1 theory Information |
1 theory Information |
2 imports Probability_Space Product_Measure Convex Radon_Nikodym |
2 imports Probability_Space Product_Measure Convex Radon_Nikodym |
3 begin |
3 begin |
|
4 |
|
5 lemma log_le: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> log a x \<le> log a y" |
|
6 by (subst log_le_cancel_iff) auto |
|
7 |
|
8 lemma log_less: "1 < a \<Longrightarrow> 0 < x \<Longrightarrow> x < y \<Longrightarrow> log a x < log a y" |
|
9 by (subst log_less_cancel_iff) auto |
|
10 |
|
11 lemma setsum_cartesian_product': |
|
12 "(\<Sum>x\<in>A \<times> B. f x) = (\<Sum>x\<in>A. setsum (\<lambda>y. f (x, y)) B)" |
|
13 unfolding setsum_cartesian_product by simp |
4 |
14 |
5 lemma real_of_pinfreal_inverse[simp]: |
15 lemma real_of_pinfreal_inverse[simp]: |
6 fixes X :: pinfreal |
16 fixes X :: pinfreal |
7 shows "real (inverse X) = 1 / real X" |
17 shows "real (inverse X) = 1 / real X" |
8 by (cases X) (auto simp: inverse_eq_divide) |
18 by (cases X) (auto simp: inverse_eq_divide) |
|
19 |
|
20 lemma (in finite_prob_space) finite_product_prob_space_of_images: |
|
21 "finite_prob_space \<lparr> space = X ` space M \<times> Y ` space M, sets = Pow (X ` space M \<times> Y ` space M)\<rparr> |
|
22 (joint_distribution X Y)" |
|
23 (is "finite_prob_space ?S _") |
|
24 proof (simp add: finite_prob_space_eq finite_product_measure_space_of_images) |
|
25 have "X -` X ` space M \<inter> Y -` Y ` space M \<inter> space M = space M" by auto |
|
26 thus "joint_distribution X Y (X ` space M \<times> Y ` space M) = 1" |
|
27 by (simp add: distribution_def prob_space vimage_Times comp_def measure_space_1) |
|
28 qed |
|
29 |
|
30 lemma (in finite_prob_space) finite_measure_space_prod: |
|
31 assumes X: "finite_measure_space MX (distribution X)" |
|
32 assumes Y: "finite_measure_space MY (distribution Y)" |
|
33 shows "finite_measure_space (prod_measure_space MX MY) (joint_distribution X Y)" |
|
34 (is "finite_measure_space ?M ?D") |
|
35 proof (intro finite_measure_spaceI) |
|
36 interpret X: finite_measure_space MX "distribution X" by fact |
|
37 interpret Y: finite_measure_space MY "distribution Y" by fact |
|
38 note finite_measure_space.finite_prod_measure_space[OF X Y, simp] |
|
39 show "finite (space ?M)" using X.finite_space Y.finite_space by auto |
|
40 show "joint_distribution X Y {} = 0" by simp |
|
41 show "sets ?M = Pow (space ?M)" by simp |
|
42 { fix x show "?D (space ?M) \<noteq> \<omega>" by (rule distribution_finite) } |
|
43 { fix A B assume "A \<subseteq> space ?M" "B \<subseteq> space ?M" "A \<inter> B = {}" |
|
44 have *: "(\<lambda>t. (X t, Y t)) -` (A \<union> B) \<inter> space M = |
|
45 (\<lambda>t. (X t, Y t)) -` A \<inter> space M \<union> (\<lambda>t. (X t, Y t)) -` B \<inter> space M" |
|
46 by auto |
|
47 show "?D (A \<union> B) = ?D A + ?D B" unfolding distribution_def * |
|
48 apply (rule measure_additive[symmetric]) |
|
49 using `A \<inter> B = {}` by (auto simp: sets_eq_Pow) } |
|
50 qed |
9 |
51 |
10 section "Convex theory" |
52 section "Convex theory" |
11 |
53 |
12 lemma log_setsum: |
54 lemma log_setsum: |
13 assumes "finite s" "s \<noteq> {}" |
55 assumes "finite s" "s \<noteq> {}" |
103 using `finite S` pos by (auto intro!: setsum_mono2) |
145 using `finite S` pos by (auto intro!: setsum_mono2) |
104 qed |
146 qed |
105 finally show ?thesis . |
147 finally show ?thesis . |
106 qed |
148 qed |
107 |
149 |
108 lemma (in finite_prob_space) sum_over_space_distrib: |
150 lemma split_pairs: |
109 "(\<Sum>x\<in>X`space M. distribution X {x}) = 1" |
151 shows |
110 unfolding distribution_def measure_space_1[symmetric] using finite_space |
152 "((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and |
111 by (subst measure_finitely_additive'') |
153 "(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto |
112 (auto simp add: disjoint_family_on_def sets_eq_Pow intro!: arg_cong[where f=\<mu>]) |
|
113 |
|
114 lemma (in finite_prob_space) sum_over_space_real_distribution: |
|
115 "(\<Sum>x\<in>X`space M. real (distribution X {x})) = 1" |
|
116 unfolding distribution_def prob_space[symmetric] using finite_space |
|
117 by (subst real_finite_measure_finite_Union[symmetric]) |
|
118 (auto simp add: disjoint_family_on_def sets_eq_Pow intro!: arg_cong[where f=prob]) |
|
119 |
154 |
120 section "Information theory" |
155 section "Information theory" |
121 |
|
122 definition |
|
123 "KL_divergence b M \<mu> \<nu> = |
|
124 measure_space.integral M \<mu> (\<lambda>x. log b (real (sigma_finite_measure.RN_deriv M \<nu> \<mu> x)))" |
|
125 |
156 |
126 locale finite_information_space = finite_prob_space + |
157 locale finite_information_space = finite_prob_space + |
127 fixes b :: real assumes b_gt_1: "1 < b" |
158 fixes b :: real assumes b_gt_1: "1 < b" |
128 |
159 |
129 lemma (in finite_prob_space) distribution_mono: |
|
130 assumes "\<And>t. \<lbrakk> t \<in> space M ; X t \<in> x \<rbrakk> \<Longrightarrow> Y t \<in> y" |
|
131 shows "distribution X x \<le> distribution Y y" |
|
132 unfolding distribution_def |
|
133 using assms by (auto simp: sets_eq_Pow intro!: measure_mono) |
|
134 |
|
135 lemma (in prob_space) distribution_remove_const: |
|
136 shows "joint_distribution X (\<lambda>x. ()) {(x, ())} = distribution X {x}" |
|
137 and "joint_distribution (\<lambda>x. ()) X {((), x)} = distribution X {x}" |
|
138 and "joint_distribution X (\<lambda>x. (Y x, ())) {(x, y, ())} = joint_distribution X Y {(x, y)}" |
|
139 and "joint_distribution X (\<lambda>x. ((), Y x)) {(x, (), y)} = joint_distribution X Y {(x, y)}" |
|
140 and "distribution (\<lambda>x. ()) {()} = 1" |
|
141 unfolding measure_space_1[symmetric] |
|
142 by (auto intro!: arg_cong[where f="\<mu>"] simp: distribution_def) |
|
143 |
|
144 context finite_information_space |
160 context finite_information_space |
145 begin |
161 begin |
146 |
|
147 lemma distribution_mono_gt_0: |
|
148 assumes gt_0: "0 < distribution X x" |
|
149 assumes *: "\<And>t. \<lbrakk> t \<in> space M ; X t \<in> x \<rbrakk> \<Longrightarrow> Y t \<in> y" |
|
150 shows "0 < distribution Y y" |
|
151 by (rule less_le_trans[OF gt_0 distribution_mono]) (rule *) |
|
152 |
162 |
153 lemma |
163 lemma |
154 assumes "0 \<le> A" and pos: "0 < A \<Longrightarrow> 0 < B" "0 < A \<Longrightarrow> 0 < C" |
164 assumes "0 \<le> A" and pos: "0 < A \<Longrightarrow> 0 < B" "0 < A \<Longrightarrow> 0 < C" |
155 shows mult_log_mult: "A * log b (B * C) = A * log b B + A * log b C" (is "?mult") |
165 shows mult_log_mult: "A * log b (B * C) = A * log b B + A * log b C" (is "?mult") |
156 and mult_log_divide: "A * log b (B / C) = A * log b B - A * log b C" (is "?div") |
166 and mult_log_divide: "A * log b (B / C) = A * log b B - A * log b C" (is "?div") |
162 with pos[OF this] show "?mult \<and> ?div" using b_gt_1 |
172 with pos[OF this] show "?mult \<and> ?div" using b_gt_1 |
163 by (auto simp: log_divide log_mult field_simps) |
173 by (auto simp: log_divide log_mult field_simps) |
164 qed simp |
174 qed simp |
165 thus ?mult and ?div by auto |
175 thus ?mult and ?div by auto |
166 qed |
176 qed |
167 |
|
168 lemma split_pairs: |
|
169 shows |
|
170 "((A, B) = X) \<longleftrightarrow> (fst X = A \<and> snd X = B)" and |
|
171 "(X = (A, B)) \<longleftrightarrow> (fst X = A \<and> snd X = B)" by auto |
|
172 |
|
173 lemma (in finite_information_space) distribution_finite: |
|
174 "distribution X A \<noteq> \<omega>" |
|
175 using measure_finite[of "X -` A \<inter> space M"] |
|
176 unfolding distribution_def sets_eq_Pow by auto |
|
177 |
|
178 lemma (in finite_information_space) real_distribution_gt_0[simp]: |
|
179 "0 < real (distribution Y y) \<longleftrightarrow> 0 < distribution Y y" |
|
180 using assms by (auto intro!: real_pinfreal_pos distribution_finite) |
|
181 |
|
182 lemma real_distribution_mult_pos_pos: |
|
183 assumes "0 < distribution Y y" |
|
184 and "0 < distribution X x" |
|
185 shows "0 < real (distribution Y y * distribution X x)" |
|
186 unfolding real_of_pinfreal_mult[symmetric] |
|
187 using assms by (auto intro!: mult_pos_pos) |
|
188 |
|
189 lemma real_distribution_divide_pos_pos: |
|
190 assumes "0 < distribution Y y" |
|
191 and "0 < distribution X x" |
|
192 shows "0 < real (distribution Y y / distribution X x)" |
|
193 unfolding divide_pinfreal_def real_of_pinfreal_mult[symmetric] |
|
194 using assms distribution_finite[of X x] by (cases "distribution X x") (auto intro!: mult_pos_pos) |
|
195 |
|
196 lemma real_distribution_mult_inverse_pos_pos: |
|
197 assumes "0 < distribution Y y" |
|
198 and "0 < distribution X x" |
|
199 shows "0 < real (distribution Y y * inverse (distribution X x))" |
|
200 unfolding divide_pinfreal_def real_of_pinfreal_mult[symmetric] |
|
201 using assms distribution_finite[of X x] by (cases "distribution X x") (auto intro!: mult_pos_pos) |
|
202 |
177 |
203 ML {* |
178 ML {* |
204 |
179 |
205 (* tactic to solve equations of the form @{term "W * log b (X / (Y * Z)) = W * log b X - W * log b (Y * Z)"} |
180 (* tactic to solve equations of the form @{term "W * log b (X / (Y * Z)) = W * log b X - W * log b (Y * Z)"} |
206 where @{term W} is a joint distribution of @{term X}, @{term Y}, and @{term Z}. *) |
181 where @{term W} is a joint distribution of @{term X}, @{term Y}, and @{term Z}. *) |
250 simproc_setup mult_log ("real (distribution X x) * log b (A * B)" | |
225 simproc_setup mult_log ("real (distribution X x) * log b (A * B)" | |
251 "real (distribution X x) * log b (A / B)") = {* K mult_log_simproc *} |
226 "real (distribution X x) * log b (A / B)") = {* K mult_log_simproc *} |
252 |
227 |
253 end |
228 end |
254 |
229 |
255 lemma (in finite_measure_space) absolutely_continuousI: |
230 subsection "Kullback$-$Leibler divergence" |
256 assumes "finite_measure_space M \<nu>" |
231 |
257 assumes v: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0" |
232 text {* The Kullback$-$Leibler divergence is also known as relative entropy or |
258 shows "absolutely_continuous \<nu>" |
233 Kullback$-$Leibler distance. *} |
259 proof (unfold absolutely_continuous_def sets_eq_Pow, safe) |
234 |
260 fix N assume "\<mu> N = 0" "N \<subseteq> space M" |
235 definition |
261 |
236 "KL_divergence b M \<mu> \<nu> = |
262 interpret v: finite_measure_space M \<nu> by fact |
237 measure_space.integral M \<mu> (\<lambda>x. log b (real (sigma_finite_measure.RN_deriv M \<nu> \<mu> x)))" |
263 |
|
264 have "\<nu> N = \<nu> (\<Union>x\<in>N. {x})" by simp |
|
265 also have "\<dots> = (\<Sum>x\<in>N. \<nu> {x})" |
|
266 proof (rule v.measure_finitely_additive''[symmetric]) |
|
267 show "finite N" using `N \<subseteq> space M` finite_space by (auto intro: finite_subset) |
|
268 show "disjoint_family_on (\<lambda>i. {i}) N" unfolding disjoint_family_on_def by auto |
|
269 fix x assume "x \<in> N" thus "{x} \<in> sets M" using `N \<subseteq> space M` sets_eq_Pow by auto |
|
270 qed |
|
271 also have "\<dots> = 0" |
|
272 proof (safe intro!: setsum_0') |
|
273 fix x assume "x \<in> N" |
|
274 hence "\<mu> {x} \<le> \<mu> N" using sets_eq_Pow `N \<subseteq> space M` by (auto intro!: measure_mono) |
|
275 hence "\<mu> {x} = 0" using `\<mu> N = 0` by simp |
|
276 thus "\<nu> {x} = 0" using v[of x] `x \<in> N` `N \<subseteq> space M` by auto |
|
277 qed |
|
278 finally show "\<nu> N = 0" . |
|
279 qed |
|
280 |
238 |
281 lemma (in finite_measure_space) KL_divergence_eq_finite: |
239 lemma (in finite_measure_space) KL_divergence_eq_finite: |
282 assumes v: "finite_measure_space M \<nu>" |
240 assumes v: "finite_measure_space M \<nu>" |
283 assumes ac: "\<forall>x\<in>space M. \<mu> {x} = 0 \<longrightarrow> \<nu> {x} = 0" |
241 assumes ac: "\<forall>x\<in>space M. \<mu> {x} = 0 \<longrightarrow> \<nu> {x} = 0" |
284 shows "KL_divergence b M \<nu> \<mu> = (\<Sum>x\<in>space M. real (\<nu> {x}) * log b (real (\<nu> {x}) / real (\<mu> {x})))" (is "_ = ?sum") |
242 shows "KL_divergence b M \<nu> \<mu> = (\<Sum>x\<in>space M. real (\<nu> {x}) * log b (real (\<nu> {x}) / real (\<mu> {x})))" (is "_ = ?sum") |
285 proof (simp add: KL_divergence_def finite_measure_space.integral_finite_singleton[OF v]) |
243 proof (simp add: KL_divergence_def finite_measure_space.integral_finite_singleton[OF v]) |
286 interpret v: finite_measure_space M \<nu> by fact |
244 interpret v: finite_measure_space M \<nu> by fact |
287 have ms: "measure_space M \<nu>" by fact |
245 have ms: "measure_space M \<nu>" by fact |
288 |
|
289 have ac: "absolutely_continuous \<nu>" |
246 have ac: "absolutely_continuous \<nu>" |
290 using ac by (auto intro!: absolutely_continuousI[OF v]) |
247 using ac by (auto intro!: absolutely_continuousI[OF v]) |
291 |
|
292 show "(\<Sum>x \<in> space M. log b (real (RN_deriv \<nu> x)) * real (\<nu> {x})) = ?sum" |
248 show "(\<Sum>x \<in> space M. log b (real (RN_deriv \<nu> x)) * real (\<nu> {x})) = ?sum" |
293 using RN_deriv_finite_measure[OF ms ac] |
249 using RN_deriv_finite_measure[OF ms ac] |
294 by (auto intro!: setsum_cong simp: field_simps real_of_pinfreal_mult[symmetric]) |
250 by (auto intro!: setsum_cong simp: field_simps real_of_pinfreal_mult[symmetric]) |
295 qed |
251 qed |
296 |
|
297 lemma (in finite_prob_space) finite_sum_over_space_eq_1: |
|
298 "(\<Sum>x\<in>space M. real (\<mu> {x})) = 1" |
|
299 using sum_over_space_eq_1 finite_measure by (simp add: real_of_pinfreal_setsum sets_eq_Pow) |
|
300 |
252 |
301 lemma (in finite_prob_space) KL_divergence_positive_finite: |
253 lemma (in finite_prob_space) KL_divergence_positive_finite: |
302 assumes v: "finite_prob_space M \<nu>" |
254 assumes v: "finite_prob_space M \<nu>" |
303 assumes ac: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0" |
255 assumes ac: "\<And>x. \<lbrakk> x \<in> space M ; \<mu> {x} = 0 \<rbrakk> \<Longrightarrow> \<nu> {x} = 0" |
304 and "1 < b" |
256 and "1 < b" |
476 "\<I>(X;Y) = (\<Sum> (x,y) \<in> X ` space M \<times> Y ` space M. |
412 "\<I>(X;Y) = (\<Sum> (x,y) \<in> X ` space M \<times> Y ` space M. |
477 real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) * log b (real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) / |
413 real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) * log b (real (distribution (\<lambda>x. (X x, Y x)) {(x,y)}) / |
478 (real (distribution X {x}) * real (distribution Y {y}))))" |
414 (real (distribution X {x}) * real (distribution Y {y}))))" |
479 by (subst mutual_information_eq_generic) (simp_all add: finite_prob_space_of_images) |
415 by (subst mutual_information_eq_generic) (simp_all add: finite_prob_space_of_images) |
480 |
416 |
|
417 lemma (in finite_information_space) mutual_information_cong: |
|
418 assumes X: "\<And>x. x \<in> space M \<Longrightarrow> X x = X' x" |
|
419 assumes Y: "\<And>x. x \<in> space M \<Longrightarrow> Y x = Y' x" |
|
420 shows "\<I>(X ; Y) = \<I>(X' ; Y')" |
|
421 proof - |
|
422 have "X ` space M = X' ` space M" using X by (auto intro!: image_eqI) |
|
423 moreover have "Y ` space M = Y' ` space M" using Y by (auto intro!: image_eqI) |
|
424 ultimately show ?thesis |
|
425 unfolding mutual_information_eq |
|
426 using |
|
427 assms[THEN distribution_cong] |
|
428 joint_distribution_cong[OF assms] |
|
429 by (auto intro!: setsum_cong) |
|
430 qed |
|
431 |
481 lemma (in finite_information_space) mutual_information_positive: "0 \<le> \<I>(X;Y)" |
432 lemma (in finite_information_space) mutual_information_positive: "0 \<le> \<I>(X;Y)" |
482 by (subst mutual_information_positive_generic) (simp_all add: finite_prob_space_of_images) |
433 by (subst mutual_information_positive_generic) (simp_all add: finite_prob_space_of_images) |
|
434 |
|
435 subsection {* Entropy *} |
483 |
436 |
484 definition (in prob_space) |
437 definition (in prob_space) |
485 "entropy b s X = mutual_information b s s X X" |
438 "entropy b s X = mutual_information b s s X X" |
486 |
439 |
487 abbreviation (in finite_information_space) |
440 abbreviation (in finite_information_space) |
488 finite_entropy ("\<H>'(_')") where |
441 finite_entropy ("\<H>'(_')") where |
489 "\<H>(X) \<equiv> entropy b \<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> X" |
442 "\<H>(X) \<equiv> entropy b \<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> X" |
490 |
443 |
491 lemma (in finite_information_space) joint_distribution_remove[simp]: |
444 lemma (in finite_information_space) entropy_generic_eq: |
492 "joint_distribution X X {(x, x)} = distribution X {x}" |
445 assumes MX: "finite_measure_space MX (distribution X)" |
493 unfolding distribution_def by (auto intro!: arg_cong[where f="\<mu>"]) |
446 shows "entropy b MX X = -(\<Sum> x \<in> space MX. real (distribution X {x}) * log b (real (distribution X {x})))" |
|
447 proof - |
|
448 let "?X x" = "real (distribution X {x})" |
|
449 let "?XX x y" = "real (joint_distribution X X {(x, y)})" |
|
450 interpret MX: finite_measure_space MX "distribution X" by fact |
|
451 { fix x y |
|
452 have "(\<lambda>x. (X x, X x)) -` {(x, y)} = (if x = y then X -` {x} else {})" by auto |
|
453 then have "?XX x y * log b (?XX x y / (?X x * ?X y)) = |
|
454 (if x = y then - ?X y * log b (?X y) else 0)" |
|
455 unfolding distribution_def by (auto simp: mult_log_divide) } |
|
456 note remove_XX = this |
|
457 show ?thesis |
|
458 unfolding entropy_def mutual_information_generic_eq[OF MX MX] |
|
459 unfolding setsum_cartesian_product[symmetric] setsum_negf[symmetric] remove_XX |
|
460 by (auto simp: setsum_cases MX.finite_space) |
|
461 qed |
494 |
462 |
495 lemma (in finite_information_space) entropy_eq: |
463 lemma (in finite_information_space) entropy_eq: |
496 "\<H>(X) = -(\<Sum> x \<in> X ` space M. real (distribution X {x}) * log b (real (distribution X {x})))" |
464 "\<H>(X) = -(\<Sum> x \<in> X ` space M. real (distribution X {x}) * log b (real (distribution X {x})))" |
497 proof - |
465 by (simp add: finite_measure_space entropy_generic_eq) |
498 { fix f |
|
499 { fix x y |
|
500 have "(\<lambda>x. (X x, X x)) -` {(x, y)} = (if x = y then X -` {x} else {})" by auto |
|
501 hence "real (distribution (\<lambda>x. (X x, X x)) {(x,y)}) * f x y = |
|
502 (if x = y then real (distribution X {x}) * f x y else 0)" |
|
503 unfolding distribution_def by auto } |
|
504 hence "(\<Sum>(x, y) \<in> X ` space M \<times> X ` space M. real (joint_distribution X X {(x, y)}) * f x y) = |
|
505 (\<Sum>x \<in> X ` space M. real (distribution X {x}) * f x x)" |
|
506 unfolding setsum_cartesian_product' by (simp add: setsum_cases finite_space) } |
|
507 note remove_cartesian_product = this |
|
508 |
|
509 show ?thesis |
|
510 unfolding entropy_def mutual_information_eq setsum_negf[symmetric] remove_cartesian_product |
|
511 by (auto intro!: setsum_cong) |
|
512 qed |
|
513 |
466 |
514 lemma (in finite_information_space) entropy_positive: "0 \<le> \<H>(X)" |
467 lemma (in finite_information_space) entropy_positive: "0 \<le> \<H>(X)" |
515 unfolding entropy_def using mutual_information_positive . |
468 unfolding entropy_def using mutual_information_positive . |
|
469 |
|
470 lemma (in finite_information_space) entropy_certainty_eq_0: |
|
471 assumes "x \<in> X ` space M" and "distribution X {x} = 1" |
|
472 shows "\<H>(X) = 0" |
|
473 proof - |
|
474 interpret X: finite_prob_space "\<lparr> space = X ` space M, sets = Pow (X ` space M) \<rparr>" "distribution X" |
|
475 by (rule finite_prob_space_of_images) |
|
476 |
|
477 have "distribution X (X ` space M - {x}) = distribution X (X ` space M) - distribution X {x}" |
|
478 using X.measure_compl[of "{x}"] assms by auto |
|
479 also have "\<dots> = 0" using X.prob_space assms by auto |
|
480 finally have X0: "distribution X (X ` space M - {x}) = 0" by auto |
|
481 |
|
482 { fix y assume asm: "y \<noteq> x" "y \<in> X ` space M" |
|
483 hence "{y} \<subseteq> X ` space M - {x}" by auto |
|
484 from X.measure_mono[OF this] X0 asm |
|
485 have "distribution X {y} = 0" by auto } |
|
486 |
|
487 hence fi: "\<And> y. y \<in> X ` space M \<Longrightarrow> real (distribution X {y}) = (if x = y then 1 else 0)" |
|
488 using assms by auto |
|
489 |
|
490 have y: "\<And>y. (if x = y then 1 else 0) * log b (if x = y then 1 else 0) = 0" by simp |
|
491 |
|
492 show ?thesis unfolding entropy_eq by (auto simp: y fi) |
|
493 qed |
|
494 |
|
495 lemma (in finite_information_space) entropy_le_card_not_0: |
|
496 "\<H>(X) \<le> log b (real (card (X ` space M \<inter> {x . distribution X {x} \<noteq> 0})))" |
|
497 proof - |
|
498 let "?d x" = "distribution X {x}" |
|
499 let "?p x" = "real (?d x)" |
|
500 have "\<H>(X) = (\<Sum>x\<in>X`space M. ?p x * log b (1 / ?p x))" |
|
501 by (auto intro!: setsum_cong simp: entropy_eq setsum_negf[symmetric]) |
|
502 also have "\<dots> \<le> log b (\<Sum>x\<in>X`space M. ?p x * (1 / ?p x))" |
|
503 apply (rule log_setsum') |
|
504 using not_empty b_gt_1 finite_space sum_over_space_real_distribution |
|
505 by auto |
|
506 also have "\<dots> = log b (\<Sum>x\<in>X`space M. if ?d x \<noteq> 0 then 1 else 0)" |
|
507 apply (rule arg_cong[where f="\<lambda>f. log b (\<Sum>x\<in>X`space M. f x)"]) |
|
508 using distribution_finite[of X] by (auto simp: expand_fun_eq real_of_pinfreal_eq_0) |
|
509 finally show ?thesis |
|
510 using finite_space by (auto simp: setsum_cases real_eq_of_nat) |
|
511 qed |
|
512 |
|
513 lemma (in finite_information_space) entropy_uniform_max: |
|
514 assumes "\<And>x y. \<lbrakk> x \<in> X ` space M ; y \<in> X ` space M \<rbrakk> \<Longrightarrow> distribution X {x} = distribution X {y}" |
|
515 shows "\<H>(X) = log b (real (card (X ` space M)))" |
|
516 proof - |
|
517 note uniform = |
|
518 finite_prob_space_of_images[of X, THEN finite_prob_space.uniform_prob, simplified] |
|
519 |
|
520 have card_gt0: "0 < card (X ` space M)" unfolding card_gt_0_iff |
|
521 using finite_space not_empty by auto |
|
522 |
|
523 { fix x assume "x \<in> X ` space M" |
|
524 hence "real (distribution X {x}) = 1 / real (card (X ` space M))" |
|
525 proof (rule uniform) |
|
526 fix x y assume "x \<in> X`space M" "y \<in> X`space M" |
|
527 from assms[OF this] show "real (distribution X {x}) = real (distribution X {y})" by simp |
|
528 qed } |
|
529 thus ?thesis |
|
530 using not_empty finite_space b_gt_1 card_gt0 |
|
531 by (simp add: entropy_eq real_eq_of_nat[symmetric] log_divide) |
|
532 qed |
|
533 |
|
534 lemma (in finite_information_space) entropy_le_card: |
|
535 "\<H>(X) \<le> log b (real (card (X ` space M)))" |
|
536 proof cases |
|
537 assume "X ` space M \<inter> {x. distribution X {x} \<noteq> 0} = {}" |
|
538 then have "\<And>x. x\<in>X`space M \<Longrightarrow> distribution X {x} = 0" by auto |
|
539 moreover |
|
540 have "0 < card (X`space M)" |
|
541 using finite_space not_empty unfolding card_gt_0_iff by auto |
|
542 then have "log b 1 \<le> log b (real (card (X`space M)))" |
|
543 using b_gt_1 by (intro log_le) auto |
|
544 ultimately show ?thesis unfolding entropy_eq by simp |
|
545 next |
|
546 assume False: "X ` space M \<inter> {x. distribution X {x} \<noteq> 0} \<noteq> {}" |
|
547 have "card (X ` space M \<inter> {x. distribution X {x} \<noteq> 0}) \<le> card (X ` space M)" |
|
548 (is "?A \<le> ?B") using finite_space not_empty by (auto intro!: card_mono) |
|
549 note entropy_le_card_not_0 |
|
550 also have "log b (real ?A) \<le> log b (real ?B)" |
|
551 using b_gt_1 False finite_space not_empty `?A \<le> ?B` |
|
552 by (auto intro!: log_le simp: card_gt_0_iff) |
|
553 finally show ?thesis . |
|
554 qed |
|
555 |
|
556 lemma (in finite_information_space) entropy_commute: |
|
557 "\<H>(\<lambda>x. (X x, Y x)) = \<H>(\<lambda>x. (Y x, X x))" |
|
558 proof - |
|
559 have *: "(\<lambda>x. (Y x, X x))`space M = (\<lambda>(a,b). (b,a))`(\<lambda>x. (X x, Y x))`space M" |
|
560 by auto |
|
561 have inj: "\<And>X. inj_on (\<lambda>(a,b). (b,a)) X" |
|
562 by (auto intro!: inj_onI) |
|
563 show ?thesis |
|
564 unfolding entropy_eq unfolding * setsum_reindex[OF inj] |
|
565 by (simp add: joint_distribution_commute[of Y X] split_beta) |
|
566 qed |
|
567 |
|
568 lemma (in finite_information_space) entropy_eq_cartesian_sum: |
|
569 "\<H>(\<lambda>x. (X x, Y x)) = -(\<Sum>x\<in>X`space M. \<Sum>y\<in>Y`space M. |
|
570 real (joint_distribution X Y {(x,y)}) * |
|
571 log b (real (joint_distribution X Y {(x,y)})))" |
|
572 proof - |
|
573 { fix x assume "x\<notin>(\<lambda>x. (X x, Y x))`space M" |
|
574 then have "(\<lambda>x. (X x, Y x)) -` {x} \<inter> space M = {}" by auto |
|
575 then have "joint_distribution X Y {x} = 0" |
|
576 unfolding distribution_def by auto } |
|
577 then show ?thesis using finite_space |
|
578 unfolding entropy_eq neg_equal_iff_equal setsum_cartesian_product |
|
579 by (auto intro!: setsum_mono_zero_cong_left) |
|
580 qed |
|
581 |
|
582 subsection {* Conditional Mutual Information *} |
516 |
583 |
517 definition (in prob_space) |
584 definition (in prob_space) |
518 "conditional_mutual_information b M1 M2 M3 X Y Z \<equiv> |
585 "conditional_mutual_information b M1 M2 M3 X Y Z \<equiv> |
519 mutual_information b M1 (prod_measure_space M2 M3) X (\<lambda>x. (Y x, Z x)) - |
586 mutual_information b M1 (prod_measure_space M2 M3) X (\<lambda>x. (Y x, Z x)) - |
520 mutual_information b M1 M3 X Z" |
587 mutual_information b M1 M3 X Z" |
525 \<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> |
592 \<lparr> space = X`space M, sets = Pow (X`space M) \<rparr> |
526 \<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> |
593 \<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> |
527 \<lparr> space = Z`space M, sets = Pow (Z`space M) \<rparr> |
594 \<lparr> space = Z`space M, sets = Pow (Z`space M) \<rparr> |
528 X Y Z" |
595 X Y Z" |
529 |
596 |
530 lemma (in finite_information_space) setsum_distribution_gen: |
597 lemma (in finite_information_space) conditional_mutual_information_generic_eq: |
531 assumes "Z -` {c} \<inter> space M = (\<Union>x \<in> X`space M. Y -` {f x}) \<inter> space M" |
598 assumes MX: "finite_measure_space MX (distribution X)" |
532 and "inj_on f (X`space M)" |
599 assumes MY: "finite_measure_space MY (distribution Y)" |
533 shows "(\<Sum>x \<in> X`space M. distribution Y {f x}) = distribution Z {c}" |
600 assumes MZ: "finite_measure_space MZ (distribution Z)" |
534 unfolding distribution_def assms |
601 shows "conditional_mutual_information b MX MY MZ X Y Z = |
535 using finite_space assms |
602 (\<Sum>(x, y, z)\<in>space MX \<times> space MY \<times> space MZ. |
536 by (subst measure_finitely_additive'') |
603 real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) * |
537 (auto simp add: disjoint_family_on_def sets_eq_Pow inj_on_def |
604 log b (real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) / |
538 intro!: arg_cong[where f=prob]) |
605 (real (distribution X {x}) * real (joint_distribution Y Z {(y, z)})))) - |
539 |
606 (\<Sum>(x, y)\<in>space MX \<times> space MZ. |
540 lemma (in finite_information_space) setsum_distribution: |
607 real (joint_distribution X Z {(x, y)}) * |
541 "(\<Sum>x \<in> X`space M. joint_distribution X Y {(x, y)}) = distribution Y {y}" |
608 log b (real (joint_distribution X Z {(x, y)}) / (real (distribution X {x}) * real (distribution Z {y}))))" |
542 "(\<Sum>y \<in> Y`space M. joint_distribution X Y {(x, y)}) = distribution X {x}" |
609 using assms finite_measure_space_prod[OF MY MZ] |
543 "(\<Sum>x \<in> X`space M. joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) = joint_distribution Y Z {(y, z)}" |
610 unfolding conditional_mutual_information_def |
544 "(\<Sum>y \<in> Y`space M. joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) = joint_distribution X Z {(x, z)}" |
611 by (subst (1 2) mutual_information_generic_eq) |
545 "(\<Sum>z \<in> Z`space M. joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)}) = joint_distribution X Y {(x, y)}" |
612 (simp_all add: setsum_cartesian_product' finite_measure_space.finite_prod_measure_space) |
546 by (auto intro!: inj_onI setsum_distribution_gen) |
613 |
547 |
|
548 lemma (in finite_information_space) setsum_real_distribution_gen: |
|
549 assumes "Z -` {c} \<inter> space M = (\<Union>x \<in> X`space M. Y -` {f x}) \<inter> space M" |
|
550 and "inj_on f (X`space M)" |
|
551 shows "(\<Sum>x \<in> X`space M. real (distribution Y {f x})) = real (distribution Z {c})" |
|
552 unfolding distribution_def assms |
|
553 using finite_space assms |
|
554 by (subst real_finite_measure_finite_Union[symmetric]) |
|
555 (auto simp add: disjoint_family_on_def sets_eq_Pow inj_on_def |
|
556 intro!: arg_cong[where f=prob]) |
|
557 |
|
558 lemma (in finite_information_space) setsum_real_distribution: |
|
559 "(\<Sum>x \<in> X`space M. real (joint_distribution X Y {(x, y)})) = real (distribution Y {y})" |
|
560 "(\<Sum>y \<in> Y`space M. real (joint_distribution X Y {(x, y)})) = real (distribution X {x})" |
|
561 "(\<Sum>x \<in> X`space M. real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)})) = real (joint_distribution Y Z {(y, z)})" |
|
562 "(\<Sum>y \<in> Y`space M. real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)})) = real (joint_distribution X Z {(x, z)})" |
|
563 "(\<Sum>z \<in> Z`space M. real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, y, z)})) = real (joint_distribution X Y {(x, y)})" |
|
564 by (auto intro!: inj_onI setsum_real_distribution_gen) |
|
565 |
|
566 lemma (in finite_information_space) conditional_mutual_information_eq_sum: |
|
567 "\<I>(X ; Y | Z) = |
|
568 (\<Sum>(x, y, z)\<in>X ` space M \<times> (\<lambda>x. (Y x, Z x)) ` space M. |
|
569 real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) * |
|
570 log b (real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)})/ |
|
571 real (distribution (\<lambda>x. (Y x, Z x)) {(y, z)}))) - |
|
572 (\<Sum>(x, z)\<in>X ` space M \<times> Z ` space M. |
|
573 real (distribution (\<lambda>x. (X x, Z x)) {(x,z)}) * log b (real (distribution (\<lambda>x. (X x, Z x)) {(x,z)}) / real (distribution Z {z})))" |
|
574 (is "_ = ?rhs") |
|
575 proof - |
|
576 have setsum_product: |
|
577 "\<And>f x. (\<Sum>v\<in>(\<lambda>x. (Y x, Z x)) ` space M. real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x,v)}) * f v) |
|
578 = (\<Sum>v\<in>Y ` space M \<times> Z ` space M. real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x,v)}) * f v)" |
|
579 proof (safe intro!: setsum_mono_zero_cong_left imageI) |
|
580 fix x y z f |
|
581 assume *: "(Y y, Z z) \<notin> (\<lambda>x. (Y x, Z x)) ` space M" and "y \<in> space M" "z \<in> space M" |
|
582 hence "(\<lambda>x. (X x, Y x, Z x)) -` {(x, Y y, Z z)} \<inter> space M = {}" |
|
583 proof safe |
|
584 fix x' assume x': "x' \<in> space M" and eq: "Y x' = Y y" "Z x' = Z z" |
|
585 have "(Y y, Z z) \<in> (\<lambda>x. (Y x, Z x)) ` space M" using eq[symmetric] x' by auto |
|
586 thus "x' \<in> {}" using * by auto |
|
587 qed |
|
588 thus "real (joint_distribution X (\<lambda>x. (Y x, Z x)) {(x, Y y, Z z)}) * f (Y y) (Z z) = 0" |
|
589 unfolding distribution_def by simp |
|
590 qed (simp add: finite_space) |
|
591 |
|
592 thus ?thesis |
|
593 unfolding conditional_mutual_information_def Let_def mutual_information_eq |
|
594 by (subst mutual_information_eq_generic) |
|
595 (auto simp: prod_measure_space_def sigma_prod_sets_finite finite_space sigma_def |
|
596 finite_prob_space_of_images finite_product_prob_space_of_images |
|
597 setsum_cartesian_product' setsum_product setsum_subtractf setsum_addf |
|
598 setsum_left_distrib[symmetric] setsum_real_distribution |
|
599 cong: setsum_cong) |
|
600 qed |
|
601 |
614 |
602 lemma (in finite_information_space) conditional_mutual_information_eq: |
615 lemma (in finite_information_space) conditional_mutual_information_eq: |
603 "\<I>(X ; Y | Z) = (\<Sum>(x, y, z) \<in> X ` space M \<times> Y ` space M \<times> Z ` space M. |
616 "\<I>(X ; Y | Z) = (\<Sum>(x, y, z) \<in> X ` space M \<times> Y ` space M \<times> Z ` space M. |
604 real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) * |
617 real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) * |
605 log b (real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) / |
618 log b (real (distribution (\<lambda>x. (X x, Y x, Z x)) {(x, y, z)}) / |
606 (real (joint_distribution X Z {(x, z)}) * real (joint_distribution Y Z {(y,z)} / distribution Z {z}))))" |
619 (real (joint_distribution X Z {(x, z)}) * real (joint_distribution Y Z {(y,z)} / distribution Z {z}))))" |
607 unfolding conditional_mutual_information_def Let_def mutual_information_eq |
620 by (subst conditional_mutual_information_generic_eq) |
608 by (subst mutual_information_eq_generic) |
|
609 (auto simp add: prod_measure_space_def sigma_prod_sets_finite finite_space |
621 (auto simp add: prod_measure_space_def sigma_prod_sets_finite finite_space |
610 finite_prob_space_of_images finite_product_prob_space_of_images sigma_def |
622 finite_measure_space finite_product_prob_space_of_images sigma_def |
611 setsum_cartesian_product' setsum_product setsum_subtractf setsum_addf |
623 setsum_cartesian_product' setsum_product setsum_subtractf setsum_addf |
612 setsum_left_distrib[symmetric] setsum_real_distribution setsum_commute[where A="Y`space M"] |
624 setsum_left_distrib[symmetric] setsum_real_distribution setsum_commute[where A="Y`space M"] |
613 real_of_pinfreal_mult[symmetric] |
625 real_of_pinfreal_mult[symmetric] |
614 cong: setsum_cong) |
626 cong: setsum_cong) |
615 |
627 |
692 \<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> X Y" |
690 \<lparr> space = Y`space M, sets = Pow (Y`space M) \<rparr> X Y" |
693 |
691 |
694 lemma (in finite_information_space) conditional_entropy_positive: |
692 lemma (in finite_information_space) conditional_entropy_positive: |
695 "0 \<le> \<H>(X | Y)" unfolding conditional_entropy_def using conditional_mutual_information_positive . |
693 "0 \<le> \<H>(X | Y)" unfolding conditional_entropy_def using conditional_mutual_information_positive . |
696 |
694 |
|
695 lemma (in finite_information_space) conditional_entropy_generic_eq: |
|
696 assumes MX: "finite_measure_space MX (distribution X)" |
|
697 assumes MY: "finite_measure_space MZ (distribution Z)" |
|
698 shows "conditional_entropy b MX MZ X Z = |
|
699 - (\<Sum>(x, z)\<in>space MX \<times> space MZ. |
|
700 real (joint_distribution X Z {(x, z)}) * |
|
701 log b (real (joint_distribution X Z {(x, z)}) / real (distribution Z {z})))" |
|
702 unfolding conditional_entropy_def using assms |
|
703 apply (simp add: conditional_mutual_information_generic_eq |
|
704 setsum_cartesian_product' setsum_commute[of _ "space MZ"] |
|
705 setsum_negf[symmetric] setsum_subtractf[symmetric]) |
|
706 proof (safe intro!: setsum_cong, simp) |
|
707 fix z x assume "z \<in> space MZ" "x \<in> space MX" |
|
708 let "?XXZ x'" = "real (joint_distribution X (\<lambda>x. (X x, Z x)) {(x, x', z)})" |
|
709 let "?XZ x'" = "real (joint_distribution X Z {(x', z)})" |
|
710 let "?X" = "real (distribution X {x})" |
|
711 interpret MX: finite_measure_space MX "distribution X" by fact |
|
712 have *: "\<And>A. A = {} \<Longrightarrow> prob A = 0" by simp |
|
713 have XXZ: "\<And>x'. ?XXZ x' = (if x' = x then ?XZ x else 0)" |
|
714 by (auto simp: distribution_def intro!: arg_cong[where f=prob] *) |
|
715 have "(\<Sum>x'\<in>space MX. ?XXZ x' * log b (?XXZ x') - (?XXZ x' * log b ?X + ?XXZ x' * log b (?XZ x'))) = |
|
716 (\<Sum>x'\<in>{x}. ?XZ x' * log b (?XZ x') - (?XZ x' * log b ?X + ?XZ x' * log b (?XZ x')))" |
|
717 using `x \<in> space MX` MX.finite_space |
|
718 by (safe intro!: setsum_mono_zero_cong_right) |
|
719 (auto split: split_if_asm simp: XXZ) |
|
720 then show "(\<Sum>x'\<in>space MX. ?XXZ x' * log b (?XXZ x') - (?XXZ x' * log b ?X + ?XXZ x' * log b (?XZ x'))) + |
|
721 ?XZ x * log b ?X = 0" by simp |
|
722 qed |
|
723 |
697 lemma (in finite_information_space) conditional_entropy_eq: |
724 lemma (in finite_information_space) conditional_entropy_eq: |
698 "\<H>(X | Z) = |
725 "\<H>(X | Z) = |
699 - (\<Sum>(x, z)\<in>X ` space M \<times> Z ` space M. |
726 - (\<Sum>(x, z)\<in>X ` space M \<times> Z ` space M. |
700 real (joint_distribution X Z {(x, z)}) * |
727 real (joint_distribution X Z {(x, z)}) * |
701 log b (real (joint_distribution X Z {(x, z)}) / real (distribution Z {z})))" |
728 log b (real (joint_distribution X Z {(x, z)}) / real (distribution Z {z})))" |
702 proof - |
729 by (simp add: finite_measure_space conditional_entropy_generic_eq) |
703 have *: "\<And>x y z. (\<lambda>x. (X x, X x, Z x)) -` {(x, y, z)} = (if x = y then (\<lambda>x. (X x, Z x)) -` {(x, z)} else {})" by auto |
730 |
704 show ?thesis |
731 lemma (in finite_information_space) conditional_entropy_eq_ce_with_hypothesis: |
705 unfolding conditional_mutual_information_eq_sum |
732 "\<H>(X | Y) = |
706 conditional_entropy_def distribution_def * |
733 -(\<Sum>y\<in>Y`space M. real (distribution Y {y}) * |
707 by (auto intro!: setsum_0') |
734 (\<Sum>x\<in>X`space M. real (joint_distribution X Y {(x,y)}) / real (distribution Y {(y)}) * |
708 qed |
735 log b (real (joint_distribution X Y {(x,y)}) / real (distribution Y {(y)}))))" |
|
736 unfolding conditional_entropy_eq neg_equal_iff_equal |
|
737 apply (simp add: setsum_commute[of _ "Y`space M"] setsum_cartesian_product' setsum_divide_distrib[symmetric]) |
|
738 apply (safe intro!: setsum_cong) |
|
739 using real_distribution_order'[of Y _ X _] |
|
740 by (auto simp add: setsum_subtractf[of _ _ "X`space M"]) |
|
741 |
|
742 lemma (in finite_information_space) conditional_entropy_eq_cartesian_sum: |
|
743 "\<H>(X | Y) = -(\<Sum>x\<in>X`space M. \<Sum>y\<in>Y`space M. |
|
744 real (joint_distribution X Y {(x,y)}) * |
|
745 log b (real (joint_distribution X Y {(x,y)}) / real (distribution Y {y})))" |
|
746 proof - |
|
747 { fix x assume "x\<notin>(\<lambda>x. (X x, Y x))`space M" |
|
748 then have "(\<lambda>x. (X x, Y x)) -` {x} \<inter> space M = {}" by auto |
|
749 then have "joint_distribution X Y {x} = 0" |
|
750 unfolding distribution_def by auto } |
|
751 then show ?thesis using finite_space |
|
752 unfolding conditional_entropy_eq neg_equal_iff_equal setsum_cartesian_product |
|
753 by (auto intro!: setsum_mono_zero_cong_left) |
|
754 qed |
|
755 |
|
756 subsection {* Equalities *} |
709 |
757 |
710 lemma (in finite_information_space) mutual_information_eq_entropy_conditional_entropy: |
758 lemma (in finite_information_space) mutual_information_eq_entropy_conditional_entropy: |
711 "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" |
759 "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" |
712 unfolding mutual_information_eq entropy_eq conditional_entropy_eq |
760 unfolding mutual_information_eq entropy_eq conditional_entropy_eq |
713 using finite_space |
761 using finite_space |
720 have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy . |
768 have "\<I>(X ; Z) = \<H>(X) - \<H>(X | Z)" using mutual_information_eq_entropy_conditional_entropy . |
721 with mutual_information_positive[of X Z] entropy_positive[of X] |
769 with mutual_information_positive[of X Z] entropy_positive[of X] |
722 show ?thesis by auto |
770 show ?thesis by auto |
723 qed |
771 qed |
724 |
772 |
725 (* -------------Entropy of a RV with a certain event is zero---------------- *) |
773 lemma (in finite_information_space) entropy_chain_rule: |
726 |
774 "\<H>(\<lambda>x. (X x, Y x)) = \<H>(X) + \<H>(Y|X)" |
727 lemma (in finite_information_space) finite_entropy_certainty_eq_0: |
775 unfolding entropy_eq[of X] entropy_eq_cartesian_sum conditional_entropy_eq_cartesian_sum |
728 assumes "x \<in> X ` space M" and "distribution X {x} = 1" |
776 unfolding setsum_commute[of _ "X`space M"] setsum_negf[symmetric] setsum_addf[symmetric] |
729 shows "\<H>(X) = 0" |
777 by (rule setsum_cong) |
730 proof - |
778 (simp_all add: setsum_negf setsum_addf setsum_subtractf setsum_real_distribution |
731 interpret X: finite_prob_space "\<lparr> space = X ` space M, sets = Pow (X ` space M) \<rparr>" "distribution X" |
779 setsum_left_distrib[symmetric] joint_distribution_commute[of X Y]) |
732 by (rule finite_prob_space_of_images) |
780 |
733 |
781 section {* Partitioning *} |
734 have "distribution X (X ` space M - {x}) = distribution X (X ` space M) - distribution X {x}" |
|
735 using X.measure_compl[of "{x}"] assms by auto |
|
736 also have "\<dots> = 0" using X.prob_space assms by auto |
|
737 finally have X0: "distribution X (X ` space M - {x}) = 0" by auto |
|
738 |
|
739 { fix y assume asm: "y \<noteq> x" "y \<in> X ` space M" |
|
740 hence "{y} \<subseteq> X ` space M - {x}" by auto |
|
741 from X.measure_mono[OF this] X0 asm |
|
742 have "distribution X {y} = 0" by auto } |
|
743 |
|
744 hence fi: "\<And> y. y \<in> X ` space M \<Longrightarrow> real (distribution X {y}) = (if x = y then 1 else 0)" |
|
745 using assms by auto |
|
746 |
|
747 have y: "\<And>y. (if x = y then 1 else 0) * log b (if x = y then 1 else 0) = 0" by simp |
|
748 |
|
749 show ?thesis unfolding entropy_eq by (auto simp: y fi) |
|
750 qed |
|
751 (* --------------- upper bound on entropy for a rv ------------------------- *) |
|
752 |
|
753 lemma (in finite_prob_space) distribution_1: |
|
754 "distribution X A \<le> 1" |
|
755 unfolding distribution_def measure_space_1[symmetric] |
|
756 by (auto intro!: measure_mono simp: sets_eq_Pow) |
|
757 |
|
758 lemma (in finite_prob_space) real_distribution_1: |
|
759 "real (distribution X A) \<le> 1" |
|
760 unfolding real_pinfreal_1[symmetric] |
|
761 by (rule real_of_pinfreal_mono[OF _ distribution_1]) simp |
|
762 |
|
763 lemma (in finite_information_space) finite_entropy_le_card: |
|
764 "\<H>(X) \<le> log b (real (card (X ` space M \<inter> {x . distribution X {x} \<noteq> 0})))" |
|
765 proof - |
|
766 let "?d x" = "distribution X {x}" |
|
767 let "?p x" = "real (?d x)" |
|
768 have "\<H>(X) = (\<Sum>x\<in>X`space M. ?p x * log b (1 / ?p x))" |
|
769 by (auto intro!: setsum_cong simp: entropy_eq setsum_negf[symmetric]) |
|
770 also have "\<dots> \<le> log b (\<Sum>x\<in>X`space M. ?p x * (1 / ?p x))" |
|
771 apply (rule log_setsum') |
|
772 using not_empty b_gt_1 finite_space sum_over_space_real_distribution |
|
773 by auto |
|
774 also have "\<dots> = log b (\<Sum>x\<in>X`space M. if ?d x \<noteq> 0 then 1 else 0)" |
|
775 apply (rule arg_cong[where f="\<lambda>f. log b (\<Sum>x\<in>X`space M. f x)"]) |
|
776 using distribution_finite[of X] by (auto simp: expand_fun_eq real_of_pinfreal_eq_0) |
|
777 finally show ?thesis |
|
778 using finite_space by (auto simp: setsum_cases real_eq_of_nat) |
|
779 qed |
|
780 |
|
781 (* --------------- entropy is maximal for a uniform rv --------------------- *) |
|
782 |
|
783 lemma (in finite_prob_space) uniform_prob: |
|
784 assumes "x \<in> space M" |
|
785 assumes "\<And> x y. \<lbrakk>x \<in> space M ; y \<in> space M\<rbrakk> \<Longrightarrow> prob {x} = prob {y}" |
|
786 shows "prob {x} = 1 / real (card (space M))" |
|
787 proof - |
|
788 have prob_x: "\<And> y. y \<in> space M \<Longrightarrow> prob {y} = prob {x}" |
|
789 using assms(2)[OF _ `x \<in> space M`] by blast |
|
790 have "1 = prob (space M)" |
|
791 using prob_space by auto |
|
792 also have "\<dots> = (\<Sum> x \<in> space M. prob {x})" |
|
793 using real_finite_measure_finite_Union[of "space M" "\<lambda> x. {x}", simplified] |
|
794 sets_eq_Pow inj_singleton[unfolded inj_on_def, rule_format] |
|
795 finite_space unfolding disjoint_family_on_def prob_space[symmetric] |
|
796 by (auto simp add:setsum_restrict_set) |
|
797 also have "\<dots> = (\<Sum> y \<in> space M. prob {x})" |
|
798 using prob_x by auto |
|
799 also have "\<dots> = real_of_nat (card (space M)) * prob {x}" by simp |
|
800 finally have one: "1 = real (card (space M)) * prob {x}" |
|
801 using real_eq_of_nat by auto |
|
802 hence two: "real (card (space M)) \<noteq> 0" by fastsimp |
|
803 from one have three: "prob {x} \<noteq> 0" by fastsimp |
|
804 thus ?thesis using one two three divide_cancel_right |
|
805 by (auto simp:field_simps) |
|
806 qed |
|
807 |
|
808 lemma (in finite_information_space) finite_entropy_uniform_max: |
|
809 assumes "\<And>x y. \<lbrakk> x \<in> X ` space M ; y \<in> X ` space M \<rbrakk> \<Longrightarrow> distribution X {x} = distribution X {y}" |
|
810 shows "\<H>(X) = log b (real (card (X ` space M)))" |
|
811 proof - |
|
812 note uniform = |
|
813 finite_prob_space_of_images[of X, THEN finite_prob_space.uniform_prob, simplified] |
|
814 |
|
815 have card_gt0: "0 < card (X ` space M)" unfolding card_gt_0_iff |
|
816 using finite_space not_empty by auto |
|
817 |
|
818 { fix x assume "x \<in> X ` space M" |
|
819 hence "real (distribution X {x}) = 1 / real (card (X ` space M))" |
|
820 proof (rule uniform) |
|
821 fix x y assume "x \<in> X`space M" "y \<in> X`space M" |
|
822 from assms[OF this] show "real (distribution X {x}) = real (distribution X {y})" by simp |
|
823 qed } |
|
824 thus ?thesis |
|
825 using not_empty finite_space b_gt_1 card_gt0 |
|
826 by (simp add: entropy_eq real_eq_of_nat[symmetric] log_divide) |
|
827 qed |
|
828 |
782 |
829 definition "subvimage A f g \<longleftrightarrow> (\<forall>x \<in> A. f -` {f x} \<inter> A \<subseteq> g -` {g x} \<inter> A)" |
783 definition "subvimage A f g \<longleftrightarrow> (\<forall>x \<in> A. f -` {f x} \<inter> A \<subseteq> g -` {g x} \<inter> A)" |
830 |
784 |
831 lemma subvimageI: |
785 lemma subvimageI: |
832 assumes "\<And>x y. \<lbrakk> x \<in> A ; y \<in> A ; f x = f y \<rbrakk> \<Longrightarrow> g x = g y" |
786 assumes "\<And>x y. \<lbrakk> x \<in> A ; y \<in> A ; f x = f y \<rbrakk> \<Longrightarrow> g x = g y" |
974 |
928 |
975 corollary (in finite_information_space) entropy_data_processing: |
929 corollary (in finite_information_space) entropy_data_processing: |
976 "\<H>(f \<circ> X) \<le> \<H>(X)" |
930 "\<H>(f \<circ> X) \<le> \<H>(X)" |
977 by (subst (2) entropy_partition[of _ "f \<circ> X"]) (auto intro: conditional_entropy_positive) |
931 by (subst (2) entropy_partition[of _ "f \<circ> X"]) (auto intro: conditional_entropy_positive) |
978 |
932 |
979 lemma (in prob_space) distribution_cong: |
|
980 assumes "\<And>x. x \<in> space M \<Longrightarrow> X x = Y x" |
|
981 shows "distribution X = distribution Y" |
|
982 unfolding distribution_def expand_fun_eq |
|
983 using assms by (auto intro!: arg_cong[where f="\<mu>"]) |
|
984 |
|
985 lemma (in prob_space) joint_distribution_cong: |
|
986 assumes "\<And>x. x \<in> space M \<Longrightarrow> X x = X' x" |
|
987 assumes "\<And>x. x \<in> space M \<Longrightarrow> Y x = Y' x" |
|
988 shows "joint_distribution X Y = joint_distribution X' Y'" |
|
989 unfolding distribution_def expand_fun_eq |
|
990 using assms by (auto intro!: arg_cong[where f="\<mu>"]) |
|
991 |
|
992 lemma image_cong: |
|
993 "\<lbrakk> \<And>x. x \<in> S \<Longrightarrow> X x = X' x \<rbrakk> \<Longrightarrow> X ` S = X' ` S" |
|
994 by (auto intro!: image_eqI) |
|
995 |
|
996 lemma (in finite_information_space) mutual_information_cong: |
|
997 assumes X: "\<And>x. x \<in> space M \<Longrightarrow> X x = X' x" |
|
998 assumes Y: "\<And>x. x \<in> space M \<Longrightarrow> Y x = Y' x" |
|
999 shows "\<I>(X ; Y) = \<I>(X' ; Y')" |
|
1000 proof - |
|
1001 have "X ` space M = X' ` space M" using X by (rule image_cong) |
|
1002 moreover have "Y ` space M = Y' ` space M" using Y by (rule image_cong) |
|
1003 ultimately show ?thesis |
|
1004 unfolding mutual_information_eq |
|
1005 using |
|
1006 assms[THEN distribution_cong] |
|
1007 joint_distribution_cong[OF assms] |
|
1008 by (auto intro!: setsum_cong) |
|
1009 qed |
|
1010 |
|
1011 corollary (in finite_information_space) entropy_of_inj: |
933 corollary (in finite_information_space) entropy_of_inj: |
1012 assumes "inj_on f (X`space M)" |
934 assumes "inj_on f (X`space M)" |
1013 shows "\<H>(f \<circ> X) = \<H>(X)" |
935 shows "\<H>(f \<circ> X) = \<H>(X)" |
1014 proof (rule antisym) |
936 proof (rule antisym) |
1015 show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing . |
937 show "\<H>(f \<circ> X) \<le> \<H>(X)" using entropy_data_processing . |