author | blanchet |
Thu, 16 Dec 2010 15:12:17 +0100 | |
changeset 41208 | 1b28c43a7074 |
parent 35762 | af3ff2ba4c54 |
child 41959 | b460124855b8 |
permissions | -rw-r--r-- |
1474 | 1 |
(* Title: CTT/bool |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
0 | 3 |
Copyright 1991 University of Cambridge |
4 |
*) |
|
5 |
||
17441 | 6 |
header {* The two-element type (booleans and conditionals) *} |
7 |
||
8 |
theory Bool |
|
9 |
imports CTT |
|
10 |
begin |
|
0 | 11 |
|
19762 | 12 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
13 |
Bool :: "t" where |
19761 | 14 |
"Bool == T+T" |
15 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
16 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
17 |
true :: "i" where |
19761 | 18 |
"true == inl(tt)" |
19 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
20 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
21 |
false :: "i" where |
19761 | 22 |
"false == inr(tt)" |
23 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
24 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
19762
diff
changeset
|
25 |
cond :: "[i,i,i]=>i" where |
19761 | 26 |
"cond(a,b,c) == when(a, %u. b, %u. c)" |
27 |
||
28 |
lemmas bool_defs = Bool_def true_def false_def cond_def |
|
29 |
||
30 |
||
31 |
subsection {* Derivation of rules for the type Bool *} |
|
32 |
||
33 |
(*formation rule*) |
|
34 |
lemma boolF: "Bool type" |
|
35 |
apply (unfold bool_defs) |
|
36 |
apply (tactic "typechk_tac []") |
|
37 |
done |
|
38 |
||
39 |
||
40 |
(*introduction rules for true, false*) |
|
41 |
||
42 |
lemma boolI_true: "true : Bool" |
|
43 |
apply (unfold bool_defs) |
|
44 |
apply (tactic "typechk_tac []") |
|
45 |
done |
|
46 |
||
47 |
lemma boolI_false: "false : Bool" |
|
48 |
apply (unfold bool_defs) |
|
49 |
apply (tactic "typechk_tac []") |
|
50 |
done |
|
17441 | 51 |
|
19761 | 52 |
(*elimination rule: typing of cond*) |
53 |
lemma boolE: |
|
54 |
"[| p:Bool; a : C(true); b : C(false) |] ==> cond(p,a,b) : C(p)" |
|
55 |
apply (unfold bool_defs) |
|
56 |
apply (tactic "typechk_tac []") |
|
57 |
apply (erule_tac [!] TE) |
|
58 |
apply (tactic "typechk_tac []") |
|
59 |
done |
|
60 |
||
61 |
lemma boolEL: |
|
62 |
"[| p = q : Bool; a = c : C(true); b = d : C(false) |] |
|
63 |
==> cond(p,a,b) = cond(q,c,d) : C(p)" |
|
64 |
apply (unfold bool_defs) |
|
65 |
apply (rule PlusEL) |
|
66 |
apply (erule asm_rl refl_elem [THEN TEL])+ |
|
67 |
done |
|
68 |
||
69 |
(*computation rules for true, false*) |
|
70 |
||
71 |
lemma boolC_true: |
|
72 |
"[| a : C(true); b : C(false) |] ==> cond(true,a,b) = a : C(true)" |
|
73 |
apply (unfold bool_defs) |
|
74 |
apply (rule comp_rls) |
|
75 |
apply (tactic "typechk_tac []") |
|
76 |
apply (erule_tac [!] TE) |
|
77 |
apply (tactic "typechk_tac []") |
|
78 |
done |
|
79 |
||
80 |
lemma boolC_false: |
|
81 |
"[| a : C(true); b : C(false) |] ==> cond(false,a,b) = b : C(false)" |
|
82 |
apply (unfold bool_defs) |
|
83 |
apply (rule comp_rls) |
|
84 |
apply (tactic "typechk_tac []") |
|
85 |
apply (erule_tac [!] TE) |
|
86 |
apply (tactic "typechk_tac []") |
|
87 |
done |
|
17441 | 88 |
|
0 | 89 |
end |