| author | wenzelm | 
| Wed, 23 Nov 2016 16:15:17 +0100 | |
| changeset 64521 | 1aef5a0e18d7 | 
| parent 63572 | c0cbfd2b5a45 | 
| child 67399 | eab6ce8368fa | 
| permissions | -rw-r--r-- | 
| 63572 | 1 | (* Title: HOL/Zorn.thy | 
| 2 | Author: Jacques D. Fleuriot | |
| 3 | Author: Tobias Nipkow, TUM | |
| 4 | Author: Christian Sternagel, JAIST | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 5 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 6 | Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF). | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 7 | The well-ordering theorem. | 
| 14706 | 8 | *) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Zorn's Lemma\<close> | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 11 | |
| 15131 | 12 | theory Zorn | 
| 63572 | 13 | imports Order_Relation Hilbert_Choice | 
| 15131 | 14 | begin | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 15 | |
| 60758 | 16 | subsection \<open>Zorn's Lemma for the Subset Relation\<close> | 
| 52181 | 17 | |
| 60758 | 18 | subsubsection \<open>Results that do not require an order\<close> | 
| 52181 | 19 | |
| 61799 | 20 | text \<open>Let \<open>P\<close> be a binary predicate on the set \<open>A\<close>.\<close> | 
| 52181 | 21 | locale pred_on = | 
| 22 | fixes A :: "'a set" | |
| 63572 | 23 | and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) | 
| 52181 | 24 | begin | 
| 25 | ||
| 63572 | 26 | abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) | 
| 27 | where "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y" | |
| 28 | ||
| 29 | text \<open>A chain is a totally ordered subset of \<open>A\<close>.\<close> | |
| 30 | definition chain :: "'a set \<Rightarrow> bool" | |
| 31 | where "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)" | |
| 52181 | 32 | |
| 63572 | 33 | text \<open> | 
| 34 | We call a chain that is a proper superset of some set \<open>X\<close>, | |
| 35 | but not necessarily a chain itself, a superchain of \<open>X\<close>. | |
| 36 | \<close> | |
| 37 | abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50) | |
| 38 | where "X <c C \<equiv> chain C \<and> X \<subset> C" | |
| 52181 | 39 | |
| 60758 | 40 | text \<open>A maximal chain is a chain that does not have a superchain.\<close> | 
| 63572 | 41 | definition maxchain :: "'a set \<Rightarrow> bool" | 
| 42 | where "maxchain C \<longleftrightarrow> chain C \<and> (\<nexists>S. C <c S)" | |
| 52181 | 43 | |
| 63572 | 44 | text \<open> | 
| 45 | We define the successor of a set to be an arbitrary | |
| 46 | superchain, if such exists, or the set itself, otherwise. | |
| 47 | \<close> | |
| 48 | definition suc :: "'a set \<Rightarrow> 'a set" | |
| 49 | where "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))" | |
| 52181 | 50 | |
| 63572 | 51 | lemma chainI [Pure.intro?]: "C \<subseteq> A \<Longrightarrow> (\<And>x y. x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x) \<Longrightarrow> chain C" | 
| 52181 | 52 | unfolding chain_def by blast | 
| 53 | ||
| 63572 | 54 | lemma chain_total: "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | 
| 52181 | 55 | by (simp add: chain_def) | 
| 56 | ||
| 57 | lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X" | |
| 58 | by (simp add: suc_def) | |
| 59 | ||
| 60 | lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X" | |
| 61 | by (simp add: suc_def) | |
| 62 | ||
| 63 | lemma suc_subset: "X \<subseteq> suc X" | |
| 64 | by (auto simp: suc_def maxchain_def intro: someI2) | |
| 65 | ||
| 66 | lemma chain_empty [simp]: "chain {}"
 | |
| 67 | by (auto simp: chain_def) | |
| 68 | ||
| 63572 | 69 | lemma not_maxchain_Some: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)" | 
| 52181 | 70 | by (rule someI_ex) (auto simp: maxchain_def) | 
| 71 | ||
| 63572 | 72 | lemma suc_not_equals: "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C" | 
| 55811 | 73 | using not_maxchain_Some by (auto simp: suc_def) | 
| 52181 | 74 | |
| 75 | lemma subset_suc: | |
| 63572 | 76 | assumes "X \<subseteq> Y" | 
| 77 | shows "X \<subseteq> suc Y" | |
| 52181 | 78 | using assms by (rule subset_trans) (rule suc_subset) | 
| 79 | ||
| 63572 | 80 | text \<open> | 
| 81 |   We build a set @{term \<C>} that is closed under applications
 | |
| 82 |   of @{term suc} and contains the union of all its subsets.
 | |
| 83 | \<close> | |
| 84 | inductive_set suc_Union_closed ("\<C>")
 | |
| 85 | where | |
| 86 | suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" | |
| 87 | | Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>" | |
| 52181 | 88 | |
| 63572 | 89 | text \<open> | 
| 90 | Since the empty set as well as the set itself is a subset of | |
| 91 |   every set, @{term \<C>} contains at least @{term "{} \<in> \<C>"} and
 | |
| 92 |   @{term "\<Union>\<C> \<in> \<C>"}.
 | |
| 93 | \<close> | |
| 94 | lemma suc_Union_closed_empty: "{} \<in> \<C>"
 | |
| 95 | and suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>" | |
| 96 |   using Union [of "{}"] and Union [of "\<C>"] by simp_all
 | |
| 97 | ||
| 98 | text \<open>Thus closure under @{term suc} will hit a maximal chain
 | |
| 99 | eventually, as is shown below.\<close> | |
| 26272 | 100 | |
| 63572 | 101 | lemma suc_Union_closed_induct [consumes 1, case_names suc Union, induct pred: suc_Union_closed]: | 
| 52181 | 102 | assumes "X \<in> \<C>" | 
| 63572 | 103 | and "\<And>X. X \<in> \<C> \<Longrightarrow> Q X \<Longrightarrow> Q (suc X)" | 
| 104 | and "\<And>X. X \<subseteq> \<C> \<Longrightarrow> \<forall>x\<in>X. Q x \<Longrightarrow> Q (\<Union>X)" | |
| 105 | shows "Q X" | |
| 106 | using assms by induct blast+ | |
| 107 | ||
| 108 | lemma suc_Union_closed_cases [consumes 1, case_names suc Union, cases pred: suc_Union_closed]: | |
| 109 | assumes "X \<in> \<C>" | |
| 110 | and "\<And>Y. X = suc Y \<Longrightarrow> Y \<in> \<C> \<Longrightarrow> Q" | |
| 111 | and "\<And>Y. X = \<Union>Y \<Longrightarrow> Y \<subseteq> \<C> \<Longrightarrow> Q" | |
| 52181 | 112 | shows "Q" | 
| 63572 | 113 | using assms by cases simp_all | 
| 52181 | 114 | |
| 60758 | 115 | text \<open>On chains, @{term suc} yields a chain.\<close>
 | 
| 52181 | 116 | lemma chain_suc: | 
| 63572 | 117 | assumes "chain X" | 
| 118 | shows "chain (suc X)" | |
| 52181 | 119 | using assms | 
| 63572 | 120 | by (cases "\<not> chain X \<or> maxchain X") (force simp: suc_def dest: not_maxchain_Some)+ | 
| 52181 | 121 | |
| 122 | lemma chain_sucD: | |
| 63572 | 123 | assumes "chain X" | 
| 124 | shows "suc X \<subseteq> A \<and> chain (suc X)" | |
| 52181 | 125 | proof - | 
| 63572 | 126 | from \<open>chain X\<close> have *: "chain (suc X)" | 
| 127 | by (rule chain_suc) | |
| 128 | then have "suc X \<subseteq> A" | |
| 129 | unfolding chain_def by blast | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 130 | with * show ?thesis by blast | 
| 52181 | 131 | qed | 
| 132 | ||
| 133 | lemma suc_Union_closed_total': | |
| 134 | assumes "X \<in> \<C>" and "Y \<in> \<C>" | |
| 135 | and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y" | |
| 136 | shows "X \<subseteq> Y \<or> suc Y \<subseteq> X" | |
| 60758 | 137 | using \<open>X \<in> \<C>\<close> | 
| 63572 | 138 | proof induct | 
| 52181 | 139 | case (suc X) | 
| 140 | with * show ?case by (blast del: subsetI intro: subset_suc) | |
| 63572 | 141 | next | 
| 142 | case Union | |
| 143 | then show ?case by blast | |
| 144 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 145 | |
| 52181 | 146 | lemma suc_Union_closed_subsetD: | 
| 147 | assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>" | |
| 148 | shows "X = Y \<or> suc Y \<subseteq> X" | |
| 63572 | 149 | using assms(2,3,1) | 
| 52181 | 150 | proof (induct arbitrary: Y) | 
| 151 | case (suc X) | |
| 63572 | 152 | note * = \<open>\<And>Y. Y \<in> \<C> \<Longrightarrow> Y \<subseteq> X \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X\<close> | 
| 60758 | 153 | with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>X \<in> \<C>\<close>] | 
| 63572 | 154 | have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast | 
| 52181 | 155 | then show ?case | 
| 156 | proof | |
| 157 | assume "Y \<subseteq> X" | |
| 60758 | 158 | with * and \<open>Y \<in> \<C>\<close> have "X = Y \<or> suc Y \<subseteq> X" by blast | 
| 52181 | 159 | then show ?thesis | 
| 160 | proof | |
| 63572 | 161 | assume "X = Y" | 
| 162 | then show ?thesis by simp | |
| 52181 | 163 | next | 
| 164 | assume "suc Y \<subseteq> X" | |
| 165 | then have "suc Y \<subseteq> suc X" by (rule subset_suc) | |
| 166 | then show ?thesis by simp | |
| 167 | qed | |
| 168 | next | |
| 169 | assume "suc X \<subseteq> Y" | |
| 60758 | 170 | with \<open>Y \<subseteq> suc X\<close> show ?thesis by blast | 
| 52181 | 171 | qed | 
| 172 | next | |
| 173 | case (Union X) | |
| 174 | show ?case | |
| 175 | proof (rule ccontr) | |
| 176 | assume "\<not> ?thesis" | |
| 60758 | 177 | with \<open>Y \<subseteq> \<Union>X\<close> obtain x y z | 
| 63572 | 178 | where "\<not> suc Y \<subseteq> \<Union>X" | 
| 179 | and "x \<in> X" and "y \<in> x" and "y \<notin> Y" | |
| 180 | and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast | |
| 60758 | 181 | with \<open>X \<subseteq> \<C>\<close> have "x \<in> \<C>" by blast | 
| 63572 | 182 | from Union and \<open>x \<in> X\<close> have *: "\<And>y. y \<in> \<C> \<Longrightarrow> y \<subseteq> x \<Longrightarrow> x = y \<or> suc y \<subseteq> x" | 
| 183 | by blast | |
| 184 | with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>x \<in> \<C>\<close>] have "Y \<subseteq> x \<or> suc x \<subseteq> Y" | |
| 185 | by blast | |
| 52181 | 186 | then show False | 
| 187 | proof | |
| 188 | assume "Y \<subseteq> x" | |
| 60758 | 189 | with * [OF \<open>Y \<in> \<C>\<close>] have "x = Y \<or> suc Y \<subseteq> x" by blast | 
| 52181 | 190 | then show False | 
| 191 | proof | |
| 63572 | 192 | assume "x = Y" | 
| 193 | with \<open>y \<in> x\<close> and \<open>y \<notin> Y\<close> show False by blast | |
| 52181 | 194 | next | 
| 195 | assume "suc Y \<subseteq> x" | |
| 60758 | 196 | with \<open>x \<in> X\<close> have "suc Y \<subseteq> \<Union>X" by blast | 
| 197 | with \<open>\<not> suc Y \<subseteq> \<Union>X\<close> show False by contradiction | |
| 52181 | 198 | qed | 
| 199 | next | |
| 200 | assume "suc x \<subseteq> Y" | |
| 60758 | 201 | moreover from suc_subset and \<open>y \<in> x\<close> have "y \<in> suc x" by blast | 
| 202 | ultimately show False using \<open>y \<notin> Y\<close> by blast | |
| 52181 | 203 | qed | 
| 204 | qed | |
| 205 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 206 | |
| 60758 | 207 | text \<open>The elements of @{term \<C>} are totally ordered by the subset relation.\<close>
 | 
| 52181 | 208 | lemma suc_Union_closed_total: | 
| 209 | assumes "X \<in> \<C>" and "Y \<in> \<C>" | |
| 210 | shows "X \<subseteq> Y \<or> Y \<subseteq> X" | |
| 211 | proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y") | |
| 212 | case True | |
| 213 | with suc_Union_closed_total' [OF assms] | |
| 63572 | 214 | have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast | 
| 215 | with suc_subset [of Y] show ?thesis by blast | |
| 52181 | 216 | next | 
| 217 | case False | |
| 63572 | 218 | then obtain Z where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" | 
| 219 | by blast | |
| 220 | with suc_Union_closed_subsetD and \<open>Y \<in> \<C>\<close> show ?thesis | |
| 221 | by blast | |
| 52181 | 222 | qed | 
| 223 | ||
| 60758 | 224 | text \<open>Once we hit a fixed point w.r.t. @{term suc}, all other elements
 | 
| 63572 | 225 |   of @{term \<C>} are subsets of this fixed point.\<close>
 | 
| 52181 | 226 | lemma suc_Union_closed_suc: | 
| 227 | assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y" | |
| 228 | shows "X \<subseteq> Y" | |
| 63572 | 229 | using \<open>X \<in> \<C>\<close> | 
| 230 | proof induct | |
| 52181 | 231 | case (suc X) | 
| 63572 | 232 | with \<open>Y \<in> \<C>\<close> and suc_Union_closed_subsetD have "X = Y \<or> suc X \<subseteq> Y" | 
| 233 | by blast | |
| 234 | then show ?case | |
| 235 | by (auto simp: \<open>suc Y = Y\<close>) | |
| 236 | next | |
| 237 | case Union | |
| 238 | then show ?case by blast | |
| 239 | qed | |
| 52181 | 240 | |
| 241 | lemma eq_suc_Union: | |
| 242 | assumes "X \<in> \<C>" | |
| 243 | shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>" | |
| 63572 | 244 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 52181 | 245 | proof | 
| 63572 | 246 | assume ?lhs | 
| 247 | then have "\<Union>\<C> \<subseteq> X" | |
| 248 | by (rule suc_Union_closed_suc [OF suc_Union_closed_Union \<open>X \<in> \<C>\<close>]) | |
| 249 | with \<open>X \<in> \<C>\<close> show ?rhs | |
| 250 | by blast | |
| 52181 | 251 | next | 
| 60758 | 252 | from \<open>X \<in> \<C>\<close> have "suc X \<in> \<C>" by (rule suc) | 
| 52181 | 253 | then have "suc X \<subseteq> \<Union>\<C>" by blast | 
| 63572 | 254 | moreover assume ?rhs | 
| 52181 | 255 | ultimately have "suc X \<subseteq> X" by simp | 
| 256 | moreover have "X \<subseteq> suc X" by (rule suc_subset) | |
| 63572 | 257 | ultimately show ?lhs .. | 
| 52181 | 258 | qed | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 259 | |
| 52181 | 260 | lemma suc_in_carrier: | 
| 261 | assumes "X \<subseteq> A" | |
| 262 | shows "suc X \<subseteq> A" | |
| 263 | using assms | |
| 63572 | 264 | by (cases "\<not> chain X \<or> maxchain X") (auto dest: chain_sucD) | 
| 52181 | 265 | |
| 266 | lemma suc_Union_closed_in_carrier: | |
| 267 | assumes "X \<in> \<C>" | |
| 268 | shows "X \<subseteq> A" | |
| 269 | using assms | |
| 63572 | 270 | by induct (auto dest: suc_in_carrier) | 
| 52181 | 271 | |
| 60758 | 272 | text \<open>All elements of @{term \<C>} are chains.\<close>
 | 
| 52181 | 273 | lemma suc_Union_closed_chain: | 
| 274 | assumes "X \<in> \<C>" | |
| 275 | shows "chain X" | |
| 63572 | 276 | using assms | 
| 277 | proof induct | |
| 278 | case (suc X) | |
| 279 | then show ?case | |
| 280 | using not_maxchain_Some by (simp add: suc_def) | |
| 52181 | 281 | next | 
| 282 | case (Union X) | |
| 63572 | 283 | then have "\<Union>X \<subseteq> A" | 
| 284 | by (auto dest: suc_Union_closed_in_carrier) | |
| 52181 | 285 | moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | 
| 286 | proof (intro ballI) | |
| 287 | fix x y | |
| 288 | assume "x \<in> \<Union>X" and "y \<in> \<Union>X" | |
| 63572 | 289 | then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" | 
| 290 | by blast | |
| 291 | with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" | |
| 292 | by blast+ | |
| 293 | with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" | |
| 294 | by blast | |
| 52181 | 295 | then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | 
| 296 | proof | |
| 297 | assume "u \<subseteq> v" | |
| 60758 | 298 | from \<open>chain v\<close> show ?thesis | 
| 52181 | 299 | proof (rule chain_total) | 
| 300 | show "y \<in> v" by fact | |
| 60758 | 301 | show "x \<in> v" using \<open>u \<subseteq> v\<close> and \<open>x \<in> u\<close> by blast | 
| 52181 | 302 | qed | 
| 303 | next | |
| 304 | assume "v \<subseteq> u" | |
| 60758 | 305 | from \<open>chain u\<close> show ?thesis | 
| 52181 | 306 | proof (rule chain_total) | 
| 307 | show "x \<in> u" by fact | |
| 60758 | 308 | show "y \<in> u" using \<open>v \<subseteq> u\<close> and \<open>y \<in> v\<close> by blast | 
| 52181 | 309 | qed | 
| 310 | qed | |
| 311 | qed | |
| 312 | ultimately show ?case unfolding chain_def .. | |
| 313 | qed | |
| 314 | ||
| 60758 | 315 | subsubsection \<open>Hausdorff's Maximum Principle\<close> | 
| 52181 | 316 | |
| 63572 | 317 | text \<open>There exists a maximal totally ordered subset of \<open>A\<close>. (Note that we do not | 
| 318 | require \<open>A\<close> to be partially ordered.)\<close> | |
| 46980 | 319 | |
| 52181 | 320 | theorem Hausdorff: "\<exists>C. maxchain C" | 
| 321 | proof - | |
| 322 | let ?M = "\<Union>\<C>" | |
| 323 | have "maxchain ?M" | |
| 324 | proof (rule ccontr) | |
| 63572 | 325 | assume "\<not> ?thesis" | 
| 52181 | 326 | then have "suc ?M \<noteq> ?M" | 
| 63572 | 327 | using suc_not_equals and suc_Union_closed_chain [OF suc_Union_closed_Union] by simp | 
| 52181 | 328 | moreover have "suc ?M = ?M" | 
| 329 | using eq_suc_Union [OF suc_Union_closed_Union] by simp | |
| 330 | ultimately show False by contradiction | |
| 331 | qed | |
| 332 | then show ?thesis by blast | |
| 333 | qed | |
| 334 | ||
| 60758 | 335 | text \<open>Make notation @{term \<C>} available again.\<close>
 | 
| 63572 | 336 | no_notation suc_Union_closed  ("\<C>")
 | 
| 52181 | 337 | |
| 63572 | 338 | lemma chain_extend: "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
 | 
| 52181 | 339 | unfolding chain_def by blast | 
| 340 | ||
| 63572 | 341 | lemma maxchain_imp_chain: "maxchain C \<Longrightarrow> chain C" | 
| 52181 | 342 | by (simp add: maxchain_def) | 
| 343 | ||
| 344 | end | |
| 345 | ||
| 60758 | 346 | text \<open>Hide constant @{const pred_on.suc_Union_closed}, which was just needed
 | 
| 63572 | 347 | for the proof of Hausforff's maximum principle.\<close> | 
| 52181 | 348 | hide_const pred_on.suc_Union_closed | 
| 349 | ||
| 350 | lemma chain_mono: | |
| 63572 | 351 | assumes "\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 52181 | 352 | and "pred_on.chain A P C" | 
| 353 | shows "pred_on.chain A Q C" | |
| 354 | using assms unfolding pred_on.chain_def by blast | |
| 355 | ||
| 63572 | 356 | |
| 60758 | 357 | subsubsection \<open>Results for the proper subset relation\<close> | 
| 52181 | 358 | |
| 359 | interpretation subset: pred_on "A" "op \<subset>" for A . | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 360 | |
| 52181 | 361 | lemma subset_maxchain_max: | 
| 63572 | 362 | assumes "subset.maxchain A C" | 
| 363 | and "X \<in> A" | |
| 364 | and "\<Union>C \<subseteq> X" | |
| 52181 | 365 | shows "\<Union>C = X" | 
| 366 | proof (rule ccontr) | |
| 367 |   let ?C = "{X} \<union> C"
 | |
| 60758 | 368 | from \<open>subset.maxchain A C\<close> have "subset.chain A C" | 
| 52181 | 369 | and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S" | 
| 370 | by (auto simp: subset.maxchain_def) | |
| 60758 | 371 | moreover have "\<forall>x\<in>C. x \<subseteq> X" using \<open>\<Union>C \<subseteq> X\<close> by auto | 
| 52181 | 372 | ultimately have "subset.chain A ?C" | 
| 60758 | 373 | using subset.chain_extend [of A C X] and \<open>X \<in> A\<close> by auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 374 | moreover assume **: "\<Union>C \<noteq> X" | 
| 60758 | 375 | moreover from ** have "C \<subset> ?C" using \<open>\<Union>C \<subseteq> X\<close> by auto | 
| 52181 | 376 | ultimately show False using * by blast | 
| 377 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 378 | |
| 63572 | 379 | |
| 60758 | 380 | subsubsection \<open>Zorn's lemma\<close> | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 381 | |
| 60758 | 382 | text \<open>If every chain has an upper bound, then there is a maximal set.\<close> | 
| 52181 | 383 | lemma subset_Zorn: | 
| 384 | assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U" | |
| 385 | shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 386 | proof - | |
| 387 | from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. | |
| 63572 | 388 | then have "subset.chain A M" | 
| 389 | by (rule subset.maxchain_imp_chain) | |
| 390 | with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" | |
| 391 | by blast | |
| 52181 | 392 | moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X" | 
| 393 | proof (intro ballI impI) | |
| 394 | fix X | |
| 395 | assume "X \<in> A" and "Y \<subseteq> X" | |
| 396 | show "Y = X" | |
| 397 | proof (rule ccontr) | |
| 63572 | 398 | assume "\<not> ?thesis" | 
| 60758 | 399 | with \<open>Y \<subseteq> X\<close> have "\<not> X \<subseteq> Y" by blast | 
| 400 | from subset.chain_extend [OF \<open>subset.chain A M\<close> \<open>X \<in> A\<close>] and \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> | |
| 63572 | 401 |       have "subset.chain A ({X} \<union> M)"
 | 
| 402 | using \<open>Y \<subseteq> X\<close> by auto | |
| 403 |       moreover have "M \<subset> {X} \<union> M"
 | |
| 404 | using \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> and \<open>\<not> X \<subseteq> Y\<close> by auto | |
| 52181 | 405 | ultimately show False | 
| 60758 | 406 | using \<open>subset.maxchain A M\<close> by (auto simp: subset.maxchain_def) | 
| 52181 | 407 | qed | 
| 408 | qed | |
| 55811 | 409 | ultimately show ?thesis by blast | 
| 52181 | 410 | qed | 
| 411 | ||
| 63572 | 412 | text \<open>Alternative version of Zorn's lemma for the subset relation.\<close> | 
| 52181 | 413 | lemma subset_Zorn': | 
| 414 | assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A" | |
| 415 | shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 416 | proof - | |
| 417 | from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. | |
| 63572 | 418 | then have "subset.chain A M" | 
| 419 | by (rule subset.maxchain_imp_chain) | |
| 52181 | 420 | with assms have "\<Union>M \<in> A" . | 
| 421 | moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z" | |
| 422 | proof (intro ballI impI) | |
| 423 | fix Z | |
| 424 | assume "Z \<in> A" and "\<Union>M \<subseteq> Z" | |
| 60758 | 425 | with subset_maxchain_max [OF \<open>subset.maxchain A M\<close>] | 
| 52181 | 426 | show "\<Union>M = Z" . | 
| 427 | qed | |
| 428 | ultimately show ?thesis by blast | |
| 429 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 430 | |
| 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 431 | |
| 60758 | 432 | subsection \<open>Zorn's Lemma for Partial Orders\<close> | 
| 52181 | 433 | |
| 60758 | 434 | text \<open>Relate old to new definitions.\<close> | 
| 17200 | 435 | |
| 63572 | 436 | definition chain_subset :: "'a set set \<Rightarrow> bool"  ("chain\<^sub>\<subseteq>")  (* Define globally? In Set.thy? *)
 | 
| 437 | where "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)" | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 438 | |
| 63572 | 439 | definition chains :: "'a set set \<Rightarrow> 'a set set set" | 
| 440 |   where "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 441 | |
| 63572 | 442 | definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set"  (* Define globally? In Relation.thy? *)
 | 
| 443 |   where "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 444 | |
| 63572 | 445 | lemma chains_extend: "c \<in> chains S \<Longrightarrow> z \<in> S \<Longrightarrow> \<forall>x \<in> c. x \<subseteq> z \<Longrightarrow> {z} \<union> c \<in> chains S"
 | 
| 446 | for z :: "'a set" | |
| 63172 | 447 | unfolding chains_def chain_subset_def by blast | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 448 | |
| 52181 | 449 | lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s" | 
| 450 | unfolding Chains_def by blast | |
| 451 | ||
| 452 | lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C" | |
| 54482 | 453 | unfolding chain_subset_def subset.chain_def by fast | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 454 | |
| 52181 | 455 | lemma chains_alt_def: "chains A = {C. subset.chain A C}"
 | 
| 456 | by (simp add: chains_def chain_subset_alt_def subset.chain_def) | |
| 457 | ||
| 63572 | 458 | lemma Chains_subset: "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | 
| 52181 | 459 | by (force simp add: Chains_def pred_on.chain_def) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 460 | |
| 52181 | 461 | lemma Chains_subset': | 
| 462 | assumes "refl r" | |
| 463 |   shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
 | |
| 464 | using assms | |
| 465 | by (auto simp add: Chains_def pred_on.chain_def refl_on_def) | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 466 | |
| 52181 | 467 | lemma Chains_alt_def: | 
| 468 | assumes "refl r" | |
| 469 |   shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | |
| 55811 | 470 | using assms Chains_subset Chains_subset' by blast | 
| 52181 | 471 | |
| 63572 | 472 | lemma Zorn_Lemma: "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 473 | using subset_Zorn' [of A] by (force simp: chains_alt_def) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 474 | |
| 63572 | 475 | lemma Zorn_Lemma2: "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | 
| 52181 | 476 | using subset_Zorn [of A] by (auto simp: chains_alt_def) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 477 | |
| 63572 | 478 | text \<open>Various other lemmas\<close> | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 479 | |
| 63572 | 480 | lemma chainsD: "c \<in> chains S \<Longrightarrow> x \<in> c \<Longrightarrow> y \<in> c \<Longrightarrow> x \<subseteq> y \<or> y \<subseteq> x" | 
| 63172 | 481 | unfolding chains_def chain_subset_def by blast | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 482 | |
| 63572 | 483 | lemma chainsD2: "c \<in> chains S \<Longrightarrow> c \<subseteq> S" | 
| 63172 | 484 | unfolding chains_def by blast | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 485 | |
| 52181 | 486 | lemma Zorns_po_lemma: | 
| 487 | assumes po: "Partial_order r" | |
| 488 | and u: "\<forall>C\<in>Chains r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r" | |
| 489 | shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" | |
| 490 | proof - | |
| 63572 | 491 | have "Preorder r" | 
| 492 | using po by (simp add: partial_order_on_def) | |
| 493 | txt \<open>Mirror \<open>r\<close> in the set of subsets below (wrt \<open>r\<close>) elements of \<open>A\<close>.\<close> | |
| 494 |   let ?B = "\<lambda>x. r\<inverse> `` {x}"
 | |
| 495 | let ?S = "?B ` Field r" | |
| 496 |   have "\<exists>u\<in>Field r. \<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}"  (is "\<exists>u\<in>Field r. ?P u")
 | |
| 497 | if 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A" for C | |
| 498 | proof - | |
| 52181 | 499 |     let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
 | 
| 63572 | 500 | from 1 have "C = ?B ` ?A" by (auto simp: image_def) | 
| 52181 | 501 | have "?A \<in> Chains r" | 
| 502 | proof (simp add: Chains_def, intro allI impI, elim conjE) | |
| 503 | fix a b | |
| 504 | assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C" | |
| 63572 | 505 | with 2 have "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" by auto | 
| 506 | then show "(a, b) \<in> r \<or> (b, a) \<in> r" | |
| 60758 | 507 | using \<open>Preorder r\<close> and \<open>a \<in> Field r\<close> and \<open>b \<in> Field r\<close> | 
| 52181 | 508 | by (simp add:subset_Image1_Image1_iff) | 
| 509 | qed | |
| 63572 | 510 | with u obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" by auto | 
| 511 | have "?P u" | |
| 52181 | 512 | proof auto | 
| 513 | fix a B assume aB: "B \<in> C" "a \<in> B" | |
| 514 |       with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
 | |
| 63572 | 515 | then show "(a, u) \<in> r" | 
| 516 | using uA and aB and \<open>Preorder r\<close> | |
| 54482 | 517 | unfolding preorder_on_def refl_on_def by simp (fast dest: transD) | 
| 52181 | 518 | qed | 
| 63572 | 519 | then show ?thesis | 
| 520 | using \<open>u \<in> Field r\<close> by blast | |
| 521 | qed | |
| 52181 | 522 | then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U" | 
| 523 | by (auto simp: chains_def chain_subset_def) | |
| 63572 | 524 | from Zorn_Lemma2 [OF this] obtain m B | 
| 525 | where "m \<in> Field r" | |
| 526 |       and "B = r\<inverse> `` {m}"
 | |
| 527 |       and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
 | |
| 52181 | 528 | by auto | 
| 63572 | 529 | then have "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" | 
| 60758 | 530 | using po and \<open>Preorder r\<close> and \<open>m \<in> Field r\<close> | 
| 52181 | 531 | by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff) | 
| 63572 | 532 | then show ?thesis | 
| 533 | using \<open>m \<in> Field r\<close> by blast | |
| 52181 | 534 | qed | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 535 | |
| 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 536 | |
| 60758 | 537 | subsection \<open>The Well Ordering Theorem\<close> | 
| 26191 | 538 | |
| 539 | (* The initial segment of a relation appears generally useful. | |
| 540 | Move to Relation.thy? | |
| 541 | Definition correct/most general? | |
| 542 | Naming? | |
| 543 | *) | |
| 63572 | 544 | definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set"
 | 
| 545 |   where "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
 | |
| 26191 | 546 | |
| 63572 | 547 | abbreviation initial_segment_of_syntax :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool"
 | 
| 548 | (infix "initial'_segment'_of" 55) | |
| 549 | where "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of" | |
| 26191 | 550 | |
| 52181 | 551 | lemma refl_on_init_seg_of [simp]: "r initial_segment_of r" | 
| 552 | by (simp add: init_seg_of_def) | |
| 26191 | 553 | |
| 554 | lemma trans_init_seg_of: | |
| 555 | "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t" | |
| 54482 | 556 | by (simp (no_asm_use) add: init_seg_of_def) blast | 
| 26191 | 557 | |
| 63572 | 558 | lemma antisym_init_seg_of: "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s" | 
| 52181 | 559 | unfolding init_seg_of_def by safe | 
| 26191 | 560 | |
| 63572 | 561 | lemma Chains_init_seg_of_Union: "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R" | 
| 52181 | 562 | by (auto simp: init_seg_of_def Ball_def Chains_def) blast | 
| 26191 | 563 | |
| 26272 | 564 | lemma chain_subset_trans_Union: | 
| 55811 | 565 | assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. trans r" | 
| 566 | shows "trans (\<Union>R)" | |
| 567 | proof (intro transI, elim UnionE) | |
| 63572 | 568 | fix S1 S2 :: "'a rel" and x y z :: 'a | 
| 55811 | 569 | assume "S1 \<in> R" "S2 \<in> R" | 
| 63572 | 570 | with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" | 
| 571 | unfolding chain_subset_def by blast | |
| 55811 | 572 | moreover assume "(x, y) \<in> S1" "(y, z) \<in> S2" | 
| 63572 | 573 | ultimately have "((x, y) \<in> S1 \<and> (y, z) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, z) \<in> S2)" | 
| 574 | by blast | |
| 575 | with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "(x, z) \<in> \<Union>R" | |
| 576 | by (auto elim: transE) | |
| 55811 | 577 | qed | 
| 26191 | 578 | |
| 26272 | 579 | lemma chain_subset_antisym_Union: | 
| 55811 | 580 | assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. antisym r" | 
| 581 | shows "antisym (\<Union>R)" | |
| 582 | proof (intro antisymI, elim UnionE) | |
| 63572 | 583 | fix S1 S2 :: "'a rel" and x y :: 'a | 
| 55811 | 584 | assume "S1 \<in> R" "S2 \<in> R" | 
| 63572 | 585 | with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" | 
| 586 | unfolding chain_subset_def by blast | |
| 55811 | 587 | moreover assume "(x, y) \<in> S1" "(y, x) \<in> S2" | 
| 63572 | 588 | ultimately have "((x, y) \<in> S1 \<and> (y, x) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, x) \<in> S2)" | 
| 589 | by blast | |
| 590 | with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "x = y" | |
| 591 | unfolding antisym_def by auto | |
| 55811 | 592 | qed | 
| 26191 | 593 | |
| 26272 | 594 | lemma chain_subset_Total_Union: | 
| 52181 | 595 | assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r" | 
| 596 | shows "Total (\<Union>R)" | |
| 597 | proof (simp add: total_on_def Ball_def, auto del: disjCI) | |
| 63572 | 598 | fix r s a b | 
| 599 | assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b" | |
| 60758 | 600 | from \<open>chain\<^sub>\<subseteq> R\<close> and \<open>r \<in> R\<close> and \<open>s \<in> R\<close> have "r \<subseteq> s \<or> s \<subseteq> r" | 
| 52181 | 601 | by (auto simp add: chain_subset_def) | 
| 63572 | 602 | then show "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)" | 
| 26191 | 603 | proof | 
| 63572 | 604 | assume "r \<subseteq> s" | 
| 605 | then have "(a, b) \<in> s \<or> (b, a) \<in> s" | |
| 606 | using assms(2) A mono_Field[of r s] | |
| 55811 | 607 | by (auto simp add: total_on_def) | 
| 63572 | 608 | then show ?thesis | 
| 609 | using \<open>s \<in> R\<close> by blast | |
| 26191 | 610 | next | 
| 63572 | 611 | assume "s \<subseteq> r" | 
| 612 | then have "(a, b) \<in> r \<or> (b, a) \<in> r" | |
| 613 | using assms(2) A mono_Field[of s r] | |
| 55811 | 614 | by (fastforce simp add: total_on_def) | 
| 63572 | 615 | then show ?thesis | 
| 616 | using \<open>r \<in> R\<close> by blast | |
| 26191 | 617 | qed | 
| 618 | qed | |
| 619 | ||
| 620 | lemma wf_Union_wf_init_segs: | |
| 63572 | 621 | assumes "R \<in> Chains init_seg_of" | 
| 622 | and "\<forall>r\<in>R. wf r" | |
| 52181 | 623 | shows "wf (\<Union>R)" | 
| 63572 | 624 | proof (simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto) | 
| 625 | fix f | |
| 626 | assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r" | |
| 52181 | 627 | then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto | 
| 63572 | 628 | have "(f (Suc i), f i) \<in> r" for i | 
| 629 | proof (induct i) | |
| 630 | case 0 | |
| 631 | show ?case by fact | |
| 632 | next | |
| 633 | case (Suc i) | |
| 634 | then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s" | |
| 635 | using 1 by auto | |
| 636 | then have "s initial_segment_of r \<or> r initial_segment_of s" | |
| 637 | using assms(1) \<open>r \<in> R\<close> by (simp add: Chains_def) | |
| 638 | with Suc s show ?case by (simp add: init_seg_of_def) blast | |
| 639 | qed | |
| 640 | then show False | |
| 641 | using assms(2) and \<open>r \<in> R\<close> | |
| 52181 | 642 | by (simp add: wf_iff_no_infinite_down_chain) blast | 
| 26191 | 643 | qed | 
| 644 | ||
| 63572 | 645 | lemma initial_segment_of_Diff: "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s" | 
| 52181 | 646 | unfolding init_seg_of_def by blast | 
| 27476 | 647 | |
| 63572 | 648 | lemma Chains_inits_DiffI: "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
 | 
| 52181 | 649 | unfolding Chains_def by (blast intro: initial_segment_of_Diff) | 
| 26191 | 650 | |
| 52181 | 651 | theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV" | 
| 652 | proof - | |
| 61799 | 653 | \<comment> \<open>The initial segment relation on well-orders:\<close> | 
| 52181 | 654 |   let ?WO = "{r::'a rel. Well_order r}"
 | 
| 63040 | 655 | define I where "I = init_seg_of \<inter> ?WO \<times> ?WO" | 
| 63572 | 656 | then have I_init: "I \<subseteq> init_seg_of" by simp | 
| 657 | then have subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R" | |
| 54482 | 658 | unfolding init_seg_of_def chain_subset_def Chains_def by blast | 
| 52181 | 659 | have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r" | 
| 660 | by (simp add: Chains_def I_def) blast | |
| 63572 | 661 | have FI: "Field I = ?WO" | 
| 662 | by (auto simp add: I_def init_seg_of_def Field_def) | |
| 663 | then have 0: "Partial_order I" | |
| 52181 | 664 | by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def | 
| 63572 | 665 | trans_def I_def elim!: trans_init_seg_of) | 
| 666 | \<comment> \<open>\<open>I\<close>-chains have upper bounds in \<open>?WO\<close> wrt \<open>I\<close>: their Union\<close> | |
| 667 | have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)" if "R \<in> Chains I" for R | |
| 668 | proof - | |
| 669 | from that have Ris: "R \<in> Chains init_seg_of" | |
| 670 | using mono_Chains [OF I_init] by blast | |
| 671 | have subch: "chain\<^sub>\<subseteq> R" | |
| 672 | using \<open>R : Chains I\<close> I_init by (auto simp: init_seg_of_def chain_subset_def Chains_def) | |
| 52181 | 673 | have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" | 
| 674 | and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" | |
| 60758 | 675 | using Chains_wo [OF \<open>R \<in> Chains I\<close>] by (simp_all add: order_on_defs) | 
| 63572 | 676 | have "Refl (\<Union>R)" | 
| 677 | using \<open>\<forall>r\<in>R. Refl r\<close> unfolding refl_on_def by fastforce | |
| 26191 | 678 | moreover have "trans (\<Union>R)" | 
| 60758 | 679 | by (rule chain_subset_trans_Union [OF subch \<open>\<forall>r\<in>R. trans r\<close>]) | 
| 52181 | 680 | moreover have "antisym (\<Union>R)" | 
| 60758 | 681 | by (rule chain_subset_antisym_Union [OF subch \<open>\<forall>r\<in>R. antisym r\<close>]) | 
| 26191 | 682 | moreover have "Total (\<Union>R)" | 
| 60758 | 683 | by (rule chain_subset_Total_Union [OF subch \<open>\<forall>r\<in>R. Total r\<close>]) | 
| 52181 | 684 | moreover have "wf ((\<Union>R) - Id)" | 
| 685 | proof - | |
| 686 |       have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
 | |
| 60758 | 687 | with \<open>\<forall>r\<in>R. wf (r - Id)\<close> and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]] | 
| 54482 | 688 | show ?thesis by fastforce | 
| 26191 | 689 | qed | 
| 63572 | 690 | ultimately have "Well_order (\<Union>R)" | 
| 691 | by (simp add:order_on_defs) | |
| 692 | moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" | |
| 693 | using Ris by (simp add: Chains_init_seg_of_Union) | |
| 694 | ultimately show ?thesis | |
| 60758 | 695 | using mono_Chains [OF I_init] Chains_wo[of R] and \<open>R \<in> Chains I\<close> | 
| 55811 | 696 | unfolding I_def by blast | 
| 63572 | 697 | qed | 
| 698 | then have 1: "\<forall>R \<in> Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" | |
| 699 | by (subst FI) blast | |
| 700 | \<comment>\<open>Zorn's Lemma yields a maximal well-order \<open>m\<close>:\<close> | |
| 701 | then obtain m :: "'a rel" | |
| 702 | where "Well_order m" | |
| 703 | and max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m" | |
| 54482 | 704 | using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce | 
| 63572 | 705 | \<comment>\<open>Now show by contradiction that \<open>m\<close> covers the whole type:\<close> | 
| 706 | have False if "x \<notin> Field m" for x :: 'a | |
| 707 | proof - | |
| 708 | \<comment>\<open>Assuming that \<open>x\<close> is not covered and extend \<open>m\<close> at the top with \<open>x\<close>\<close> | |
| 26191 | 709 |     have "m \<noteq> {}"
 | 
| 710 | proof | |
| 52181 | 711 |       assume "m = {}"
 | 
| 712 |       moreover have "Well_order {(x, x)}"
 | |
| 713 | by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def) | |
| 26191 | 714 | ultimately show False using max | 
| 52181 | 715 | by (auto simp: I_def init_seg_of_def simp del: Field_insert) | 
| 26191 | 716 | qed | 
| 63572 | 717 |     then have "Field m \<noteq> {}" by (auto simp: Field_def)
 | 
| 718 | moreover have "wf (m - Id)" | |
| 719 | using \<open>Well_order m\<close> by (simp add: well_order_on_def) | |
| 720 | \<comment>\<open>The extension of \<open>m\<close> by \<open>x\<close>:\<close> | |
| 52181 | 721 |     let ?s = "{(a, x) | a. a \<in> Field m}"
 | 
| 722 | let ?m = "insert (x, x) m \<union> ?s" | |
| 26191 | 723 | have Fm: "Field ?m = insert x (Field m)" | 
| 52181 | 724 | by (auto simp: Field_def) | 
| 725 | have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)" | |
| 60758 | 726 | using \<open>Well_order m\<close> by (simp_all add: order_on_defs) | 
| 61799 | 727 | \<comment>\<open>We show that the extension is a well-order\<close> | 
| 63572 | 728 | have "Refl ?m" | 
| 729 | using \<open>Refl m\<close> Fm unfolding refl_on_def by blast | |
| 60758 | 730 | moreover have "trans ?m" using \<open>trans m\<close> and \<open>x \<notin> Field m\<close> | 
| 52181 | 731 | unfolding trans_def Field_def by blast | 
| 63572 | 732 | moreover have "antisym ?m" | 
| 733 | using \<open>antisym m\<close> and \<open>x \<notin> Field m\<close> unfolding antisym_def Field_def by blast | |
| 734 | moreover have "Total ?m" | |
| 735 | using \<open>Total m\<close> and Fm by (auto simp: total_on_def) | |
| 52181 | 736 | moreover have "wf (?m - Id)" | 
| 737 | proof - | |
| 63572 | 738 | have "wf ?s" | 
| 739 | using \<open>x \<notin> Field m\<close> by (auto simp: wf_eq_minimal Field_def Bex_def) | |
| 740 | then show ?thesis | |
| 741 | using \<open>wf (m - Id)\<close> and \<open>x \<notin> Field m\<close> wf_subset [OF \<open>wf ?s\<close> Diff_subset] | |
| 63172 | 742 | by (auto simp: Un_Diff Field_def intro: wf_Un) | 
| 26191 | 743 | qed | 
| 63572 | 744 | ultimately have "Well_order ?m" | 
| 745 | by (simp add: order_on_defs) | |
| 746 | \<comment>\<open>We show that the extension is above \<open>m\<close>\<close> | |
| 747 | moreover have "(m, ?m) \<in> I" | |
| 748 | using \<open>Well_order ?m\<close> and \<open>Well_order m\<close> and \<open>x \<notin> Field m\<close> | |
| 52181 | 749 | by (fastforce simp: I_def init_seg_of_def Field_def) | 
| 26191 | 750 | ultimately | 
| 63572 | 751 | \<comment>\<open>This contradicts maximality of \<open>m\<close>:\<close> | 
| 752 | show False | |
| 753 | using max and \<open>x \<notin> Field m\<close> unfolding Field_def by blast | |
| 754 | qed | |
| 755 | then have "Field m = UNIV" by auto | |
| 60758 | 756 | with \<open>Well_order m\<close> show ?thesis by blast | 
| 26272 | 757 | qed | 
| 758 | ||
| 52181 | 759 | corollary well_order_on: "\<exists>r::'a rel. well_order_on A r" | 
| 26272 | 760 | proof - | 
| 63572 | 761 | obtain r :: "'a rel" where wo: "Well_order r" and univ: "Field r = UNIV" | 
| 52181 | 762 | using well_ordering [where 'a = "'a"] by blast | 
| 763 |   let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
 | |
| 63572 | 764 | have 1: "Field ?r = A" | 
| 765 | using wo univ by (fastforce simp: Field_def order_on_defs refl_on_def) | |
| 766 | from \<open>Well_order r\<close> have "Refl r" "trans r" "antisym r" "Total r" "wf (r - Id)" | |
| 767 | by (simp_all add: order_on_defs) | |
| 768 | from \<open>Refl r\<close> have "Refl ?r" | |
| 769 | by (auto simp: refl_on_def 1 univ) | |
| 770 | moreover from \<open>trans r\<close> have "trans ?r" | |
| 26272 | 771 | unfolding trans_def by blast | 
| 63572 | 772 | moreover from \<open>antisym r\<close> have "antisym ?r" | 
| 26272 | 773 | unfolding antisym_def by blast | 
| 63572 | 774 | moreover from \<open>Total r\<close> have "Total ?r" | 
| 775 | by (simp add:total_on_def 1 univ) | |
| 776 | moreover have "wf (?r - Id)" | |
| 777 | by (rule wf_subset [OF \<open>wf (r - Id)\<close>]) blast | |
| 778 | ultimately have "Well_order ?r" | |
| 779 | by (simp add: order_on_defs) | |
| 54482 | 780 | with 1 show ?thesis by auto | 
| 26191 | 781 | qed | 
| 782 | ||
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 783 | (* Move this to Hilbert Choice and wfrec to Wellfounded*) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 784 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 785 | lemma wfrec_def_adm: "f \<equiv> wfrec R F \<Longrightarrow> wf R \<Longrightarrow> adm_wf R F \<Longrightarrow> f = F f" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 786 | using wfrec_fixpoint by simp | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 787 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 788 | lemma dependent_wf_choice: | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 789 |   fixes P :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 63572 | 790 | assumes "wf R" | 
| 791 | and adm: "\<And>f g x r. (\<And>z. (z, x) \<in> R \<Longrightarrow> f z = g z) \<Longrightarrow> P f x r = P g x r" | |
| 792 | and P: "\<And>x f. (\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" | |
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 793 | shows "\<exists>f. \<forall>x. P f x (f x)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 794 | proof (intro exI allI) | 
| 63572 | 795 | fix x | 
| 63040 | 796 | define f where "f \<equiv> wfrec R (\<lambda>f x. SOME r. P f x r)" | 
| 60758 | 797 | from \<open>wf R\<close> show "P f x (f x)" | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 798 | proof (induct x) | 
| 63572 | 799 | case (less x) | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 800 | show "P f x (f x)" | 
| 60758 | 801 | proof (subst (2) wfrec_def_adm[OF f_def \<open>wf R\<close>]) | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 802 | show "adm_wf R (\<lambda>f x. SOME r. P f x r)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 803 | by (auto simp add: adm_wf_def intro!: arg_cong[where f=Eps] ext adm) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 804 | show "P f x (Eps (P f x))" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 805 | using P by (rule someI_ex) fact | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 806 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 807 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 808 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 809 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 810 | lemma (in wellorder) dependent_wellorder_choice: | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 811 | assumes "\<And>r f g x. (\<And>y. y < x \<Longrightarrow> f y = g y) \<Longrightarrow> P f x r = P g x r" | 
| 63572 | 812 | and P: "\<And>x f. (\<And>y. y < x \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 813 | shows "\<exists>f. \<forall>x. P f x (f x)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 814 | using wf by (rule dependent_wf_choice) (auto intro!: assms) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 815 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 816 | end |