author | haftmann |
Thu, 05 Mar 2009 08:23:11 +0100 | |
changeset 30304 | d8e4cd2ac2a1 |
parent 23746 | a455e69c31cc |
child 30952 | 7ab2716dd93b |
permissions | -rw-r--r-- |
13020 | 1 |
|
2 |
header {* \section{Operational Semantics} *} |
|
3 |
||
16417 | 4 |
theory OG_Tran imports OG_Com begin |
13020 | 5 |
|
6 |
types |
|
7 |
'a ann_com_op = "('a ann_com) option" |
|
8 |
'a ann_triple_op = "('a ann_com_op \<times> 'a assn)" |
|
9 |
||
10 |
consts com :: "'a ann_triple_op \<Rightarrow> 'a ann_com_op" |
|
11 |
primrec "com (c, q) = c" |
|
12 |
||
13 |
consts post :: "'a ann_triple_op \<Rightarrow> 'a assn" |
|
14 |
primrec "post (c, q) = q" |
|
15 |
||
16 |
constdefs |
|
17 |
All_None :: "'a ann_triple_op list \<Rightarrow> bool" |
|
18 |
"All_None Ts \<equiv> \<forall>(c, q) \<in> set Ts. c = None" |
|
19 |
||
20 |
subsection {* The Transition Relation *} |
|
21 |
||
23746 | 22 |
inductive_set |
13020 | 23 |
ann_transition :: "(('a ann_com_op \<times> 'a) \<times> ('a ann_com_op \<times> 'a)) set" |
23746 | 24 |
and transition :: "(('a com \<times> 'a) \<times> ('a com \<times> 'a)) set" |
25 |
and ann_transition' :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool" |
|
26 |
("_ -1\<rightarrow> _"[81,81] 100) |
|
27 |
and transition' :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool" |
|
28 |
("_ -P1\<rightarrow> _"[81,81] 100) |
|
29 |
and transitions :: "('a com \<times> 'a) \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool" |
|
30 |
("_ -P*\<rightarrow> _"[81,81] 100) |
|
31 |
where |
|
32 |
"con_0 -1\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition" |
|
33 |
| "con_0 -P1\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition" |
|
34 |
| "con_0 -P*\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition\<^sup>*" |
|
35 |
||
36 |
| AnnBasic: "(Some (AnnBasic r f), s) -1\<rightarrow> (None, f s)" |
|
37 |
||
38 |
| AnnSeq1: "(Some c0, s) -1\<rightarrow> (None, t) \<Longrightarrow> |
|
39 |
(Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some c1, t)" |
|
40 |
| AnnSeq2: "(Some c0, s) -1\<rightarrow> (Some c2, t) \<Longrightarrow> |
|
41 |
(Some (AnnSeq c0 c1), s) -1\<rightarrow> (Some (AnnSeq c2 c1), t)" |
|
42 |
||
43 |
| AnnCond1T: "s \<in> b \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c1, s)" |
|
44 |
| AnnCond1F: "s \<notin> b \<Longrightarrow> (Some (AnnCond1 r b c1 c2), s) -1\<rightarrow> (Some c2, s)" |
|
13020 | 45 |
|
23746 | 46 |
| AnnCond2T: "s \<in> b \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (Some c, s)" |
47 |
| AnnCond2F: "s \<notin> b \<Longrightarrow> (Some (AnnCond2 r b c), s) -1\<rightarrow> (None, s)" |
|
48 |
||
49 |
| AnnWhileF: "s \<notin> b \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> (None, s)" |
|
50 |
| AnnWhileT: "s \<in> b \<Longrightarrow> (Some (AnnWhile r b i c), s) -1\<rightarrow> |
|
51 |
(Some (AnnSeq c (AnnWhile i b i c)), s)" |
|
52 |
||
53 |
| AnnAwait: "\<lbrakk> s \<in> b; atom_com c; (c, s) -P*\<rightarrow> (Parallel [], t) \<rbrakk> \<Longrightarrow> |
|
54 |
(Some (AnnAwait r b c), s) -1\<rightarrow> (None, t)" |
|
55 |
||
56 |
| Parallel: "\<lbrakk> i<length Ts; Ts!i = (Some c, q); (Some c, s) -1\<rightarrow> (r, t) \<rbrakk> |
|
57 |
\<Longrightarrow> (Parallel Ts, s) -P1\<rightarrow> (Parallel (Ts [i:=(r, q)]), t)" |
|
58 |
||
59 |
| Basic: "(Basic f, s) -P1\<rightarrow> (Parallel [], f s)" |
|
60 |
||
61 |
| Seq1: "All_None Ts \<Longrightarrow> (Seq (Parallel Ts) c, s) -P1\<rightarrow> (c, s)" |
|
62 |
| Seq2: "(c0, s) -P1\<rightarrow> (c2, t) \<Longrightarrow> (Seq c0 c1, s) -P1\<rightarrow> (Seq c2 c1, t)" |
|
63 |
||
64 |
| CondT: "s \<in> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c1, s)" |
|
65 |
| CondF: "s \<notin> b \<Longrightarrow> (Cond b c1 c2, s) -P1\<rightarrow> (c2, s)" |
|
66 |
||
67 |
| WhileF: "s \<notin> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Parallel [], s)" |
|
68 |
| WhileT: "s \<in> b \<Longrightarrow> (While b i c, s) -P1\<rightarrow> (Seq c (While b i c), s)" |
|
69 |
||
70 |
monos "rtrancl_mono" |
|
13020 | 71 |
|
72 |
text {* The corresponding syntax translations are: *} |
|
73 |
||
23746 | 74 |
abbreviation |
75 |
ann_transition_n :: "('a ann_com_op \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a ann_com_op \<times> 'a) |
|
76 |
\<Rightarrow> bool" ("_ -_\<rightarrow> _"[81,81] 100) where |
|
77 |
"con_0 -n\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition^n" |
|
13020 | 78 |
|
23746 | 79 |
abbreviation |
80 |
ann_transitions :: "('a ann_com_op \<times> 'a) \<Rightarrow> ('a ann_com_op \<times> 'a) \<Rightarrow> bool" |
|
81 |
("_ -*\<rightarrow> _"[81,81] 100) where |
|
82 |
"con_0 -*\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> ann_transition\<^sup>*" |
|
13020 | 83 |
|
23746 | 84 |
abbreviation |
85 |
transition_n :: "('a com \<times> 'a) \<Rightarrow> nat \<Rightarrow> ('a com \<times> 'a) \<Rightarrow> bool" |
|
86 |
("_ -P_\<rightarrow> _"[81,81,81] 100) where |
|
87 |
"con_0 -Pn\<rightarrow> con_1 \<equiv> (con_0, con_1) \<in> transition^n" |
|
13020 | 88 |
|
89 |
subsection {* Definition of Semantics *} |
|
90 |
||
91 |
constdefs |
|
92 |
ann_sem :: "'a ann_com \<Rightarrow> 'a \<Rightarrow> 'a set" |
|
93 |
"ann_sem c \<equiv> \<lambda>s. {t. (Some c, s) -*\<rightarrow> (None, t)}" |
|
94 |
||
95 |
ann_SEM :: "'a ann_com \<Rightarrow> 'a set \<Rightarrow> 'a set" |
|
96 |
"ann_SEM c S \<equiv> \<Union>ann_sem c ` S" |
|
97 |
||
98 |
sem :: "'a com \<Rightarrow> 'a \<Rightarrow> 'a set" |
|
99 |
"sem c \<equiv> \<lambda>s. {t. \<exists>Ts. (c, s) -P*\<rightarrow> (Parallel Ts, t) \<and> All_None Ts}" |
|
100 |
||
101 |
SEM :: "'a com \<Rightarrow> 'a set \<Rightarrow> 'a set" |
|
102 |
"SEM c S \<equiv> \<Union>sem c ` S " |
|
103 |
||
104 |
syntax "_Omega" :: "'a com" ("\<Omega>" 63) |
|
30304
d8e4cd2ac2a1
set operations Int, Un, INTER, UNION, Inter, Union, empty, UNIV are now proper qualified constants with authentic syntax
haftmann
parents:
23746
diff
changeset
|
105 |
translations "\<Omega>" \<rightleftharpoons> "While CONST UNIV CONST UNIV (Basic id)" |
13020 | 106 |
|
107 |
consts fwhile :: "'a bexp \<Rightarrow> 'a com \<Rightarrow> nat \<Rightarrow> 'a com" |
|
108 |
primrec |
|
109 |
"fwhile b c 0 = \<Omega>" |
|
110 |
"fwhile b c (Suc n) = Cond b (Seq c (fwhile b c n)) (Basic id)" |
|
111 |
||
112 |
subsubsection {* Proofs *} |
|
113 |
||
114 |
declare ann_transition_transition.intros [intro] |
|
115 |
inductive_cases transition_cases: |
|
116 |
"(Parallel T,s) -P1\<rightarrow> t" |
|
117 |
"(Basic f, s) -P1\<rightarrow> t" |
|
118 |
"(Seq c1 c2, s) -P1\<rightarrow> t" |
|
119 |
"(Cond b c1 c2, s) -P1\<rightarrow> t" |
|
120 |
"(While b i c, s) -P1\<rightarrow> t" |
|
121 |
||
122 |
lemma Parallel_empty_lemma [rule_format (no_asm)]: |
|
123 |
"(Parallel [],s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=[] \<and> n=0 \<and> s=t" |
|
124 |
apply(induct n) |
|
125 |
apply(simp (no_asm)) |
|
126 |
apply clarify |
|
127 |
apply(drule rel_pow_Suc_D2) |
|
128 |
apply(force elim:transition_cases) |
|
129 |
done |
|
130 |
||
131 |
lemma Parallel_AllNone_lemma [rule_format (no_asm)]: |
|
132 |
"All_None Ss \<longrightarrow> (Parallel Ss,s) -Pn\<rightarrow> (Parallel Ts,t) \<longrightarrow> Ts=Ss \<and> n=0 \<and> s=t" |
|
133 |
apply(induct "n") |
|
134 |
apply(simp (no_asm)) |
|
135 |
apply clarify |
|
136 |
apply(drule rel_pow_Suc_D2) |
|
137 |
apply clarify |
|
138 |
apply(erule transition_cases,simp_all) |
|
139 |
apply(force dest:nth_mem simp add:All_None_def) |
|
140 |
done |
|
141 |
||
142 |
lemma Parallel_AllNone: "All_None Ts \<Longrightarrow> (SEM (Parallel Ts) X) = X" |
|
143 |
apply (unfold SEM_def sem_def) |
|
144 |
apply auto |
|
145 |
apply(drule rtrancl_imp_UN_rel_pow) |
|
146 |
apply clarify |
|
147 |
apply(drule Parallel_AllNone_lemma) |
|
148 |
apply auto |
|
149 |
done |
|
150 |
||
151 |
lemma Parallel_empty: "Ts=[] \<Longrightarrow> (SEM (Parallel Ts) X) = X" |
|
152 |
apply(rule Parallel_AllNone) |
|
153 |
apply(simp add:All_None_def) |
|
154 |
done |
|
155 |
||
156 |
text {* Set of lemmas from Apt and Olderog "Verification of sequential |
|
157 |
and concurrent programs", page 63. *} |
|
158 |
||
159 |
lemma L3_5i: "X\<subseteq>Y \<Longrightarrow> SEM c X \<subseteq> SEM c Y" |
|
160 |
apply (unfold SEM_def) |
|
161 |
apply force |
|
162 |
done |
|
163 |
||
164 |
lemma L3_5ii_lemma1: |
|
165 |
"\<lbrakk> (c1, s1) -P*\<rightarrow> (Parallel Ts, s2); All_None Ts; |
|
166 |
(c2, s2) -P*\<rightarrow> (Parallel Ss, s3); All_None Ss \<rbrakk> |
|
167 |
\<Longrightarrow> (Seq c1 c2, s1) -P*\<rightarrow> (Parallel Ss, s3)" |
|
168 |
apply(erule converse_rtrancl_induct2) |
|
169 |
apply(force intro:converse_rtrancl_into_rtrancl)+ |
|
170 |
done |
|
171 |
||
172 |
lemma L3_5ii_lemma2 [rule_format (no_asm)]: |
|
173 |
"\<forall>c1 c2 s t. (Seq c1 c2, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> |
|
174 |
(All_None Ts) \<longrightarrow> (\<exists>y m Rs. (c1,s) -P*\<rightarrow> (Parallel Rs, y) \<and> |
|
175 |
(All_None Rs) \<and> (c2, y) -Pm\<rightarrow> (Parallel Ts, t) \<and> m \<le> n)" |
|
176 |
apply(induct "n") |
|
177 |
apply(force) |
|
178 |
apply(safe dest!: rel_pow_Suc_D2) |
|
179 |
apply(erule transition_cases,simp_all) |
|
180 |
apply (fast intro!: le_SucI) |
|
181 |
apply (fast intro!: le_SucI elim!: rel_pow_imp_rtrancl converse_rtrancl_into_rtrancl) |
|
182 |
done |
|
183 |
||
184 |
lemma L3_5ii_lemma3: |
|
185 |
"\<lbrakk>(Seq c1 c2,s) -P*\<rightarrow> (Parallel Ts,t); All_None Ts\<rbrakk> \<Longrightarrow> |
|
186 |
(\<exists>y Rs. (c1,s) -P*\<rightarrow> (Parallel Rs,y) \<and> All_None Rs |
|
187 |
\<and> (c2,y) -P*\<rightarrow> (Parallel Ts,t))" |
|
188 |
apply(drule rtrancl_imp_UN_rel_pow) |
|
189 |
apply(fast dest: L3_5ii_lemma2 rel_pow_imp_rtrancl) |
|
190 |
done |
|
191 |
||
192 |
lemma L3_5ii: "SEM (Seq c1 c2) X = SEM c2 (SEM c1 X)" |
|
193 |
apply (unfold SEM_def sem_def) |
|
194 |
apply auto |
|
195 |
apply(fast dest: L3_5ii_lemma3) |
|
196 |
apply(fast elim: L3_5ii_lemma1) |
|
197 |
done |
|
198 |
||
199 |
lemma L3_5iii: "SEM (Seq (Seq c1 c2) c3) X = SEM (Seq c1 (Seq c2 c3)) X" |
|
200 |
apply (simp (no_asm) add: L3_5ii) |
|
201 |
done |
|
202 |
||
203 |
lemma L3_5iv: |
|
204 |
"SEM (Cond b c1 c2) X = (SEM c1 (X \<inter> b)) Un (SEM c2 (X \<inter> (-b)))" |
|
205 |
apply (unfold SEM_def sem_def) |
|
206 |
apply auto |
|
207 |
apply(erule converse_rtranclE) |
|
208 |
prefer 2 |
|
209 |
apply (erule transition_cases,simp_all) |
|
210 |
apply(fast intro: converse_rtrancl_into_rtrancl elim: transition_cases)+ |
|
211 |
done |
|
212 |
||
213 |
||
214 |
lemma L3_5v_lemma1[rule_format]: |
|
215 |
"(S,s) -Pn\<rightarrow> (T,t) \<longrightarrow> S=\<Omega> \<longrightarrow> (\<not>(\<exists>Rs. T=(Parallel Rs) \<and> All_None Rs))" |
|
216 |
apply (unfold UNIV_def) |
|
217 |
apply(rule nat_less_induct) |
|
218 |
apply safe |
|
219 |
apply(erule rel_pow_E2) |
|
220 |
apply simp_all |
|
221 |
apply(erule transition_cases) |
|
222 |
apply simp_all |
|
223 |
apply(erule rel_pow_E2) |
|
224 |
apply(simp add: Id_def) |
|
225 |
apply(erule transition_cases,simp_all) |
|
226 |
apply clarify |
|
227 |
apply(erule transition_cases,simp_all) |
|
228 |
apply(erule rel_pow_E2,simp) |
|
229 |
apply clarify |
|
230 |
apply(erule transition_cases) |
|
231 |
apply simp+ |
|
232 |
apply clarify |
|
233 |
apply(erule transition_cases) |
|
234 |
apply simp_all |
|
235 |
done |
|
236 |
||
237 |
lemma L3_5v_lemma2: "\<lbrakk>(\<Omega>, s) -P*\<rightarrow> (Parallel Ts, t); All_None Ts \<rbrakk> \<Longrightarrow> False" |
|
238 |
apply(fast dest: rtrancl_imp_UN_rel_pow L3_5v_lemma1) |
|
239 |
done |
|
240 |
||
241 |
lemma L3_5v_lemma3: "SEM (\<Omega>) S = {}" |
|
242 |
apply (unfold SEM_def sem_def) |
|
243 |
apply(fast dest: L3_5v_lemma2) |
|
244 |
done |
|
245 |
||
246 |
lemma L3_5v_lemma4 [rule_format]: |
|
247 |
"\<forall>s. (While b i c, s) -Pn\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow> |
|
248 |
(\<exists>k. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t))" |
|
249 |
apply(rule nat_less_induct) |
|
250 |
apply safe |
|
251 |
apply(erule rel_pow_E2) |
|
252 |
apply safe |
|
253 |
apply(erule transition_cases,simp_all) |
|
254 |
apply (rule_tac x = "1" in exI) |
|
255 |
apply(force dest: Parallel_empty_lemma intro: converse_rtrancl_into_rtrancl simp add: Id_def) |
|
256 |
apply safe |
|
257 |
apply(drule L3_5ii_lemma2) |
|
258 |
apply safe |
|
259 |
apply(drule le_imp_less_Suc) |
|
260 |
apply (erule allE , erule impE,assumption) |
|
261 |
apply (erule allE , erule impE, assumption) |
|
262 |
apply safe |
|
263 |
apply (rule_tac x = "k+1" in exI) |
|
264 |
apply(simp (no_asm)) |
|
265 |
apply(rule converse_rtrancl_into_rtrancl) |
|
266 |
apply fast |
|
267 |
apply(fast elim: L3_5ii_lemma1) |
|
268 |
done |
|
269 |
||
270 |
lemma L3_5v_lemma5 [rule_format]: |
|
271 |
"\<forall>s. (fwhile b c k, s) -P*\<rightarrow> (Parallel Ts, t) \<longrightarrow> All_None Ts \<longrightarrow> |
|
272 |
(While b i c, s) -P*\<rightarrow> (Parallel Ts,t)" |
|
273 |
apply(induct "k") |
|
274 |
apply(force dest: L3_5v_lemma2) |
|
275 |
apply safe |
|
276 |
apply(erule converse_rtranclE) |
|
277 |
apply simp_all |
|
278 |
apply(erule transition_cases,simp_all) |
|
279 |
apply(rule converse_rtrancl_into_rtrancl) |
|
280 |
apply(fast) |
|
281 |
apply(fast elim!: L3_5ii_lemma1 dest: L3_5ii_lemma3) |
|
282 |
apply(drule rtrancl_imp_UN_rel_pow) |
|
283 |
apply clarify |
|
284 |
apply(erule rel_pow_E2) |
|
285 |
apply simp_all |
|
286 |
apply(erule transition_cases,simp_all) |
|
287 |
apply(fast dest: Parallel_empty_lemma) |
|
288 |
done |
|
289 |
||
290 |
lemma L3_5v: "SEM (While b i c) = (\<lambda>x. (\<Union>k. SEM (fwhile b c k) x))" |
|
291 |
apply(rule ext) |
|
292 |
apply (simp add: SEM_def sem_def) |
|
293 |
apply safe |
|
294 |
apply(drule rtrancl_imp_UN_rel_pow,simp) |
|
295 |
apply clarify |
|
296 |
apply(fast dest:L3_5v_lemma4) |
|
297 |
apply(fast intro: L3_5v_lemma5) |
|
298 |
done |
|
299 |
||
300 |
section {* Validity of Correctness Formulas *} |
|
301 |
||
302 |
constdefs |
|
303 |
com_validity :: "'a assn \<Rightarrow> 'a com \<Rightarrow> 'a assn \<Rightarrow> bool" ("(3\<parallel>= _// _//_)" [90,55,90] 50) |
|
304 |
"\<parallel>= p c q \<equiv> SEM c p \<subseteq> q" |
|
305 |
||
306 |
ann_com_validity :: "'a ann_com \<Rightarrow> 'a assn \<Rightarrow> bool" ("\<Turnstile> _ _" [60,90] 45) |
|
307 |
"\<Turnstile> c q \<equiv> ann_SEM c (pre c) \<subseteq> q" |
|
308 |
||
309 |
end |