setsum_mono_zero_left simp: Pxyz_def simple_functionD)  | 
|
943  | 
also have "\<dots> \<le> log b (\<Sum>(x, y, z) \<in> ?M. Pxz (x, z) * (Pyz (y,z) / Pz z))"  | 
|
| 
41981
 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 
hoelzl 
parents: 
41833 
diff
changeset
 | 
944  | 
unfolding split_beta'  | 
| 36624 | 945  | 
proof (rule log_setsum_divide)  | 
| 47694 | 946  | 
    show "?M \<noteq> {}" using not_empty by simp
 | 
| 36624 | 947  | 
show "1 < b" using b_gt_1 .  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
948  | 
|
| 47694 | 949  | 
show "finite ?M" using X Y Z by (auto simp: simple_functionD)  | 
| 40859 | 950  | 
|
| 47694 | 951  | 
then show "(\<Sum>x\<in>?M. Pxyz (fst x, fst (snd x), snd (snd x))) = 1"  | 
952  | 
apply (subst Pxyz[THEN simple_distributed_setsum_space, symmetric])  | 
|
953  | 
apply simp  | 
|
954  | 
apply (intro setsum_mono_zero_right)  | 
|
955  | 
apply (auto simp: Pxyz_def)  | 
|
956  | 
done  | 
|
957  | 
let ?N = "(\<lambda>x. (X x, Y x, Z x)) ` space M"  | 
|
958  | 
fix x assume x: "x \<in> ?M"  | 
|
959  | 
let ?Q = "Pxyz (fst x, fst (snd x), snd (snd x))"  | 
|
960  | 
let ?P = "Pxz (fst x, snd (snd x)) * (Pyz (fst (snd x), snd (snd x)) / Pz (snd (snd x)))"  | 
|
961  | 
from x show "0 \<le> ?Q" "0 \<le> ?P"  | 
|
962  | 
using Pxyz[THEN simple_distributed, THEN distributed_real_AE]  | 
|
963  | 
using Pxz[THEN simple_distributed, THEN distributed_real_AE]  | 
|
964  | 
using Pyz[THEN simple_distributed, THEN distributed_real_AE]  | 
|
965  | 
using Pz[THEN simple_distributed, THEN distributed_real_AE]  | 
|
966  | 
by (auto intro!: mult_nonneg_nonneg divide_nonneg_nonneg simp: AE_count_space Pxyz_def Pxz_def Pyz_def Pz_def)  | 
|
967  | 
moreover assume "0 < ?Q"  | 
|
968  | 
moreover have "AE x in count_space ?N. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
969  | 
by (intro subdensity_real[of "\<lambda>x. snd (snd x)", OF _ Pxyz[THEN simple_distributed] Pz[THEN simple_distributed]]) (auto intro: measurable_snd')  | 
|
970  | 
then have "\<And>x. Pz (snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
971  | 
by (auto simp: Pz_def Pxyz_def AE_count_space)  | 
|
972  | 
moreover have "AE x in count_space ?N. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
973  | 
by (intro subdensity_real[of "\<lambda>x. (fst x, snd (snd x))", OF _ Pxyz[THEN simple_distributed] Pxz[THEN simple_distributed]]) (auto intro: measurable_Pair measurable_snd')  | 
|
974  | 
then have "\<And>x. Pxz (fst x, snd (snd x)) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
975  | 
by (auto simp: Pz_def Pxyz_def AE_count_space)  | 
|
976  | 
moreover have "AE x in count_space ?N. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
977  | 
by (intro subdensity_real[of snd, OF _ Pxyz[THEN simple_distributed] Pyz[THEN simple_distributed]]) (auto intro: measurable_Pair)  | 
|
978  | 
then have "\<And>x. Pyz (snd x) = 0 \<longrightarrow> Pxyz x = 0"  | 
|
979  | 
by (auto simp: Pz_def Pxyz_def AE_count_space)  | 
|
980  | 
ultimately show "0 < ?P" using x by (auto intro!: divide_pos_pos mult_pos_pos simp: less_le)  | 
|
| 40859 | 981  | 
qed  | 
| 47694 | 982  | 
also have "(\<Sum>(x, y, z) \<in> ?M. Pxz (x, z) * (Pyz (y,z) / Pz z)) = (\<Sum>z\<in>Z`space M. Pz z)"  | 
| 36624 | 983  | 
apply (simp add: setsum_cartesian_product')  | 
984  | 
apply (subst setsum_commute)  | 
|
985  | 
apply (subst (2) setsum_commute)  | 
|
| 47694 | 986  | 
apply (auto simp: setsum_divide_distrib[symmetric] setsum_product[symmetric] marginal1 marginal2  | 
| 36624 | 987  | 
intro!: setsum_cong)  | 
| 47694 | 988  | 
done  | 
989  | 
also have "log b (\<Sum>z\<in>Z`space M. Pz z) = 0"  | 
|
990  | 
using Pz[THEN simple_distributed_setsum_space] by simp  | 
|
| 40859 | 991  | 
finally show ?thesis by simp  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
992  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
993  | 
|
| 39097 | 994  | 
subsection {* Conditional Entropy *}
 | 
995  | 
||
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
996  | 
definition (in prob_space)  | 
| 47694 | 997  | 
"conditional_entropy b S T X Y = entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) - entropy b T Y"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
998  | 
|
| 40859 | 999  | 
abbreviation (in information_space)  | 
1000  | 
  conditional_entropy_Pow ("\<H>'(_ | _')") where
 | 
|
| 47694 | 1001  | 
"\<H>(X | Y) \<equiv> conditional_entropy b (count_space (X`space M)) (count_space (Y`space M)) X Y"  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1002  | 
|
| 40859 | 1003  | 
lemma (in information_space) conditional_entropy_generic_eq:  | 
| 47694 | 1004  | 
fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real"  | 
1005  | 
assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"  | 
|
1006  | 
assumes Px: "distributed M S X Px"  | 
|
1007  | 
assumes Py: "distributed M T Y Py"  | 
|
1008  | 
assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy"  | 
|
1009  | 
assumes I1: "integrable (S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"  | 
|
1010  | 
assumes I2: "integrable (S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))"  | 
|
1011  | 
shows "conditional_entropy b S T X Y = - (\<integral>(x, y). Pxy (x, y) * log b (Pxy (x, y) / Py y) \<partial>(S \<Otimes>\<^isub>M T))"  | 
|
| 40859 | 1012  | 
proof -  | 
| 47694 | 1013  | 
interpret S: sigma_finite_measure S by fact  | 
1014  | 
interpret T: sigma_finite_measure T by fact  | 
|
1015  | 
interpret ST: pair_sigma_finite S T ..  | 
|
1016  | 
have ST: "sigma_finite_measure (S \<Otimes>\<^isub>M T)" ..  | 
|
1017  | 
||
1018  | 
interpret Pxy: prob_space "density (S \<Otimes>\<^isub>M T) Pxy"  | 
|
1019  | 
unfolding Pxy[THEN distributed_distr_eq_density, symmetric]  | 
|
1020  | 
using Pxy[THEN distributed_measurable] by (rule prob_space_distr)  | 
|
1021  | 
||
1022  | 
from Py Pxy have distr_eq: "distr M T Y =  | 
|
1023  | 
distr (distr M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))) T snd"  | 
|
1024  | 
by (subst distr_distr[OF measurable_snd]) (auto dest: distributed_measurable simp: comp_def)  | 
|
1025  | 
||
1026  | 
have "entropy b T Y = - (\<integral>y. Py y * log b (Py y) \<partial>T)"  | 
|
1027  | 
by (rule entropy_distr[OF T Py])  | 
|
1028  | 
also have "\<dots> = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^isub>M T))"  | 
|
1029  | 
using b_gt_1 Py[THEN distributed_real_measurable]  | 
|
1030  | 
by (subst distributed_transform_integral[OF Pxy Py, where T=snd]) (auto intro!: integral_cong)  | 
|
1031  | 
finally have e_eq: "entropy b T Y = - (\<integral>(x,y). Pxy (x,y) * log b (Py y) \<partial>(S \<Otimes>\<^isub>M T))" .  | 
|
1032  | 
||
1033  | 
have "AE x in S \<Otimes>\<^isub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
1034  | 
by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair)  | 
|
1035  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
1036  | 
by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair)  | 
|
1037  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Px (fst x)"  | 
|
1038  | 
using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'' dest: distributed_real_AE distributed_real_measurable)  | 
|
1039  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Py (snd x)"  | 
|
1040  | 
using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable)  | 
|
1041  | 
moreover note Pxy[THEN distributed_real_AE]  | 
|
1042  | 
ultimately have pos: "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Pxy x \<and> 0 \<le> Px (fst x) \<and> 0 \<le> Py (snd x) \<and>  | 
|
1043  | 
(Pxy x = 0 \<or> (Pxy x \<noteq> 0 \<longrightarrow> 0 < Pxy x \<and> 0 < Px (fst x) \<and> 0 < Py (snd x)))"  | 
|
1044  | 
by eventually_elim auto  | 
|
1045  | 
||
1046  | 
from pos have "AE x in S \<Otimes>\<^isub>M T.  | 
|
1047  | 
Pxy x * log b (Pxy x) - Pxy x * log b (Py (snd x)) = Pxy x * log b (Pxy x / Py (snd x))"  | 
|
1048  | 
by eventually_elim (auto simp: log_simps mult_pos_pos field_simps b_gt_1)  | 
|
1049  | 
with I1 I2 show ?thesis  | 
|
| 40859 | 1050  | 
unfolding conditional_entropy_def  | 
| 47694 | 1051  | 
apply (subst e_eq)  | 
1052  | 
apply (subst entropy_distr[OF ST Pxy])  | 
|
1053  | 
unfolding minus_diff_minus  | 
|
1054  | 
apply (subst integral_diff(2)[symmetric])  | 
|
1055  | 
apply (auto intro!: integral_cong_AE simp: split_beta' simp del: integral_diff)  | 
|
1056  | 
done  | 
|
| 39097 | 1057  | 
qed  | 
1058  | 
||
| 40859 | 1059  | 
lemma (in information_space) conditional_entropy_eq:  | 
| 47694 | 1060  | 
assumes Y: "simple_distributed M Y Py" and X: "simple_function M X"  | 
1061  | 
assumes XY: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"  | 
|
1062  | 
shows "\<H>(X | Y) = - (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))"  | 
|
1063  | 
proof (subst conditional_entropy_generic_eq[OF _ _  | 
|
1064  | 
simple_distributed[OF simple_distributedI[OF X refl]] simple_distributed[OF Y] simple_distributed_joint[OF XY]])  | 
|
1065  | 
have [simp]: "finite (X`space M)" using X by (simp add: simple_function_def)  | 
|
1066  | 
note Y[THEN simple_distributed_finite, simp]  | 
|
1067  | 
show "sigma_finite_measure (count_space (X ` space M))"  | 
|
1068  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
1069  | 
show "sigma_finite_measure (count_space (Y ` space M))"  | 
|
1070  | 
by (simp add: sigma_finite_measure_count_space_finite)  | 
|
1071  | 
let ?f = "(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x else 0)"  | 
|
1072  | 
have "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X`space M \<times> Y`space M)"  | 
|
1073  | 
(is "?P = ?C")  | 
|
1074  | 
using X Y by (simp add: simple_distributed_finite pair_measure_count_space)  | 
|
1075  | 
with X Y show  | 
|
1076  | 
"integrable ?P (\<lambda>x. ?f x * log b (?f x))"  | 
|
1077  | 
"integrable ?P (\<lambda>x. ?f x * log b (Py (snd x)))"  | 
|
1078  | 
by (auto intro!: integrable_count_space simp: simple_distributed_finite)  | 
|
1079  | 
have eq: "(\<lambda>(x, y). ?f (x, y) * log b (?f (x, y) / Py y)) =  | 
|
1080  | 
(\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x)) ` space M then Pxy x * log b (Pxy x / Py (snd x)) else 0)"  | 
|
1081  | 
by auto  | 
|
1082  | 
from X Y show "- (\<integral> (x, y). ?f (x, y) * log b (?f (x, y) / Py y) \<partial>?P) =  | 
|
1083  | 
- (\<Sum>(x, y)\<in>(\<lambda>x. (X x, Y x)) ` space M. Pxy (x, y) * log b (Pxy (x, y) / Py y))"  | 
|
1084  | 
by (auto intro!: setsum_cong simp add: `?P = ?C` lebesgue_integral_count_space_finite simple_distributed_finite eq setsum_cases split_beta')  | 
|
1085  | 
qed  | 
|
| 39097 | 1086  | 
|
| 47694 | 1087  | 
lemma (in information_space) conditional_mutual_information_eq_conditional_entropy:  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1088  | 
assumes X: "simple_function M X" and Y: "simple_function M Y"  | 
| 47694 | 1089  | 
shows "\<I>(X ; X | Y) = \<H>(X | Y)"  | 
1090  | 
proof -  | 
|
1091  | 
  def Py \<equiv> "\<lambda>x. if x \<in> Y`space M then measure M (Y -` {x} \<inter> space M) else 0"
 | 
|
1092  | 
  def Pxy \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, Y x))`space M then measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M) else 0"
 | 
|
1093  | 
  def Pxxy \<equiv> "\<lambda>x. if x \<in> (\<lambda>x. (X x, X x, Y x))`space M then measure M ((\<lambda>x. (X x, X x, Y x)) -` {x} \<inter> space M) else 0"
 | 
|
1094  | 
let ?M = "X`space M \<times> X`space M \<times> Y`space M"  | 
|
| 39097 | 1095  | 
|
| 47694 | 1096  | 
note XY = simple_function_Pair[OF X Y]  | 
1097  | 
note XXY = simple_function_Pair[OF X XY]  | 
|
1098  | 
have Py: "simple_distributed M Y Py"  | 
|
1099  | 
using Y by (rule simple_distributedI) (auto simp: Py_def)  | 
|
1100  | 
have Pxy: "simple_distributed M (\<lambda>x. (X x, Y x)) Pxy"  | 
|
1101  | 
using XY by (rule simple_distributedI) (auto simp: Pxy_def)  | 
|
1102  | 
have Pxxy: "simple_distributed M (\<lambda>x. (X x, X x, Y x)) Pxxy"  | 
|
1103  | 
using XXY by (rule simple_distributedI) (auto simp: Pxxy_def)  | 
|
1104  | 
have eq: "(\<lambda>x. (X x, X x, Y x)) ` space M = (\<lambda>(x, y). (x, x, y)) ` (\<lambda>x. (X x, Y x)) ` space M"  | 
|
1105  | 
by auto  | 
|
1106  | 
have inj: "\<And>A. inj_on (\<lambda>(x, y). (x, x, y)) A"  | 
|
1107  | 
by (auto simp: inj_on_def)  | 
|
1108  | 
have Pxxy_eq: "\<And>x y. Pxxy (x, x, y) = Pxy (x, y)"  | 
|
1109  | 
by (auto simp: Pxxy_def Pxy_def intro!: arg_cong[where f=prob])  | 
|
1110  | 
have "AE x in count_space ((\<lambda>x. (X x, Y x))`space M). Py (snd x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
1111  | 
by (intro subdensity_real[of snd, OF _ Pxy[THEN simple_distributed] Py[THEN simple_distributed]]) (auto intro: measurable_Pair)  | 
|
1112  | 
then show ?thesis  | 
|
1113  | 
apply (subst conditional_mutual_information_eq[OF Py Pxy Pxy Pxxy])  | 
|
1114  | 
apply (subst conditional_entropy_eq[OF Py X Pxy])  | 
|
1115  | 
apply (auto intro!: setsum_cong simp: Pxxy_eq setsum_negf[symmetric] eq setsum_reindex[OF inj]  | 
|
1116  | 
log_simps zero_less_mult_iff zero_le_mult_iff field_simps mult_less_0_iff AE_count_space)  | 
|
1117  | 
using Py[THEN simple_distributed, THEN distributed_real_AE] Pxy[THEN simple_distributed, THEN distributed_real_AE]  | 
|
1118  | 
apply (auto simp add: not_le[symmetric] AE_count_space)  | 
|
1119  | 
done  | 
|
1120  | 
qed  | 
|
1121  | 
||
1122  | 
lemma (in information_space) conditional_entropy_nonneg:  | 
|
1123  | 
assumes X: "simple_function M X" and Y: "simple_function M Y" shows "0 \<le> \<H>(X | Y)"  | 
|
1124  | 
using conditional_mutual_information_eq_conditional_entropy[OF X Y] conditional_mutual_information_nonneg[OF X X Y]  | 
|
1125  | 
by simp  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1126  | 
|
| 39097 | 1127  | 
subsection {* Equalities *}
 | 
1128  | 
||
| 47694 | 1129  | 
lemma (in information_space) mutual_information_eq_entropy_conditional_entropy_distr:  | 
1130  | 
  fixes Px :: "'b \<Rightarrow> real" and Py :: "'c \<Rightarrow> real" and Pxy :: "('b \<times> 'c) \<Rightarrow> real"
 | 
|
1131  | 
assumes S: "sigma_finite_measure S" and T: "sigma_finite_measure T"  | 
|
1132  | 
assumes Px: "distributed M S X Px" and Py: "distributed M T Y Py"  | 
|
1133  | 
assumes Pxy: "distributed M (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) Pxy"  | 
|
1134  | 
assumes Ix: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Px (fst x)))"  | 
|
1135  | 
assumes Iy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Py (snd x)))"  | 
|
1136  | 
assumes Ixy: "integrable(S \<Otimes>\<^isub>M T) (\<lambda>x. Pxy x * log b (Pxy x))"  | 
|
1137  | 
shows "mutual_information b S T X Y = entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x))"  | 
|
| 40859 | 1138  | 
proof -  | 
| 47694 | 1139  | 
have X: "entropy b S X = - (\<integral>x. Pxy x * log b (Px (fst x)) \<partial>(S \<Otimes>\<^isub>M T))"  | 
1140  | 
using b_gt_1 Px[THEN distributed_real_measurable]  | 
|
1141  | 
apply (subst entropy_distr[OF S Px])  | 
|
1142  | 
apply (subst distributed_transform_integral[OF Pxy Px, where T=fst])  | 
|
1143  | 
apply (auto intro!: integral_cong)  | 
|
1144  | 
done  | 
|
1145  | 
||
1146  | 
have Y: "entropy b T Y = - (\<integral>x. Pxy x * log b (Py (snd x)) \<partial>(S \<Otimes>\<^isub>M T))"  | 
|
1147  | 
using b_gt_1 Py[THEN distributed_real_measurable]  | 
|
1148  | 
apply (subst entropy_distr[OF T Py])  | 
|
1149  | 
apply (subst distributed_transform_integral[OF Pxy Py, where T=snd])  | 
|
1150  | 
apply (auto intro!: integral_cong)  | 
|
1151  | 
done  | 
|
1152  | 
||
1153  | 
interpret S: sigma_finite_measure S by fact  | 
|
1154  | 
interpret T: sigma_finite_measure T by fact  | 
|
1155  | 
interpret ST: pair_sigma_finite S T ..  | 
|
1156  | 
have ST: "sigma_finite_measure (S \<Otimes>\<^isub>M T)" ..  | 
|
1157  | 
||
1158  | 
have XY: "entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) = - (\<integral>x. Pxy x * log b (Pxy x) \<partial>(S \<Otimes>\<^isub>M T))"  | 
|
1159  | 
by (subst entropy_distr[OF ST Pxy]) (auto intro!: integral_cong)  | 
|
1160  | 
||
1161  | 
have "AE x in S \<Otimes>\<^isub>M T. Px (fst x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
1162  | 
by (intro subdensity_real[of fst, OF _ Pxy Px]) (auto intro: measurable_Pair)  | 
|
1163  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. Py (snd x) = 0 \<longrightarrow> Pxy x = 0"  | 
|
1164  | 
by (intro subdensity_real[of snd, OF _ Pxy Py]) (auto intro: measurable_Pair)  | 
|
1165  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Px (fst x)"  | 
|
1166  | 
using Px by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_fst'' dest: distributed_real_AE distributed_real_measurable)  | 
|
1167  | 
moreover have "AE x in S \<Otimes>\<^isub>M T. 0 \<le> Py (snd x)"  | 
|
1168  | 
using Py by (intro ST.AE_pair_measure) (auto simp: comp_def intro!: measurable_snd'' dest: distributed_real_AE distributed_real_measurable)  | 
|
1169  | 
moreover note Pxy[THEN distributed_real_AE]  | 
|
1170  | 
ultimately have "AE x in S \<Otimes>\<^isub>M T. Pxy x * log b (Pxy x) - Pxy x * log b (Px (fst x)) - Pxy x * log b (Py (snd x)) =  | 
|
1171  | 
Pxy x * log b (Pxy x / (Px (fst x) * Py (snd x)))"  | 
|
1172  | 
(is "AE x in _. ?f x = ?g x")  | 
|
1173  | 
proof eventually_elim  | 
|
1174  | 
case (goal1 x)  | 
|
1175  | 
show ?case  | 
|
1176  | 
proof cases  | 
|
1177  | 
assume "Pxy x \<noteq> 0"  | 
|
1178  | 
with goal1 have "0 < Px (fst x)" "0 < Py (snd x)" "0 < Pxy x"  | 
|
1179  | 
by auto  | 
|
1180  | 
then show ?thesis  | 
|
1181  | 
using b_gt_1 by (simp add: log_simps mult_pos_pos less_imp_le field_simps)  | 
|
1182  | 
qed simp  | 
|
1183  | 
qed  | 
|
1184  | 
||
1185  | 
have "entropy b S X + entropy b T Y - entropy b (S \<Otimes>\<^isub>M T) (\<lambda>x. (X x, Y x)) = integral\<^isup>L (S \<Otimes>\<^isub>M T) ?f"  | 
|
1186  | 
unfolding X Y XY  | 
|
1187  | 
apply (subst integral_diff)  | 
|
1188  | 
apply (intro integral_diff Ixy Ix Iy)+  | 
|
1189  | 
apply (subst integral_diff)  | 
|
1190  | 
apply (intro integral_diff Ixy Ix Iy)+  | 
|
1191  | 
apply (simp add: field_simps)  | 
|
1192  | 
done  | 
|
1193  | 
also have "\<dots> = integral\<^isup>L (S \<Otimes>\<^isub>M T) ?g"  | 
|
1194  | 
using `AE x in _. ?f x = ?g x` by (rule integral_cong_AE)  | 
|
1195  | 
also have "\<dots> = mutual_information b S T X Y"  | 
|
1196  | 
by (rule mutual_information_distr[OF S T Px Py Pxy, symmetric])  | 
|
1197  | 
finally show ?thesis ..  | 
|
1198  | 
qed  | 
|
1199  | 
||
1200  | 
lemma (in information_space) mutual_information_eq_entropy_conditional_entropy:  | 
|
1201  | 
assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y"  | 
|
1202  | 
shows "\<I>(X ; Y) = \<H>(X) - \<H>(X | Y)"  | 
|
1203  | 
proof -  | 
|
1204  | 
  have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | 
|
1205  | 
using sf_X by (rule simple_distributedI) auto  | 
|
1206  | 
  have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
|
1207  | 
using sf_Y by (rule simple_distributedI) auto  | 
|
1208  | 
have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))"  | 
|
1209  | 
using sf_X sf_Y by (rule simple_function_Pair)  | 
|
1210  | 
  then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | 
|
1211  | 
by (rule simple_distributedI) auto  | 
|
1212  | 
from simple_distributed_joint_finite[OF this, simp]  | 
|
1213  | 
have eq: "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)"  | 
|
1214  | 
by (simp add: pair_measure_count_space)  | 
|
1215  | 
||
1216  | 
have "\<I>(X ; Y) = \<H>(X) + \<H>(Y) - entropy b (count_space (X`space M) \<Otimes>\<^isub>M count_space (Y`space M)) (\<lambda>x. (X x, Y x))"  | 
|
1217  | 
using sigma_finite_measure_count_space_finite sigma_finite_measure_count_space_finite simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]  | 
|
1218  | 
by (rule mutual_information_eq_entropy_conditional_entropy_distr) (auto simp: eq integrable_count_space)  | 
|
1219  | 
then show ?thesis  | 
|
1220  | 
unfolding conditional_entropy_def by simp  | 
|
1221  | 
qed  | 
|
1222  | 
||
1223  | 
lemma (in information_space) mutual_information_nonneg_simple:  | 
|
1224  | 
assumes sf_X: "simple_function M X" and sf_Y: "simple_function M Y"  | 
|
1225  | 
shows "0 \<le> \<I>(X ; Y)"  | 
|
1226  | 
proof -  | 
|
1227  | 
  have X: "simple_distributed M X (\<lambda>x. measure M (X -` {x} \<inter> space M))"
 | 
|
1228  | 
using sf_X by (rule simple_distributedI) auto  | 
|
1229  | 
  have Y: "simple_distributed M Y (\<lambda>x. measure M (Y -` {x} \<inter> space M))"
 | 
|
1230  | 
using sf_Y by (rule simple_distributedI) auto  | 
|
1231  | 
||
1232  | 
have sf_XY: "simple_function M (\<lambda>x. (X x, Y x))"  | 
|
1233  | 
using sf_X sf_Y by (rule simple_function_Pair)  | 
|
1234  | 
  then have XY: "simple_distributed M (\<lambda>x. (X x, Y x)) (\<lambda>x. measure M ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M))"
 | 
|
1235  | 
by (rule simple_distributedI) auto  | 
|
1236  | 
||
1237  | 
from simple_distributed_joint_finite[OF this, simp]  | 
|
1238  | 
have eq: "count_space (X ` space M) \<Otimes>\<^isub>M count_space (Y ` space M) = count_space (X ` space M \<times> Y ` space M)"  | 
|
1239  | 
by (simp add: pair_measure_count_space)  | 
|
1240  | 
||
| 40859 | 1241  | 
show ?thesis  | 
| 47694 | 1242  | 
by (rule mutual_information_nonneg[OF _ _ simple_distributed[OF X] simple_distributed[OF Y] simple_distributed_joint[OF XY]])  | 
1243  | 
(simp_all add: eq integrable_count_space sigma_finite_measure_count_space_finite)  | 
|
| 40859 | 1244  | 
qed  | 
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1245  | 
|
| 40859 | 1246  | 
lemma (in information_space) conditional_entropy_less_eq_entropy:  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1247  | 
assumes X: "simple_function M X" and Z: "simple_function M Z"  | 
| 40859 | 1248  | 
shows "\<H>(X | Z) \<le> \<H>(X)"  | 
| 36624 | 1249  | 
proof -  | 
| 47694 | 1250  | 
have "0 \<le> \<I>(X ; Z)" using X Z by (rule mutual_information_nonneg_simple)  | 
1251  | 
also have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy[OF assms] .  | 
|
1252  | 
finally show ?thesis by auto  | 
|
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1253  | 
qed  | 
| 
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1254  | 
|
| 40859 | 1255  | 
lemma (in information_space) entropy_chain_rule:  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1256  | 
assumes X: "simple_function M X" and Y: "simple_function M Y"  | 
| 40859 | 1257  | 
shows "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)"  | 
1258  | 
proof -  | 
|
| 47694 | 1259  | 
note XY = simple_distributedI[OF simple_function_Pair[OF X Y] refl]  | 
1260  | 
note YX = simple_distributedI[OF simple_function_Pair[OF Y X] refl]  | 
|
1261  | 
note simple_distributed_joint_finite[OF this, simp]  | 
|
1262  | 
  let ?f = "\<lambda>x. prob ((\<lambda>x. (X x, Y x)) -` {x} \<inter> space M)"
 | 
|
1263  | 
  let ?g = "\<lambda>x. prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M)"
 | 
|
1264  | 
  let ?h = "\<lambda>x. if x \<in> (\<lambda>x. (Y x, X x)) ` space M then prob ((\<lambda>x. (Y x, X x)) -` {x} \<inter> space M) else 0"
 | 
|
1265  | 
have "\<H>(\<lambda>x. (X x, Y x)) = - (\<Sum>x\<in>(\<lambda>x. (X x, Y x)) ` space M. ?f x * log b (?f x))"  | 
|
1266  | 
using XY by (rule entropy_simple_distributed)  | 
|
1267  | 
also have "\<dots> = - (\<Sum>x\<in>(\<lambda>(x, y). (y, x)) ` (\<lambda>x. (X x, Y x)) ` space M. ?g x * log b (?g x))"  | 
|
1268  | 
by (subst (2) setsum_reindex) (auto simp: inj_on_def intro!: setsum_cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"])  | 
|
1269  | 
also have "\<dots> = - (\<Sum>x\<in>(\<lambda>x. (Y x, X x)) ` space M. ?h x * log b (?h x))"  | 
|
1270  | 
by (auto intro!: setsum_cong)  | 
|
1271  | 
also have "\<dots> = entropy b (count_space (Y ` space M) \<Otimes>\<^isub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))"  | 
|
1272  | 
by (subst entropy_distr[OF _ simple_distributed_joint[OF YX]])  | 
|
1273  | 
(auto simp: pair_measure_count_space sigma_finite_measure_count_space_finite lebesgue_integral_count_space_finite  | 
|
1274  | 
cong del: setsum_cong intro!: setsum_mono_zero_left)  | 
|
1275  | 
finally have "\<H>(\<lambda>x. (X x, Y x)) = entropy b (count_space (Y ` space M) \<Otimes>\<^isub>M count_space (X ` space M)) (\<lambda>x. (Y x, X x))" .  | 
|
1276  | 
then show ?thesis  | 
|
1277  | 
unfolding conditional_entropy_def by simp  | 
|
| 36624 | 1278  | 
qed  | 
1279  | 
||
| 40859 | 1280  | 
lemma (in information_space) entropy_partition:  | 
| 47694 | 1281  | 
assumes X: "simple_function M X"  | 
1282  | 
shows "\<H>(X) = \<H>(f \<circ> X) + \<H>(X|f \<circ> X)"  | 
|
| 36624 | 1283  | 
proof -  | 
| 47694 | 1284  | 
note fX = simple_function_compose[OF X, of f]  | 
1285  | 
have eq: "(\<lambda>x. ((f \<circ> X) x, X x)) ` space M = (\<lambda>x. (f x, x)) ` X ` space M" by auto  | 
|
1286  | 
have inj: "\<And>A. inj_on (\<lambda>x. (f x, x)) A"  | 
|
1287  | 
by (auto simp: inj_on_def)  | 
|
1288  | 
show ?thesis  | 
|
1289  | 
apply (subst entropy_chain_rule[symmetric, OF fX X])  | 
|
1290  | 
apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_Pair[OF fX X] refl]])  | 
|
1291  | 
apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]])  | 
|
1292  | 
unfolding eq  | 
|
1293  | 
apply (subst setsum_reindex[OF inj])  | 
|
1294  | 
apply (auto intro!: setsum_cong arg_cong[where f="\<lambda>A. prob A * log b (prob A)"])  | 
|
1295  | 
done  | 
|
| 36624 | 1296  | 
qed  | 
1297  | 
||
| 40859 | 1298  | 
corollary (in information_space) entropy_data_processing:  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1299  | 
assumes X: "simple_function M X" shows "\<H>(f \<circ> X) \<le> \<H>(X)"  | 
| 40859 | 1300  | 
proof -  | 
| 47694 | 1301  | 
note fX = simple_function_compose[OF X, of f]  | 
1302  | 
from X have "\<H>(X) = \<H>(f\<circ>X) + \<H>(X|f\<circ>X)" by (rule entropy_partition)  | 
|
| 40859 | 1303  | 
then show "\<H>(f \<circ> X) \<le> \<H>(X)"  | 
| 47694 | 1304  | 
by (auto intro: conditional_entropy_nonneg[OF X fX])  | 
| 40859 | 1305  | 
qed  | 
| 36624 | 1306  | 
|
| 40859 | 1307  | 
corollary (in information_space) entropy_of_inj:  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1308  | 
assumes X: "simple_function M X" and inj: "inj_on f (X`space M)"  | 
| 36624 | 1309  | 
shows "\<H>(f \<circ> X) = \<H>(X)"  | 
1310  | 
proof (rule antisym)  | 
|
| 40859 | 1311  | 
show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing[OF X] .  | 
| 36624 | 1312  | 
next  | 
| 
41689
 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 
hoelzl 
parents: 
41661 
diff
changeset
 | 
1313  | 
have sf: "simple_function M (f \<circ> X)"  | 
| 40859 | 1314  | 
using X by auto  | 
| 36624 | 1315  | 
have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))"  | 
| 47694 | 1316  | 
unfolding o_assoc  | 
1317  | 
apply (subst entropy_simple_distributed[OF simple_distributedI[OF X refl]])  | 
|
1318  | 
    apply (subst entropy_simple_distributed[OF simple_distributedI[OF simple_function_compose[OF X]], where f="\<lambda>x. prob (X -` {x} \<inter> space M)"])
 | 
|
1319  | 
apply (auto intro!: setsum_cong arg_cong[where f=prob] image_eqI simp: the_inv_into_f_f[OF inj] comp_def)  | 
|
1320  | 
done  | 
|
| 36624 | 1321  | 
also have "... \<le> \<H>(f \<circ> X)"  | 
| 40859 | 1322  | 
using entropy_data_processing[OF sf] .  | 
| 36624 | 1323  | 
finally show "\<H>(X) \<le> \<H>(f \<circ> X)" .  | 
1324  | 
qed  | 
|
1325  | 
||
| 
36080
 
0d9affa4e73c
Added Information theory and Example: dining cryptographers
 
hoelzl 
parents:  
diff
changeset
 | 
1326  | 
end  |