author | hoelzl |
Thu, 02 Sep 2010 19:51:53 +0200 | |
changeset 39097 | 943c7b348524 |
parent 39092 | 98de40859858 |
child 39198 | f967a16dfcdd |
permissions | -rw-r--r-- |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
1 |
theory Information |
38656 | 2 |
imports Probability_Space Product_Measure Convex Radon_Nikodym |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
3 |
begin |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
4 |
|
39097 | 5 |
lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y" |
6 |
by (subst log_le_cancel_iff) auto |
|
7 |
||
8 |
lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y" |
|
9 |
by (subst log_less_cancel_iff) auto |
|
10 |
||
11 |
lemma setsum_cartesian_product': |
|
12 |
"(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. setsum (\<lambda>y. f (x, y)) B)" |
|
13 |
unfolding setsum_cartesian_product by simp |
|
14 |
||
38656 | 15 |
lemma real_of_pinfreal_inverse[simp]: |
16 |
fixes X :: pinfreal |
|
17 |
shows "real (inverse X) = 1 / real X" |
|
18 |
by (cases X) (auto simp: inverse_eq_divide) |
|
19 |
||
39097 | 20 |
lemma (in finite_prob_space) finite_product_prob_space_of_images: |
21 |
"finite_prob_space \<lparr> space = X ` space M \<times> Y ` space M, sets = Pow (X ` space M \<times> Y ` space M)\<rparr> |
|
22 |
(joint_distribution X Y)" |
|
23 |
(is "finite_prob_space ?S _") |
|
24 |
proof (simp add: finite_prob_space_eq finite_product_measure_space_of_images) |
|
25 |
have "X -` X ` space M \<inter> Y -` Y ` space M \<inter> space M = space M" by auto |
|
26 |
thus "joint_distribution X Y (X ` space M \<times> Y ` space M) = 1" |
|
27 |
by (simp add: distribution_def prob_space vimage_Times comp_def measure_space_1) |
|
28 |
qed |
|
29 |
||
30 |
lemma (in finite_prob_space) finite_measure_space_prod: |
|
31 |
assumes X: "finite_measure_space MX (distribution X)" |
|
32 |
assumes Y: "finite_measure_space MY (distribution Y)" |
|
33 |
shows "finite_measure_space (prod_measure_space MX MY) (joint_distribution X Y)" |
|
34 |
(is "finite_measure_space ?M ?D") |
|
35 |
proof (intro finite_measure_spaceI) |
|
36 |
interpret X: finite_measure_space MX "distribution X" by fact |
|
37 |
interpret Y: finite_measure_space MY "distribution Y" by fact |
|
38 |
note finite_measure_space.finite_prod_measure_space[OF X Y, simp] |
|
39 |
show "finite (space ?M)" using X.finite_space Y.finite_space by auto |
|
40 |
show "joint_distribution X Y {} = 0" by simp |
|
41 |
show "sets ?M = Pow (space ?M)" by simp |
|
42 |
{ fix x show "?D (space ?M) \<noteq> \<omega>" by (rule distribution_finite) } |
|
43 |
{ fix A B assume "A \<subseteq> space ?M" "B \<subseteq> space ?M" "A \<inter> B = {}" |
|
44 |
have *: "(\<lambda>t. (X t, Y t)) -` (A \<union> B) \<inter> space M = |
|
45 |
(\<lambda>t. (X t, Y t)) -` A \<inter> space M \<union> (\<lambda>t. (X t, Y t)) -` B \<inter> space M" |
|
46 |
by auto |
|
47 |
show "?D (A \<union> B) = ?D A + ?D B" unfolding distribution_def * |
|
48 |
apply (rule measure_additive[symmetric]) |
|
49 |
using `A \<inter> B = {}` by (auto simp: sets_eq_Pow) } |
|
50 |
qed |
|
51 |
||
36624 | 52 |
section "Convex theory" |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
53 |
|
36624 | 54 |
lemma log_setsum: |
55 |
assumes "finite s" "s \<noteq> {}" |
|
56 |
assumes "b > 1" |
|
57 |
assumes "(\<Sum> i \<in> s. a i) = 1" |
|
58 |
assumes "\<And> i. i \<in> s \<Longrightarrow> a i \<ge> 0" |
|
59 |
assumes "\<And> i. i \<in> s \<Longrightarrow> y i \<in> {0 <..}" |
|
60 |
shows "log b (\<Sum> i \<in> s. a i * y i) \<ge> (\<Sum> i \<in> s. a i * log b (y i))" |
|
61 |
proof - |
|
62 |
have "convex_on {0 <..} (\<lambda> x. - log b x)" |
|
63 |
by (rule minus_log_convex[OF `b > 1`]) |
|
64 |
hence "- log b (\<Sum> i \<in> s. a i * y i) \<le> (\<Sum> i \<in> s. a i * - log b (y i))" |
|
65 |
using convex_on_setsum[of _ _ "\<lambda> x. - log b x"] assms pos_is_convex by fastsimp |
|
66 |
thus ?thesis by (auto simp add:setsum_negf le_imp_neg_le) |
|
67 |
qed |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
68 |
|
36624 | 69 |
lemma log_setsum': |
70 |
assumes "finite s" "s \<noteq> {}" |
|
71 |
assumes "b > 1" |
|
72 |
assumes "(\<Sum> i \<in> s. a i) = 1" |
|
73 |
assumes pos: "\<And> i. i \<in> s \<Longrightarrow> 0 \<le> a i" |
|
74 |
"\<And> i. \<lbrakk> i \<in> s ; 0 < a i \<rbrakk> \<Longrightarrow> 0 < y i" |
|
75 |
shows "log b (\<Sum> i \<in> s. a i * y i) \<ge> (\<Sum> i \<in> s. a i * log b (y i))" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
76 |
proof - |
36624 | 77 |
have "\<And>y. (\<Sum> i \<in> s - {i. a i = 0}. a i * y i) = (\<Sum> i \<in> s. a i * y i)" |
78 |
using assms by (auto intro!: setsum_mono_zero_cong_left) |
|
79 |
moreover have "log b (\<Sum> i \<in> s - {i. a i = 0}. a i * y i) \<ge> (\<Sum> i \<in> s - {i. a i = 0}. a i * log b (y i))" |
|
80 |
proof (rule log_setsum) |
|
81 |
have "setsum a (s - {i. a i = 0}) = setsum a s" |
|
82 |
using assms(1) by (rule setsum_mono_zero_cong_left) auto |
|
83 |
thus sum_1: "setsum a (s - {i. a i = 0}) = 1" |
|
84 |
"finite (s - {i. a i = 0})" using assms by simp_all |
|
85 |
||
86 |
show "s - {i. a i = 0} \<noteq> {}" |
|
87 |
proof |
|
88 |
assume *: "s - {i. a i = 0} = {}" |
|
89 |
hence "setsum a (s - {i. a i = 0}) = 0" by (simp add: * setsum_empty) |
|
90 |
with sum_1 show False by simp |
|
38656 | 91 |
qed |
36624 | 92 |
|
93 |
fix i assume "i \<in> s - {i. a i = 0}" |
|
94 |
hence "i \<in> s" "a i \<noteq> 0" by simp_all |
|
95 |
thus "0 \<le> a i" "y i \<in> {0<..}" using pos[of i] by auto |
|
96 |
qed fact+ |
|
97 |
ultimately show ?thesis by simp |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
98 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
99 |
|
36624 | 100 |
lemma log_setsum_divide: |
101 |
assumes "finite S" and "S \<noteq> {}" and "1 < b" |
|
102 |
assumes "(\<Sum>x\<in>S. g x) = 1" |
|
103 |
assumes pos: "\<And>x. x \<in> S \<Longrightarrow> g x \<ge> 0" "\<And>x. x \<in> S \<Longrightarrow> f x \<ge> 0" |
|
104 |
assumes g_pos: "\<And>x. \<lbrakk> x \<in> S ; 0 < g x \<rbrakk> \<Longrightarrow> 0 < f x" |
|
105 |
shows "- (\<Sum>x\<in>S. g x * log b (g x / f x)) \<le> log b (\<Sum>x\<in>S. f x)" |
|
106 |
proof - |
|
107 |
have log_mono: "\<And>x y. 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log b x \<le> log b y" |
|
108 |
using `1 < b` by (subst log_le_cancel_iff) auto |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
109 |
|
36624 | 110 |
have "- (\<Sum>x\<in>S. g x * log b (g x / f x)) = (\<Sum>x\<in>S. g x * log b (f x / g x))" |
111 |
proof (unfold setsum_negf[symmetric], rule setsum_cong) |
|
112 |
fix x assume x: "x \<in> S" |
|
113 |
show "- (g x * log b (g x / f x)) = g x * log b (f x / g x)" |
|
114 |
proof (cases "g x = 0") |
|
115 |
case False |
|
116 |
with pos[OF x] g_pos[OF x] have "0 < f x" "0 < g x" by simp_all |
|
117 |
thus ?thesis using `1 < b` by (simp add: log_divide field_simps) |
|
118 |
qed simp |
|
119 |
qed rule |
|
120 |
also have "... \<le> log b (\<Sum>x\<in>S. g x * (f x / g x))" |
|
121 |
proof (rule log_setsum') |
|
122 |
fix x assume x: "x \<in> S" "0 < g x" |
|
123 |
with g_pos[OF x] show "0 < f x / g x" by (safe intro!: divide_pos_pos) |
|
124 |
qed fact+ |
|
125 |
also have "... = log b (\<Sum>x\<in>S - {x. g x = 0}. f x)" using `finite S` |
|
126 |
by (auto intro!: setsum_mono_zero_cong_right arg_cong[where f="log b"] |
|
127 |
split: split_if_asm) |
|
128 |
also have "... \<le> log b (\<Sum>x\<in>S. f x)" |
|
129 |
proof (rule log_mono) |
|
130 |
have "0 = (\<Sum>x\<in>S - {x. g x = 0}. 0)" by simp |
|
131 |
also have "... < (\<Sum>x\<in>S - {x. g x = 0}. f x)" (is "_ < ?sum") |
|
132 |
proof (rule setsum_strict_mono) |
|
133 |
show "finite (S - {x. g x = 0})" using `finite S` by simp |
|
134 |
show "S - {x. g x = 0} \<noteq> {}" |
|
135 |
proof |
|
136 |
assume "S - {x. g x = 0} = {}" |
|
137 |
hence "(\<Sum>x\<in>S. g x) = 0" by (subst setsum_0') auto |
|
138 |
with `(\<Sum>x\<in>S. g x) = 1` show False by simp |
|
139 |
qed |
|
140 |
fix x assume "x \<in> S - {x. g x = 0}" |
|
141 |
thus "0 < f x" using g_pos[of x] pos(1)[of x] by auto |
|
142 |
qed |
|
143 |
finally show "0 < ?sum" . |
|
144 |
show "(\<Sum>x\<in>S - {x. g x = 0}. f x) \<le> (\<Sum>x\<in>S. f x)" |
|
145 |
using `finite S` pos by (auto intro!: setsum_mono2) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
146 |
qed |
36624 | 147 |
finally show ?thesis . |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
148 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
149 |
|
39097 | 150 |
lemma split_pairs: |
151 |
shows |
|
152 |
"((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and |
|
153 |
"(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto |
|
38656 | 154 |
|
155 |
section "Information theory" |
|
156 |
||
157 |
locale finite_information_space = finite_prob_space + |
|
158 |
fixes b :: real assumes b_gt_1: "1 < b" |
|
159 |
||
160 |
context finite_information_space |
|
161 |
begin |
|
162 |
||
163 |
lemma |
|
164 |
assumes "0 \<le> A" and pos: "0 < A \<Longrightarrow> 0 < B" "0 < A \<Longrightarrow> 0 < C" |
|
165 |
shows mult_log_mult: "A * log b (B * C) = A * log b B + A * log b C" (is "?mult") |
|
166 |
and mult_log_divide: "A * log b (B / C) = A * log b B - A * log b C" (is "?div") |
|
36624 | 167 |
proof - |
38656 | 168 |
have "?mult \<and> ?div" |
169 |
proof (cases "A = 0") |
|
170 |
case False |
|
171 |
hence "0 < A" using `0 \<le> A` by auto |
|
172 |
with pos[OF this] show "?mult \<and> ?div" using b_gt_1 |
|
173 |
by (auto simp: log_divide log_mult field_simps) |
|
174 |
qed simp |
|
175 |
thus ?mult and ?div by auto |
|
176 |
qed |
|
177 |
||
178 |
ML {* |
|
179 |
||
180 |
(* tactic to solve equations of the form @{term "W * log b (X / (Y * Z)) = W * log b X - W * log b (Y * Z)"} |
|
181 |
where @{term W} is a joint distribution of @{term X}, @{term Y}, and @{term Z}. *) |
|
182 |
||
183 |
val mult_log_intros = [@{thm mult_log_divide}, @{thm mult_log_mult}] |
|
184 |
val intros = [@{thm divide_pos_pos}, @{thm mult_pos_pos}, @{thm real_pinfreal_nonneg}, |
|
185 |
@{thm real_distribution_divide_pos_pos}, |
|
186 |
@{thm real_distribution_mult_inverse_pos_pos}, |
|
187 |
@{thm real_distribution_mult_pos_pos}] |
|
188 |
||
189 |
val distribution_gt_0_tac = (rtac @{thm distribution_mono_gt_0} |
|
190 |
THEN' assume_tac |
|
191 |
THEN' clarsimp_tac (clasimpset_of @{context} addsimps2 @{thms split_pairs})) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
192 |
|
38656 | 193 |
val distr_mult_log_eq_tac = REPEAT_ALL_NEW (CHANGED o TRY o |
194 |
(resolve_tac (mult_log_intros @ intros) |
|
195 |
ORELSE' distribution_gt_0_tac |
|
196 |
ORELSE' clarsimp_tac (clasimpset_of @{context}))) |
|
197 |
||
198 |
fun instanciate_term thy redex intro = |
|
199 |
let |
|
200 |
val intro_concl = Thm.concl_of intro |
|
201 |
||
202 |
val lhs = intro_concl |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst |
|
203 |
||
204 |
val m = SOME (Pattern.match thy (lhs, redex) (Vartab.empty, Vartab.empty)) |
|
205 |
handle Pattern.MATCH => NONE |
|
206 |
||
207 |
in |
|
208 |
Option.map (fn m => Envir.subst_term m intro_concl) m |
|
209 |
end |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
210 |
|
38656 | 211 |
fun mult_log_simproc simpset redex = |
212 |
let |
|
213 |
val ctxt = Simplifier.the_context simpset |
|
214 |
val thy = ProofContext.theory_of ctxt |
|
215 |
fun prove (SOME thm) = (SOME |
|
216 |
(Goal.prove ctxt [] [] thm (K (distr_mult_log_eq_tac 1)) |
|
217 |
|> mk_meta_eq) |
|
218 |
handle THM _ => NONE) |
|
219 |
| prove NONE = NONE |
|
220 |
in |
|
221 |
get_first (instanciate_term thy (term_of redex) #> prove) mult_log_intros |
|
222 |
end |
|
223 |
*} |
|
224 |
||
225 |
simproc_setup mult_log ("real (distribution X x) * log b (A * B)" | |
|
226 |
"real (distribution X x) * log b (A / B)") = {* K mult_log_simproc *} |
|
227 |
||
228 |
end |
|
229 |
||
39097 | 230 |
subsection "Kullback$-$Leibler divergence" |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
231 |
|
39097 | 232 |
text {* The Kullback$-$Leibler divergence is also known as relative entropy or |
233 |
Kullback$-$Leibler distance. *} |
|
234 |
||
235 |
definition |
|
236 |
"KL_divergence b M \<mu> \<nu> = |
|
237 |
measure_space.integral M \<mu> (\<lambda>x. log b (real (sigma_finite_measure.RN_deriv M \<nu> \<mu> x)))" |
|
38656 | 238 |
|
239 |
lemma (in finite_measure_space) KL_divergence_eq_finite: |
|
240 |
assumes v: "finite_measure_space M \<nu>" |
|
241 |
assumes ac: "\<forall>x\<in>space M. \<mu> {x} = 0 \<longrightarrow> \<nu> {x} = 0" |
|
242 |
shows "KL_divergence b M \<nu> \<mu> = (\<Sum>x\<in>space M. real (\<nu> {x}) * log b (real (\<nu> {x}) / real (\<mu> {x})))" (is "_ = ?sum") |
|
243 |
proof (simp add: KL_divergence_def finite_measure_space.integral_finite_singleton[OF v]) |
|
244 |
interpret v: finite_measure_space M \<nu> by fact |
|
245 |
have ms: "measure_space M \<nu>" by fact |
|
246 |
have ac: "absolutely_continuous \<nu>" |
|
247 |
using ac by (auto intro!: absolutely_continuousI[OF v]) |
|
248 |
show "(\<Sum>x \<in> space M. log b (real (RN_deriv \<nu> x)) * real (\<nu> {x})) = ?sum" |
|
249 |
using RN_deriv_finite_measure[OF ms ac] |
|
250 |
by (auto intro!: setsum_cong simp: field_simps real_of_pinfreal_mult[symmetric]) |
|
251 |
qed |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
252 |
|
38656 | 253 |
lemma (in finite_prob_space) KL_divergence_positive_finite: |
254 |
assumes v: "finite_prob_space M \<nu>" |
|
255 |
assumes ac: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0" |
|
256 |
and "1 < b" |
|
257 |
shows "0 \<le> KL_divergence b M \<nu> \<mu>" |
|
258 |
proof - |
|
259 |
interpret v: finite_prob_space M \<nu> using v . |
|
260 |
||
261 |
have *: "space M \<noteq> {}" using not_empty by simp |
|
262 |
||
263 |
hence "- (KL_divergence b M \<nu> \<mu>) \<le> log b (\<Sum>x\<in>space M. real (\<mu> {x}))" |
|
264 |
proof (subst KL_divergence_eq_finite) |
|
265 |
show "finite_measure_space M \<nu>" by fact |
|
266 |
||
267 |
show "\<forall>x\<in>space M. \<mu> {x} = 0 \<longrightarrow> \<nu> {x} = 0" using ac by auto |
|
268 |
show "- (\<Sum>x\<in>space M. real (\<nu> {x}) * log b (real (\<nu> {x}) / real (\<mu> {x}))) \<le> log b (\<Sum>x\<in>space M. real (\<mu> {x}))" |
|
269 |
proof (safe intro!: log_setsum_divide *) |
|
270 |
show "finite (space M)" using finite_space by simp |
|
271 |
show "1 < b" by fact |
|
272 |
show "(\<Sum>x\<in>space M. real (\<nu> {x})) = 1" using v.finite_sum_over_space_eq_1 by simp |
|
273 |
||
274 |
fix x assume x: "x \<in> space M" |
|
275 |
{ assume "0 < real (\<nu> {x})" |
|
276 |
hence "\<mu> {x} \<noteq> 0" using ac[OF x] by auto |
|
39097 | 277 |
thus "0 < prob {x}" using finite_measure[of "{x}"] sets_eq_Pow x |
38656 | 278 |
by (cases "\<mu> {x}") simp_all } |
279 |
qed auto |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
280 |
qed |
38656 | 281 |
thus "0 \<le> KL_divergence b M \<nu> \<mu>" using finite_sum_over_space_eq_1 by simp |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
282 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
283 |
|
39097 | 284 |
subsection {* Mutual Information *} |
285 |
||
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
286 |
definition (in prob_space) |
38656 | 287 |
"mutual_information b S T X Y = |
288 |
KL_divergence b (prod_measure_space S T) |
|
289 |
(joint_distribution X Y) |
|
290 |
(prod_measure S (distribution X) T (distribution Y))" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
291 |
|
36624 | 292 |
abbreviation (in finite_information_space) |
293 |
finite_mutual_information ("\<I>'(_ ; _')") where |
|
294 |
"\<I>(X ; Y) \<equiv> mutual_information b |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
295 |
\<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
296 |
\<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> X Y" |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
297 |
|
39092 | 298 |
lemma (in finite_information_space) mutual_information_generic_eq: |
299 |
assumes MX: "finite_measure_space MX (distribution X)" |
|
300 |
assumes MY: "finite_measure_space MY (distribution Y)" |
|
301 |
shows "mutual_information b MX MY X Y = (\<Sum> (x,y) \<in> space MX \<times> space MY. |
|
302 |
real (joint_distribution X Y {(x,y)}) * |
|
303 |
log b (real (joint_distribution X Y {(x,y)}) / |
|
304 |
(real (distribution X {x}) * real (distribution Y {y}))))" |
|
305 |
proof - |
|
306 |
let ?P = "prod_measure_space MX MY" |
|
307 |
let ?\<mu> = "prod_measure MX (distribution X) MY (distribution Y)" |
|
308 |
let ?\<nu> = "joint_distribution X Y" |
|
309 |
interpret X: finite_measure_space MX "distribution X" by fact |
|
310 |
moreover interpret Y: finite_measure_space MY "distribution Y" by fact |
|
311 |
have fms: "finite_measure_space MX (distribution X)" |
|
312 |
"finite_measure_space MY (distribution Y)" by fact+ |
|
313 |
have fms_P: "finite_measure_space ?P ?\<mu>" |
|
314 |
by (rule X.finite_measure_space_finite_prod_measure) fact |
|
315 |
then interpret P: finite_measure_space ?P ?\<mu> . |
|
316 |
have fms_P': "finite_measure_space ?P ?\<nu>" |
|
317 |
using finite_product_measure_space[of "space MX" "space MY"] |
|
318 |
X.finite_space Y.finite_space sigma_prod_sets_finite[OF X.finite_space Y.finite_space] |
|
319 |
X.sets_eq_Pow Y.sets_eq_Pow |
|
320 |
by (simp add: prod_measure_space_def sigma_def) |
|
321 |
then interpret P': finite_measure_space ?P ?\<nu> . |
|
322 |
{ fix x assume "x \<in> space ?P" |
|
323 |
hence in_MX: "{fst x} \<in> sets MX" "{snd x} \<in> sets MY" using X.sets_eq_Pow Y.sets_eq_Pow |
|
324 |
by (auto simp: prod_measure_space_def) |
|
325 |
assume "?\<mu> {x} = 0" |
|
326 |
with X.finite_prod_measure_times[OF fms(2), of "{fst x}" "{snd x}"] in_MX |
|
327 |
have "distribution X {fst x} = 0 \<or> distribution Y {snd x} = 0" |
|
328 |
by (simp add: prod_measure_space_def) |
|
329 |
hence "joint_distribution X Y {x} = 0" |
|
330 |
by (cases x) (auto simp: distribution_order) } |
|
331 |
note measure_0 = this |
|
332 |
show ?thesis |
|
333 |
unfolding Let_def mutual_information_def |
|
334 |
using measure_0 fms_P fms_P' MX MY P.absolutely_continuous_def |
|
335 |
by (subst P.KL_divergence_eq_finite) |
|
336 |
(auto simp add: prod_measure_space_def prod_measure_times_finite |
|
337 |
finite_prob_space_eq setsum_cartesian_product' real_of_pinfreal_mult[symmetric]) |
|
338 |
qed |
|
339 |
||
36624 | 340 |
lemma (in finite_information_space) |
38656 | 341 |
assumes MX: "finite_prob_space MX (distribution X)" |
342 |
assumes MY: "finite_prob_space MY (distribution Y)" |
|
36624 | 343 |
and X_space: "X ` space M \<subseteq> space MX" and Y_space: "Y ` space M \<subseteq> space MY" |
344 |
shows mutual_information_eq_generic: |
|
345 |
"mutual_information b MX MY X Y = (\<Sum> (x,y) \<in> space MX \<times> space MY. |
|
38656 | 346 |
real (joint_distribution X Y {(x,y)}) * |
347 |
log b (real (joint_distribution X Y {(x,y)}) / |
|
348 |
(real (distribution X {x}) * real (distribution Y {y}))))" |
|
36624 | 349 |
(is "?equality") |
350 |
and mutual_information_positive_generic: |
|
351 |
"0 \<le> mutual_information b MX MY X Y" (is "?positive") |
|
352 |
proof - |
|
38656 | 353 |
let ?P = "prod_measure_space MX MY" |
354 |
let ?\<mu> = "prod_measure MX (distribution X) MY (distribution Y)" |
|
355 |
let ?\<nu> = "joint_distribution X Y" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
356 |
|
38656 | 357 |
interpret X: finite_prob_space MX "distribution X" by fact |
358 |
moreover interpret Y: finite_prob_space MY "distribution Y" by fact |
|
359 |
have ms_X: "measure_space MX (distribution X)" |
|
360 |
and ms_Y: "measure_space MY (distribution Y)" |
|
361 |
and fms: "finite_measure_space MX (distribution X)" "finite_measure_space MY (distribution Y)" by fact+ |
|
362 |
have fms_P: "finite_measure_space ?P ?\<mu>" |
|
363 |
by (rule X.finite_measure_space_finite_prod_measure) fact |
|
364 |
then interpret P: finite_measure_space ?P ?\<mu> . |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
365 |
|
38656 | 366 |
have fms_P': "finite_measure_space ?P ?\<nu>" |
36624 | 367 |
using finite_product_measure_space[of "space MX" "space MY"] |
368 |
X.finite_space Y.finite_space sigma_prod_sets_finite[OF X.finite_space Y.finite_space] |
|
369 |
X.sets_eq_Pow Y.sets_eq_Pow |
|
38656 | 370 |
by (simp add: prod_measure_space_def sigma_def) |
371 |
then interpret P': finite_measure_space ?P ?\<nu> . |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
372 |
|
36624 | 373 |
{ fix x assume "x \<in> space ?P" |
38656 | 374 |
hence in_MX: "{fst x} \<in> sets MX" "{snd x} \<in> sets MY" using X.sets_eq_Pow Y.sets_eq_Pow |
36624 | 375 |
by (auto simp: prod_measure_space_def) |
376 |
||
38656 | 377 |
assume "?\<mu> {x} = 0" |
378 |
with X.finite_prod_measure_times[OF fms(2), of "{fst x}" "{snd x}"] in_MX |
|
36624 | 379 |
have "distribution X {fst x} = 0 \<or> distribution Y {snd x} = 0" |
380 |
by (simp add: prod_measure_space_def) |
|
381 |
||
382 |
hence "joint_distribution X Y {x} = 0" |
|
383 |
by (cases x) (auto simp: distribution_order) } |
|
384 |
note measure_0 = this |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
385 |
|
36624 | 386 |
show ?equality |
38656 | 387 |
unfolding Let_def mutual_information_def |
388 |
using measure_0 fms_P fms_P' MX MY P.absolutely_continuous_def |
|
389 |
by (subst P.KL_divergence_eq_finite) |
|
390 |
(auto simp add: prod_measure_space_def prod_measure_times_finite |
|
391 |
finite_prob_space_eq setsum_cartesian_product' real_of_pinfreal_mult[symmetric]) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
392 |
|
36624 | 393 |
show ?positive |
394 |
unfolding Let_def mutual_information_def using measure_0 b_gt_1 |
|
38656 | 395 |
proof (safe intro!: finite_prob_space.KL_divergence_positive_finite, simp_all) |
396 |
have "?\<mu> (space ?P) = 1" |
|
397 |
using X.top Y.top X.measure_space_1 Y.measure_space_1 fms |
|
398 |
by (simp add: prod_measure_space_def X.finite_prod_measure_times) |
|
399 |
with fms_P show "finite_prob_space ?P ?\<mu>" |
|
36624 | 400 |
by (simp add: finite_prob_space_eq) |
401 |
||
38656 | 402 |
from ms_X ms_Y X.top Y.top X.measure_space_1 Y.measure_space_1 Y.not_empty X_space Y_space |
403 |
have "?\<nu> (space ?P) = 1" unfolding measure_space_1[symmetric] |
|
404 |
by (auto intro!: arg_cong[where f="\<mu>"] |
|
405 |
simp add: prod_measure_space_def distribution_def vimage_Times comp_def) |
|
406 |
with fms_P' show "finite_prob_space ?P ?\<nu>" |
|
36624 | 407 |
by (simp add: finite_prob_space_eq) |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
408 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
409 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
410 |
|
36624 | 411 |
lemma (in finite_information_space) mutual_information_eq: |
412 |
"\<I>(X;Y) = (\<Sum> (x,y) \<in> X ` space M \<times> Y ` space M. |
|
38656 | 413 |
real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) * log b (real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) / |
414 |
(real (distribution X {x}) * real (distribution Y {y}))))" |
|
36624 | 415 |
by (subst mutual_information_eq_generic) (simp_all add: finite_prob_space_of_images) |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
416 |
|
39097 | 417 |
lemma (in finite_information_space) mutual_information_cong: |
418 |
assumes X: "\<And>x. x \<in> space M \<Longrightarrow> X x = X' x" |
|
419 |
assumes Y: "\<And>x. x \<in> space M \<Longrightarrow> Y x = Y' x" |
|
420 |
shows "\<I>(X ; Y) = \<I>(X' ; Y')" |
|
421 |
proof - |
|
422 |
have "X ` space M = X' ` space M" using X by (auto intro!: image_eqI) |
|
423 |
moreover have "Y ` space M = Y' ` space M" using Y by (auto intro!: image_eqI) |
|
424 |
ultimately show ?thesis |
|
425 |
unfolding mutual_information_eq |
|
426 |
using |
|
427 |
assms[THEN distribution_cong] |
|
428 |
joint_distribution_cong[OF assms] |
|
429 |
by (auto intro!: setsum_cong) |
|
430 |
qed |
|
431 |
||
36624 | 432 |
lemma (in finite_information_space) mutual_information_positive: "0 \<le> \<I>(X;Y)" |
433 |
by (subst mutual_information_positive_generic) (simp_all add: finite_prob_space_of_images) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
434 |
|
39097 | 435 |
subsection {* Entropy *} |
436 |
||
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
437 |
definition (in prob_space) |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
438 |
"entropy b s X = mutual_information b s s X X" |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
439 |
|
36624 | 440 |
abbreviation (in finite_information_space) |
441 |
finite_entropy ("\<H>'(_')") where |
|
442 |
"\<H>(X) \<equiv> entropy b \<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> X" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
443 |
|
39097 | 444 |
lemma (in finite_information_space) entropy_generic_eq: |
445 |
assumes MX: "finite_measure_space MX (distribution X)" |
|
446 |
shows "entropy b MX X = -(\<Sum> x \<in> space MX. real (distribution X {x}) * log b (real (distribution X {x})))" |
|
447 |
proof - |
|
448 |
let "?X x" = "real (distribution X {x})" |
|
449 |
let "?XX x y" = "real (joint_distribution X X {(x, y)})" |
|
450 |
interpret MX: finite_measure_space MX "distribution X" by fact |
|
451 |
{ fix x y |
|
452 |
have "(\<lambda>x. (X x, X x)) -` {(x, y)} = (if x = y then X -` {x} else {})" by auto |
|
453 |
then have "?XX x y * log b (?XX x y / (?X x * ?X y)) = |
|
454 |
(if x = y then - ?X y * log b (?X y) else 0)" |
|
455 |
unfolding distribution_def by (auto simp: mult_log_divide) } |
|
456 |
note remove_XX = this |
|
457 |
show ?thesis |
|
458 |
unfolding entropy_def mutual_information_generic_eq[OF MX MX] |
|
459 |
unfolding setsum_cartesian_product[symmetric] setsum_negf[symmetric] remove_XX |
|
460 |
by (auto simp: setsum_cases MX.finite_space) |
|
461 |
qed |
|
36624 | 462 |
|
463 |
lemma (in finite_information_space) entropy_eq: |
|
38656 | 464 |
"\<H>(X) = -(\<Sum> x \<in> X ` space M. real (distribution X {x}) * log b (real (distribution X {x})))" |
39097 | 465 |
by (simp add: finite_measure_space entropy_generic_eq) |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
466 |
|
36624 | 467 |
lemma (in finite_information_space) entropy_positive: "0 \<le> \<H>(X)" |
468 |
unfolding entropy_def using mutual_information_positive . |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
469 |
|
39097 | 470 |
lemma (in finite_information_space) entropy_certainty_eq_0: |
471 |
assumes "x \<in> X ` space M" and "distribution X {x} = 1" |
|
472 |
shows "\<H>(X) = 0" |
|
473 |
proof - |
|
474 |
interpret X: finite_prob_space "\<lparr> space = X ` space M, sets = Pow (X ` space M) \<rparr>" "distribution X" |
|
475 |
by (rule finite_prob_space_of_images) |
|
476 |
||
477 |
have "distribution X (X ` space M - {x}) = distribution X (X ` space M) - distribution X {x}" |
|
478 |
using X.measure_compl[of "{x}"] assms by auto |
|
479 |
also have "\<dots> = 0" using X.prob_space assms by auto |
|
480 |
finally have X0: "distribution X (X ` space M - {x}) = 0" by auto |
|
481 |
||
482 |
{ fix y assume asm: "y \<noteq> x" "y \<in> X ` space M" |
|
483 |
hence "{y} \<subseteq> X ` space M - {x}" by auto |
|
484 |
from X.measure_mono[OF this] X0 asm |
|
485 |
have "distribution X {y} = 0" by auto } |
|
486 |
||
487 |
hence fi: "\<And> y. y \<in> X ` space M \<Longrightarrow> real (distribution X {y}) = (if x = y then 1 else 0)" |
|
488 |
using assms by auto |
|
489 |
||
490 |
have y: "\<And>y. (if x = y then 1 else 0) * log b (if x = y then 1 else 0) = 0" by simp |
|
491 |
||
492 |
show ?thesis unfolding entropy_eq by (auto simp: y fi) |
|
493 |
qed |
|
494 |
||
495 |
lemma (in finite_information_space) entropy_le_card_not_0: |
|
496 |
"\<H>(X) \<le> log b (real (card (X ` space M \<inter> {x . distribution X {x} \<noteq> 0})))" |
|
497 |
proof - |
|
498 |
let "?d x" = "distribution X {x}" |
|
499 |
let "?p x" = "real (?d x)" |
|
500 |
have "\<H>(X) = (\<Sum>x\<in>X`space M. ?p x * log b (1 / ?p x))" |
|
501 |
by (auto intro!: setsum_cong simp: entropy_eq setsum_negf[symmetric]) |
|
502 |
also have "\<dots> \<le> log b (\<Sum>x\<in>X`space M. ?p x * (1 / ?p x))" |
|
503 |
apply (rule log_setsum') |
|
504 |
using not_empty b_gt_1 finite_space sum_over_space_real_distribution |
|
505 |
by auto |
|
506 |
also have "\<dots> = log b (\<Sum>x\<in>X`space M. if ?d x \<noteq> 0 then 1 else 0)" |
|
507 |
apply (rule arg_cong[where f="\<lambda>f. log b (\<Sum>x\<in>X`space M. f x)"]) |
|
508 |
using distribution_finite[of X] by (auto simp: expand_fun_eq real_of_pinfreal_eq_0) |
|
509 |
finally show ?thesis |
|
510 |
using finite_space by (auto simp: setsum_cases real_eq_of_nat) |
|
511 |
qed |
|
512 |
||
513 |
lemma (in finite_information_space) entropy_uniform_max: |
|
514 |
assumes "\<And>x y. \<lbrakk> x \<in> X ` space M ; y \<in> X ` space M \<rbrakk> \<Longrightarrow> distribution X {x} = distribution X {y}" |
|
515 |
shows "\<H>(X) = log b (real (card (X ` space M)))" |
|
516 |
proof - |
|
517 |
note uniform = |
|
518 |
finite_prob_space_of_images[of X, THEN finite_prob_space.uniform_prob, simplified] |
|
519 |
||
520 |
have card_gt0: "0 < card (X ` space M)" unfolding card_gt_0_iff |
|
521 |
using finite_space not_empty by auto |
|
522 |
||
523 |
{ fix x assume "x \<in> X ` space M" |
|
524 |
hence "real (distribution X {x}) = 1 / real (card (X ` space M))" |
|
525 |
proof (rule uniform) |
|
526 |
fix x y assume "x \<in> X`space M" "y \<in> X`space M" |
|
527 |
from assms[OF this] show "real (distribution X {x}) = real (distribution X {y})" by simp |
|
528 |
qed } |
|
529 |
thus ?thesis |
|
530 |
using not_empty finite_space b_gt_1 card_gt0 |
|
531 |
by (simp add: entropy_eq real_eq_of_nat[symmetric] log_divide) |
|
532 |
qed |
|
533 |
||
534 |
lemma (in finite_information_space) entropy_le_card: |
|
535 |
"\<H>(X) \<le> log b (real (card (X ` space M)))" |
|
536 |
proof cases |
|
537 |
assume "X ` space M \<inter> {x. distribution X {x} \<noteq> 0} = {}" |
|
538 |
then have "\<And>x. x\<in>X`space M \<Longrightarrow> distribution X {x} = 0" by auto |
|
539 |
moreover |
|
540 |
have "0 < card (X`space M)" |
|
541 |
using finite_space not_empty unfolding card_gt_0_iff by auto |
|
542 |
then have "log b 1 \<le> log b (real (card (X`space M)))" |
|
543 |
using b_gt_1 by (intro log_le) auto |
|
544 |
ultimately show ?thesis unfolding entropy_eq by simp |
|
545 |
next |
|
546 |
assume False: "X ` space M \<inter> {x. distribution X {x} \<noteq> 0} \<noteq> {}" |
|
547 |
have "card (X ` space M \<inter> {x. distribution X {x} \<noteq> 0}) \<le> card (X ` space M)" |
|
548 |
(is "?A \<le> ?B") using finite_space not_empty by (auto intro!: card_mono) |
|
549 |
note entropy_le_card_not_0 |
|
550 |
also have "log b (real ?A) \<le> log b (real ?B)" |
|
551 |
using b_gt_1 False finite_space not_empty `?A \<le> ?B` |
|
552 |
by (auto intro!: log_le simp: card_gt_0_iff) |
|
553 |
finally show ?thesis . |
|
554 |
qed |
|
555 |
||
556 |
lemma (in finite_information_space) entropy_commute: |
|
557 |
"\<H>(\<lambda>x. (X x, Y x)) = \<H>(\<lambda>x. (Y x, X x))" |
|
558 |
proof - |
|
559 |
have *: "(\<lambda>x. (Y x, X x))`space M = (\<lambda>(a,b). (b,a))`(\<lambda>x. (X x, Y x))`space M" |
|
560 |
by auto |
|
561 |
have inj: "\<And>X. inj_on (\<lambda>(a,b). (b,a)) X" |
|
562 |
by (auto intro!: inj_onI) |
|
563 |
show ?thesis |
|
564 |
unfolding entropy_eq unfolding * setsum_reindex[OF inj] |
|
565 |
by (simp add: joint_distribution_commute[of Y X] split_beta) |
|
566 |
qed |
|
567 |
||
568 |
lemma (in finite_information_space) entropy_eq_cartesian_sum: |
|
569 |
"\<H>(\<lambda>x. (X x, Y x)) = -(\<Sum>x\<in>X`space M. \<Sum>y\<in>Y`space M. |
|
570 |
real (joint_distribution X Y {(x,y)}) * |
|
571 |
log b (real (joint_distribution X Y {(x,y)})))" |
|
572 |
proof - |
|
573 |
{ fix x assume "x\<notin>(\<lambda>x. (X x, Y x))`space M" |
|
574 |
then have "(\<lambda>x. (X x, Y x)) -` {x} \<inter> space M = {}" by auto |
|
575 |
then have "joint_distribution X Y {x} = 0" |
|
576 |
unfolding distribution_def by auto } |
|
577 |
then show ?thesis using finite_space |
|
578 |
unfolding entropy_eq neg_equal_iff_equal setsum_cartesian_product |
|
579 |
by (auto intro!: setsum_mono_zero_cong_left) |
|
580 |
qed |
|
581 |
||
582 |
subsection {* Conditional Mutual Information *} |
|
583 |
||
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
584 |
definition (in prob_space) |
38656 | 585 |
"conditional_mutual_information b M1 M2 M3 X Y Z \<equiv> |
586 |
mutual_information b M1 (prod_measure_space M2 M3) X (\<lambda>x. (Y x, Z x)) - |
|
587 |
mutual_information b M1 M3 X Z" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
588 |
|
36624 | 589 |
abbreviation (in finite_information_space) |
590 |
finite_conditional_mutual_information ("\<I>'( _ ; _ | _ ')") where |
|
591 |
"\<I>(X ; Y | Z) \<equiv> conditional_mutual_information b |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
592 |
\<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
593 |
\<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
594 |
\<lparr> space = Z`space M, sets = Pow (Z`space M) \<rparr> |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
595 |
X Y Z" |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
596 |
|
39097 | 597 |
lemma (in finite_information_space) conditional_mutual_information_generic_eq: |
598 |
assumes MX: "finite_measure_space MX (distribution X)" |
|
599 |
assumes MY: "finite_measure_space MY (distribution Y)" |
|
600 |
assumes MZ: "finite_measure_space MZ (distribution Z)" |
|
601 |
shows "conditional_mutual_information b MX MY MZ X Y Z = |
|
602 |
(\<Sum>(x, y, z)\<in>space MX \<times> space MY \<times> space MZ. |
|
603 |
real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) * |
|
604 |
log b (real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) / |
|
605 |
(real (distribution X {x}) * real (joint_distribution Y Z {(y, z)})))) - |
|
606 |
(\<Sum>(x, y)\<in>space MX \<times> space MZ. |
|
607 |
real (joint_distribution X Z {(x, y)}) * |
|
608 |
log b (real (joint_distribution X Z {(x, y)}) / (real (distribution X {x}) * real (distribution Z {y}))))" |
|
609 |
using assms finite_measure_space_prod[OF MY MZ] |
|
610 |
unfolding conditional_mutual_information_def |
|
611 |
by (subst (1 2) mutual_information_generic_eq) |
|
612 |
(simp_all add: setsum_cartesian_product' finite_measure_space.finite_prod_measure_space) |
|
38656 | 613 |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
614 |
|
36624 | 615 |
lemma (in finite_information_space) conditional_mutual_information_eq: |
616 |
"\<I>(X ; Y | Z) = (\<Sum>(x, y, z) \<in> X ` space M \<times> Y ` space M \<times> Z ` space M. |
|
38656 | 617 |
real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) * |
618 |
log b (real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) / |
|
619 |
(real (joint_distribution X Z {(x, z)}) * real (joint_distribution Y Z {(y,z)} / distribution Z {z}))))" |
|
39097 | 620 |
by (subst conditional_mutual_information_generic_eq) |
38656 | 621 |
(auto simp add: prod_measure_space_def sigma_prod_sets_finite finite_space |
39097 | 622 |
finite_measure_space finite_product_prob_space_of_images sigma_def |
36624 | 623 |
setsum_cartesian_product' setsum_product setsum_subtractf setsum_addf |
38656 | 624 |
setsum_left_distrib[symmetric] setsum_real_distribution setsum_commute[where A="Y`space M"] |
625 |
real_of_pinfreal_mult[symmetric] |
|
36624 | 626 |
cong: setsum_cong) |
627 |
||
628 |
lemma (in finite_information_space) conditional_mutual_information_eq_mutual_information: |
|
629 |
"\<I>(X ; Y) = \<I>(X ; Y | (\<lambda>x. ()))" |
|
630 |
proof - |
|
631 |
have [simp]: "(\<lambda>x. ()) ` space M = {()}" using not_empty by auto |
|
632 |
||
633 |
show ?thesis |
|
634 |
unfolding conditional_mutual_information_eq mutual_information_eq |
|
635 |
by (simp add: setsum_cartesian_product' distribution_remove_const) |
|
636 |
qed |
|
637 |
||
638 |
lemma (in finite_information_space) conditional_mutual_information_positive: |
|
639 |
"0 \<le> \<I>(X ; Y | Z)" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
640 |
proof - |
38656 | 641 |
let "?dXYZ A" = "real (distribution (\<lambda>x. (X x, Y x, Z x)) A)" |
642 |
let "?dXZ A" = "real (joint_distribution X Z A)" |
|
643 |
let "?dYZ A" = "real (joint_distribution Y Z A)" |
|
644 |
let "?dX A" = "real (distribution X A)" |
|
645 |
let "?dZ A" = "real (distribution Z A)" |
|
36624 | 646 |
let ?M = "X ` space M \<times> Y ` space M \<times> Z ` space M" |
647 |
||
648 |
have split_beta: "\<And>f. split f = (\<lambda>x. f (fst x) (snd x))" by (simp add: expand_fun_eq) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
649 |
|
36624 | 650 |
have "- (\<Sum>(x, y, z) \<in> ?M. ?dXYZ {(x, y, z)} * |
651 |
log b (?dXYZ {(x, y, z)} / (?dXZ {(x, z)} * ?dYZ {(y,z)} / ?dZ {z}))) |
|
652 |
\<le> log b (\<Sum>(x, y, z) \<in> ?M. ?dXZ {(x, z)} * ?dYZ {(y,z)} / ?dZ {z})" |
|
653 |
unfolding split_beta |
|
654 |
proof (rule log_setsum_divide) |
|
655 |
show "?M \<noteq> {}" using not_empty by simp |
|
656 |
show "1 < b" using b_gt_1 . |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
657 |
|
36624 | 658 |
fix x assume "x \<in> ?M" |
38656 | 659 |
let ?x = "(fst x, fst (snd x), snd (snd x))" |
660 |
||
661 |
show "0 \<le> ?dXYZ {?x}" using real_pinfreal_nonneg . |
|
36624 | 662 |
show "0 \<le> ?dXZ {(fst x, snd (snd x))} * ?dYZ {(fst (snd x), snd (snd x))} / ?dZ {snd (snd x)}" |
38656 | 663 |
by (simp add: real_pinfreal_nonneg mult_nonneg_nonneg divide_nonneg_nonneg) |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
664 |
|
38656 | 665 |
assume *: "0 < ?dXYZ {?x}" |
36624 | 666 |
thus "0 < ?dXZ {(fst x, snd (snd x))} * ?dYZ {(fst (snd x), snd (snd x))} / ?dZ {snd (snd x)}" |
38656 | 667 |
apply (rule_tac divide_pos_pos mult_pos_pos)+ |
668 |
by (auto simp add: real_distribution_gt_0 intro: distribution_order(6) distribution_mono_gt_0) |
|
669 |
qed (simp_all add: setsum_cartesian_product' sum_over_space_real_distribution setsum_real_distribution finite_space) |
|
36624 | 670 |
also have "(\<Sum>(x, y, z) \<in> ?M. ?dXZ {(x, z)} * ?dYZ {(y,z)} / ?dZ {z}) = (\<Sum>z\<in>Z`space M. ?dZ {z})" |
671 |
apply (simp add: setsum_cartesian_product') |
|
672 |
apply (subst setsum_commute) |
|
673 |
apply (subst (2) setsum_commute) |
|
38656 | 674 |
by (auto simp: setsum_divide_distrib[symmetric] setsum_product[symmetric] setsum_real_distribution |
36624 | 675 |
intro!: setsum_cong) |
676 |
finally show ?thesis |
|
38656 | 677 |
unfolding conditional_mutual_information_eq sum_over_space_real_distribution |
678 |
by (simp add: real_of_pinfreal_mult[symmetric]) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
679 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
680 |
|
39097 | 681 |
subsection {* Conditional Entropy *} |
682 |
||
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
683 |
definition (in prob_space) |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
684 |
"conditional_entropy b S T X Y = conditional_mutual_information b S S T X X Y" |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
685 |
|
36624 | 686 |
abbreviation (in finite_information_space) |
687 |
finite_conditional_entropy ("\<H>'(_ | _')") where |
|
688 |
"\<H>(X | Y) \<equiv> conditional_entropy b |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
689 |
\<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
690 |
\<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> X Y" |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
691 |
|
36624 | 692 |
lemma (in finite_information_space) conditional_entropy_positive: |
693 |
"0 \<le> \<H>(X | Y)" unfolding conditional_entropy_def using conditional_mutual_information_positive . |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
694 |
|
39097 | 695 |
lemma (in finite_information_space) conditional_entropy_generic_eq: |
696 |
assumes MX: "finite_measure_space MX (distribution X)" |
|
697 |
assumes MY: "finite_measure_space MZ (distribution Z)" |
|
698 |
shows "conditional_entropy b MX MZ X Z = |
|
699 |
- (\<Sum>(x, z)\<in>space MX \<times> space MZ. |
|
700 |
real (joint_distribution X Z {(x, z)}) * |
|
701 |
log b (real (joint_distribution X Z {(x, z)}) / real (distribution Z {z})))" |
|
702 |
unfolding conditional_entropy_def using assms |
|
703 |
apply (simp add: conditional_mutual_information_generic_eq |
|
704 |
setsum_cartesian_product' setsum_commute[of _ "space MZ"] |
|
705 |
setsum_negf[symmetric] setsum_subtractf[symmetric]) |
|
706 |
proof (safe intro!: setsum_cong, simp) |
|
707 |
fix z x assume "z \<in> space MZ" "x \<in> space MX" |
|
708 |
let "?XXZ x'" = "real (joint_distribution X (\<lambda>x. (X x, Z x)) {(x, x', z)})" |
|
709 |
let "?XZ x'" = "real (joint_distribution X Z {(x', z)})" |
|
710 |
let "?X" = "real (distribution X {x})" |
|
711 |
interpret MX: finite_measure_space MX "distribution X" by fact |
|
712 |
have *: "\<And>A. A = {} \<Longrightarrow> prob A = 0" by simp |
|
713 |
have XXZ: "\<And>x'. ?XXZ x' = (if x' = x then ?XZ x else 0)" |
|
714 |
by (auto simp: distribution_def intro!: arg_cong[where f=prob] *) |
|
715 |
have "(\<Sum>x'\<in>space MX. ?XXZ x' * log b (?XXZ x') - (?XXZ x' * log b ?X + ?XXZ x' * log b (?XZ x'))) = |
|
716 |
(\<Sum>x'\<in>{x}. ?XZ x' * log b (?XZ x') - (?XZ x' * log b ?X + ?XZ x' * log b (?XZ x')))" |
|
717 |
using `x \<in> space MX` MX.finite_space |
|
718 |
by (safe intro!: setsum_mono_zero_cong_right) |
|
719 |
(auto split: split_if_asm simp: XXZ) |
|
720 |
then show "(\<Sum>x'\<in>space MX. ?XXZ x' * log b (?XXZ x') - (?XXZ x' * log b ?X + ?XXZ x' * log b (?XZ x'))) + |
|
721 |
?XZ x * log b ?X = 0" by simp |
|
722 |
qed |
|
723 |
||
36624 | 724 |
lemma (in finite_information_space) conditional_entropy_eq: |
725 |
"\<H>(X | Z) = |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
726 |
- (\<Sum>(x, z)\<in>X ` space M \<times> Z ` space M. |
38656 | 727 |
real (joint_distribution X Z {(x, z)}) * |
728 |
log b (real (joint_distribution X Z {(x, z)}) / real (distribution Z {z})))" |
|
39097 | 729 |
by (simp add: finite_measure_space conditional_entropy_generic_eq) |
730 |
||
731 |
lemma (in finite_information_space) conditional_entropy_eq_ce_with_hypothesis: |
|
732 |
"\<H>(X | Y) = |
|
733 |
-(\<Sum>y\<in>Y`space M. real (distribution Y {y}) * |
|
734 |
(\<Sum>x\<in>X`space M. real (joint_distribution X Y {(x,y)}) / real (distribution Y {(y)}) * |
|
735 |
log b (real (joint_distribution X Y {(x,y)}) / real (distribution Y {(y)}))))" |
|
736 |
unfolding conditional_entropy_eq neg_equal_iff_equal |
|
737 |
apply (simp add: setsum_commute[of _ "Y`space M"] setsum_cartesian_product' setsum_divide_distrib[symmetric]) |
|
738 |
apply (safe intro!: setsum_cong) |
|
739 |
using real_distribution_order'[of Y _ X _] |
|
740 |
by (auto simp add: setsum_subtractf[of _ _ "X`space M"]) |
|
741 |
||
742 |
lemma (in finite_information_space) conditional_entropy_eq_cartesian_sum: |
|
743 |
"\<H>(X | Y) = -(\<Sum>x\<in>X`space M. \<Sum>y\<in>Y`space M. |
|
744 |
real (joint_distribution X Y {(x,y)}) * |
|
745 |
log b (real (joint_distribution X Y {(x,y)}) / real (distribution Y {y})))" |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
746 |
proof - |
39097 | 747 |
{ fix x assume "x\<notin>(\<lambda>x. (X x, Y x))`space M" |
748 |
then have "(\<lambda>x. (X x, Y x)) -` {x} \<inter> space M = {}" by auto |
|
749 |
then have "joint_distribution X Y {x} = 0" |
|
750 |
unfolding distribution_def by auto } |
|
751 |
then show ?thesis using finite_space |
|
752 |
unfolding conditional_entropy_eq neg_equal_iff_equal setsum_cartesian_product |
|
753 |
by (auto intro!: setsum_mono_zero_cong_left) |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
754 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
755 |
|
39097 | 756 |
subsection {* Equalities *} |
757 |
||
36624 | 758 |
lemma (in finite_information_space) mutual_information_eq_entropy_conditional_entropy: |
759 |
"\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" |
|
760 |
unfolding mutual_information_eq entropy_eq conditional_entropy_eq |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
761 |
using finite_space |
36624 | 762 |
by (auto simp add: setsum_addf setsum_subtractf setsum_cartesian_product' |
38656 | 763 |
setsum_left_distrib[symmetric] setsum_addf setsum_real_distribution) |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
764 |
|
36624 | 765 |
lemma (in finite_information_space) conditional_entropy_less_eq_entropy: |
766 |
"\<H>(X | Z) \<le> \<H>(X)" |
|
767 |
proof - |
|
768 |
have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy . |
|
769 |
with mutual_information_positive[of X Z] entropy_positive[of X] |
|
770 |
show ?thesis by auto |
|
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
771 |
qed |
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
772 |
|
39097 | 773 |
lemma (in finite_information_space) entropy_chain_rule: |
774 |
"\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)" |
|
775 |
unfolding entropy_eq[of X] entropy_eq_cartesian_sum conditional_entropy_eq_cartesian_sum |
|
776 |
unfolding setsum_commute[of _ "X`space M"] setsum_negf[symmetric] setsum_addf[symmetric] |
|
777 |
by (rule setsum_cong) |
|
778 |
(simp_all add: setsum_negf setsum_addf setsum_subtractf setsum_real_distribution |
|
779 |
setsum_left_distrib[symmetric] joint_distribution_commute[of X Y]) |
|
38656 | 780 |
|
39097 | 781 |
section {* Partitioning *} |
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
782 |
|
36624 | 783 |
definition "subvimage A f g \<longleftrightarrow> (\<forall>x \<in> A. f -` {f x} \<inter> A \<subseteq> g -` {g x} \<inter> A)" |
784 |
||
785 |
lemma subvimageI: |
|
786 |
assumes "\<And>x y. \<lbrakk> x \<in> A ; y \<in> A ; f x = f y \<rbrakk> \<Longrightarrow> g x = g y" |
|
787 |
shows "subvimage A f g" |
|
788 |
using assms unfolding subvimage_def by blast |
|
789 |
||
790 |
lemma subvimageE[consumes 1]: |
|
791 |
assumes "subvimage A f g" |
|
792 |
obtains "\<And>x y. \<lbrakk> x \<in> A ; y \<in> A ; f x = f y \<rbrakk> \<Longrightarrow> g x = g y" |
|
793 |
using assms unfolding subvimage_def by blast |
|
794 |
||
795 |
lemma subvimageD: |
|
796 |
"\<lbrakk> subvimage A f g ; x \<in> A ; y \<in> A ; f x = f y \<rbrakk> \<Longrightarrow> g x = g y" |
|
797 |
using assms unfolding subvimage_def by blast |
|
798 |
||
799 |
lemma subvimage_subset: |
|
800 |
"\<lbrakk> subvimage B f g ; A \<subseteq> B \<rbrakk> \<Longrightarrow> subvimage A f g" |
|
801 |
unfolding subvimage_def by auto |
|
802 |
||
803 |
lemma subvimage_idem[intro]: "subvimage A g g" |
|
804 |
by (safe intro!: subvimageI) |
|
805 |
||
806 |
lemma subvimage_comp_finer[intro]: |
|
807 |
assumes svi: "subvimage A g h" |
|
808 |
shows "subvimage A g (f \<circ> h)" |
|
809 |
proof (rule subvimageI, simp) |
|
810 |
fix x y assume "x \<in> A" "y \<in> A" "g x = g y" |
|
811 |
from svi[THEN subvimageD, OF this] |
|
812 |
show "f (h x) = f (h y)" by simp |
|
813 |
qed |
|
814 |
||
815 |
lemma subvimage_comp_gran: |
|
816 |
assumes svi: "subvimage A g h" |
|
817 |
assumes inj: "inj_on f (g ` A)" |
|
818 |
shows "subvimage A (f \<circ> g) h" |
|
819 |
by (rule subvimageI) (auto intro!: subvimageD[OF svi] simp: inj_on_iff[OF inj]) |
|
820 |
||
821 |
lemma subvimage_comp: |
|
822 |
assumes svi: "subvimage (f ` A) g h" |
|
823 |
shows "subvimage A (g \<circ> f) (h \<circ> f)" |
|
824 |
by (rule subvimageI) (auto intro!: svi[THEN subvimageD]) |
|
825 |
||
826 |
lemma subvimage_trans: |
|
827 |
assumes fg: "subvimage A f g" |
|
828 |
assumes gh: "subvimage A g h" |
|
829 |
shows "subvimage A f h" |
|
830 |
by (rule subvimageI) (auto intro!: fg[THEN subvimageD] gh[THEN subvimageD]) |
|
831 |
||
832 |
lemma subvimage_translator: |
|
833 |
assumes svi: "subvimage A f g" |
|
834 |
shows "\<exists>h. \<forall>x \<in> A. h (f x) = g x" |
|
835 |
proof (safe intro!: exI[of _ "\<lambda>x. (THE z. z \<in> (g ` (f -` {x} \<inter> A)))"]) |
|
836 |
fix x assume "x \<in> A" |
|
837 |
show "(THE x'. x' \<in> (g ` (f -` {f x} \<inter> A))) = g x" |
|
838 |
by (rule theI2[of _ "g x"]) |
|
839 |
(insert `x \<in> A`, auto intro!: svi[THEN subvimageD]) |
|
840 |
qed |
|
841 |
||
842 |
lemma subvimage_translator_image: |
|
843 |
assumes svi: "subvimage A f g" |
|
844 |
shows "\<exists>h. h ` f ` A = g ` A" |
|
845 |
proof - |
|
846 |
from subvimage_translator[OF svi] |
|
847 |
obtain h where "\<And>x. x \<in> A \<Longrightarrow> h (f x) = g x" by auto |
|
848 |
thus ?thesis |
|
849 |
by (auto intro!: exI[of _ h] |
|
850 |
simp: image_compose[symmetric] comp_def cong: image_cong) |
|
851 |
qed |
|
852 |
||
853 |
lemma subvimage_finite: |
|
854 |
assumes svi: "subvimage A f g" and fin: "finite (f`A)" |
|
855 |
shows "finite (g`A)" |
|
856 |
proof - |
|
857 |
from subvimage_translator_image[OF svi] |
|
858 |
obtain h where "g`A = h`f`A" by fastsimp |
|
859 |
with fin show "finite (g`A)" by simp |
|
860 |
qed |
|
861 |
||
862 |
lemma subvimage_disj: |
|
863 |
assumes svi: "subvimage A f g" |
|
864 |
shows "f -` {x} \<inter> A \<subseteq> g -` {y} \<inter> A \<or> |
|
865 |
f -` {x} \<inter> g -` {y} \<inter> A = {}" (is "?sub \<or> ?dist") |
|
866 |
proof (rule disjCI) |
|
867 |
assume "\<not> ?dist" |
|
868 |
then obtain z where "z \<in> A" and "x = f z" and "y = g z" by auto |
|
869 |
thus "?sub" using svi unfolding subvimage_def by auto |
|
870 |
qed |
|
871 |
||
872 |
lemma setsum_image_split: |
|
873 |
assumes svi: "subvimage A f g" and fin: "finite (f ` A)" |
|
874 |
shows "(\<Sum>x\<in>f`A. h x) = (\<Sum>y\<in>g`A. \<Sum>x\<in>f`(g -` {y} \<inter> A). h x)" |
|
875 |
(is "?lhs = ?rhs") |
|
876 |
proof - |
|
877 |
have "f ` A = |
|
878 |
snd ` (SIGMA x : g ` A. f ` (g -` {x} \<inter> A))" |
|
879 |
(is "_ = snd ` ?SIGMA") |
|
880 |
unfolding image_split_eq_Sigma[symmetric] |
|
881 |
by (simp add: image_compose[symmetric] comp_def) |
|
882 |
moreover |
|
883 |
have snd_inj: "inj_on snd ?SIGMA" |
|
884 |
unfolding image_split_eq_Sigma[symmetric] |
|
885 |
by (auto intro!: inj_onI subvimageD[OF svi]) |
|
886 |
ultimately |
|
887 |
have "(\<Sum>x\<in>f`A. h x) = (\<Sum>(x,y)\<in>?SIGMA. h y)" |
|
888 |
by (auto simp: setsum_reindex intro: setsum_cong) |
|
889 |
also have "... = ?rhs" |
|
890 |
using subvimage_finite[OF svi fin] fin |
|
891 |
apply (subst setsum_Sigma[symmetric]) |
|
892 |
by (auto intro!: finite_subset[of _ "f`A"]) |
|
893 |
finally show ?thesis . |
|
894 |
qed |
|
895 |
||
896 |
lemma (in finite_information_space) entropy_partition: |
|
897 |
assumes svi: "subvimage (space M) X P" |
|
898 |
shows "\<H>(X) = \<H>(P) + \<H>(X|P)" |
|
899 |
proof - |
|
38656 | 900 |
have "(\<Sum>x\<in>X ` space M. real (distribution X {x}) * log b (real (distribution X {x}))) = |
36624 | 901 |
(\<Sum>y\<in>P `space M. \<Sum>x\<in>X ` space M. |
38656 | 902 |
real (joint_distribution X P {(x, y)}) * log b (real (joint_distribution X P {(x, y)})))" |
36624 | 903 |
proof (subst setsum_image_split[OF svi], |
904 |
safe intro!: finite_imageI finite_space setsum_mono_zero_cong_left imageI) |
|
905 |
fix p x assume in_space: "p \<in> space M" "x \<in> space M" |
|
38656 | 906 |
assume "real (joint_distribution X P {(X x, P p)}) * log b (real (joint_distribution X P {(X x, P p)})) \<noteq> 0" |
36624 | 907 |
hence "(\<lambda>x. (X x, P x)) -` {(X x, P p)} \<inter> space M \<noteq> {}" by (auto simp: distribution_def) |
908 |
with svi[unfolded subvimage_def, rule_format, OF `x \<in> space M`] |
|
909 |
show "x \<in> P -` {P p}" by auto |
|
910 |
next |
|
911 |
fix p x assume in_space: "p \<in> space M" "x \<in> space M" |
|
912 |
assume "P x = P p" |
|
913 |
from this[symmetric] svi[unfolded subvimage_def, rule_format, OF `x \<in> space M`] |
|
914 |
have "X -` {X x} \<inter> space M \<subseteq> P -` {P p} \<inter> space M" |
|
915 |
by auto |
|
916 |
hence "(\<lambda>x. (X x, P x)) -` {(X x, P p)} \<inter> space M = X -` {X x} \<inter> space M" |
|
917 |
by auto |
|
38656 | 918 |
thus "real (distribution X {X x}) * log b (real (distribution X {X x})) = |
919 |
real (joint_distribution X P {(X x, P p)}) * |
|
920 |
log b (real (joint_distribution X P {(X x, P p)}))" |
|
36624 | 921 |
by (auto simp: distribution_def) |
922 |
qed |
|
923 |
thus ?thesis |
|
924 |
unfolding entropy_eq conditional_entropy_eq |
|
38656 | 925 |
by (simp add: setsum_cartesian_product' setsum_subtractf setsum_real_distribution |
36624 | 926 |
setsum_left_distrib[symmetric] setsum_commute[where B="P`space M"]) |
927 |
qed |
|
928 |
||
929 |
corollary (in finite_information_space) entropy_data_processing: |
|
930 |
"\<H>(f \<circ> X) \<le> \<H>(X)" |
|
931 |
by (subst (2) entropy_partition[of _ "f \<circ> X"]) (auto intro: conditional_entropy_positive) |
|
932 |
||
933 |
corollary (in finite_information_space) entropy_of_inj: |
|
934 |
assumes "inj_on f (X`space M)" |
|
935 |
shows "\<H>(f \<circ> X) = \<H>(X)" |
|
936 |
proof (rule antisym) |
|
937 |
show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing . |
|
938 |
next |
|
939 |
have "\<H>(X) = \<H>(the_inv_into (X`space M) f \<circ> (f \<circ> X))" |
|
940 |
by (auto intro!: mutual_information_cong simp: entropy_def the_inv_into_f_f[OF assms]) |
|
941 |
also have "... \<le> \<H>(f \<circ> X)" |
|
942 |
using entropy_data_processing . |
|
943 |
finally show "\<H>(X) \<le> \<H>(f \<circ> X)" . |
|
944 |
qed |
|
945 |
||
36080
0d9affa4e73c
Added Information theory and Example: dining cryptographers
hoelzl
parents:
diff
changeset
|
946 |
end |