src/HOL/Ring_and_Field.thy
author paulson
Sat, 06 Mar 2010 17:19:29 +0000
changeset 35621 1c084dda4c3c
parent 34146 14595e0c27e8
child 35028 108662d50512
permissions -rw-r--r--
simplified
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     1
(*  Title:      HOL/Ring_and_Field.thy
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     2
    Author:     Gertrud Bauer
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     3
    Author:     Steven Obua
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     4
    Author:     Tobias Nipkow
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     5
    Author:     Lawrence C Paulson
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     6
    Author:     Markus Wenzel
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
     7
    Author:     Jeremy Avigad
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     8
*)
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
     9
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    10
header {* (Ordered) Rings and Fields *}
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
    11
15229
1eb23f805c06 new simprules for abs and for things like a/b<1
paulson
parents: 15228
diff changeset
    12
theory Ring_and_Field
15140
322485b816ac import -> imports
nipkow
parents: 15131
diff changeset
    13
imports OrderedGroup
15131
c69542757a4d New theory header syntax.
nipkow
parents: 15077
diff changeset
    14
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    15
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    16
text {*
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    17
  The theory of partially ordered rings is taken from the books:
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    18
  \begin{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    19
  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    20
  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    21
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    22
  Most of the used notions can also be looked up in 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    23
  \begin{itemize}
14770
fe9504ba63d5 removed duplicate thms;
wenzelm
parents: 14754
diff changeset
    24
  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    25
  \item \emph{Algebra I} by van der Waerden, Springer.
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    26
  \end{itemize}
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    27
*}
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    28
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    29
class semiring = ab_semigroup_add + semigroup_mult +
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    30
  assumes left_distrib[algebra_simps]: "(a + b) * c = a * c + b * c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    31
  assumes right_distrib[algebra_simps]: "a * (b + c) = a * b + a * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    32
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    33
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    34
text{*For the @{text combine_numerals} simproc*}
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    35
lemma combine_common_factor:
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    36
  "a * e + (b * e + c) = (a + b) * e + c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    37
by (simp add: left_distrib add_ac)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    38
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    39
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    40
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    41
class mult_zero = times + zero +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    42
  assumes mult_zero_left [simp]: "0 * a = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    43
  assumes mult_zero_right [simp]: "a * 0 = 0"
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    44
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    45
class semiring_0 = semiring + comm_monoid_add + mult_zero
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    46
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    47
class semiring_0_cancel = semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    48
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    49
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    50
subclass semiring_0
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    51
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    52
  fix a :: 'a
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    53
  have "0 * a + 0 * a = 0 * a + 0" by (simp add: left_distrib [symmetric])
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    54
  thus "0 * a = 0" by (simp only: add_left_cancel)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    55
next
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    56
  fix a :: 'a
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    57
  have "a * 0 + a * 0 = a * 0 + 0" by (simp add: right_distrib [symmetric])
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
    58
  thus "a * 0 = 0" by (simp only: add_left_cancel)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    59
qed
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    60
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    61
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    62
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    63
class comm_semiring = ab_semigroup_add + ab_semigroup_mult +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    64
  assumes distrib: "(a + b) * c = a * c + b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    65
begin
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    66
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    67
subclass semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
    68
proof
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    69
  fix a b c :: 'a
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    70
  show "(a + b) * c = a * c + b * c" by (simp add: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    71
  have "a * (b + c) = (b + c) * a" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    72
  also have "... = b * a + c * a" by (simp only: distrib)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    73
  also have "... = a * b + a * c" by (simp add: mult_ac)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
    74
  finally show "a * (b + c) = a * b + a * c" by blast
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    75
qed
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    76
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    77
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    78
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    79
class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    80
begin
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    81
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    82
subclass semiring_0 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    83
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
    84
end
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
    85
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
    86
class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    87
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    88
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
    89
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
    90
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    91
subclass comm_semiring_0 ..
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
    92
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
    93
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
    94
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
    95
class zero_neq_one = zero + one +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
    96
  assumes zero_neq_one [simp]: "0 \<noteq> 1"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    97
begin
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    98
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
    99
lemma one_neq_zero [simp]: "1 \<noteq> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   100
by (rule not_sym) (rule zero_neq_one)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   101
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   102
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   103
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   104
class semiring_1 = zero_neq_one + semiring_0 + monoid_mult
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   105
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   106
text {* Abstract divisibility *}
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   107
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   108
class dvd = times
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   109
begin
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   110
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   111
definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "dvd" 50) where
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   112
  [code del]: "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   113
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   114
lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   115
  unfolding dvd_def ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   116
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   117
lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   118
  unfolding dvd_def by blast 
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   119
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   120
end
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   121
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   122
class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   123
  (*previously almost_semiring*)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   124
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   125
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   126
subclass semiring_1 ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   127
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   128
lemma dvd_refl[simp]: "a dvd a"
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   129
proof
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   130
  show "a = a * 1" by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   131
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   132
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   133
lemma dvd_trans:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   134
  assumes "a dvd b" and "b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   135
  shows "a dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   136
proof -
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   137
  from assms obtain v where "b = a * v" by (auto elim!: dvdE)
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   138
  moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   139
  ultimately have "c = a * (v * w)" by (simp add: mult_assoc)
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   140
  then show ?thesis ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   141
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   142
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   143
lemma dvd_0_left_iff [noatp, simp]: "0 dvd a \<longleftrightarrow> a = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   144
by (auto intro: dvd_refl elim!: dvdE)
28559
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   145
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   146
lemma dvd_0_right [iff]: "a dvd 0"
55c003a5600a tuned default rules of (dvd)
haftmann
parents: 28141
diff changeset
   147
proof
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   148
  show "0 = a * 0" by simp
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   149
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   150
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   151
lemma one_dvd [simp]: "1 dvd a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   152
by (auto intro!: dvdI)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   153
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   154
lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   155
by (auto intro!: mult_left_commute dvdI elim!: dvdE)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   156
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   157
lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   158
  apply (subst mult_commute)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   159
  apply (erule dvd_mult)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   160
  done
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   161
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   162
lemma dvd_triv_right [simp]: "a dvd b * a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   163
by (rule dvd_mult) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   164
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   165
lemma dvd_triv_left [simp]: "a dvd a * b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   166
by (rule dvd_mult2) (rule dvd_refl)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   167
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   168
lemma mult_dvd_mono:
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   169
  assumes "a dvd b"
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   170
    and "c dvd d"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   171
  shows "a * c dvd b * d"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   172
proof -
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   173
  from `a dvd b` obtain b' where "b = a * b'" ..
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   174
  moreover from `c dvd d` obtain d' where "d = c * d'" ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   175
  ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   176
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   177
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   178
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   179
lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   180
by (simp add: dvd_def mult_assoc, blast)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   181
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   182
lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c"
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   183
  unfolding mult_ac [of a] by (rule dvd_mult_left)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   184
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   185
lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   186
by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   187
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   188
lemma dvd_add[simp]:
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   189
  assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)"
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   190
proof -
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   191
  from `a dvd b` obtain b' where "b = a * b'" ..
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   192
  moreover from `a dvd c` obtain c' where "c = a * c'" ..
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   193
  ultimately have "b + c = a * (b' + c')" by (simp add: right_distrib)
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   194
  then show ?thesis ..
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   195
qed
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
   196
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   197
end
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   198
29925
17d1e32ef867 dvd and setprod lemmas
nipkow
parents: 29915
diff changeset
   199
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   200
class no_zero_divisors = zero + times +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   201
  assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0"
14504
7a3d80e276d4 new type class abelian_group
paulson
parents: 14475
diff changeset
   202
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   203
class semiring_1_cancel = semiring + cancel_comm_monoid_add
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   204
  + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   205
begin
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   206
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   207
subclass semiring_0_cancel ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   208
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   209
subclass semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   210
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   211
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   212
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   213
class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   214
  + zero_neq_one + comm_monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   215
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   216
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   217
subclass semiring_1_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   218
subclass comm_semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   219
subclass comm_semiring_1 ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   220
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   221
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   222
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   223
class ring = semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   224
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   225
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   226
subclass semiring_0_cancel ..
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   227
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   228
text {* Distribution rules *}
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   229
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   230
lemma minus_mult_left: "- (a * b) = - a * b"
34146
14595e0c27e8 rename equals_zero_I to minus_unique (keep old name too)
huffman
parents: 33676
diff changeset
   231
by (rule minus_unique) (simp add: left_distrib [symmetric]) 
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   232
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   233
lemma minus_mult_right: "- (a * b) = a * - b"
34146
14595e0c27e8 rename equals_zero_I to minus_unique (keep old name too)
huffman
parents: 33676
diff changeset
   234
by (rule minus_unique) (simp add: right_distrib [symmetric]) 
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   235
29407
5ef7e97fd9e4 move lemmas mult_minus{left,right} inside class ring
huffman
parents: 29406
diff changeset
   236
text{*Extract signs from products*}
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   237
lemmas mult_minus_left [simp, noatp] = minus_mult_left [symmetric]
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   238
lemmas mult_minus_right [simp,noatp] = minus_mult_right [symmetric]
29407
5ef7e97fd9e4 move lemmas mult_minus{left,right} inside class ring
huffman
parents: 29406
diff changeset
   239
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   240
lemma minus_mult_minus [simp]: "- a * - b = a * b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   241
by simp
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   242
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   243
lemma minus_mult_commute: "- a * b = a * - b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   244
by simp
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   245
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   246
lemma right_diff_distrib[algebra_simps]: "a * (b - c) = a * b - a * c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   247
by (simp add: right_distrib diff_minus)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   248
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   249
lemma left_diff_distrib[algebra_simps]: "(a - b) * c = a * c - b * c"
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   250
by (simp add: left_distrib diff_minus)
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   251
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   252
lemmas ring_distribs[noatp] =
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   253
  right_distrib left_distrib left_diff_distrib right_diff_distrib
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   254
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   255
text{*Legacy - use @{text algebra_simps} *}
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   256
lemmas ring_simps[noatp] = algebra_simps
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   257
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   258
lemma eq_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   259
  "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   260
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   261
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   262
lemma eq_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   263
  "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   264
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   265
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   266
end
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   267
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   268
lemmas ring_distribs[noatp] =
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   269
  right_distrib left_distrib left_diff_distrib right_diff_distrib
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   270
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   271
class comm_ring = comm_semiring + ab_group_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   272
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   273
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   274
subclass ring ..
28141
193c3ea0f63b instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
huffman
parents: 27651
diff changeset
   275
subclass comm_semiring_0_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   276
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   277
end
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   278
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   279
class ring_1 = ring + zero_neq_one + monoid_mult
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   280
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   281
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   282
subclass semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   283
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   284
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   285
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   286
class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   287
  (*previously ring*)
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   288
begin
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   289
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   290
subclass ring_1 ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   291
subclass comm_semiring_1_cancel ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   292
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   293
lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   294
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   295
  assume "x dvd - y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   296
  then have "x dvd - 1 * - y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   297
  then show "x dvd y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   298
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   299
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   300
  then have "x dvd - 1 * y" by (rule dvd_mult)
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   301
  then show "x dvd - y" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   302
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   303
29465
b2cfb5d0a59e change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
huffman
parents: 29461
diff changeset
   304
lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y"
29408
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   305
proof
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   306
  assume "- x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   307
  then obtain k where "y = - x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   308
  then have "y = x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   309
  then show "x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   310
next
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   311
  assume "x dvd y"
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   312
  then obtain k where "y = x * k" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   313
  then have "y = - x * - k" by simp
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   314
  then show "- x dvd y" ..
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   315
qed
6d10cf26b5dc add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
huffman
parents: 29407
diff changeset
   316
30042
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   317
lemma dvd_diff[simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)"
31039ee583fa Removed subsumed lemmas
nipkow
parents: 29981
diff changeset
   318
by (simp add: diff_minus dvd_minus_iff)
29409
f0a8fe83bc07 add lemma dvd_diff to class comm_ring_1
huffman
parents: 29408
diff changeset
   319
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   320
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   321
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   322
class ring_no_zero_divisors = ring + no_zero_divisors
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   323
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   324
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   325
lemma mult_eq_0_iff [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   326
  shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   327
proof (cases "a = 0 \<or> b = 0")
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   328
  case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   329
    then show ?thesis using no_zero_divisors by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   330
next
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   331
  case True then show ?thesis by auto
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   332
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   333
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   334
text{*Cancellation of equalities with a common factor*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   335
lemma mult_cancel_right [simp, noatp]:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   336
  "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   337
proof -
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   338
  have "(a * c = b * c) = ((a - b) * c = 0)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   339
    by (simp add: algebra_simps right_minus_eq)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   340
  thus ?thesis by (simp add: disj_commute right_minus_eq)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   341
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   342
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   343
lemma mult_cancel_left [simp, noatp]:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   344
  "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   345
proof -
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   346
  have "(c * a = c * b) = (c * (a - b) = 0)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   347
    by (simp add: algebra_simps right_minus_eq)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   348
  thus ?thesis by (simp add: right_minus_eq)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   349
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   350
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   351
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   352
23544
4b4165cb3e0d rename class dom to ring_1_no_zero_divisors
huffman
parents: 23527
diff changeset
   353
class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   354
begin
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   355
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   356
lemma mult_cancel_right1 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   357
  "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   358
by (insert mult_cancel_right [of 1 c b], force)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   359
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   360
lemma mult_cancel_right2 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   361
  "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   362
by (insert mult_cancel_right [of a c 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   363
 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   364
lemma mult_cancel_left1 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   365
  "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   366
by (insert mult_cancel_left [of c 1 b], force)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   367
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   368
lemma mult_cancel_left2 [simp]:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   369
  "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   370
by (insert mult_cancel_left [of c a 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   371
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   372
end
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   373
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   374
class idom = comm_ring_1 + no_zero_divisors
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   375
begin
14421
ee97b6463cb4 new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents: 14398
diff changeset
   376
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   377
subclass ring_1_no_zero_divisors ..
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
   378
29915
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   379
lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)"
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   380
proof
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   381
  assume "a * a = b * b"
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   382
  then have "(a - b) * (a + b) = 0"
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   383
    by (simp add: algebra_simps)
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   384
  then show "a = b \<or> a = - b"
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   385
    by (simp add: right_minus_eq eq_neg_iff_add_eq_0)
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   386
next
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   387
  assume "a = b \<or> a = - b"
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   388
  then show "a * a = b * b" by auto
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   389
qed
2146e512cec9 generalize lemma fps_square_eq_iff, move to Ring_and_Field
huffman
parents: 29904
diff changeset
   390
29981
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   391
lemma dvd_mult_cancel_right [simp]:
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   392
  "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   393
proof -
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   394
  have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   395
    unfolding dvd_def by (simp add: mult_ac)
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   396
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   397
    unfolding dvd_def by simp
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   398
  finally show ?thesis .
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   399
qed
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   400
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   401
lemma dvd_mult_cancel_left [simp]:
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   402
  "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   403
proof -
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   404
  have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   405
    unfolding dvd_def by (simp add: mult_ac)
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   406
  also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b"
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   407
    unfolding dvd_def by simp
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   408
  finally show ?thesis .
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   409
qed
7d0ed261b712 generalize int_dvd_cancel_factor simproc to idom class
huffman
parents: 29949
diff changeset
   410
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   411
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   412
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   413
class division_ring = ring_1 + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   414
  assumes left_inverse [simp]:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   415
  assumes right_inverse [simp]: "a \<noteq> 0 \<Longrightarrow> a * inverse a = 1"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   416
begin
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   417
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   418
subclass ring_1_no_zero_divisors
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   419
proof
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   420
  fix a b :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   421
  assume a: "a \<noteq> 0" and b: "b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   422
  show "a * b \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   423
  proof
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   424
    assume ab: "a * b = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   425
    hence "0 = inverse a * (a * b) * inverse b" by simp
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   426
    also have "\<dots> = (inverse a * a) * (b * inverse b)"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   427
      by (simp only: mult_assoc)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   428
    also have "\<dots> = 1" using a b by simp
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   429
    finally show False by simp
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   430
  qed
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   431
qed
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   432
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   433
lemma nonzero_imp_inverse_nonzero:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   434
  "a \<noteq> 0 \<Longrightarrow> inverse a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   435
proof
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   436
  assume ianz: "inverse a = 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   437
  assume "a \<noteq> 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   438
  hence "1 = a * inverse a" by simp
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   439
  also have "... = 0" by (simp add: ianz)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   440
  finally have "1 = 0" .
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   441
  thus False by (simp add: eq_commute)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   442
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   443
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   444
lemma inverse_zero_imp_zero:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   445
  "inverse a = 0 \<Longrightarrow> a = 0"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   446
apply (rule classical)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   447
apply (drule nonzero_imp_inverse_nonzero)
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   448
apply auto
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   449
done
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   450
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   451
lemma inverse_unique: 
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   452
  assumes ab: "a * b = 1"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   453
  shows "inverse a = b"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   454
proof -
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   455
  have "a \<noteq> 0" using ab by (cases "a = 0") simp_all
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   456
  moreover have "inverse a * (a * b) = inverse a" by (simp add: ab)
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   457
  ultimately show ?thesis by (simp add: mult_assoc [symmetric])
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   458
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   459
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   460
lemma nonzero_inverse_minus_eq:
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   461
  "a \<noteq> 0 \<Longrightarrow> inverse (- a) = - inverse a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   462
by (rule inverse_unique) simp
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   463
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   464
lemma nonzero_inverse_inverse_eq:
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   465
  "a \<noteq> 0 \<Longrightarrow> inverse (inverse a) = a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   466
by (rule inverse_unique) simp
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   467
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   468
lemma nonzero_inverse_eq_imp_eq:
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   469
  assumes "inverse a = inverse b" and "a \<noteq> 0" and "b \<noteq> 0"
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   470
  shows "a = b"
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   471
proof -
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   472
  from `inverse a = inverse b`
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   473
  have "inverse (inverse a) = inverse (inverse b)" by (rule arg_cong)
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   474
  with `a \<noteq> 0` and `b \<noteq> 0` show "a = b"
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   475
    by (simp add: nonzero_inverse_inverse_eq)
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   476
qed
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   477
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   478
lemma inverse_1 [simp]: "inverse 1 = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   479
by (rule inverse_unique) simp
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   480
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   481
lemma nonzero_inverse_mult_distrib: 
29406
54bac26089bd clean up division_ring proofs
huffman
parents: 28823
diff changeset
   482
  assumes "a \<noteq> 0" and "b \<noteq> 0"
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   483
  shows "inverse (a * b) = inverse b * inverse a"
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   484
proof -
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   485
  have "a * (b * inverse b) * inverse a = 1" using assms by simp
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   486
  hence "a * b * (inverse b * inverse a) = 1" by (simp only: mult_assoc)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   487
  thus ?thesis by (rule inverse_unique)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   488
qed
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   489
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   490
lemma division_ring_inverse_add:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   491
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a + inverse b = inverse a * (a + b) * inverse b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   492
by (simp add: algebra_simps)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   493
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   494
lemma division_ring_inverse_diff:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   495
  "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> inverse a - inverse b = inverse a * (b - a) * inverse b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   496
by (simp add: algebra_simps)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
   497
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   498
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   499
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   500
class field = comm_ring_1 + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   501
  assumes field_inverse:  "a \<noteq> 0 \<Longrightarrow> inverse a * a = 1"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   502
  assumes divide_inverse: "a / b = a * inverse b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   503
begin
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
   504
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   505
subclass division_ring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   506
proof
22987
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   507
  fix a :: 'a
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   508
  assume "a \<noteq> 0"
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   509
  thus "inverse a * a = 1" by (rule field_inverse)
550709aa8e66 instance division_ring < no_zero_divisors; clean up field instance proofs
huffman
parents: 22842
diff changeset
   510
  thus "a * inverse a = 1" by (simp only: mult_commute)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
   511
qed
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   512
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   513
subclass idom ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   514
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   515
lemma right_inverse_eq: "b \<noteq> 0 \<Longrightarrow> a / b = 1 \<longleftrightarrow> a = b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   516
proof
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   517
  assume neq: "b \<noteq> 0"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   518
  {
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   519
    hence "a = (a / b) * b" by (simp add: divide_inverse mult_ac)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   520
    also assume "a / b = 1"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   521
    finally show "a = b" by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   522
  next
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   523
    assume "a = b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   524
    with neq show "a / b = 1" by (simp add: divide_inverse)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   525
  }
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   526
qed
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   527
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   528
lemma nonzero_inverse_eq_divide: "a \<noteq> 0 \<Longrightarrow> inverse a = 1 / a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   529
by (simp add: divide_inverse)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   530
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   531
lemma divide_self [simp]: "a \<noteq> 0 \<Longrightarrow> a / a = 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   532
by (simp add: divide_inverse)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   533
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   534
lemma divide_zero_left [simp]: "0 / a = 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   535
by (simp add: divide_inverse)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   536
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   537
lemma inverse_eq_divide: "inverse a = 1 / a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   538
by (simp add: divide_inverse)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   539
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   540
lemma add_divide_distrib: "(a+b) / c = a/c + b/c"
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   541
by (simp add: divide_inverse algebra_simps)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   542
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   543
text{*There is no slick version using division by zero.*}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   544
lemma inverse_add:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   545
  "[| a \<noteq> 0;  b \<noteq> 0 |]
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   546
   ==> inverse a + inverse b = (a + b) * inverse a * inverse b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   547
by (simp add: division_ring_inverse_add mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   548
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   549
lemma nonzero_mult_divide_mult_cancel_left [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   550
assumes [simp]: "b\<noteq>0" and [simp]: "c\<noteq>0" shows "(c*a)/(c*b) = a/b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   551
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   552
  have "(c*a)/(c*b) = c * a * (inverse b * inverse c)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   553
    by (simp add: divide_inverse nonzero_inverse_mult_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   554
  also have "... =  a * inverse b * (inverse c * c)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   555
    by (simp only: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   556
  also have "... =  a * inverse b" by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   557
    finally show ?thesis by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   558
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   559
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   560
lemma nonzero_mult_divide_mult_cancel_right [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   561
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (b * c) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   562
by (simp add: mult_commute [of _ c])
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   563
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   564
lemma divide_1 [simp]: "a / 1 = a"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   565
by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   566
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   567
lemma times_divide_eq_right: "a * (b / c) = (a * b) / c"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   568
by (simp add: divide_inverse mult_assoc)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   569
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   570
lemma times_divide_eq_left: "(b / c) * a = (b * a) / c"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   571
by (simp add: divide_inverse mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   572
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   573
text {* These are later declared as simp rules. *}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   574
lemmas times_divide_eq [noatp] = times_divide_eq_right times_divide_eq_left
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   575
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   576
lemma add_frac_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   577
  assumes "y \<noteq> 0" and "z \<noteq> 0"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   578
  shows "x / y + w / z = (x * z + w * y) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   579
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   580
  have "x / y + w / z = (x * z) / (y * z) + (y * w) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   581
    using assms by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   582
  also have "\<dots> = (x * z + y * w) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   583
    by (simp only: add_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   584
  finally show ?thesis
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   585
    by (simp only: mult_commute)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   586
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   587
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   588
text{*Special Cancellation Simprules for Division*}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   589
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   590
lemma nonzero_mult_divide_cancel_right [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   591
  "b \<noteq> 0 \<Longrightarrow> a * b / b = a"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   592
using nonzero_mult_divide_mult_cancel_right [of 1 b a] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   593
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   594
lemma nonzero_mult_divide_cancel_left [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   595
  "a \<noteq> 0 \<Longrightarrow> a * b / a = b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   596
using nonzero_mult_divide_mult_cancel_left [of 1 a b] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   597
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   598
lemma nonzero_divide_mult_cancel_right [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   599
  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> b / (a * b) = 1 / a"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   600
using nonzero_mult_divide_mult_cancel_right [of a b 1] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   601
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   602
lemma nonzero_divide_mult_cancel_left [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   603
  "\<lbrakk>a \<noteq> 0; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / (a * b) = 1 / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   604
using nonzero_mult_divide_mult_cancel_left [of b a 1] by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   605
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   606
lemma nonzero_mult_divide_mult_cancel_left2 [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   607
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (c * a) / (b * c) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   608
using nonzero_mult_divide_mult_cancel_left [of b c a] by (simp add: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   609
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   610
lemma nonzero_mult_divide_mult_cancel_right2 [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   611
  "\<lbrakk>b \<noteq> 0; c \<noteq> 0\<rbrakk> \<Longrightarrow> (a * c) / (c * b) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   612
using nonzero_mult_divide_mult_cancel_right [of b c a] by (simp add: mult_ac)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   613
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   614
lemma minus_divide_left: "- (a / b) = (-a) / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   615
by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   616
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   617
lemma nonzero_minus_divide_right: "b \<noteq> 0 ==> - (a / b) = a / (- b)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   618
by (simp add: divide_inverse nonzero_inverse_minus_eq)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   619
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   620
lemma nonzero_minus_divide_divide: "b \<noteq> 0 ==> (-a) / (-b) = a / b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   621
by (simp add: divide_inverse nonzero_inverse_minus_eq)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   622
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   623
lemma divide_minus_left [simp, noatp]: "(-a) / b = - (a / b)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   624
by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   625
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   626
lemma diff_divide_distrib: "(a - b) / c = a / c - b / c"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   627
by (simp add: diff_minus add_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   628
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   629
lemma add_divide_eq_iff:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   630
  "z \<noteq> 0 \<Longrightarrow> x + y / z = (z * x + y) / z"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   631
by (simp add: add_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   632
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   633
lemma divide_add_eq_iff:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   634
  "z \<noteq> 0 \<Longrightarrow> x / z + y = (x + z * y) / z"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   635
by (simp add: add_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   636
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   637
lemma diff_divide_eq_iff:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   638
  "z \<noteq> 0 \<Longrightarrow> x - y / z = (z * x - y) / z"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   639
by (simp add: diff_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   640
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   641
lemma divide_diff_eq_iff:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   642
  "z \<noteq> 0 \<Longrightarrow> x / z - y = (x - z * y) / z"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   643
by (simp add: diff_divide_distrib)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   644
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   645
lemma nonzero_eq_divide_eq: "c \<noteq> 0 \<Longrightarrow> a = b / c \<longleftrightarrow> a * c = b"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   646
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   647
  assume [simp]: "c \<noteq> 0"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   648
  have "a = b / c \<longleftrightarrow> a * c = (b / c) * c" by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   649
  also have "... \<longleftrightarrow> a * c = b" by (simp add: divide_inverse mult_assoc)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   650
  finally show ?thesis .
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   651
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   652
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   653
lemma nonzero_divide_eq_eq: "c \<noteq> 0 \<Longrightarrow> b / c = a \<longleftrightarrow> b = a * c"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   654
proof -
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   655
  assume [simp]: "c \<noteq> 0"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   656
  have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   657
  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult_assoc) 
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   658
  finally show ?thesis .
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   659
qed
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   660
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   661
lemma divide_eq_imp: "c \<noteq> 0 \<Longrightarrow> b = a * c \<Longrightarrow> b / c = a"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   662
by simp
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   663
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   664
lemma eq_divide_imp: "c \<noteq> 0 \<Longrightarrow> a * c = b \<Longrightarrow> a = b / c"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   665
by (erule subst, simp)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   666
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   667
lemmas field_eq_simps[noatp] = algebra_simps
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   668
  (* pull / out*)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   669
  add_divide_eq_iff divide_add_eq_iff
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   670
  diff_divide_eq_iff divide_diff_eq_iff
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   671
  (* multiply eqn *)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   672
  nonzero_eq_divide_eq nonzero_divide_eq_eq
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   673
(* is added later:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   674
  times_divide_eq_left times_divide_eq_right
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   675
*)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   676
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   677
text{*An example:*}
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   678
lemma "\<lbrakk>a\<noteq>b; c\<noteq>d; e\<noteq>f\<rbrakk> \<Longrightarrow> ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) = 1"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   679
apply(subgoal_tac "(c-d)*(e-f)*(a-b) \<noteq> 0")
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   680
 apply(simp add:field_eq_simps)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   681
apply(simp)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   682
done
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   683
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   684
lemma diff_frac_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   685
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> x / y - w / z = (x * z - w * y) / (y * z)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   686
by (simp add: field_eq_simps times_divide_eq)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   687
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   688
lemma frac_eq_eq:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   689
  "y \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (x / y = w / z) = (x * z = w * y)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
   690
by (simp add: field_eq_simps times_divide_eq)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   691
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   692
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   693
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   694
class division_by_zero = zero + inverse +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   695
  assumes inverse_zero [simp]: "inverse 0 = 0"
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   696
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   697
lemma divide_zero [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   698
  "a / 0 = (0::'a::{field,division_by_zero})"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   699
by (simp add: divide_inverse)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   700
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   701
lemma divide_self_if [simp]:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   702
  "a / (a::'a::{field,division_by_zero}) = (if a=0 then 0 else 1)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   703
by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   704
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   705
class mult_mono = times + zero + ord +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   706
  assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   707
  assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
14267
b963e9cee2a0 More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
paulson
parents: 14266
diff changeset
   708
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   709
class pordered_semiring = mult_mono + semiring_0 + pordered_ab_semigroup_add 
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   710
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   711
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   712
lemma mult_mono:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   713
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   714
     \<Longrightarrow> a * c \<le> b * d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   715
apply (erule mult_right_mono [THEN order_trans], assumption)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   716
apply (erule mult_left_mono, assumption)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   717
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   718
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   719
lemma mult_mono':
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   720
  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   721
     \<Longrightarrow> a * c \<le> b * d"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   722
apply (rule mult_mono)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   723
apply (fast intro: order_trans)+
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   724
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   725
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   726
end
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   727
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   728
class pordered_cancel_semiring = mult_mono + pordered_ab_semigroup_add
29904
856f16a3b436 add class cancel_comm_monoid_add
huffman
parents: 29833
diff changeset
   729
  + semiring + cancel_comm_monoid_add
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   730
begin
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
   731
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   732
subclass semiring_0_cancel ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   733
subclass pordered_semiring ..
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
   734
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   735
lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b"
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   736
using mult_left_mono [of zero b a] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   737
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   738
lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0"
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   739
using mult_left_mono [of b zero a] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   740
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   741
lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   742
using mult_right_mono [of a zero b] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   743
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   744
text {* Legacy - use @{text mult_nonpos_nonneg} *}
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   745
lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   746
by (drule mult_right_mono [of b zero], auto)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   747
26234
1f6e28a88785 clarified proposition
haftmann
parents: 26193
diff changeset
   748
lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   749
by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   750
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   751
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   752
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   753
class ordered_semiring = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add + mult_mono
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   754
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   755
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   756
subclass pordered_cancel_semiring ..
25512
4134f7c782e2 using intro_locales instead of unfold_locales if appropriate
haftmann
parents: 25450
diff changeset
   757
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   758
subclass pordered_comm_monoid_add ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   759
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   760
lemma mult_left_less_imp_less:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   761
  "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   762
by (force simp add: mult_left_mono not_le [symmetric])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   763
 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   764
lemma mult_right_less_imp_less:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   765
  "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   766
by (force simp add: mult_right_mono not_le [symmetric])
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
   767
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   768
end
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   769
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
   770
class ordered_semiring_1 = ordered_semiring + semiring_1
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
   771
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   772
class ordered_semiring_strict = semiring + comm_monoid_add + ordered_cancel_ab_semigroup_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   773
  assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
af5ef0d4d655 global class syntax
haftmann
parents: 24748
diff changeset
   774
  assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   775
begin
14341
a09441bd4f1e Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents: 14334
diff changeset
   776
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   777
subclass semiring_0_cancel ..
14940
b9ab8babd8b3 Further development of matrix theory
obua
parents: 14770
diff changeset
   778
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   779
subclass ordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   780
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   781
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   782
  assume A: "a \<le> b" "0 \<le> c"
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   783
  from A show "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   784
    unfolding le_less
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   785
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   786
  from A show "a * c \<le> b * c"
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   787
    unfolding le_less
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   788
    using mult_strict_right_mono by (cases "c = 0") auto
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   789
qed
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   790
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   791
lemma mult_left_le_imp_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   792
  "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   793
by (force simp add: mult_strict_left_mono _not_less [symmetric])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   794
 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   795
lemma mult_right_le_imp_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   796
  "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   797
by (force simp add: mult_strict_right_mono not_less [symmetric])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   798
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   799
lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   800
using mult_strict_left_mono [of zero b a] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   801
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   802
lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   803
using mult_strict_left_mono [of b zero a] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   804
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   805
lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   806
using mult_strict_right_mono [of a zero b] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   807
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   808
text {* Legacy - use @{text mult_neg_pos} *}
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   809
lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   810
by (drule mult_strict_right_mono [of b zero], auto)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   811
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   812
lemma zero_less_mult_pos:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   813
  "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   814
apply (cases "b\<le>0")
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   815
 apply (auto simp add: le_less not_less)
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   816
apply (drule_tac mult_pos_neg [of a b])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   817
 apply (auto dest: less_not_sym)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   818
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   819
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   820
lemma zero_less_mult_pos2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   821
  "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b"
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   822
apply (cases "b\<le>0")
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   823
 apply (auto simp add: le_less not_less)
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   824
apply (drule_tac mult_pos_neg2 [of a b])
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   825
 apply (auto dest: less_not_sym)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   826
done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   827
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   828
text{*Strict monotonicity in both arguments*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   829
lemma mult_strict_mono:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   830
  assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   831
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   832
  using assms apply (cases "c=0")
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   833
  apply (simp add: mult_pos_pos)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   834
  apply (erule mult_strict_right_mono [THEN less_trans])
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   835
  apply (force simp add: le_less)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   836
  apply (erule mult_strict_left_mono, assumption)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   837
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   838
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   839
text{*This weaker variant has more natural premises*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   840
lemma mult_strict_mono':
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   841
  assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   842
  shows "a * c < b * d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   843
by (rule mult_strict_mono) (insert assms, auto)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   844
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   845
lemma mult_less_le_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   846
  assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   847
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   848
  using assms apply (subgoal_tac "a * c < b * c")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   849
  apply (erule less_le_trans)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   850
  apply (erule mult_left_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   851
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   852
  apply (erule mult_strict_right_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   853
  apply assumption
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   854
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   855
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   856
lemma mult_le_less_imp_less:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   857
  assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   858
  shows "a * c < b * d"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   859
  using assms apply (subgoal_tac "a * c \<le> b * c")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   860
  apply (erule le_less_trans)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   861
  apply (erule mult_strict_left_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   862
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   863
  apply (erule mult_right_mono)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   864
  apply simp
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   865
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   866
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   867
lemma mult_less_imp_less_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   868
  assumes less: "c * a < c * b" and nonneg: "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   869
  shows "a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   870
proof (rule ccontr)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   871
  assume "\<not>  a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   872
  hence "b \<le> a" by (simp add: linorder_not_less)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   873
  hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   874
  with this and less show False by (simp add: not_less [symmetric])
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   875
qed
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   876
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   877
lemma mult_less_imp_less_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   878
  assumes less: "a * c < b * c" and nonneg: "0 \<le> c"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   879
  shows "a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   880
proof (rule ccontr)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   881
  assume "\<not> a < b"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   882
  hence "b \<le> a" by (simp add: linorder_not_less)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   883
  hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   884
  with this and less show False by (simp add: not_less [symmetric])
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   885
qed  
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   886
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   887
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   888
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
   889
class ordered_semiring_1_strict = ordered_semiring_strict + semiring_1
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
   890
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   891
class mult_mono1 = times + zero + ord +
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   892
  assumes mult_mono1: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   893
22390
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   894
class pordered_comm_semiring = comm_semiring_0
378f34b1e380 now using "class"
haftmann
parents: 21328
diff changeset
   895
  + pordered_ab_semigroup_add + mult_mono1
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   896
begin
25152
bfde2f8c0f63 partially localized
haftmann
parents: 25078
diff changeset
   897
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   898
subclass pordered_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   899
proof
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   900
  fix a b c :: 'a
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   901
  assume "a \<le> b" "0 \<le> c"
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   902
  thus "c * a \<le> c * b" by (rule mult_mono1)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   903
  thus "a * c \<le> b * c" by (simp only: mult_commute)
21199
2d83f93c3580 * Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
krauss
parents: 20633
diff changeset
   904
qed
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   905
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   906
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   907
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   908
class pordered_cancel_comm_semiring = comm_semiring_0_cancel
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   909
  + pordered_ab_semigroup_add + mult_mono1
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   910
begin
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
   911
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   912
subclass pordered_comm_semiring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   913
subclass pordered_cancel_semiring ..
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   914
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   915
end
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   916
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   917
class ordered_comm_semiring_strict = comm_semiring_0 + ordered_cancel_ab_semigroup_add +
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   918
  assumes mult_strict_left_mono_comm: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b"
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   919
begin
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   920
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   921
subclass ordered_semiring_strict
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   922
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   923
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   924
  assume "a < b" "0 < c"
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   925
  thus "c * a < c * b" by (rule mult_strict_left_mono_comm)
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   926
  thus "a * c < b * c" by (simp only: mult_commute)
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   927
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   928
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   929
subclass pordered_cancel_comm_semiring
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
   930
proof
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   931
  fix a b c :: 'a
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   932
  assume "a \<le> b" "0 \<le> c"
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   933
  thus "c * a \<le> c * b"
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   934
    unfolding le_less
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
   935
    using mult_strict_left_mono by (cases "c = 0") auto
23550
d4f1d6ef119c convert instance proofs to Isar style
huffman
parents: 23544
diff changeset
   936
qed
14272
5efbb548107d Tidying of the integer development; towards removing the
paulson
parents: 14270
diff changeset
   937
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   938
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   939
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   940
class pordered_ring = ring + pordered_cancel_semiring 
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
   941
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   942
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   943
subclass pordered_ab_group_add ..
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   944
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   945
text{*Legacy - use @{text algebra_simps} *}
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
   946
lemmas ring_simps[noatp] = algebra_simps
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   947
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   948
lemma less_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   949
  "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   950
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   951
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   952
lemma less_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   953
  "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   954
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   955
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   956
lemma le_add_iff1:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   957
  "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   958
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   959
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   960
lemma le_add_iff2:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   961
  "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   962
by (simp add: algebra_simps)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   963
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   964
lemma mult_left_mono_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   965
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   966
  apply (drule mult_left_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   967
  apply (simp_all add: minus_mult_left [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   968
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   969
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   970
lemma mult_right_mono_neg:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   971
  "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   972
  apply (drule mult_right_mono [of _ _ "uminus c"])
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   973
  apply (simp_all add: minus_mult_right [symmetric]) 
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   974
  done
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   975
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   976
lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
   977
using mult_right_mono_neg [of a zero b] by simp
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   978
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   979
lemma split_mult_pos_le:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   980
  "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
   981
by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos)
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   982
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   983
end
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
   984
25762
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   985
class abs_if = minus + uminus + ord + zero + abs +
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   986
  assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)"
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   987
c03e9d04b3e4 splitted class uminus from class minus
haftmann
parents: 25564
diff changeset
   988
class sgn_if = minus + uminus + zero + one + ord + sgn +
25186
f4d1ebffd025 localized further
haftmann
parents: 25152
diff changeset
   989
  assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 24491
diff changeset
   990
25564
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   991
lemma (in sgn_if) sgn0[simp]: "sgn 0 = 0"
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   992
by(simp add:sgn_if)
4ca31a3706a4 R&F: added sgn lemma
nipkow
parents: 25512
diff changeset
   993
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
   994
class ordered_ring = ring + ordered_semiring
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   995
  + ordered_ab_group_add + abs_if
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   996
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   997
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
   998
subclass pordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
   999
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1000
subclass pordered_ab_group_add_abs
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  1001
proof
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1002
  fix a b
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1003
  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1004
by (auto simp add: abs_if not_less neg_less_eq_nonneg less_eq_neg_nonpos)
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1005
   (auto simp del: minus_add_distrib simp add: minus_add_distrib [symmetric]
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1006
     neg_less_eq_nonneg less_eq_neg_nonpos, auto intro: add_nonneg_nonneg,
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1007
      auto intro!: less_imp_le add_neg_neg)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1008
qed (auto simp add: abs_if less_eq_neg_nonpos neg_equal_zero)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1009
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1010
end
23521
195fe3fe2831 added ordered_ring and ordered_semiring
obua
parents: 23496
diff changeset
  1011
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1012
(* The "strict" suffix can be seen as describing the combination of ordered_ring and no_zero_divisors.
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1013
   Basically, ordered_ring + no_zero_divisors = ordered_ring_strict.
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1014
 *)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1015
class ordered_ring_strict = ring + ordered_semiring_strict
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1016
  + ordered_ab_group_add + abs_if
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1017
begin
14348
744c868ee0b7 Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents: 14341
diff changeset
  1018
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1019
subclass ordered_ring ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1020
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1021
lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1022
using mult_strict_left_mono [of b a "- c"] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1023
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1024
lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1025
using mult_strict_right_mono [of b a "- c"] by simp
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1026
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1027
lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b"
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1028
using mult_strict_right_mono_neg [of a zero b] by simp
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  1029
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1030
subclass ring_no_zero_divisors
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  1031
proof
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1032
  fix a b
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1033
  assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1034
  assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1035
  have "a * b < 0 \<or> 0 < a * b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1036
  proof (cases "a < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1037
    case True note A' = this
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1038
    show ?thesis proof (cases "b < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1039
      case True with A'
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1040
      show ?thesis by (auto dest: mult_neg_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1041
    next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1042
      case False with B have "0 < b" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1043
      with A' show ?thesis by (auto dest: mult_strict_right_mono)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1044
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1045
  next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1046
    case False with A have A': "0 < a" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1047
    show ?thesis proof (cases "b < 0")
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1048
      case True with A'
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1049
      show ?thesis by (auto dest: mult_strict_right_mono_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1050
    next
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1051
      case False with B have "0 < b" by auto
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1052
      with A' show ?thesis by (auto dest: mult_pos_pos)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1053
    qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1054
  qed
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1055
  then show "a * b \<noteq> 0" by (simp add: neq_iff)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1056
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  1057
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1058
lemma zero_less_mult_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1059
  "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1060
  apply (auto simp add: mult_pos_pos mult_neg_neg)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1061
  apply (simp_all add: not_less le_less)
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1062
  apply (erule disjE) apply assumption defer
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1063
  apply (erule disjE) defer apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1064
  apply (erule disjE) defer apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1065
  apply (erule disjE) apply assumption apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1066
  apply (drule sym) apply simp
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1067
  apply (blast dest: zero_less_mult_pos)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1068
  apply (blast dest: zero_less_mult_pos2)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1069
  done
22990
775e9de3db48 added classes ring_no_zero_divisors and dom (non-commutative version of idom);
huffman
parents: 22987
diff changeset
  1070
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1071
lemma zero_le_mult_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1072
  "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1073
by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff)
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1074
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1075
lemma mult_less_0_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1076
  "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1077
  apply (insert zero_less_mult_iff [of "-a" b]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1078
  apply (force simp add: minus_mult_left[symmetric]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1079
  done
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1080
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1081
lemma mult_le_0_iff:
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1082
  "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b"
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1083
  apply (insert zero_le_mult_iff [of "-a" b]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1084
  apply (force simp add: minus_mult_left[symmetric]) 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1085
  done
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1086
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1087
lemma zero_le_square [simp]: "0 \<le> a * a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1088
by (simp add: zero_le_mult_iff linear)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1089
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1090
lemma not_square_less_zero [simp]: "\<not> (a * a < 0)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1091
by (simp add: not_less)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1092
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1093
text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1094
   also with the relations @{text "\<le>"} and equality.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1095
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1096
text{*These ``disjunction'' versions produce two cases when the comparison is
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1097
 an assumption, but effectively four when the comparison is a goal.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1098
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1099
lemma mult_less_cancel_right_disj:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1100
  "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1101
  apply (cases "c = 0")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1102
  apply (auto simp add: neq_iff mult_strict_right_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1103
                      mult_strict_right_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1104
  apply (auto simp add: not_less 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1105
                      not_le [symmetric, of "a*c"]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1106
                      not_le [symmetric, of a])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1107
  apply (erule_tac [!] notE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1108
  apply (auto simp add: less_imp_le mult_right_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1109
                      mult_right_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1110
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1111
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1112
lemma mult_less_cancel_left_disj:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1113
  "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and>  b < a"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1114
  apply (cases "c = 0")
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1115
  apply (auto simp add: neq_iff mult_strict_left_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1116
                      mult_strict_left_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1117
  apply (auto simp add: not_less 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1118
                      not_le [symmetric, of "c*a"]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1119
                      not_le [symmetric, of a])
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1120
  apply (erule_tac [!] notE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1121
  apply (auto simp add: less_imp_le mult_left_mono 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1122
                      mult_left_mono_neg)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1123
  done
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1124
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1125
text{*The ``conjunction of implication'' lemmas produce two cases when the
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1126
comparison is a goal, but give four when the comparison is an assumption.*}
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1127
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1128
lemma mult_less_cancel_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1129
  "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1130
  using mult_less_cancel_right_disj [of a c b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1131
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1132
lemma mult_less_cancel_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1133
  "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1134
  using mult_less_cancel_left_disj [of c a b] by auto
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1135
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1136
lemma mult_le_cancel_right:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1137
   "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1138
by (simp add: not_less [symmetric] mult_less_cancel_right_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1139
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1140
lemma mult_le_cancel_left:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1141
  "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1142
by (simp add: not_less [symmetric] mult_less_cancel_left_disj)
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1143
30649
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1144
lemma mult_le_cancel_left_pos:
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1145
  "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b"
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1146
by (auto simp: mult_le_cancel_left)
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1147
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1148
lemma mult_le_cancel_left_neg:
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1149
  "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a"
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1150
by (auto simp: mult_le_cancel_left)
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1151
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1152
lemma mult_less_cancel_left_pos:
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1153
  "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b"
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1154
by (auto simp: mult_less_cancel_left)
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1155
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1156
lemma mult_less_cancel_left_neg:
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1157
  "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a"
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1158
by (auto simp: mult_less_cancel_left)
57753e0ec1d4 1. New cancellation simprocs for common factors in inequations
nipkow
parents: 30242
diff changeset
  1159
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1160
end
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1161
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1162
text{*Legacy - use @{text algebra_simps} *}
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1163
lemmas ring_simps[noatp] = algebra_simps
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1164
30692
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1165
lemmas mult_sign_intros =
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1166
  mult_nonneg_nonneg mult_nonneg_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1167
  mult_nonpos_nonneg mult_nonpos_nonpos
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1168
  mult_pos_pos mult_pos_neg
44ea10bc07a7 clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
huffman
parents: 30650
diff changeset
  1169
  mult_neg_pos mult_neg_neg
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1170
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1171
class pordered_comm_ring = comm_ring + pordered_comm_semiring
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1172
begin
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1173
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1174
subclass pordered_ring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1175
subclass pordered_cancel_comm_semiring ..
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1176
25267
1f745c599b5c proper reinitialisation after subclass
haftmann
parents: 25238
diff changeset
  1177
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1178
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1179
class ordered_semidom = comm_semiring_1_cancel + ordered_comm_semiring_strict +
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1180
  (*previously ordered_semiring*)
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1181
  assumes zero_less_one [simp]: "0 < 1"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1182
begin
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1183
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1184
lemma pos_add_strict:
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1185
  shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c"
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1186
  using add_strict_mono [of zero a b c] by simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1187
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1188
lemma zero_le_one [simp]: "0 \<le> 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1189
by (rule zero_less_one [THEN less_imp_le]) 
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1190
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1191
lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1192
by (simp add: not_le) 
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1194
lemma not_one_less_zero [simp]: "\<not> 1 < 0"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1195
by (simp add: not_less) 
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1196
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1197
lemma less_1_mult:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1198
  assumes "1 < m" and "1 < n"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1199
  shows "1 < m * n"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1200
  using assms mult_strict_mono [of 1 m 1 n]
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1201
    by (simp add:  less_trans [OF zero_less_one]) 
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1202
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1203
end
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1204
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1205
class ordered_idom = comm_ring_1 +
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1206
  ordered_comm_semiring_strict + ordered_ab_group_add +
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1207
  abs_if + sgn_if
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1208
  (*previously ordered_ring*)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1209
begin
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1210
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1211
subclass ordered_ring_strict ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1212
subclass pordered_comm_ring ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  1213
subclass idom ..
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1214
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1215
subclass ordered_semidom
28823
dcbef866c9e2 tuned unfold_locales invocation
haftmann
parents: 28559
diff changeset
  1216
proof
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1217
  have "0 \<le> 1 * 1" by (rule zero_le_square)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1218
  thus "0 < 1" by (simp add: le_less)
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1219
qed 
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1220
26193
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1221
lemma linorder_neqE_ordered_idom:
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1222
  assumes "x \<noteq> y" obtains "x < y" | "y < x"
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1223
  using assms by (rule neqE)
37a7eb7fd5f7 continued localization
haftmann
parents: 25917
diff changeset
  1224
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1225
text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1226
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1227
lemma mult_le_cancel_right1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1228
  "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1229
by (insert mult_le_cancel_right [of 1 c b], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1230
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1231
lemma mult_le_cancel_right2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1232
  "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1233
by (insert mult_le_cancel_right [of a c 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1234
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1235
lemma mult_le_cancel_left1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1236
  "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1237
by (insert mult_le_cancel_left [of c 1 b], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1238
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1239
lemma mult_le_cancel_left2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1240
  "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1241
by (insert mult_le_cancel_left [of c a 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1242
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1243
lemma mult_less_cancel_right1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1244
  "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1245
by (insert mult_less_cancel_right [of 1 c b], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1246
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1247
lemma mult_less_cancel_right2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1248
  "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1249
by (insert mult_less_cancel_right [of a c 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1250
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1251
lemma mult_less_cancel_left1:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1252
  "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1253
by (insert mult_less_cancel_left [of c 1 b], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1254
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1255
lemma mult_less_cancel_left2:
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1256
  "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1257
by (insert mult_less_cancel_left [of c a 1], simp)
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1258
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1259
lemma sgn_sgn [simp]:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1260
  "sgn (sgn a) = sgn a"
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1261
unfolding sgn_if by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1262
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1263
lemma sgn_0_0:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1264
  "sgn a = 0 \<longleftrightarrow> a = 0"
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1265
unfolding sgn_if by simp
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1266
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1267
lemma sgn_1_pos:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1268
  "sgn a = 1 \<longleftrightarrow> a > 0"
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1269
unfolding sgn_if by (simp add: neg_equal_zero)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1270
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1271
lemma sgn_1_neg:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1272
  "sgn a = - 1 \<longleftrightarrow> a < 0"
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1273
unfolding sgn_if by (auto simp add: equal_neg_zero)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1274
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1275
lemma sgn_pos [simp]:
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1276
  "0 < a \<Longrightarrow> sgn a = 1"
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1277
unfolding sgn_1_pos .
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1278
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1279
lemma sgn_neg [simp]:
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1280
  "a < 0 \<Longrightarrow> sgn a = - 1"
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1281
unfolding sgn_1_neg .
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1282
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1283
lemma sgn_times:
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1284
  "sgn (a * b) = sgn a * sgn b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1285
by (auto simp add: sgn_if zero_less_mult_iff)
27651
16a26996c30e moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
haftmann
parents: 27516
diff changeset
  1286
29653
ece6a0e9f8af added lemma abs_sng
haftmann
parents: 29465
diff changeset
  1287
lemma abs_sgn: "abs k = k * sgn k"
29700
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1288
unfolding sgn_if abs_if by auto
22faf21db3df added some simp rules
nipkow
parents: 29668
diff changeset
  1289
29940
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1290
lemma sgn_greater [simp]:
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1291
  "0 < sgn a \<longleftrightarrow> 0 < a"
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1292
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1293
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1294
lemma sgn_less [simp]:
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1295
  "sgn a < 0 \<longleftrightarrow> a < 0"
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1296
  unfolding sgn_if by auto
83b373f61d41 more default simp rules for sgn
haftmann
parents: 29925
diff changeset
  1297
29949
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  1298
lemma abs_dvd_iff [simp]: "(abs m) dvd k \<longleftrightarrow> m dvd k"
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  1299
  by (simp add: abs_if)
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  1300
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  1301
lemma dvd_abs_iff [simp]: "m dvd (abs k) \<longleftrightarrow> m dvd k"
20a506b8256d lemmas abs_dvd_iff, dvd_abs_iff
huffman
parents: 29940
diff changeset
  1302
  by (simp add: abs_if)
29653
ece6a0e9f8af added lemma abs_sng
haftmann
parents: 29465
diff changeset
  1303
33676
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  1304
lemma dvd_if_abs_eq:
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  1305
  "abs l = abs (k) \<Longrightarrow> l dvd k"
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  1306
by(subst abs_dvd_iff[symmetric]) simp
802f5e233e48 moved lemma from Algebra/IntRing to Ring_and_Field
nipkow
parents: 33364
diff changeset
  1307
25917
d6c920623afc further localization
haftmann
parents: 25762
diff changeset
  1308
end
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1309
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1310
class ordered_field = field + ordered_idom
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  1311
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1312
text {* Simprules for comparisons where common factors can be cancelled. *}
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1313
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1314
lemmas mult_compare_simps[noatp] =
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1315
    mult_le_cancel_right mult_le_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1316
    mult_le_cancel_right1 mult_le_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1317
    mult_le_cancel_left1 mult_le_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1318
    mult_less_cancel_right mult_less_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1319
    mult_less_cancel_right1 mult_less_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1320
    mult_less_cancel_left1 mult_less_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1321
    mult_cancel_right mult_cancel_left
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1322
    mult_cancel_right1 mult_cancel_right2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1323
    mult_cancel_left1 mult_cancel_left2
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1324
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1325
-- {* FIXME continue localization here *}
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1326
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1327
lemma inverse_nonzero_iff_nonzero [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1328
   "(inverse a = 0) = (a = (0::'a::{division_ring,division_by_zero}))"
26274
2bdb61a28971 continued localization
haftmann
parents: 26234
diff changeset
  1329
by (force dest: inverse_zero_imp_zero) 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1330
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1331
lemma inverse_minus_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1332
   "inverse(-a) = -inverse(a::'a::{division_ring,division_by_zero})"
14377
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1333
proof cases
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1334
  assume "a=0" thus ?thesis by (simp add: inverse_zero)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1335
next
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1336
  assume "a\<noteq>0" 
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1337
  thus ?thesis by (simp add: nonzero_inverse_minus_eq)
f454b3004f8f tidying up, especially the Complex numbers
paulson
parents: 14370
diff changeset
  1338
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1339
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1340
lemma inverse_eq_imp_eq:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1341
  "inverse a = inverse b ==> a = (b::'a::{division_ring,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1342
apply (cases "a=0 | b=0") 
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1343
 apply (force dest!: inverse_zero_imp_zero
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1344
              simp add: eq_commute [of "0::'a"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1345
apply (force dest!: nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1346
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1347
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1348
lemma inverse_eq_iff_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1349
  "(inverse a = inverse b) = (a = (b::'a::{division_ring,division_by_zero}))"
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1350
by (force dest!: inverse_eq_imp_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1351
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1352
lemma inverse_inverse_eq [simp]:
20496
23eb6034c06d added axclass division_ring (like field without commutativity; includes e.g. quaternions) and generalized some theorems from field to division_ring
huffman
parents: 19404
diff changeset
  1353
     "inverse(inverse (a::'a::{division_ring,division_by_zero})) = a"
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1354
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1355
    assume "a=0" thus ?thesis by simp
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1356
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1357
    assume "a\<noteq>0" 
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1358
    thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1359
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1360
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1361
text{*This version builds in division by zero while also re-orienting
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1362
      the right-hand side.*}
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1363
lemma inverse_mult_distrib [simp]:
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1364
     "inverse(a*b) = inverse(a) * inverse(b::'a::{field,division_by_zero})"
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1365
  proof cases
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1366
    assume "a \<noteq> 0 & b \<noteq> 0" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1367
    thus ?thesis by (simp add: nonzero_inverse_mult_distrib mult_commute)
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1368
  next
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1369
    assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1370
    thus ?thesis by force
14270
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1371
  qed
342451d763f9 More re-organising of numerical theorems
paulson
parents: 14269
diff changeset
  1372
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1373
lemma inverse_divide [simp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1374
  "inverse (a/b) = b / (a::'a::{field,division_by_zero})"
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1375
by (simp add: divide_inverse mult_commute)
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1376
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1377
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1378
subsection {* Calculations with fractions *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1379
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1380
text{* There is a whole bunch of simp-rules just for class @{text
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1381
field} but none for class @{text field} and @{text nonzero_divides}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1382
because the latter are covered by a simproc. *}
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1383
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1384
lemma mult_divide_mult_cancel_left:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1385
  "c\<noteq>0 ==> (c*a) / (c*b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1386
apply (cases "b = 0")
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1387
apply (simp_all add: nonzero_mult_divide_mult_cancel_left)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1388
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1389
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1390
lemma mult_divide_mult_cancel_right:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1391
  "c\<noteq>0 ==> (a*c) / (b*c) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1392
apply (cases "b = 0")
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1393
apply (simp_all add: nonzero_mult_divide_mult_cancel_right)
14321
55c688d2eefa new theorems
paulson
parents: 14305
diff changeset
  1394
done
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1395
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1396
lemma divide_divide_eq_right [simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1397
  "a / (b/c) = (a*c) / (b::'a::{field,division_by_zero})"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1398
by (simp add: divide_inverse mult_ac)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1399
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1400
lemma divide_divide_eq_left [simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1401
  "(a / b) / (c::'a::{field,division_by_zero}) = a / (b*c)"
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1402
by (simp add: divide_inverse mult_assoc)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1403
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1404
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1405
subsubsection{*Special Cancellation Simprules for Division*}
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1406
24427
bc5cf3b09ff3 revised blacklisting for ATP linkup
paulson
parents: 24422
diff changeset
  1407
lemma mult_divide_mult_cancel_left_if[simp,noatp]:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1408
fixes c :: "'a :: {field,division_by_zero}"
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1409
shows "(c*a) / (c*b) = (if c=0 then 0 else a/b)"
23413
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1410
by (simp add: mult_divide_mult_cancel_left)
5caa2710dd5b tuned laws for cancellation in divisions for fields.
nipkow
parents: 23406
diff changeset
  1411
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1412
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1413
subsection {* Division and Unary Minus *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1414
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1415
lemma minus_divide_right: "- (a/b) = a / -(b::'a::{field,division_by_zero})"
29407
5ef7e97fd9e4 move lemmas mult_minus{left,right} inside class ring
huffman
parents: 29406
diff changeset
  1416
by (simp add: divide_inverse)
14430
5cb24165a2e1 new material from Avigad, and simplified treatment of division by 0
paulson
parents: 14421
diff changeset
  1417
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1418
lemma divide_minus_right [simp, noatp]:
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1419
  "a / -(b::'a::{field,division_by_zero}) = -(a / b)"
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1420
by (simp add: divide_inverse)
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1421
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1422
lemma minus_divide_divide:
23477
f4b83f03cac9 tuned and renamed group_eq_simps and ring_eq_simps
nipkow
parents: 23413
diff changeset
  1423
  "(-a)/(-b) = a / (b::'a::{field,division_by_zero})"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1424
apply (cases "b=0", simp) 
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1425
apply (simp add: nonzero_minus_divide_divide) 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1426
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1427
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1428
lemma eq_divide_eq:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1429
  "((a::'a::{field,division_by_zero}) = b/c) = (if c\<noteq>0 then a*c = b else a=0)"
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1430
by (simp add: nonzero_eq_divide_eq)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1431
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1432
lemma divide_eq_eq:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1433
  "(b/c = (a::'a::{field,division_by_zero})) = (if c\<noteq>0 then b = a*c else a=0)"
30630
4fbe1401bac2 move field lemmas into class locale context
huffman
parents: 30242
diff changeset
  1434
by (force simp add: nonzero_divide_eq_eq)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1435
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1436
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1437
subsection {* Ordered Fields *}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1438
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1439
lemma positive_imp_inverse_positive: 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1440
assumes a_gt_0: "0 < a"  shows "0 < inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1441
proof -
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1442
  have "0 < a * inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1443
    by (simp add: a_gt_0 [THEN order_less_imp_not_eq2] zero_less_one)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1444
  thus "0 < inverse a" 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1445
    by (simp add: a_gt_0 [THEN order_less_not_sym] zero_less_mult_iff)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1446
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1447
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1448
lemma negative_imp_inverse_negative:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1449
  "a < 0 ==> inverse a < (0::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1450
by (insert positive_imp_inverse_positive [of "-a"], 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1451
    simp add: nonzero_inverse_minus_eq order_less_imp_not_eq)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1452
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1453
lemma inverse_le_imp_le:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1454
assumes invle: "inverse a \<le> inverse b" and apos:  "0 < a"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1455
shows "b \<le> (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1456
proof (rule classical)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1457
  assume "~ b \<le> a"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1458
  hence "a < b"  by (simp add: linorder_not_le)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1459
  hence bpos: "0 < b"  by (blast intro: apos order_less_trans)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1460
  hence "a * inverse a \<le> a * inverse b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1461
    by (simp add: apos invle order_less_imp_le mult_left_mono)
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1462
  hence "(a * inverse a) * b \<le> (a * inverse b) * b"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1463
    by (simp add: bpos order_less_imp_le mult_right_mono)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1464
  thus "b \<le> a"  by (simp add: mult_assoc apos bpos order_less_imp_not_eq2)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1465
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1466
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1467
lemma inverse_positive_imp_positive:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1468
assumes inv_gt_0: "0 < inverse a" and nz: "a \<noteq> 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1469
shows "0 < (a::'a::ordered_field)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1470
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1471
  have "0 < inverse (inverse a)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1472
    using inv_gt_0 by (rule positive_imp_inverse_positive)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1473
  thus "0 < a"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1474
    using nz by (simp add: nonzero_inverse_inverse_eq)
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1475
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1476
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1477
lemma inverse_positive_iff_positive [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1478
  "(0 < inverse a) = (0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1479
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1480
apply (blast intro: inverse_positive_imp_positive positive_imp_inverse_positive)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1481
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1482
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1483
lemma inverse_negative_imp_negative:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1484
assumes inv_less_0: "inverse a < 0" and nz:  "a \<noteq> 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1485
shows "a < (0::'a::ordered_field)"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1486
proof -
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1487
  have "inverse (inverse a) < 0"
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1488
    using inv_less_0 by (rule negative_imp_inverse_negative)
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1489
  thus "a < 0" using nz by (simp add: nonzero_inverse_inverse_eq)
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1490
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1491
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1492
lemma inverse_negative_iff_negative [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1493
  "(inverse a < 0) = (a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1494
apply (cases "a = 0", simp)
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1495
apply (blast intro: inverse_negative_imp_negative negative_imp_inverse_negative)
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1496
done
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1497
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1498
lemma inverse_nonnegative_iff_nonnegative [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1499
  "(0 \<le> inverse a) = (0 \<le> (a::'a::{ordered_field,division_by_zero}))"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1500
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1501
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1502
lemma inverse_nonpositive_iff_nonpositive [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1503
  "(inverse a \<le> 0) = (a \<le> (0::'a::{ordered_field,division_by_zero}))"
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1504
by (simp add: linorder_not_less [symmetric])
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1505
23406
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1506
lemma ordered_field_no_lb: "\<forall> x. \<exists>y. y < (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1507
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1508
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1509
  have m1: "- (1::'a) < 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1510
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1511
  have "(- 1) + x < x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1512
  thus "\<exists>y. y < x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1513
qed
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1514
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1515
lemma ordered_field_no_ub: "\<forall> x. \<exists>y. y > (x::'a::ordered_field)"
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1516
proof
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1517
  fix x::'a
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1518
  have m1: " (1::'a) > 0" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1519
  from add_strict_right_mono[OF m1, where c=x] 
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1520
  have "1 + x > x" by simp
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1521
  thus "\<exists>y. y > x" by blast
167b53019d6f added theorems nonzero_mult_divide_cancel_right' nonzero_mult_divide_cancel_left' ordered_field_no_lb ordered_field_no_ub
chaieb
parents: 23400
diff changeset
  1522
qed
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1523
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1524
subsection{*Anti-Monotonicity of @{term inverse}*}
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1525
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1526
lemma less_imp_inverse_less:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1527
assumes less: "a < b" and apos:  "0 < a"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1528
shows "inverse b < inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1529
proof (rule ccontr)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1530
  assume "~ inverse b < inverse a"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1531
  hence "inverse a \<le> inverse b" by (simp add: linorder_not_less)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1532
  hence "~ (a < b)"
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1533
    by (simp add: linorder_not_less inverse_le_imp_le [OF _ apos])
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1534
  thus False by (rule notE [OF _ less])
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1535
qed
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1536
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1537
lemma inverse_less_imp_less:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1538
  "[|inverse a < inverse b; 0 < a|] ==> b < (a::'a::ordered_field)"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1539
apply (simp add: order_less_le [of "inverse a"] order_less_le [of "b"])
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1540
apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1541
done
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1542
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1543
text{*Both premises are essential. Consider -1 and 1.*}
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1544
lemma inverse_less_iff_less [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1545
  "[|0 < a; 0 < b|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1546
by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1547
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1548
lemma le_imp_inverse_le:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1549
  "[|a \<le> b; 0 < a|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1550
by (force simp add: order_le_less less_imp_inverse_less)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1551
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1552
lemma inverse_le_iff_le [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1553
 "[|0 < a; 0 < b|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1554
by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1555
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1556
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1557
text{*These results refer to both operands being negative.  The opposite-sign
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1558
case is trivial, since inverse preserves signs.*}
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1559
lemma inverse_le_imp_le_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1560
  "[|inverse a \<le> inverse b; b < 0|] ==> b \<le> (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1561
apply (rule classical) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1562
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1563
 prefer 2 apply (force simp add: linorder_not_le intro: order_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1564
apply (insert inverse_le_imp_le [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1565
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1566
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1567
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1568
lemma less_imp_inverse_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1569
   "[|a < b; b < 0|] ==> inverse b < inverse (a::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1570
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1571
 prefer 2 apply (blast intro: order_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1572
apply (insert less_imp_inverse_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1573
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1574
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1575
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1576
lemma inverse_less_imp_less_neg:
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1577
   "[|inverse a < inverse b; b < 0|] ==> b < (a::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1578
apply (rule classical) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1579
apply (subgoal_tac "a < 0") 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1580
 prefer 2
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1581
 apply (force simp add: linorder_not_less intro: order_le_less_trans) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1582
apply (insert inverse_less_imp_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1583
apply (simp add: order_less_imp_not_eq nonzero_inverse_minus_eq) 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1584
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1585
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1586
lemma inverse_less_iff_less_neg [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1587
  "[|a < 0; b < 0|] ==> (inverse a < inverse b) = (b < (a::'a::ordered_field))"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1588
apply (insert inverse_less_iff_less [of "-b" "-a"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1589
apply (simp del: inverse_less_iff_less 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1590
            add: order_less_imp_not_eq nonzero_inverse_minus_eq)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1591
done
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1592
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1593
lemma le_imp_inverse_le_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1594
  "[|a \<le> b; b < 0|] ==> inverse b \<le> inverse (a::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1595
by (force simp add: order_le_less less_imp_inverse_less_neg)
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1596
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1597
lemma inverse_le_iff_le_neg [simp,noatp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1598
 "[|a < 0; b < 0|] ==> (inverse a \<le> inverse b) = (b \<le> (a::'a::ordered_field))"
14268
5cf13e80be0e Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
paulson
parents: 14267
diff changeset
  1599
by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  1600
14277
ad66687ece6e more field division lemmas transferred from Real to Ring_and_Field
paulson
parents: 14272
diff changeset
  1601
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1602
subsection{*Inverses and the Number One*}
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1603
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1604
lemma one_less_inverse_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1605
  "(1 < inverse x) = (0 < x & x < (1::'a::{ordered_field,division_by_zero}))"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1606
proof cases
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1607
  assume "0 < x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1608
    with inverse_less_iff_less [OF zero_less_one, of x]
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1609
    show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1610
next
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1611
  assume notless: "~ (0 < x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1612
  have "~ (1 < inverse x)"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1613
  proof
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1614
    assume "1 < inverse x"
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1615
    also with notless have "... \<le> 0" by (simp add: linorder_not_less)
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1616
    also have "... < 1" by (rule zero_less_one) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1617
    finally show False by auto
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1618
  qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1619
  with notless show ?thesis by simp
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1620
qed
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1621
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1622
lemma inverse_eq_1_iff [simp]:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1623
  "(inverse x = 1) = (x = (1::'a::{field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1624
by (insert inverse_eq_iff_eq [of x 1], simp) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1625
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1626
lemma one_le_inverse_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1627
  "(1 \<le> inverse x) = (0 < x & x \<le> (1::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1628
by (force simp add: order_le_less one_less_inverse_iff zero_less_one 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1629
                    eq_commute [of 1]) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1630
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1631
lemma inverse_less_1_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1632
  "(inverse x < 1) = (x \<le> 0 | 1 < (x::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1633
by (simp add: linorder_not_le [symmetric] one_le_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1634
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1635
lemma inverse_le_1_iff:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1636
  "(inverse x \<le> 1) = (x \<le> 0 | 1 \<le> (x::'a::{ordered_field,division_by_zero}))"
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1637
by (simp add: linorder_not_less [symmetric] one_less_inverse_iff) 
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  1638
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1639
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1640
subsection{*Simplification of Inequalities Involving Literal Divisors*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1641
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1642
lemma pos_le_divide_eq: "0 < (c::'a::ordered_field) ==> (a \<le> b/c) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1643
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1644
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1645
  hence "(a \<le> b/c) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1646
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1647
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1648
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1649
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1650
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1651
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1652
lemma neg_le_divide_eq: "c < (0::'a::ordered_field) ==> (a \<le> b/c) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1653
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1654
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1655
  hence "(a \<le> b/c) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1656
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1657
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1658
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1659
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1660
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1661
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1662
lemma le_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1663
  "(a \<le> b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1664
   (if 0 < c then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1665
             else if c < 0 then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1666
             else  a \<le> (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1667
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1668
apply (force simp add: pos_le_divide_eq neg_le_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1669
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1670
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1671
lemma pos_divide_le_eq: "0 < (c::'a::ordered_field) ==> (b/c \<le> a) = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1672
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1673
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1674
  hence "(b/c \<le> a) = ((b/c)*c \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1675
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1676
  also have "... = (b \<le> a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1677
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1678
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1679
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1680
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1681
lemma neg_divide_le_eq: "c < (0::'a::ordered_field) ==> (b/c \<le> a) = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1682
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1683
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1684
  hence "(b/c \<le> a) = (a*c \<le> (b/c)*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1685
    by (simp add: mult_le_cancel_right order_less_not_sym [OF less])
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1686
  also have "... = (a*c \<le> b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1687
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1688
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1689
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1690
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1691
lemma divide_le_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1692
  "(b/c \<le> a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1693
   (if 0 < c then b \<le> a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1694
             else if c < 0 then a*c \<le> b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1695
             else 0 \<le> (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1696
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1697
apply (force simp add: pos_divide_le_eq neg_divide_le_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1698
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1699
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1700
lemma pos_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1701
     "0 < (c::'a::ordered_field) ==> (a < b/c) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1702
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1703
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1704
  hence "(a < b/c) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1705
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1706
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1707
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1708
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1709
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1710
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1711
lemma neg_less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1712
 "c < (0::'a::ordered_field) ==> (a < b/c) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1713
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1714
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1715
  hence "(a < b/c) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1716
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1717
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1718
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1719
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1720
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1721
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1722
lemma less_divide_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1723
  "(a < b/c) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1724
   (if 0 < c then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1725
             else if c < 0 then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1726
             else  a < (0::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1727
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1728
apply (force simp add: pos_less_divide_eq neg_less_divide_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1729
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1730
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1731
lemma pos_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1732
     "0 < (c::'a::ordered_field) ==> (b/c < a) = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1733
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1734
  assume less: "0<c"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1735
  hence "(b/c < a) = ((b/c)*c < a*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1736
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1737
  also have "... = (b < a*c)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1738
    by (simp add: order_less_imp_not_eq2 [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1739
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1740
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1741
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1742
lemma neg_divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1743
 "c < (0::'a::ordered_field) ==> (b/c < a) = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1744
proof -
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1745
  assume less: "c<0"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1746
  hence "(b/c < a) = (a*c < (b/c)*c)"
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1747
    by (simp add: mult_less_cancel_right_disj order_less_not_sym [OF less])
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1748
  also have "... = (a*c < b)"
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1749
    by (simp add: order_less_imp_not_eq [OF less] divide_inverse mult_assoc) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1750
  finally show ?thesis .
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1751
qed
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1752
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1753
lemma divide_less_eq:
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1754
  "(b/c < a) = 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1755
   (if 0 < c then b < a*c
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1756
             else if c < 0 then a*c < b
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1757
             else 0 < (a::'a::{ordered_field,division_by_zero}))"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  1758
apply (cases "c=0", simp) 
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1759
apply (force simp add: pos_divide_less_eq neg_divide_less_eq linorder_neq_iff) 
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1760
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1761
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1762
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1763
subsection{*Field simplification*}
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1764
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1765
text{* Lemmas @{text field_simps} multiply with denominators in in(equations)
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1766
if they can be proved to be non-zero (for equations) or positive/negative
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1767
(for inequations). Can be too aggressive and is therefore separate from the
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  1768
more benign @{text algebra_simps}. *}
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1769
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1770
lemmas field_simps[noatp] = field_eq_simps
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1771
  (* multiply ineqn *)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1772
  pos_divide_less_eq neg_divide_less_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1773
  pos_less_divide_eq neg_less_divide_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1774
  pos_divide_le_eq neg_divide_le_eq
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1775
  pos_le_divide_eq neg_le_divide_eq
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1776
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1777
text{* Lemmas @{text sign_simps} is a first attempt to automate proofs
23483
a9356b40fbd3 tex problem fixed
nipkow
parents: 23482
diff changeset
  1778
of positivity/negativity needed for @{text field_simps}. Have not added @{text
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1779
sign_simps} to @{text field_simps} because the former can lead to case
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1780
explosions. *}
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1781
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1782
lemmas sign_simps[noatp] = group_simps
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1783
  zero_less_mult_iff  mult_less_0_iff
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1784
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1785
(* Only works once linear arithmetic is installed:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1786
text{*An example:*}
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1787
lemma fixes a b c d e f :: "'a::ordered_field"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1788
shows "\<lbrakk>a>b; c<d; e<f; 0 < u \<rbrakk> \<Longrightarrow>
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1789
 ((a-b)*(c-d)*(e-f))/((c-d)*(e-f)*(a-b)) <
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1790
 ((e-f)*(a-b)*(c-d))/((e-f)*(a-b)*(c-d)) + u"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1791
apply(subgoal_tac "(c-d)*(e-f)*(a-b) > 0")
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1792
 prefer 2 apply(simp add:sign_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1793
apply(subgoal_tac "(c-d)*(e-f)*(a-b)*u > 0")
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1794
 prefer 2 apply(simp add:sign_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1795
apply(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1796
done
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1797
*)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1798
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1799
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1800
subsection{*Division and Signs*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1801
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1802
lemma zero_less_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1803
     "((0::'a::{ordered_field,division_by_zero}) < a/b) = (0 < a & 0 < b | a < 0 & b < 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1804
by (simp add: divide_inverse zero_less_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1805
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1806
lemma divide_less_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1807
     "(a/b < (0::'a::{ordered_field,division_by_zero})) = 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1808
      (0 < a & b < 0 | a < 0 & 0 < b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1809
by (simp add: divide_inverse mult_less_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1810
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1811
lemma zero_le_divide_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1812
     "((0::'a::{ordered_field,division_by_zero}) \<le> a/b) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1813
      (0 \<le> a & 0 \<le> b | a \<le> 0 & b \<le> 0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1814
by (simp add: divide_inverse zero_le_mult_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1815
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1816
lemma divide_le_0_iff:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1817
     "(a/b \<le> (0::'a::{ordered_field,division_by_zero})) =
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1818
      (0 \<le> a & b \<le> 0 | a \<le> 0 & 0 \<le> b)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1819
by (simp add: divide_inverse mult_le_0_iff)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1820
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1821
lemma divide_eq_0_iff [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1822
     "(a/b = 0) = (a=0 | b=(0::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1823
by (simp add: divide_inverse)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1824
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1825
lemma divide_pos_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1826
  "0 < (x::'a::ordered_field) ==> 0 < y ==> 0 < x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1827
by(simp add:field_simps)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1828
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1829
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1830
lemma divide_nonneg_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1831
  "0 <= (x::'a::ordered_field) ==> 0 < y ==> 0 <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1832
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1833
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1834
lemma divide_neg_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1835
  "(x::'a::ordered_field) < 0 ==> 0 < y ==> x / y < 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1836
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1837
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1838
lemma divide_nonpos_pos:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1839
  "(x::'a::ordered_field) <= 0 ==> 0 < y ==> x / y <= 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1840
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1841
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1842
lemma divide_pos_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1843
  "0 < (x::'a::ordered_field) ==> y < 0 ==> x / y < 0"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1844
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1845
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1846
lemma divide_nonneg_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1847
  "0 <= (x::'a::ordered_field) ==> y < 0 ==> x / y <= 0" 
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1848
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1849
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1850
lemma divide_neg_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1851
  "(x::'a::ordered_field) < 0 ==> y < 0 ==> 0 < x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1852
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1853
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1854
lemma divide_nonpos_neg:
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1855
  "(x::'a::ordered_field) <= 0 ==> y < 0 ==> 0 <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1856
by(simp add:field_simps)
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  1857
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1858
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1859
subsection{*Cancellation Laws for Division*}
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1860
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1861
lemma divide_cancel_right [simp,noatp]:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1862
     "(a/c = b/c) = (c = 0 | a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1863
apply (cases "c=0", simp)
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1864
apply (simp add: divide_inverse)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1865
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1866
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1867
lemma divide_cancel_left [simp,noatp]:
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1868
     "(c/a = c/b) = (c = 0 | a = (b::'a::{field,division_by_zero}))" 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1869
apply (cases "c=0", simp)
23496
84e9216a6d0e removed redundant lemmas
nipkow
parents: 23483
diff changeset
  1870
apply (simp add: divide_inverse)
14288
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1871
done
d149e3cbdb39 Moving some theorems from Real/RealArith0.ML
paulson
parents: 14284
diff changeset
  1872
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1873
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1874
subsection {* Division and the Number One *}
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1875
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1876
text{*Simplify expressions equated with 1*}
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1877
lemma divide_eq_1_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1878
     "(a/b = 1) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1879
apply (cases "b=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1880
apply (simp add: right_inverse_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1881
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1882
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1883
lemma one_eq_divide_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1884
     "(1 = a/b) = (b \<noteq> 0 & a = (b::'a::{field,division_by_zero}))"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1885
by (simp add: eq_commute [of 1])
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1886
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1887
lemma zero_eq_1_divide_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1888
     "((0::'a::{ordered_field,division_by_zero}) = 1/a) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1889
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1890
apply (auto simp add: nonzero_eq_divide_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1891
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1892
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1893
lemma one_divide_eq_0_iff [simp,noatp]:
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1894
     "(1/a = (0::'a::{ordered_field,division_by_zero})) = (a = 0)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1895
apply (cases "a=0", simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1896
apply (insert zero_neq_one [THEN not_sym])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1897
apply (auto simp add: nonzero_divide_eq_eq)
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1898
done
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1899
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1900
text{*Simplify expressions such as @{text "0 < 1/x"} to @{text "0 < x"}*}
18623
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1901
lemmas zero_less_divide_1_iff = zero_less_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1902
lemmas divide_less_0_1_iff = divide_less_0_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1903
lemmas zero_le_divide_1_iff = zero_le_divide_iff [of 1, simplified]
9a5419d5ca01 simplified the special-case simprules
paulson
parents: 17085
diff changeset
  1904
lemmas divide_le_0_1_iff = divide_le_0_iff [of 1, simplified]
17085
5b57f995a179 more simprules now have names
paulson
parents: 16775
diff changeset
  1905
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1906
declare zero_less_divide_1_iff [simp,noatp]
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1907
declare divide_less_0_1_iff [simp,noatp]
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  1908
declare zero_le_divide_1_iff [simp,noatp]
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1909
declare divide_le_0_1_iff [simp,noatp]
14353
79f9fbef9106 Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents: 14348
diff changeset
  1910
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1911
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1912
subsection {* Ordering Rules for Division *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1913
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1914
lemma divide_strict_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1915
     "[|a < b; 0 < c|] ==> a / c < b / (c::'a::ordered_field)"
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1916
by (simp add: order_less_imp_not_eq2 divide_inverse mult_strict_right_mono 
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1917
              positive_imp_inverse_positive)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1918
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1919
lemma divide_right_mono:
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1920
     "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/(c::'a::{ordered_field,division_by_zero})"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1921
by (force simp add: divide_strict_right_mono order_le_less)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1922
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1923
lemma divide_right_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1924
    ==> c <= 0 ==> b / c <= a / c"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1925
apply (drule divide_right_mono [of _ _ "- c"])
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1926
apply auto
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1927
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1928
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1929
lemma divide_strict_right_mono_neg:
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1930
     "[|b < a; c < 0|] ==> a / c < b / (c::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1931
apply (drule divide_strict_right_mono [of _ _ "-c"], simp)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1932
apply (simp add: order_less_imp_not_eq nonzero_minus_divide_right [symmetric])
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1933
done
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1934
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1935
text{*The last premise ensures that @{term a} and @{term b} 
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1936
      have the same sign*}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1937
lemma divide_strict_left_mono:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1938
  "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1939
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1940
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1941
lemma divide_left_mono:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1942
  "[|b \<le> a; 0 \<le> c; 0 < a*b|] ==> c / a \<le> c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1943
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_right_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1944
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1945
lemma divide_left_mono_neg: "(a::'a::{division_by_zero,ordered_field}) <= b 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1946
    ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1947
  apply (drule divide_left_mono [of _ _ "- c"])
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1948
  apply (auto simp add: mult_commute)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1949
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1950
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1951
lemma divide_strict_left_mono_neg:
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1952
  "[|a < b; c < 0; 0 < a*b|] ==> c / a < c / (b::'a::ordered_field)"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1953
by(auto simp: field_simps times_divide_eq zero_less_mult_iff mult_strict_right_mono_neg)
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  1954
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  1955
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1956
text{*Simplify quotients that are compared with the value 1.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1957
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1958
lemma le_divide_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1959
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1960
  shows "(1 \<le> b / a) = ((0 < a & a \<le> b) | (a < 0 & b \<le> a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1961
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1962
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1963
lemma divide_le_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1964
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1965
  shows "(b / a \<le> 1) = ((0 < a & b \<le> a) | (a < 0 & a \<le> b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1966
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1967
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1968
lemma less_divide_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1969
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1970
  shows "(1 < b / a) = ((0 < a & a < b) | (a < 0 & b < a))"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1971
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1972
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1973
lemma divide_less_eq_1 [noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1974
  fixes a :: "'a :: {ordered_field,division_by_zero}"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1975
  shows "(b / a < 1) = ((0 < a & b < a) | (a < 0 & a < b) | a=0)"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1976
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1977
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  1978
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1979
subsection{*Conditional Simplification Rules: No Case Splits*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1980
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1981
lemma le_divide_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1982
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1983
  shows "0 < a \<Longrightarrow> (1 \<le> b/a) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1984
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1985
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1986
lemma le_divide_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1987
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1988
  shows "a < 0 \<Longrightarrow> (1 \<le> b/a) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1989
by (auto simp add: le_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1990
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1991
lemma divide_le_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1992
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1993
  shows "0 < a \<Longrightarrow> (b/a \<le> 1) = (b \<le> a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1994
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1995
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  1996
lemma divide_le_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1997
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  1998
  shows "a < 0 \<Longrightarrow> (b/a \<le> 1) = (a \<le> b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  1999
by (auto simp add: divide_le_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2000
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2001
lemma less_divide_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2002
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2003
  shows "0 < a \<Longrightarrow> (1 < b/a) = (a < b)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2004
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2005
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2006
lemma less_divide_eq_1_neg [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2007
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2008
  shows "a < 0 \<Longrightarrow> (1 < b/a) = (b < a)"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2009
by (auto simp add: less_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2010
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2011
lemma divide_less_eq_1_pos [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2012
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2013
  shows "0 < a \<Longrightarrow> (b/a < 1) = (b < a)"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2014
by (auto simp add: divide_less_eq)
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2015
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2016
lemma divide_less_eq_1_neg [simp,noatp]:
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2017
  fixes a :: "'a :: {ordered_field,division_by_zero}"
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2018
  shows "a < 0 \<Longrightarrow> b/a < 1 <-> a < b"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2019
by (auto simp add: divide_less_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2020
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2021
lemma eq_divide_eq_1 [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2022
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2023
  shows "(1 = b/a) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2024
by (auto simp add: eq_divide_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2025
24286
7619080e49f0 ATP blacklisting is now in theory data, attribute noatp
paulson
parents: 23879
diff changeset
  2026
lemma divide_eq_eq_1 [simp,noatp]:
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2027
  fixes a :: "'a :: {ordered_field,division_by_zero}"
18649
bb99c2e705ca tidied, and added missing thm divide_less_eq_1_neg
paulson
parents: 18623
diff changeset
  2028
  shows "(b/a = 1) = ((a \<noteq> 0 & a = b))"
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2029
by (auto simp add: divide_eq_eq)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2030
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2031
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2032
subsection {* Reasoning about inequalities with division *}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2033
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2034
lemma mult_right_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2035
    ==> x * y <= x"
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2036
by (auto simp add: mult_compare_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2037
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2038
lemma mult_left_le_one_le: "0 <= (x::'a::ordered_idom) ==> 0 <= y ==> y <= 1
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2039
    ==> y * x <= x"
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2040
by (auto simp add: mult_compare_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2041
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2042
lemma mult_imp_div_pos_le: "0 < (y::'a::ordered_field) ==> x <= z * y ==>
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2043
    x / y <= z"
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2044
by (subst pos_divide_le_eq, assumption+)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2045
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2046
lemma mult_imp_le_div_pos: "0 < (y::'a::ordered_field) ==> z * y <= x ==>
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2047
    z <= x / y"
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2048
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2049
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2050
lemma mult_imp_div_pos_less: "0 < (y::'a::ordered_field) ==> x < z * y ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2051
    x / y < z"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2052
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2053
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2054
lemma mult_imp_less_div_pos: "0 < (y::'a::ordered_field) ==> z * y < x ==>
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2055
    z < x / y"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2056
by(simp add:field_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2057
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2058
lemma frac_le: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2059
    x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2060
  apply (rule mult_imp_div_pos_le)
25230
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2061
  apply simp
022029099a83 continued localization
haftmann
parents: 25193
diff changeset
  2062
  apply (subst times_divide_eq_left)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2063
  apply (rule mult_imp_le_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2064
  apply (rule mult_mono)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2065
  apply simp_all
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2066
done
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2067
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2068
lemma frac_less: "(0::'a::ordered_field) <= x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2069
    x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2070
  apply (rule mult_imp_div_pos_less)
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2071
  apply simp
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2072
  apply (subst times_divide_eq_left)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2073
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2074
  apply (erule mult_less_le_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2075
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2076
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2077
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2078
lemma frac_less2: "(0::'a::ordered_field) < x ==> 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2079
    x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2080
  apply (rule mult_imp_div_pos_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2081
  apply simp_all
33319
74f0dcc0b5fb moved algebraic classes to Ring_and_Field
haftmann
parents: 32960
diff changeset
  2082
  apply (subst times_divide_eq_left)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2083
  apply (rule mult_imp_less_div_pos, assumption)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2084
  apply (erule mult_le_less_imp_less)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2085
  apply simp_all
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2086
done
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2087
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2088
text{*It's not obvious whether these should be simprules or not. 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2089
  Their effect is to gather terms into one big fraction, like
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2090
  a*b*c / x*y*z. The rationale for that is unclear, but many proofs 
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2091
  seem to need them.*}
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2092
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2093
declare times_divide_eq [simp]
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2094
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2095
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2096
subsection {* Ordered Fields are Dense *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2097
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2098
context ordered_semidom
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2099
begin
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2100
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2101
lemma less_add_one: "a < a + 1"
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2102
proof -
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2103
  have "a + 0 < a + 1"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2104
    by (blast intro: zero_less_one add_strict_left_mono)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2105
  thus ?thesis by simp
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2106
qed
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2107
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2108
lemma zero_less_two: "0 < 1 + 1"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2109
by (blast intro: less_trans zero_less_one less_add_one)
25193
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2110
e2e1a4b00de3 various localizations
haftmann
parents: 25186
diff changeset
  2111
end
14365
3d4df8c166ae replacing HOL/Real/PRat, PNat by the rational number development
paulson
parents: 14353
diff changeset
  2112
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2113
lemma less_half_sum: "a < b ==> a < (a+b) / (1+1::'a::ordered_field)"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2114
by (simp add: field_simps zero_less_two)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2115
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2116
lemma gt_half_sum: "a < b ==> (a+b)/(1+1::'a::ordered_field) < b"
23482
2f4be6844f7c tuned and used field_simps
nipkow
parents: 23477
diff changeset
  2117
by (simp add: field_simps zero_less_two)
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2118
24422
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2119
instance ordered_field < dense_linear_order
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2120
proof
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2121
  fix x y :: 'a
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2122
  have "x < x + 1" by simp
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2123
  then show "\<exists>y. x < y" .. 
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2124
  have "x - 1 < x" by simp
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2125
  then show "\<exists>y. y < x" ..
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2126
  show "x < y \<Longrightarrow> \<exists>z>x. z < y" by (blast intro!: less_half_sum gt_half_sum)
c0b5ff9e9e4d moved class dense_linear_order to Orderings.thy
haftmann
parents: 24286
diff changeset
  2127
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2128
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2129
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2130
subsection {* Absolute Value *}
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2131
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2132
context ordered_idom
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2133
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2134
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2135
lemma mult_sgn_abs: "sgn x * abs x = x"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2136
  unfolding abs_if sgn_if by auto
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2137
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2138
end
24491
8d194c9198ae added constant sgn
nipkow
parents: 24427
diff changeset
  2139
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2140
lemma abs_one [simp]: "abs 1 = (1::'a::ordered_idom)"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2141
by (simp add: abs_if zero_less_one [THEN order_less_not_sym])
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2142
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2143
class pordered_ring_abs = pordered_ring + pordered_ab_group_add_abs +
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2144
  assumes abs_eq_mult:
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2145
    "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2146
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2147
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2148
class lordered_ring = pordered_ring + lordered_ab_group_add_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2149
begin
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2150
27516
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2151
subclass lordered_ab_group_add_meet ..
9a5d4a8d4aac by intro_locales -> ..
huffman
parents: 26274
diff changeset
  2152
subclass lordered_ab_group_add_join ..
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2153
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2154
end
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2155
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2156
lemma abs_le_mult: "abs (a * b) \<le> (abs a) * (abs (b::'a::lordered_ring))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2157
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2158
  let ?x = "pprt a * pprt b - pprt a * nprt b - nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2159
  let ?y = "pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2160
  have a: "(abs a) * (abs b) = ?x"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2161
    by (simp only: abs_prts[of a] abs_prts[of b] algebra_simps)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2162
  {
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2163
    fix u v :: 'a
15481
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2164
    have bh: "\<lbrakk>u = a; v = b\<rbrakk> \<Longrightarrow> 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2165
              u * v = pprt a * pprt b + pprt a * nprt b + 
fc075ae929e4 the new subst tactic, by Lucas Dixon
paulson
parents: 15234
diff changeset
  2166
                      nprt a * pprt b + nprt a * nprt b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2167
      apply (subst prts[of u], subst prts[of v])
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2168
      apply (simp add: algebra_simps) 
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2169
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2170
  }
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2171
  note b = this[OF refl[of a] refl[of b]]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2172
  note addm = add_mono[of "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2173
  note addm2 = add_mono[of _ "0::'a" _ "0::'a", simplified]
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2174
  have xy: "- ?x <= ?y"
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2175
    apply (simp)
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2176
    apply (rule_tac y="0::'a" in order_trans)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2177
    apply (rule addm2)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2178
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2179
    apply (rule addm)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2180
    apply (simp_all add: mult_nonneg_nonneg mult_nonpos_nonpos)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2181
    done
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2182
  have yx: "?y <= ?x"
16568
e02fe7ae212b Changes due to new abel_cancel.ML
nipkow
parents: 15923
diff changeset
  2183
    apply (simp add:diff_def)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2184
    apply (rule_tac y=0 in order_trans)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2185
    apply (rule addm2, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2186
    apply (rule addm, (simp add: mult_nonneg_nonpos mult_nonneg_nonpos2)+)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2187
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2188
  have i1: "a*b <= abs a * abs b" by (simp only: a b yx)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2189
  have i2: "- (abs a * abs b) <= a*b" by (simp only: a b xy)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2190
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2191
    apply (rule abs_leI)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2192
    apply (simp add: i1)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2193
    apply (simp add: i2[simplified minus_le_iff])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2194
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2195
qed
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2196
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2197
instance lordered_ring \<subseteq> pordered_ring_abs
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2198
proof
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2199
  fix a b :: "'a\<Colon> lordered_ring"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2200
  assume "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2201
  show "abs (a*b) = abs a * abs b"
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2202
proof -
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2203
  have s: "(0 <= a*b) | (a*b <= 0)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2204
    apply (auto)    
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2205
    apply (rule_tac split_mult_pos_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2206
    apply (rule_tac contrapos_np[of "a*b <= 0"])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2207
    apply (simp)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2208
    apply (rule_tac split_mult_neg_le)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2209
    apply (insert prems)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2210
    apply (blast)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2211
    done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2212
  have mulprts: "a * b = (pprt a + nprt a) * (pprt b + nprt b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2213
    by (simp add: prts[symmetric])
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2214
  show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2215
  proof cases
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2216
    assume "0 <= a * b"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2217
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2218
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2219
      apply (insert prems)
14754
a080eeeaec14 Modification / Installation of Provers/Arith/abel_cancel.ML for OrderedGroup.thy
obua
parents: 14738
diff changeset
  2220
      apply (auto simp add: 
32960
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
  2221
        algebra_simps 
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
  2222
        iffD1[OF zero_le_iff_zero_nprt] iffD1[OF le_zero_iff_zero_pprt]
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
  2223
        iffD1[OF le_zero_iff_pprt_id] iffD1[OF zero_le_iff_nprt_id])
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
  2224
        apply(drule (1) mult_nonneg_nonpos[of a b], simp)
69916a850301 eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents: 30961
diff changeset
  2225
        apply(drule (1) mult_nonneg_nonpos2[of b a], simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2226
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2227
  next
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2228
    assume "~(0 <= a*b)"
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2229
    with s have "a*b <= 0" by simp
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2230
    then show ?thesis
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2231
      apply (simp_all add: mulprts abs_prts)
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2232
      apply (insert prems)
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2233
      apply (auto simp add: algebra_simps)
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2234
      apply(drule (1) mult_nonneg_nonneg[of a b],simp)
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2235
      apply(drule (1) mult_nonpos_nonpos[of a b],simp)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2236
      done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2237
  qed
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2238
qed
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2239
qed
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2240
30961
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2241
context ordered_idom
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2242
begin
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2243
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2244
subclass pordered_ring_abs proof
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2245
qed (auto simp add: abs_if not_less equal_neg_zero neg_equal_zero mult_less_0_iff)
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2246
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2247
lemma abs_mult:
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2248
  "abs (a * b) = abs a * abs b" 
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2249
  by (rule abs_eq_mult) auto
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2250
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2251
lemma abs_mult_self:
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2252
  "abs a * abs a = a * a"
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2253
  by (simp add: abs_if) 
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2254
541bfff659af more localisation
haftmann
parents: 30692
diff changeset
  2255
end
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2256
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2257
lemma nonzero_abs_inverse:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2258
     "a \<noteq> 0 ==> abs (inverse (a::'a::ordered_field)) = inverse (abs a)"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2259
apply (auto simp add: linorder_neq_iff abs_if nonzero_inverse_minus_eq 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2260
                      negative_imp_inverse_negative)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2261
apply (blast intro: positive_imp_inverse_positive elim: order_less_asym) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2262
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2263
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2264
lemma abs_inverse [simp]:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2265
     "abs (inverse (a::'a::{ordered_field,division_by_zero})) = 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2266
      inverse (abs a)"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  2267
apply (cases "a=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2268
apply (simp add: nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2269
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2270
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2271
lemma nonzero_abs_divide:
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2272
     "b \<noteq> 0 ==> abs (a / (b::'a::ordered_field)) = abs a / abs b"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2273
by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2274
15234
ec91a90c604e simplification tweaks for better arithmetic reasoning
paulson
parents: 15229
diff changeset
  2275
lemma abs_divide [simp]:
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2276
     "abs (a / (b::'a::{ordered_field,division_by_zero})) = abs a / abs b"
21328
73bb86d0f483 dropped Inductive dependency
haftmann
parents: 21258
diff changeset
  2277
apply (cases "b=0", simp) 
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2278
apply (simp add: nonzero_abs_divide) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2279
done
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2280
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2281
lemma abs_mult_less:
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2282
     "[| abs a < c; abs b < d |] ==> abs a * abs b < c*(d::'a::ordered_idom)"
14294
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2283
proof -
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2284
  assume ac: "abs a < c"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2285
  hence cpos: "0<c" by (blast intro: order_le_less_trans abs_ge_zero)
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2286
  assume "abs b < d"
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2287
  thus ?thesis by (simp add: ac cpos mult_strict_mono) 
f4d806fd72ce absolute value theorems moved to HOL/Ring_and_Field
paulson
parents: 14293
diff changeset
  2288
qed
14293
22542982bffd moving some division theorems to Ring_and_Field
paulson
parents: 14288
diff changeset
  2289
29833
409138c4de12 added noatps
nipkow
parents: 29700
diff changeset
  2290
lemmas eq_minus_self_iff[noatp] = equal_neg_zero
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2291
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2292
lemma less_minus_self_iff: "(a < -a) = (a < (0::'a::ordered_idom))"
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2293
  unfolding order_less_le less_eq_neg_nonpos equal_neg_zero ..
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2294
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2295
lemma abs_less_iff: "(abs a < b) = (a < b & -a < (b::'a::ordered_idom))" 
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2296
apply (simp add: order_less_le abs_le_iff)  
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2297
apply (auto simp add: abs_if neg_less_eq_nonneg less_eq_neg_nonpos)
14738
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2298
done
83f1a514dcb4 changes made due to new Ring_and_Field theory
obua
parents: 14603
diff changeset
  2299
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2300
lemma abs_mult_pos: "(0::'a::ordered_idom) <= x ==> 
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2301
    (abs y) * x = abs (y * x)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2302
  apply (subst abs_mult)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2303
  apply simp
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2304
done
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2305
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2306
lemma abs_div_pos: "(0::'a::{division_by_zero,ordered_field}) < y ==> 
25304
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2307
    abs x / y = abs (x / y)"
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2308
  apply (subst abs_divide)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2309
  apply (simp add: order_less_imp_le)
7491c00f0915 removed subclass edge ordered_ring < lordered_ring
haftmann
parents: 25267
diff changeset
  2310
done
16775
c1b87ef4a1c3 added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents: 16568
diff changeset
  2311
23389
aaca6a8e5414 tuned proofs: avoid implicit prems;
wenzelm
parents: 23326
diff changeset
  2312
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2313
subsection {* Bounds of products via negative and positive Part *}
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2314
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2315
lemma mult_le_prts:
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2316
  assumes
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2317
  "a1 <= (a::'a::lordered_ring)"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2318
  "a <= a2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2319
  "b1 <= b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2320
  "b <= b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2321
  shows
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2322
  "a * b <= pprt a2 * pprt b2 + pprt a1 * nprt b2 + nprt a2 * pprt b1 + nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2323
proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2324
  have "a * b = (pprt a + nprt a) * (pprt b + nprt b)" 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2325
    apply (subst prts[symmetric])+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2326
    apply simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2327
    done
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2328
  then have "a * b = pprt a * pprt b + pprt a * nprt b + nprt a * pprt b + nprt a * nprt b"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29465
diff changeset
  2329
    by (simp add: algebra_simps)
15580
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2330
  moreover have "pprt a * pprt b <= pprt a2 * pprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2331
    by (simp_all add: prems mult_mono)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2332
  moreover have "pprt a * nprt b <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2333
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2334
    have "pprt a * nprt b <= pprt a * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2335
      by (simp add: mult_left_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2336
    moreover have "pprt a * nprt b2 <= pprt a1 * nprt b2"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2337
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2338
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2339
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2340
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2341
  moreover have "nprt a * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2342
  proof - 
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2343
    have "nprt a * pprt b <= nprt a2 * pprt b"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2344
      by (simp add: mult_right_mono prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2345
    moreover have "nprt a2 * pprt b <= nprt a2 * pprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2346
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2347
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2348
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2349
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2350
  moreover have "nprt a * nprt b <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2351
  proof -
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2352
    have "nprt a * nprt b <= nprt a * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2353
      by (simp add: mult_left_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2354
    moreover have "nprt a * nprt b1 <= nprt a1 * nprt b1"
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2355
      by (simp add: mult_right_mono_neg prems)
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2356
    ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2357
      by simp
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2358
  qed
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2359
  ultimately show ?thesis
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2360
    by - (rule add_mono | simp)+
900291ee0af8 Cleaning up HOL/Matrix
obua
parents: 15481
diff changeset
  2361
qed
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2362
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2363
lemma mult_ge_prts:
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2364
  assumes
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2365
  "a1 <= (a::'a::lordered_ring)"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2366
  "a <= a2"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2367
  "b1 <= b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2368
  "b <= b2"
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2369
  shows
19404
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2370
  "a * b >= nprt a1 * pprt b2 + nprt a2 * nprt b2 + pprt a1 * pprt b1 + pprt a2 * nprt b1"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2371
proof - 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2372
  from prems have a1:"- a2 <= -a" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2373
  from prems have a2: "-a <= -a1" by auto
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2374
  from mult_le_prts[of "-a2" "-a" "-a1" "b1" b "b2", OF a1 a2 prems(3) prems(4), simplified nprt_neg pprt_neg] 
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2375
  have le: "- (a * b) <= - nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1" by simp  
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2376
  then have "-(- nprt a1 * pprt b2 + - nprt a2 * nprt b2 + - pprt a1 * pprt b1 + - pprt a2 * nprt b1) <= a * b"
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2377
    by (simp only: minus_le_iff)
9bf2cdc9e8e8 Moved stuff from Ring_and_Field to Matrix
obua
parents: 18649
diff changeset
  2378
  then show ?thesis by simp
15178
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2379
qed
5f621aa35c25 Matrix theory, linear programming
obua
parents: 15140
diff changeset
  2380
33364
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2381
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2382
code_modulename SML
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2383
  Ring_and_Field Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2384
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2385
code_modulename OCaml
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2386
  Ring_and_Field Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2387
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2388
code_modulename Haskell
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2389
  Ring_and_Field Arith
2bd12592c5e8 tuned code setup
haftmann
parents: 33319
diff changeset
  2390
14265
95b42e69436c HOL: installation of Ring_and_Field as the basis for Naturals and Reals
paulson
parents:
diff changeset
  2391
end