--- a/src/FOL/ex/List.thy Fri Feb 02 12:05:24 1996 +0100
+++ b/src/FOL/ex/List.thy Mon Feb 05 13:44:28 1996 +0100
@@ -1,6 +1,6 @@
-(* Title: FOL/ex/list
+(* Title: FOL/ex/list
ID: $Id$
- Author: Tobias Nipkow
+ Author: Tobias Nipkow
Copyright 1991 University of Cambridge
Examples of simplification and induction on lists
@@ -12,14 +12,14 @@
arities list :: (term)term
consts
- hd :: 'a list => 'a
- tl :: 'a list => 'a list
- forall :: ['a list, 'a => o] => o
- len :: 'a list => nat
- at :: ['a list, nat] => 'a
- "[]" :: ('a list) ("[]")
- "." :: ['a, 'a list] => 'a list (infixr 80)
- "++" :: ['a list, 'a list] => 'a list (infixr 70)
+ hd :: 'a list => 'a
+ tl :: 'a list => 'a list
+ forall :: ['a list, 'a => o] => o
+ len :: 'a list => nat
+ at :: ['a list, nat] => 'a
+ "[]" :: ('a list) ("[]")
+ "." :: ['a, 'a list] => 'a list (infixr 80)
+ "++" :: ['a list, 'a list] => 'a list (infixr 70)
rules
list_ind "[| P([]); ALL x l. P(l)-->P(x.l) |] ==> All(P)"
@@ -30,12 +30,12 @@
list_distinct1 "~[] = x.l"
list_distinct2 "~x.l = []"
- list_free "x.l = x'.l' <-> x=x' & l=l'"
+ list_free "x.l = x'.l' <-> x=x' & l=l'"
- app_nil "[]++l = l"
- app_cons "(x.l)++l' = x.(l++l')"
- tl_eq "tl(m.q) = q"
- hd_eq "hd(m.q) = m"
+ app_nil "[]++l = l"
+ app_cons "(x.l)++l' = x.(l++l')"
+ tl_eq "tl(m.q) = q"
+ hd_eq "hd(m.q) = m"
forall_nil "forall([],P)"
forall_cons "forall(x.l,P) <-> P(x) & forall(l,P)"
--- a/src/FOL/ex/Nat.thy Fri Feb 02 12:05:24 1996 +0100
+++ b/src/FOL/ex/Nat.thy Mon Feb 05 13:44:28 1996 +0100
@@ -1,6 +1,6 @@
-(* Title: FOL/ex/nat.thy
+(* Title: FOL/ex/nat.thy
ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
Examples for the manual "Introduction to Isabelle"
--- a/src/FOL/ex/Nat2.thy Fri Feb 02 12:05:24 1996 +0100
+++ b/src/FOL/ex/Nat2.thy Mon Feb 05 13:44:28 1996 +0100
@@ -1,6 +1,6 @@
-(* Title: FOL/ex/nat2.thy
+(* Title: FOL/ex/nat2.thy
ID: $Id$
- Author: Tobias Nipkow
+ Author: Tobias Nipkow
Copyright 1994 University of Cambridge
Theory for examples of simplification and induction on the natural numbers
@@ -13,28 +13,28 @@
consts
succ,pred :: nat => nat
- "0" :: nat ("0")
+ "0" :: nat ("0")
"+" :: [nat,nat] => nat (infixr 90)
"<","<=" :: [nat,nat] => o (infixr 70)
rules
- pred_0 "pred(0) = 0"
- pred_succ "pred(succ(m)) = m"
+ pred_0 "pred(0) = 0"
+ pred_succ "pred(succ(m)) = m"
- plus_0 "0+n = n"
- plus_succ "succ(m)+n = succ(m+n)"
+ plus_0 "0+n = n"
+ plus_succ "succ(m)+n = succ(m+n)"
- nat_distinct1 "~ 0=succ(n)"
- nat_distinct2 "~ succ(m)=0"
- succ_inject "succ(m)=succ(n) <-> m=n"
+ nat_distinct1 "~ 0=succ(n)"
+ nat_distinct2 "~ succ(m)=0"
+ succ_inject "succ(m)=succ(n) <-> m=n"
- leq_0 "0 <= n"
- leq_succ_succ "succ(m)<=succ(n) <-> m<=n"
- leq_succ_0 "~ succ(m) <= 0"
+ leq_0 "0 <= n"
+ leq_succ_succ "succ(m)<=succ(n) <-> m<=n"
+ leq_succ_0 "~ succ(m) <= 0"
- lt_0_succ "0 < succ(n)"
- lt_succ_succ "succ(m)<succ(n) <-> m<n"
+ lt_0_succ "0 < succ(n)"
+ lt_succ_succ "succ(m)<succ(n) <-> m<n"
lt_0 "~ m < 0"
- nat_ind "[| P(0); ALL n. P(n)-->P(succ(n)) |] ==> All(P)"
+ nat_ind "[| P(0); ALL n. P(n)-->P(succ(n)) |] ==> All(P)"
end
--- a/src/FOL/ex/Prolog.thy Fri Feb 02 12:05:24 1996 +0100
+++ b/src/FOL/ex/Prolog.thy Mon Feb 05 13:44:28 1996 +0100
@@ -1,6 +1,6 @@
-(* Title: FOL/ex/prolog.thy
+(* Title: FOL/ex/prolog.thy
ID: $Id$
- Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1992 University of Cambridge
First-Order Logic: PROLOG examples
--- a/src/FOL/ex/foundn.ML Fri Feb 02 12:05:24 1996 +0100
+++ b/src/FOL/ex/foundn.ML Mon Feb 05 13:44:28 1996 +0100
@@ -1,4 +1,4 @@
-(* Title: FOL/ex/foundn
+(* Title: FOL/ex/foundn.ML
ID: $Id$
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1991 University of Cambridge
@@ -6,7 +6,7 @@
Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover
*)
-writeln"File FOL/ex/foundn.";
+writeln"File FOL/ex/foundn.ML";
goal IFOL.thy "A&B --> (C-->A&C)";
by (rtac impI 1);