expanded tabs
authorclasohm
Mon, 05 Feb 1996 14:44:09 +0100
changeset 1474 3f7d67927fe2
parent 1473 e8d4606e6502
child 1475 7f5a4cd08209
expanded tabs
src/CCL/CCL.thy
src/CCL/Fix.thy
src/CCL/Gfp.thy
src/CCL/Hered.thy
src/CCL/Lfp.thy
src/CCL/Term.thy
src/CCL/Trancl.thy
src/CCL/Type.thy
src/CCL/Wfd.thy
src/CCL/ex/Flag.thy
src/CCL/ex/List.thy
src/CCL/ex/Nat.thy
src/CCL/ex/Stream.thy
src/CTT/Arith.thy
src/CTT/Bool.thy
src/LCF/LCF.thy
src/LK/LK.thy
src/Modal/Modal0.thy
src/Modal/S4.thy
src/Modal/S43.thy
src/Modal/T.thy
--- a/src/CCL/CCL.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/CCL.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/ccl.thy
+(*  Title:      CCL/ccl.thy
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1993  University of Cambridge
 
 Classical Computational Logic for Untyped Lambda Calculus with reduction to 
--- a/src/CCL/Fix.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Fix.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/Lazy/fix.thy
+(*  Title:      CCL/Lazy/fix.thy
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1993  University of Cambridge
 
 Tentative attempt at including fixed point induction.
@@ -11,7 +11,7 @@
 
 consts
 
-  idgen      ::	      "[i]=>i"
+  idgen      ::       "[i]=>i"
   INCL      :: "[i=>o]=>o"
 
 rules
--- a/src/CCL/Gfp.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Gfp.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	HOL/gfp.thy
+(*  Title:      HOL/gfp.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 Greatest fixed points
--- a/src/CCL/Hered.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Hered.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/hered.thy
+(*  Title:      CCL/hered.thy
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1993  University of Cambridge
 
 Hereditary Termination - cf. Martin Lo\"f
--- a/src/CCL/Lfp.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Lfp.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	HOL/lfp.thy
+(*  Title:      HOL/lfp.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1992  University of Cambridge
 
 The Knaster-Tarski Theorem
--- a/src/CCL/Term.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Term.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/terms.thy
+(*  Title:      CCL/terms.thy
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1993  University of Cambridge
 
 Definitions of usual program constructs in CCL.
@@ -38,16 +38,16 @@
   letrec3    :: "[[i,i,i,i=>i=>i=>i]=>i,(i=>i=>i=>i)=>i]=>i"  
 
   "@let"     :: "[idt,i,i]=>i"             ("(3let _ be _/ in _)"
-  			[0,0,60] 60)
+                        [0,0,60] 60)
 
   "@letrec"  :: "[idt,idt,i,i]=>i"         ("(3letrec _ _ be _/ in _)"
-  			[0,0,0,60] 60)
+                        [0,0,0,60] 60)
 
   "@letrec2" :: "[idt,idt,idt,i,i]=>i"     ("(3letrec _ _ _ be _/ in _)"
-  			[0,0,0,0,60] 60)
+                        [0,0,0,0,60] 60)
 
   "@letrec3" :: "[idt,idt,idt,idt,i,i]=>i" ("(3letrec _ _ _ _ be _/ in _)"
-  			[0,0,0,0,0,60] 60)
+                        [0,0,0,0,0,60] 60)
 
   napply     :: "[i=>i,i,i]=>i"            ("(_ ^ _ ` _)" [56,56,56] 56)
 
@@ -66,7 +66,7 @@
   succ_def               "succ(n) == inr(n)"
   ncase_def         "ncase(n,b,c) == when(n,%x.b,%y.c(y))"
   nrec_def          " nrec(n,b,c) == letrec g x be ncase(x,b,%y.c(y,g(y))) in g(n)"
-  nil_def	              "[] == inl(one)"
+  nil_def                     "[] == inl(one)"
   cons_def                   "h$t == inr(<h,t>)"
   lcase_def         "lcase(l,b,c) == when(l,%x.b,%y.split(y,c))"
   lrec_def           "lrec(l,b,c) == letrec g x be lcase(x,b,%h t.c(h,t,g(t))) in g(l)"
--- a/src/CCL/Trancl.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Trancl.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/trancl.thy
+(*  Title:      CCL/trancl.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Transitive closure of a relation
@@ -9,20 +9,20 @@
 Trancl = CCL +
 
 consts
-    trans   :: "i set => o" 	              (*transitivity predicate*)
-    id	    :: "i set"
-    rtrancl :: "i set => i set"	              ("(_^*)" [100] 100)
-    trancl  :: "i set => i set"	              ("(_^+)" [100] 100)  
-    O	    :: "[i set,i set] => i set"       (infixr 60)
+    trans   :: "i set => o"                   (*transitivity predicate*)
+    id      :: "i set"
+    rtrancl :: "i set => i set"               ("(_^*)" [100] 100)
+    trancl  :: "i set => i set"               ("(_^+)" [100] 100)  
+    O       :: "[i set,i set] => i set"       (infixr 60)
 
 rules   
 
-trans_def	"trans(r) == (ALL x y z. <x,y>:r --> <y,z>:r --> <x,z>:r)"
-comp_def	(*composition of relations*)
-		"r O s == {xz. EX x y z. xz = <x,z> & <x,y>:s & <y,z>:r}"
-id_def		(*the identity relation*)
-		"id == {p. EX x. p = <x,x>}"
-rtrancl_def	"r^* == lfp(%s. id Un (r O s))"
-trancl_def	"r^+ == r O rtrancl(r)"
+trans_def       "trans(r) == (ALL x y z. <x,y>:r --> <y,z>:r --> <x,z>:r)"
+comp_def        (*composition of relations*)
+                "r O s == {xz. EX x y z. xz = <x,z> & <x,y>:s & <y,z>:r}"
+id_def          (*the identity relation*)
+                "id == {p. EX x. p = <x,x>}"
+rtrancl_def     "r^* == lfp(%s. id Un (r O s))"
+trancl_def      "r^+ == r O rtrancl(r)"
 
 end
--- a/src/CCL/Type.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Type.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -28,10 +28,10 @@
   SPLIT         :: "[i, [i, i] => i set] => i set"
 
   "@Pi"         :: "[idt, i set, i set] => i set"    ("(3PROD _:_./ _)"
-  				[0,0,60] 60)
+                                [0,0,60] 60)
 
   "@Sigma"      :: "[idt, i set, i set] => i set"    ("(3SUM _:_./ _)"
-  				[0,0,60] 60)
+                                [0,0,60] 60)
   
   "@->"         :: "[i set, i set] => i set"         ("(_ ->/ _)"  [54, 53] 53)
   "@*"          :: "[i set, i set] => i set"         ("(_ */ _)" [56, 55] 55)
--- a/src/CCL/Wfd.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/Wfd.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/wfd.thy
+(*  Title:      CCL/wfd.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Well-founded relations in CCL.
--- a/src/CCL/ex/Flag.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/ex/Flag.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/ex/flag.thy
+(*  Title:      CCL/ex/flag.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Dutch national flag program - except that the point of Dijkstra's example was to use 
--- a/src/CCL/ex/List.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/ex/List.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/ex/list.thy
+(*  Title:      CCL/ex/list.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Programs defined over lists.
--- a/src/CCL/ex/Nat.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/ex/Nat.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/ex/nat.thy
+(*  Title:      CCL/ex/nat.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Programs defined over the natural numbers
--- a/src/CCL/ex/Stream.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CCL/ex/Stream.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CCL/ex/stream.thy
+(*  Title:      CCL/ex/stream.thy
     ID:         $Id$
-    Author: 	Martin Coen, Cambridge University Computer Laboratory
+    Author:     Martin Coen, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Programs defined over streams.
--- a/src/CTT/Arith.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CTT/Arith.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CTT/arith
+(*  Title:      CTT/arith
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
 
 Arithmetic operators and their definitions
@@ -11,8 +11,8 @@
 
 Arith = CTT +
 
-consts "#+","-","|-|"	:: "[i,i]=>i"	(infixr 65)
-       "#*",div,mod     :: "[i,i]=>i"	(infixr 70)
+consts "#+","-","|-|"   :: "[i,i]=>i"   (infixr 65)
+       "#*",div,mod     :: "[i,i]=>i"   (infixr 70)
 
 rules
   add_def     "a#+b == rec(a, b, %u v.succ(v))"  
--- a/src/CTT/Bool.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/CTT/Bool.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	CTT/bool
+(*  Title:      CTT/bool
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1991  University of Cambridge
 
 The two-element type (booleans and conditionals)
@@ -8,12 +8,12 @@
 
 Bool = CTT +
 
-consts Bool		:: "t"
-       true,false	:: "i"
-       cond		:: "[i,i,i]=>i"
+consts Bool             :: "t"
+       true,false       :: "i"
+       cond             :: "[i,i,i]=>i"
 rules
-  Bool_def	"Bool == T+T"
-  true_def	"true == inl(tt)"
-  false_def	"false == inr(tt)"
-  cond_def	"cond(a,b,c) == when(a, %u.b, %u.c)"
+  Bool_def      "Bool == T+T"
+  true_def      "true == inl(tt)"
+  false_def     "false == inr(tt)"
+  cond_def      "cond(a,b,c) == when(a, %u.b, %u.c)"
 end
--- a/src/LCF/LCF.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/LCF/LCF.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	LCF/lcf.thy
+(*  Title:      LCF/lcf.thy
     ID:         $Id$
-    Author: 	Tobias Nipkow
+    Author:     Tobias Nipkow
     Copyright   1992  University of Cambridge
 
 Natural Deduction Rules for LCF
@@ -15,61 +15,61 @@
 types
  tr
  void
- ('a,'b) "*"		(infixl 6)
- ('a,'b) "+"		(infixl 5)
+ ('a,'b) "*"            (infixl 6)
+ ('a,'b) "+"            (infixl 5)
 
 arities
  fun, "*", "+" :: (cpo,cpo)cpo
  tr,void       :: cpo
 
 consts
- UU	:: "'a"
- TT,FF	:: "tr"
- FIX	:: "('a => 'a) => 'a"
- FST	:: "'a*'b => 'a"
- SND	:: "'a*'b => 'b"
+ UU     :: "'a"
+ TT,FF  :: "tr"
+ FIX    :: "('a => 'a) => 'a"
+ FST    :: "'a*'b => 'a"
+ SND    :: "'a*'b => 'b"
  INL    :: "'a => 'a+'b"
  INR    :: "'b => 'a+'b"
  WHEN   :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
- adm	:: "('a => o) => o"
- VOID	:: "void"		("'(')")
- PAIR	:: "['a,'b] => 'a*'b"	("(1<_,/_>)" [0,0] 100)
- COND	:: "[tr,'a,'a] => 'a"	("(_ =>/ (_ |/ _))" [60,60,60] 60)
- "<<"	:: "['a,'a] => o"	(infixl 50)
+ adm    :: "('a => o) => o"
+ VOID   :: "void"               ("'(')")
+ PAIR   :: "['a,'b] => 'a*'b"   ("(1<_,/_>)" [0,0] 100)
+ COND   :: "[tr,'a,'a] => 'a"   ("(_ =>/ (_ |/ _))" [60,60,60] 60)
+ "<<"   :: "['a,'a] => o"       (infixl 50)
 rules
   (** DOMAIN THEORY **)
 
-  eq_def	"x=y == x << y & y << x"
+  eq_def        "x=y == x << y & y << x"
 
-  less_trans	"[| x << y; y << z |] ==> x << z"
+  less_trans    "[| x << y; y << z |] ==> x << z"
 
-  less_ext	"(ALL x. f(x) << g(x)) ==> f << g"
+  less_ext      "(ALL x. f(x) << g(x)) ==> f << g"
 
-  mono		"[| f << g; x << y |] ==> f(x) << g(y)"
+  mono          "[| f << g; x << y |] ==> f(x) << g(y)"
 
-  minimal	"UU << x"
+  minimal       "UU << x"
 
-  FIX_eq	"f(FIX(f)) = FIX(f)"
+  FIX_eq        "f(FIX(f)) = FIX(f)"
 
   (** TR **)
 
-  tr_cases	"p=UU | p=TT | p=FF"
+  tr_cases      "p=UU | p=TT | p=FF"
 
   not_TT_less_FF "~ TT << FF"
   not_FF_less_TT "~ FF << TT"
   not_TT_less_UU "~ TT << UU"
   not_FF_less_UU "~ FF << UU"
 
-  COND_UU	"UU => x | y  =  UU"
-  COND_TT	"TT => x | y  =  x"
-  COND_FF	"FF => x | y  =  y"
+  COND_UU       "UU => x | y  =  UU"
+  COND_TT       "TT => x | y  =  x"
+  COND_FF       "FF => x | y  =  y"
 
   (** PAIRS **)
 
-  surj_pairing	"<FST(z),SND(z)> = z"
+  surj_pairing  "<FST(z),SND(z)> = z"
 
-  FST	"FST(<x,y>) = x"
-  SND	"SND(<x,y>) = y"
+  FST   "FST(<x,y>) = x"
+  SND   "SND(<x,y>) = y"
 
   (*** STRICT SUM ***)
 
@@ -88,23 +88,23 @@
 
   (** VOID **)
 
-  void_cases	"(x::void) = UU"
+  void_cases    "(x::void) = UU"
 
   (** INDUCTION **)
 
-  induct	"[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
+  induct        "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
 
   (** Admissibility / Chain Completeness **)
   (* All rules can be found on pages 199--200 of Larry's LCF book.
      Note that "easiness" of types is not taken into account
      because it cannot be expressed schematically; flatness could be. *)
 
-  adm_less	"adm(%x.t(x) << u(x))"
-  adm_not_less	"adm(%x.~ t(x) << u)"
+  adm_less      "adm(%x.t(x) << u(x))"
+  adm_not_less  "adm(%x.~ t(x) << u)"
   adm_not_free  "adm(%x.A)"
-  adm_subst	"adm(P) ==> adm(%x.P(t(x)))"
-  adm_conj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))"
-  adm_disj	"[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))"
-  adm_imp	"[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))"
-  adm_all	"(!!y.adm(P(y))) ==> adm(%x.ALL y.P(y,x))"
+  adm_subst     "adm(P) ==> adm(%x.P(t(x)))"
+  adm_conj      "[| adm(P); adm(Q) |] ==> adm(%x.P(x)&Q(x))"
+  adm_disj      "[| adm(P); adm(Q) |] ==> adm(%x.P(x)|Q(x))"
+  adm_imp       "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x.P(x)-->Q(x))"
+  adm_all       "(!!y.adm(P(y))) ==> adm(%x.ALL y.P(y,x))"
 end
--- a/src/LK/LK.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/LK/LK.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	LK/lk.thy
+(*  Title:      LK/lk.thy
     ID:         $Id$
-    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1993  University of Cambridge
 
 Classical First-Order Sequent Calculus
@@ -19,51 +19,51 @@
  o :: logic
 
 consts
- True,False	:: "o"
- "="		:: "['a,'a] => o"	(infixl 50)
- "Not"		:: "o => o"		("~ _" [40] 40)
- "&"		:: "[o,o] => o"		(infixr 35)
- "|"		:: "[o,o] => o"		(infixr 30)
- "-->","<->"	:: "[o,o] => o"		(infixr 25)
- The		:: "('a => o) => 'a"	(binder "THE " 10)
- All		:: "('a => o) => o"	(binder "ALL " 10)
- Ex		:: "('a => o) => o"	(binder "EX " 10)
+ True,False     :: "o"
+ "="            :: "['a,'a] => o"       (infixl 50)
+ "Not"          :: "o => o"             ("~ _" [40] 40)
+ "&"            :: "[o,o] => o"         (infixr 35)
+ "|"            :: "[o,o] => o"         (infixr 30)
+ "-->","<->"    :: "[o,o] => o"         (infixr 25)
+ The            :: "('a => o) => 'a"    (binder "THE " 10)
+ All            :: "('a => o) => o"     (binder "ALL " 10)
+ Ex             :: "('a => o) => o"     (binder "EX " 10)
 
  (*Representation of sequents*)
- Trueprop	:: "[sobj=>sobj,sobj=>sobj] => prop"
- Seqof		:: "o => sobj=>sobj"
- "@Trueprop"	:: "[sequence,sequence] => prop" ("((_)/ |- (_))" [6,6] 5)
- "@MtSeq"	:: "sequence"				("" [] 1000)
- "@NmtSeq"	:: "[seqobj,seqcont] => sequence"	("__" [] 1000)
- "@MtSeqCont"	:: "seqcont"				("" [] 1000)
- "@SeqCont"	:: "[seqobj,seqcont] => seqcont"	(",/ __" [] 1000)
- ""		:: "o => seqobj"			("_" [] 1000)
- "@SeqId"	:: "id => seqobj"			("$_" [] 1000)
- "@SeqVar"	:: "var => seqobj"			("$_")
+ Trueprop       :: "[sobj=>sobj,sobj=>sobj] => prop"
+ Seqof          :: "o => sobj=>sobj"
+ "@Trueprop"    :: "[sequence,sequence] => prop" ("((_)/ |- (_))" [6,6] 5)
+ "@MtSeq"       :: "sequence"                           ("" [] 1000)
+ "@NmtSeq"      :: "[seqobj,seqcont] => sequence"       ("__" [] 1000)
+ "@MtSeqCont"   :: "seqcont"                            ("" [] 1000)
+ "@SeqCont"     :: "[seqobj,seqcont] => seqcont"        (",/ __" [] 1000)
+ ""             :: "o => seqobj"                        ("_" [] 1000)
+ "@SeqId"       :: "id => seqobj"                       ("$_" [] 1000)
+ "@SeqVar"      :: "var => seqobj"                      ("$_")
 
 rules
   (*Structural rules*)
 
-  basic	"$H, P, $G |- $E, P, $F"
+  basic "$H, P, $G |- $E, P, $F"
 
-  thinR	"$H |- $E, $F ==> $H |- $E, P, $F"
-  thinL	"$H, $G |- $E ==> $H, P, $G |- $E"
+  thinR "$H |- $E, $F ==> $H |- $E, P, $F"
+  thinL "$H, $G |- $E ==> $H, P, $G |- $E"
 
-  cut	"[| $H |- $E, P;  $H, P |- $E |] ==> $H |- $E"
+  cut   "[| $H |- $E, P;  $H, P |- $E |] ==> $H |- $E"
 
   (*Propositional rules*)
 
-  conjR	"[| $H|- $E, P, $F;  $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
-  conjL	"$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
+  conjR "[| $H|- $E, P, $F;  $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
+  conjL "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
 
-  disjR	"$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
-  disjL	"[| $H, P, $G |- $E;  $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
+  disjR "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
+  disjL "[| $H, P, $G |- $E;  $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
 
-  impR	"$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
-  impL	"[| $H,$G |- $E,P;  $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
+  impR  "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
+  impL  "[| $H,$G |- $E,P;  $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
 
-  notR	"$H, P |- $E, $F ==> $H |- $E, ~P, $F"
-  notL	"$H, $G |- $E, P ==> $H, ~P, $G |- $E"
+  notR  "$H, P |- $E, $F ==> $H |- $E, ~P, $F"
+  notL  "$H, $G |- $E, P ==> $H, ~P, $G |- $E"
 
   FalseL "$H, False, $G |- $E"
 
@@ -72,15 +72,15 @@
 
   (*Quantifiers*)
 
-  allR	"(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
-  allL	"$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
+  allR  "(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
+  allL  "$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
 
-  exR	"$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
-  exL	"(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
+  exR   "$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
+  exL   "(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
 
   (*Equality*)
 
-  refl	"$H |- $E, a=a, $F"
+  refl  "$H |- $E, a=a, $F"
   sym   "$H |- $E, a=b, $F ==> $H |- $E, b=a, $F"
   trans "[| $H|- $E, a=b, $F;  $H|- $E, b=c, $F |] ==> $H|- $E, a=c, $F"
 
--- a/src/Modal/Modal0.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/Modal/Modal0.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,24 +1,24 @@
-(*  Title: 	91/Modal/modal0
+(*  Title:      91/Modal/modal0
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1991  University of Cambridge
 *)
 
 Modal0 = LK +
 
 consts
-  box		:: "o=>o"	("[]_" [50] 50)
-  dia		:: "o=>o"	("<>_" [50] 50)
-  "--<",">-<"	:: "[o,o]=>o"	(infixr 25)
-  "@Lstar"	:: "[sequence,sequence]=>prop"	("(_)|L>(_)" [6,6] 5)
-  "@Rstar"	:: "[sequence,sequence]=>prop"	("(_)|R>(_)" [6,6] 5)
-  Lstar,Rstar	:: "[sobj=>sobj,sobj=>sobj]=>prop"
+  box           :: "o=>o"       ("[]_" [50] 50)
+  dia           :: "o=>o"       ("<>_" [50] 50)
+  "--<",">-<"   :: "[o,o]=>o"   (infixr 25)
+  "@Lstar"      :: "[sequence,sequence]=>prop"  ("(_)|L>(_)" [6,6] 5)
+  "@Rstar"      :: "[sequence,sequence]=>prop"  ("(_)|R>(_)" [6,6] 5)
+  Lstar,Rstar   :: "[sobj=>sobj,sobj=>sobj]=>prop"
 
 rules
   (* Definitions *)
 
-  strimp_def	"P --< Q == [](P --> Q)"
-  streqv_def	"P >-< Q == (P --< Q) & (Q --< P)"
+  strimp_def    "P --< Q == [](P --> Q)"
+  streqv_def    "P >-< Q == (P --< Q) & (Q --< P)"
 end
 
 ML
--- a/src/Modal/S4.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/Modal/S4.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	91/Modal/S4
+(*  Title:      91/Modal/S4
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1991  University of Cambridge
 *)
 
--- a/src/Modal/S43.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/Modal/S43.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	91/Modal/S43
+(*  Title:      91/Modal/S43
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1991  University of Cambridge
 
 This implements Rajeev Gore's sequent calculus for S43.
@@ -9,10 +9,10 @@
 S43 = Modal0 +
 
 consts
-  S43pi	:: "[sobj=>sobj, sobj=>sobj, sobj=>sobj,
-	     sobj=>sobj, sobj=>sobj, sobj=>sobj] => prop"
+  S43pi :: "[sobj=>sobj, sobj=>sobj, sobj=>sobj,
+             sobj=>sobj, sobj=>sobj, sobj=>sobj] => prop"
   "@S43pi" :: "[sequence, sequence, sequence, sequence, sequence,
-		sequence] => prop" ("S43pi((_);(_);(_);(_);(_);(_))" [] 5)
+                sequence] => prop" ("S43pi((_);(_);(_);(_);(_);(_))" [] 5)
 
 rules
 (* Definition of the star operation using a set of Horn clauses  *)
@@ -69,9 +69,9 @@
   val tr' = LK.seq_tr1';
 
   fun s43pi_tr[s1,s2,s3,s4,s5,s6]=
-	Const(S43pi,dummyT)$tr s1$tr s2$tr s3$tr s4$tr s5$tr s6;
+        Const(S43pi,dummyT)$tr s1$tr s2$tr s3$tr s4$tr s5$tr s6;
   fun s43pi_tr'[Abs(_,_,s1),Abs(_,_,s2),Abs(_,_,s3),
-		Abs(_,_,s4),Abs(_,_,s5),Abs(_,_,s6)] =
+                Abs(_,_,s4),Abs(_,_,s5),Abs(_,_,s6)] =
         Const(SS43pi,dummyT)$tr' s1$tr' s2$tr' s3$tr' s4$tr' s5$tr' s6;
 in
 val parse_translation = [(SS43pi,s43pi_tr)];
--- a/src/Modal/T.thy	Mon Feb 05 13:44:28 1996 +0100
+++ b/src/Modal/T.thy	Mon Feb 05 14:44:09 1996 +0100
@@ -1,6 +1,6 @@
-(*  Title: 	91/Modal/T
+(*  Title:      91/Modal/T
     ID:         $Id$
-    Author: 	Martin Coen
+    Author:     Martin Coen
     Copyright   1991  University of Cambridge
 *)