| 
17456
 | 
     1  | 
(*  Title:      CCL/Gfp.thy
  | 
| 
1474
 | 
     2  | 
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
0
 | 
     3  | 
    Copyright   1992  University of Cambridge
  | 
| 
 | 
     4  | 
*)
  | 
| 
 | 
     5  | 
  | 
| 
60770
 | 
     6  | 
section \<open>Greatest fixed points\<close>
  | 
| 
17456
 | 
     7  | 
  | 
| 
 | 
     8  | 
theory Gfp
  | 
| 
 | 
     9  | 
imports Lfp
  | 
| 
 | 
    10  | 
begin
  | 
| 
 | 
    11  | 
  | 
| 
20140
 | 
    12  | 
definition
  | 
| 
62020
 | 
    13  | 
  gfp :: "['a set\<Rightarrow>'a set] \<Rightarrow> 'a set" where \<comment> "greatest fixed point"
  | 
| 
17456
 | 
    14  | 
  "gfp(f) == Union({u. u <= f(u)})"
 | 
| 
 | 
    15  | 
  | 
| 
20140
 | 
    16  | 
(* gfp(f) is the least upper bound of {u. u <= f(u)} *)
 | 
| 
 | 
    17  | 
  | 
| 
58977
 | 
    18  | 
lemma gfp_upperbound: "A <= f(A) \<Longrightarrow> A <= gfp(f)"
  | 
| 
20140
 | 
    19  | 
  unfolding gfp_def by blast
  | 
| 
 | 
    20  | 
  | 
| 
58977
 | 
    21  | 
lemma gfp_least: "(\<And>u. u <= f(u) \<Longrightarrow> u <= A) \<Longrightarrow> gfp(f) <= A"
  | 
| 
20140
 | 
    22  | 
  unfolding gfp_def by blast
  | 
| 
 | 
    23  | 
  | 
| 
58977
 | 
    24  | 
lemma gfp_lemma2: "mono(f) \<Longrightarrow> gfp(f) <= f(gfp(f))"
  | 
| 
20140
 | 
    25  | 
  by (rule gfp_least, rule subset_trans, assumption, erule monoD,
  | 
| 
 | 
    26  | 
    rule gfp_upperbound, assumption)
  | 
| 
 | 
    27  | 
  | 
| 
58977
 | 
    28  | 
lemma gfp_lemma3: "mono(f) \<Longrightarrow> f(gfp(f)) <= gfp(f)"
  | 
| 
20140
 | 
    29  | 
  by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+)
  | 
| 
 | 
    30  | 
  | 
| 
58977
 | 
    31  | 
lemma gfp_Tarski: "mono(f) \<Longrightarrow> gfp(f) = f(gfp(f))"
  | 
| 
20140
 | 
    32  | 
  by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
(*** Coinduction rules for greatest fixed points ***)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
(*weak version*)
  | 
| 
58977
 | 
    38  | 
lemma coinduct: "\<lbrakk>a: A;  A <= f(A)\<rbrakk> \<Longrightarrow> a : gfp(f)"
  | 
| 
20140
 | 
    39  | 
  by (blast dest: gfp_upperbound)
  | 
| 
 | 
    40  | 
  | 
| 
58977
 | 
    41  | 
lemma coinduct2_lemma: "\<lbrakk>A <= f(A) Un gfp(f); mono(f)\<rbrakk> \<Longrightarrow> A Un gfp(f) <= f(A Un gfp(f))"
  | 
| 
20140
 | 
    42  | 
  apply (rule subset_trans)
  | 
| 
 | 
    43  | 
   prefer 2
  | 
| 
 | 
    44  | 
   apply (erule mono_Un)
  | 
| 
 | 
    45  | 
  apply (rule subst, erule gfp_Tarski)
  | 
| 
 | 
    46  | 
  apply (erule Un_least)
  | 
| 
 | 
    47  | 
  apply (rule Un_upper2)
  | 
| 
 | 
    48  | 
  done
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
(*strong version, thanks to Martin Coen*)
  | 
| 
58977
 | 
    51  | 
lemma coinduct2: "\<lbrakk>a: A; A <= f(A) Un gfp(f); mono(f)\<rbrakk> \<Longrightarrow> a : gfp(f)"
  | 
| 
20140
 | 
    52  | 
  apply (rule coinduct)
  | 
| 
 | 
    53  | 
   prefer 2
  | 
| 
 | 
    54  | 
   apply (erule coinduct2_lemma, assumption)
  | 
| 
 | 
    55  | 
  apply blast
  | 
| 
 | 
    56  | 
  done
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
(***  Even Stronger version of coinduct  [by Martin Coen]
  | 
| 
 | 
    59  | 
         - instead of the condition  A <= f(A)
  | 
| 
 | 
    60  | 
                           consider  A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)
  | 
| 
 | 
    61  | 
  | 
| 
58977
 | 
    62  | 
lemma coinduct3_mono_lemma: "mono(f) \<Longrightarrow> mono(\<lambda>x. f(x) Un A Un B)"
  | 
| 
20140
 | 
    63  | 
  by (rule monoI) (blast dest: monoD)
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
lemma coinduct3_lemma:
  | 
| 
58977
 | 
    66  | 
  assumes prem: "A <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))"
  | 
| 
20140
 | 
    67  | 
    and mono: "mono(f)"
  | 
| 
58977
 | 
    68  | 
  shows "lfp(\<lambda>x. f(x) Un A Un gfp(f)) <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))"
  | 
| 
20140
 | 
    69  | 
  apply (rule subset_trans)
  | 
| 
 | 
    70  | 
   apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3])
  | 
| 
 | 
    71  | 
  apply (rule Un_least [THEN Un_least])
  | 
| 
 | 
    72  | 
    apply (rule subset_refl)
  | 
| 
 | 
    73  | 
   apply (rule prem)
  | 
| 
 | 
    74  | 
  apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans])
  | 
| 
 | 
    75  | 
  apply (rule mono [THEN monoD])
  | 
| 
 | 
    76  | 
  apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski])
  | 
| 
 | 
    77  | 
  apply (rule Un_upper2)
  | 
| 
 | 
    78  | 
  done
  | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
lemma coinduct3:
  | 
| 
 | 
    81  | 
  assumes 1: "a:A"
  | 
| 
58977
 | 
    82  | 
    and 2: "A <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))"
  | 
| 
20140
 | 
    83  | 
    and 3: "mono(f)"
  | 
| 
 | 
    84  | 
  shows "a : gfp(f)"
  | 
| 
 | 
    85  | 
  apply (rule coinduct)
  | 
| 
 | 
    86  | 
   prefer 2
  | 
| 
 | 
    87  | 
   apply (rule coinduct3_lemma [OF 2 3])
  | 
| 
 | 
    88  | 
  apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3])
  | 
| 
 | 
    89  | 
  using 1 apply blast
  | 
| 
 | 
    90  | 
  done
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
  | 
| 
62020
 | 
    93  | 
subsection \<open>Definition forms of \<open>gfp_Tarski\<close>, to control unfolding\<close>
  | 
| 
20140
 | 
    94  | 
  | 
| 
58977
 | 
    95  | 
lemma def_gfp_Tarski: "\<lbrakk>h == gfp(f); mono(f)\<rbrakk> \<Longrightarrow> h = f(h)"
  | 
| 
20140
 | 
    96  | 
  apply unfold
  | 
| 
 | 
    97  | 
  apply (erule gfp_Tarski)
  | 
| 
 | 
    98  | 
  done
  | 
| 
 | 
    99  | 
  | 
| 
58977
 | 
   100  | 
lemma def_coinduct: "\<lbrakk>h == gfp(f); a:A; A <= f(A)\<rbrakk> \<Longrightarrow> a: h"
  | 
| 
20140
 | 
   101  | 
  apply unfold
  | 
| 
 | 
   102  | 
  apply (erule coinduct)
  | 
| 
 | 
   103  | 
  apply assumption
  | 
| 
 | 
   104  | 
  done
  | 
| 
 | 
   105  | 
  | 
| 
58977
 | 
   106  | 
lemma def_coinduct2: "\<lbrakk>h == gfp(f); a:A; A <= f(A) Un h; mono(f)\<rbrakk> \<Longrightarrow> a: h"
  | 
| 
20140
 | 
   107  | 
  apply unfold
  | 
| 
 | 
   108  | 
  apply (erule coinduct2)
  | 
| 
 | 
   109  | 
   apply assumption
  | 
| 
 | 
   110  | 
  apply assumption
  | 
| 
 | 
   111  | 
  done
  | 
| 
 | 
   112  | 
  | 
| 
58977
 | 
   113  | 
lemma def_coinduct3: "\<lbrakk>h == gfp(f); a:A; A <= f(lfp(\<lambda>x. f(x) Un A Un h)); mono(f)\<rbrakk> \<Longrightarrow> a: h"
  | 
| 
20140
 | 
   114  | 
  apply unfold
  | 
| 
 | 
   115  | 
  apply (erule coinduct3)
  | 
| 
 | 
   116  | 
   apply assumption
  | 
| 
 | 
   117  | 
  apply assumption
  | 
| 
 | 
   118  | 
  done
  | 
| 
 | 
   119  | 
  | 
| 
 | 
   120  | 
(*Monotonicity of gfp!*)
  | 
| 
58977
 | 
   121  | 
lemma gfp_mono: "\<lbrakk>mono(f); \<And>Z. f(Z) <= g(Z)\<rbrakk> \<Longrightarrow> gfp(f) <= gfp(g)"
  | 
| 
20140
 | 
   122  | 
  apply (rule gfp_upperbound)
  | 
| 
 | 
   123  | 
  apply (rule subset_trans)
  | 
| 
 | 
   124  | 
   apply (rule gfp_lemma2)
  | 
| 
 | 
   125  | 
   apply assumption
  | 
| 
 | 
   126  | 
  apply (erule meta_spec)
  | 
| 
 | 
   127  | 
  done
  | 
| 
17456
 | 
   128  | 
  | 
| 
0
 | 
   129  | 
end
  |