| author | blanchet | 
| Thu, 29 Oct 2009 12:09:32 +0100 | |
| changeset 33566 | 1c62ac4ef6d1 | 
| parent 32960 | 69916a850301 | 
| child 35107 | bdca9f765ee4 | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | |
| 2 | header {* \section{Operational Semantics} *}
 | |
| 3 | ||
| 16417 | 4 | theory OG_Tran imports OG_Com begin | 
| 13020 | 5 | |
| 6 | types | |
| 7 |   'a ann_com_op = "('a ann_com) option"
 | |
| 8 |   'a ann_triple_op = "('a ann_com_op \<times> 'a assn)"
 | |
| 9 | ||
| 10 | consts com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op" | |
| 11 | primrec "com (c, q) = c" | |
| 12 | ||
| 13 | consts post :: "'a ann_triple_op \<Rightarrow> 'a assn" | |
| 14 | primrec "post (c, q) = q" | |
| 15 | ||
| 16 | constdefs | |
| 17 | All_None :: "'a ann_triple_op list \<Rightarrow> bool" | |
| 18 | "All_None Ts \<equiv> \<forall>(c, q) \<in> set Ts. c = None" | |
| 19 | ||
| 20 | subsection {* The Transition Relation *}
 | |
| 21 | ||
| 23746 | 22 | inductive_set | 
| 13020 | 23 |   ann_transition :: "(('a ann_com_op \<times> 'a) \<times> ('a ann_com_op \<times> 'a)) set"        
 | 
| 23746 | 24 |   and transition :: "(('a com \<times> 'a) \<times> ('a com \<times> 'a)) set"
 | 
| 25 |   and ann_transition' :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool"
 | |
| 26 |     ("_ -1\<rightarrow> _"[81,81] 100)
 | |
| 27 |   and transition' :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"
 | |
| 28 |     ("_ -P1\<rightarrow> _"[81,81] 100)
 | |
| 29 |   and transitions :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"
 | |
| 30 |     ("_ -P*\<rightarrow> _"[81,81] 100)
 | |
| 31 | where | |
| 32 | "con_0 -1\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition" | |
| 33 | | "con_0 -P1\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition" | |
| 34 | | "con_0 -P*\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition\<^sup>*" | |
| 35 | ||
| 36 | | AnnBasic: "(Some (AnnBasic r f), s) -1\<rightarrow> (None, f s)" | |
| 37 | ||
| 38 | | AnnSeq1: "(Some c0, s) -1\<rightarrow> (None, t) \<Longrightarrow> | |
| 39 | (Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some c1, t)" | |
| 40 | | AnnSeq2: "(Some c0, s) -1\<rightarrow> (Some c2, t) \<Longrightarrow> | |
| 41 | (Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some (AnnSeq c2 c1), t)" | |
| 42 | ||
| 43 | | AnnCond1T: "s \<in> b \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c1, s)" | |
| 44 | | AnnCond1F: "s \<notin> b \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c2, s)" | |
| 13020 | 45 | |
| 23746 | 46 | | AnnCond2T: "s \<in> b \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (Some c, s)" | 
| 47 | | AnnCond2F: "s \<notin> b \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (None, s)" | |
| 48 | ||
| 49 | | AnnWhileF: "s \<notin> b \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> (None, s)" | |
| 50 | | AnnWhileT: "s \<in> b \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> | |
| 51 | (Some (AnnSeq c (AnnWhile i b i c)), s)" | |
| 52 | ||
| 53 | | AnnAwait: "\<lbrakk> s \<in> b; atom_com c; (c, s) -P*\<rightarrow> (Parallel [], t) \<rbrakk> \<Longrightarrow> | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32621diff
changeset | 54 | (Some (AnnAwait r b c), s) -1\<rightarrow> (None, t)" | 
| 23746 | 55 | |
| 56 | | Parallel: "\<lbrakk> i<length Ts; Ts!i = (Some c, q); (Some c, s) -1\<rightarrow> (r, t) \<rbrakk> | |
| 57 | \<Longrightarrow> (Parallel Ts, s) -P1\<rightarrow> (Parallel (Ts [i:=(r, q)]), t)" | |
| 58 | ||
| 59 | | Basic: "(Basic f, s) -P1\<rightarrow> (Parallel [], f s)" | |
| 60 | ||
| 61 | | Seq1: "All_None Ts \<Longrightarrow> (Seq (Parallel Ts) c, s) -P1\<rightarrow> (c, s)" | |
| 62 | | Seq2: "(c0, s) -P1\<rightarrow> (c2, t) \<Longrightarrow> (Seq c0 c1, s) -P1\<rightarrow> (Seq c2 c1, t)" | |
| 63 | ||
| 64 | | CondT: "s \<in> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c1, s)" | |
| 65 | | CondF: "s \<notin> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c2, s)" | |
| 66 | ||
| 67 | | WhileF: "s \<notin> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Parallel [], s)" | |
| 68 | | WhileT: "s \<in> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Seq c (While b i c), s)" | |
| 69 | ||
| 70 | monos "rtrancl_mono" | |
| 13020 | 71 | |
| 72 | text {* The corresponding syntax translations are: *}
 | |
| 73 | ||
| 23746 | 74 | abbreviation | 
| 75 |   ann_transition_n :: "('a ann_com_op \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a ann_com_op \<times> 'a) 
 | |
| 76 |                            \<Rightarrow> bool"  ("_ -_\<rightarrow> _"[81,81] 100)  where
 | |
| 30952 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 haftmann parents: 
30304diff
changeset | 77 | "con_0 -n\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition ^^ n" | 
| 13020 | 78 | |
| 23746 | 79 | abbreviation | 
| 80 |   ann_transitions :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool"
 | |
| 81 |                            ("_ -*\<rightarrow> _"[81,81] 100)  where
 | |
| 82 | "con_0 -*\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition\<^sup>*" | |
| 13020 | 83 | |
| 23746 | 84 | abbreviation | 
| 85 |   transition_n :: "('a com \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool"  
 | |
| 86 |                           ("_ -P_\<rightarrow> _"[81,81,81] 100)  where
 | |
| 30952 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 haftmann parents: 
30304diff
changeset | 87 | "con_0 -Pn\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition ^^ n" | 
| 13020 | 88 | |
| 89 | subsection {* Definition of Semantics *}
 | |
| 90 | ||
| 91 | constdefs | |
| 92 | ann_sem :: "'a ann_com \<Rightarrow> 'a \<Rightarrow> 'a set" | |
| 93 |   "ann_sem c \<equiv> \<lambda>s. {t. (Some c, s) -*\<rightarrow> (None, t)}"
 | |
| 94 | ||
| 95 | ann_SEM :: "'a ann_com \<Rightarrow> 'a set \<Rightarrow> 'a set" | |
| 96 | "ann_SEM c S \<equiv> \<Union>ann_sem c ` S" | |
| 97 | ||
| 98 | sem :: "'a com \<Rightarrow> 'a \<Rightarrow> 'a set" | |
| 99 |   "sem c \<equiv> \<lambda>s. {t. \<exists>Ts. (c, s) -P*\<rightarrow> (Parallel Ts, t) \<and> All_None Ts}"
 | |
| 100 | ||
| 101 | SEM :: "'a com \<Rightarrow> 'a set \<Rightarrow> 'a set" | |
| 102 | "SEM c S \<equiv> \<Union>sem c ` S " | |
| 103 | ||
| 104 | syntax "_Omega" :: "'a com"    ("\<Omega>" 63)
 | |
| 30304 
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
 haftmann parents: 
23746diff
changeset | 105 | translations "\<Omega>" \<rightleftharpoons> "While CONST UNIV CONST UNIV (Basic id)" | 
| 13020 | 106 | |
| 107 | consts fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com" | |
| 108 | primrec | |
| 109 | "fwhile b c 0 = \<Omega>" | |
| 110 | "fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)" | |
| 111 | ||
| 112 | subsubsection {* Proofs *}
 | |
| 113 | ||
| 114 | declare ann_transition_transition.intros [intro] | |
| 115 | inductive_cases transition_cases: | |
| 116 | "(Parallel T,s) -P1\<rightarrow> t" | |
| 117 | "(Basic f, s) -P1\<rightarrow> t" | |
| 118 | "(Seq c1 c2, s) -P1\<rightarrow> t" | |
| 119 | "(Cond b c1 c2, s) -P1\<rightarrow> t" | |
| 120 | "(While b i c, s) -P1\<rightarrow> t" | |
| 121 | ||
| 122 | lemma Parallel_empty_lemma [rule_format (no_asm)]: | |
| 123 | "(Parallel [],s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=[] \<and> n=0 \<and> s=t" | |
| 124 | apply(induct n) | |
| 125 | apply(simp (no_asm)) | |
| 126 | apply clarify | |
| 127 | apply(drule rel_pow_Suc_D2) | |
| 128 | apply(force elim:transition_cases) | |
| 129 | done | |
| 130 | ||
| 131 | lemma Parallel_AllNone_lemma [rule_format (no_asm)]: | |
| 132 | "All_None Ss \<longrightarrow> (Parallel Ss,s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=Ss \<and> n=0 \<and> s=t" | |
| 133 | apply(induct "n") | |
| 134 | apply(simp (no_asm)) | |
| 135 | apply clarify | |
| 136 | apply(drule rel_pow_Suc_D2) | |
| 137 | apply clarify | |
| 138 | apply(erule transition_cases,simp_all) | |
| 139 | apply(force dest:nth_mem simp add:All_None_def) | |
| 140 | done | |
| 141 | ||
| 142 | lemma Parallel_AllNone: "All_None Ts \<Longrightarrow> (SEM (Parallel Ts) X) = X" | |
| 143 | apply (unfold SEM_def sem_def) | |
| 144 | apply auto | |
| 145 | apply(drule rtrancl_imp_UN_rel_pow) | |
| 146 | apply clarify | |
| 147 | apply(drule Parallel_AllNone_lemma) | |
| 148 | apply auto | |
| 149 | done | |
| 150 | ||
| 151 | lemma Parallel_empty: "Ts=[] \<Longrightarrow> (SEM (Parallel Ts) X) = X" | |
| 152 | apply(rule Parallel_AllNone) | |
| 153 | apply(simp add:All_None_def) | |
| 154 | done | |
| 155 | ||
| 156 | text {* Set of lemmas from Apt and Olderog "Verification of sequential
 | |
| 157 | and concurrent programs", page 63. *} | |
| 158 | ||
| 159 | lemma L3_5i: "X\<subseteq>Y \<Longrightarrow> SEM c X \<subseteq> SEM c Y" | |
| 160 | apply (unfold SEM_def) | |
| 161 | apply force | |
| 162 | done | |
| 163 | ||
| 164 | lemma L3_5ii_lemma1: | |
| 165 | "\<lbrakk> (c1, s1) -P*\<rightarrow> (Parallel Ts, s2); All_None Ts; | |
| 166 | (c2, s2) -P*\<rightarrow> (Parallel Ss, s3); All_None Ss \<rbrakk> | |
| 167 | \<Longrightarrow> (Seq c1 c2, s1) -P*\<rightarrow> (Parallel Ss, s3)" | |
| 168 | apply(erule converse_rtrancl_induct2) | |
| 169 | apply(force intro:converse_rtrancl_into_rtrancl)+ | |
| 170 | done | |
| 171 | ||
| 172 | lemma L3_5ii_lemma2 [rule_format (no_asm)]: | |
| 173 | "\<forall>c1 c2 s t. (Seq c1 c2, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> | |
| 174 | (All_None Ts) \<longrightarrow> (\<exists>y m Rs. (c1,s) -P*\<rightarrow> (Parallel Rs, y) \<and> | |
| 175 | (All_None Rs) \<and> (c2, y) -Pm\<rightarrow> (Parallel Ts, t) \<and> m \<le> n)" | |
| 176 | apply(induct "n") | |
| 177 | apply(force) | |
| 178 | apply(safe dest!: rel_pow_Suc_D2) | |
| 179 | apply(erule transition_cases,simp_all) | |
| 180 | apply (fast intro!: le_SucI) | |
| 181 | apply (fast intro!: le_SucI elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl) | |
| 182 | done | |
| 183 | ||
| 184 | lemma L3_5ii_lemma3: | |
| 185 | "\<lbrakk>(Seq c1 c2,s) -P*\<rightarrow> (Parallel Ts,t); All_None Ts\<rbrakk> \<Longrightarrow> | |
| 186 | (\<exists>y Rs. (c1,s) -P*\<rightarrow> (Parallel Rs,y) \<and> All_None Rs | |
| 187 | \<and> (c2,y) -P*\<rightarrow> (Parallel Ts,t))" | |
| 188 | apply(drule rtrancl_imp_UN_rel_pow) | |
| 189 | apply(fast dest: L3_5ii_lemma2 rel_pow_imp_rtrancl) | |
| 190 | done | |
| 191 | ||
| 192 | lemma L3_5ii: "SEM (Seq c1 c2) X = SEM c2 (SEM c1 X)" | |
| 193 | apply (unfold SEM_def sem_def) | |
| 194 | apply auto | |
| 195 | apply(fast dest: L3_5ii_lemma3) | |
| 196 | apply(fast elim: L3_5ii_lemma1) | |
| 197 | done | |
| 198 | ||
| 199 | lemma L3_5iii: "SEM (Seq (Seq c1 c2) c3) X = SEM (Seq c1 (Seq c2 c3)) X" | |
| 200 | apply (simp (no_asm) add: L3_5ii) | |
| 201 | done | |
| 202 | ||
| 203 | lemma L3_5iv: | |
| 204 | "SEM (Cond b c1 c2) X = (SEM c1 (X \<inter> b)) Un (SEM c2 (X \<inter> (-b)))" | |
| 205 | apply (unfold SEM_def sem_def) | |
| 206 | apply auto | |
| 207 | apply(erule converse_rtranclE) | |
| 208 | prefer 2 | |
| 209 | apply (erule transition_cases,simp_all) | |
| 210 | apply(fast intro: converse_rtrancl_into_rtrancl elim: transition_cases)+ | |
| 211 | done | |
| 212 | ||
| 213 | ||
| 214 | lemma L3_5v_lemma1[rule_format]: | |
| 215 | "(S,s) -Pn\<rightarrow> (T,t) \<longrightarrow> S=\<Omega> \<longrightarrow> (\<not>(\<exists>Rs. T=(Parallel Rs) \<and> All_None Rs))" | |
| 216 | apply (unfold UNIV_def) | |
| 217 | apply(rule nat_less_induct) | |
| 218 | apply safe | |
| 219 | apply(erule rel_pow_E2) | |
| 220 | apply simp_all | |
| 221 | apply(erule transition_cases) | |
| 222 | apply simp_all | |
| 223 | apply(erule rel_pow_E2) | |
| 224 | apply(simp add: Id_def) | |
| 225 | apply(erule transition_cases,simp_all) | |
| 226 | apply clarify | |
| 227 | apply(erule transition_cases,simp_all) | |
| 228 | apply(erule rel_pow_E2,simp) | |
| 229 | apply clarify | |
| 230 | apply(erule transition_cases) | |
| 231 | apply simp+ | |
| 232 | apply clarify | |
| 233 | apply(erule transition_cases) | |
| 234 | apply simp_all | |
| 235 | done | |
| 236 | ||
| 237 | lemma L3_5v_lemma2: "\<lbrakk>(\<Omega>, s) -P*\<rightarrow> (Parallel Ts, t); All_None Ts \<rbrakk> \<Longrightarrow> False" | |
| 238 | apply(fast dest: rtrancl_imp_UN_rel_pow L3_5v_lemma1) | |
| 239 | done | |
| 240 | ||
| 241 | lemma L3_5v_lemma3: "SEM (\<Omega>) S = {}"
 | |
| 242 | apply (unfold SEM_def sem_def) | |
| 243 | apply(fast dest: L3_5v_lemma2) | |
| 244 | done | |
| 245 | ||
| 246 | lemma L3_5v_lemma4 [rule_format]: | |
| 247 | "\<forall>s. (While b i c, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow> | |
| 248 | (\<exists>k. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t))" | |
| 249 | apply(rule nat_less_induct) | |
| 250 | apply safe | |
| 251 | apply(erule rel_pow_E2) | |
| 252 | apply safe | |
| 253 | apply(erule transition_cases,simp_all) | |
| 254 | apply (rule_tac x = "1" in exI) | |
| 255 | apply(force dest: Parallel_empty_lemma intro: converse_rtrancl_into_rtrancl simp add: Id_def) | |
| 256 | apply safe | |
| 257 | apply(drule L3_5ii_lemma2) | |
| 258 | apply safe | |
| 259 | apply(drule le_imp_less_Suc) | |
| 260 | apply (erule allE , erule impE,assumption) | |
| 261 | apply (erule allE , erule impE, assumption) | |
| 262 | apply safe | |
| 263 | apply (rule_tac x = "k+1" in exI) | |
| 264 | apply(simp (no_asm)) | |
| 265 | apply(rule converse_rtrancl_into_rtrancl) | |
| 266 | apply fast | |
| 267 | apply(fast elim: L3_5ii_lemma1) | |
| 268 | done | |
| 269 | ||
| 270 | lemma L3_5v_lemma5 [rule_format]: | |
| 271 | "\<forall>s. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow> | |
| 272 | (While b i c, s) -P*\<rightarrow> (Parallel Ts,t)" | |
| 273 | apply(induct "k") | |
| 274 | apply(force dest: L3_5v_lemma2) | |
| 275 | apply safe | |
| 276 | apply(erule converse_rtranclE) | |
| 277 | apply simp_all | |
| 278 | apply(erule transition_cases,simp_all) | |
| 279 | apply(rule converse_rtrancl_into_rtrancl) | |
| 280 | apply(fast) | |
| 281 | apply(fast elim!: L3_5ii_lemma1 dest: L3_5ii_lemma3) | |
| 282 | apply(drule rtrancl_imp_UN_rel_pow) | |
| 283 | apply clarify | |
| 284 | apply(erule rel_pow_E2) | |
| 285 | apply simp_all | |
| 286 | apply(erule transition_cases,simp_all) | |
| 287 | apply(fast dest: Parallel_empty_lemma) | |
| 288 | done | |
| 289 | ||
| 290 | lemma L3_5v: "SEM (While b i c) = (\<lambda>x. (\<Union>k. SEM (fwhile b c k) x))" | |
| 291 | apply(rule ext) | |
| 292 | apply (simp add: SEM_def sem_def) | |
| 293 | apply safe | |
| 294 | apply(drule rtrancl_imp_UN_rel_pow,simp) | |
| 295 | apply clarify | |
| 296 | apply(fast dest:L3_5v_lemma4) | |
| 297 | apply(fast intro: L3_5v_lemma5) | |
| 298 | done | |
| 299 | ||
| 300 | section {* Validity of Correctness Formulas *}
 | |
| 301 | ||
| 302 | constdefs | |
| 303 |   com_validity :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool"  ("(3\<parallel>= _// _//_)" [90,55,90] 50)
 | |
| 304 | "\<parallel>= p c q \<equiv> SEM c p \<subseteq> q" | |
| 305 | ||
| 306 |   ann_com_validity :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool"   ("\<Turnstile> _ _" [60,90] 45)
 | |
| 307 | "\<Turnstile> c q \<equiv> ann_SEM c (pre c) \<subseteq> q" | |
| 308 | ||
| 309 | end |