author | haftmann |
Sat, 19 May 2007 11:33:22 +0200 | |
changeset 23018 | 1d29bc31b0cb |
parent 22997 | d4f3b015b50b |
child 23032 | b6cb6a131511 |
permissions | -rw-r--r-- |
15524 | 1 |
(* Title: HOL/Orderings.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
|
4 |
*) |
|
5 |
||
21329 | 6 |
header {* Syntactic and abstract orders *} |
15524 | 7 |
|
8 |
theory Orderings |
|
22886 | 9 |
imports Code_Generator |
15524 | 10 |
begin |
11 |
||
21329 | 12 |
subsection {* Order syntax *} |
15524 | 13 |
|
22473 | 14 |
class ord = type + |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
15 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
16 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) |
21204 | 17 |
begin |
18 |
||
19 |
notation |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
20 |
less_eq ("op \<^loc><=") and |
21620 | 21 |
less_eq ("(_/ \<^loc><= _)" [51, 51] 50) and |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
22 |
less ("op \<^loc><") and |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
23 |
less ("(_/ \<^loc>< _)" [51, 51] 50) |
21620 | 24 |
|
21204 | 25 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
26 |
less_eq ("op \<^loc>\<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
27 |
less_eq ("(_/ \<^loc>\<le> _)" [51, 51] 50) |
15524 | 28 |
|
21204 | 29 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
30 |
less_eq ("op \<^loc>\<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
31 |
less_eq ("(_/ \<^loc>\<le> _)" [51, 51] 50) |
21204 | 32 |
|
33 |
abbreviation (input) |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
34 |
greater (infix "\<^loc>>" 50) where |
21620 | 35 |
"x \<^loc>> y \<equiv> y \<^loc>< x" |
36 |
||
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
37 |
abbreviation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
38 |
greater_eq (infix "\<^loc>>=" 50) where |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
39 |
"x \<^loc>>= y \<equiv> y \<^loc><= x" |
21204 | 40 |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
41 |
notation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
42 |
greater_eq (infix "\<^loc>\<ge>" 50) |
21204 | 43 |
|
22738 | 44 |
text {* |
45 |
syntactic min/max -- these definitions reach |
|
46 |
their usual semantics in class linorder ahead. |
|
47 |
*} |
|
48 |
||
49 |
definition |
|
50 |
min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
22841 | 51 |
"min a b = (if a \<^loc>\<le> b then a else b)" |
22738 | 52 |
|
53 |
definition |
|
54 |
max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
22841 | 55 |
"max a b = (if a \<^loc>\<le> b then b else a)" |
22738 | 56 |
|
21204 | 57 |
end |
58 |
||
59 |
notation |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
60 |
less_eq ("op <=") and |
21620 | 61 |
less_eq ("(_/ <= _)" [51, 51] 50) and |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
62 |
less ("op <") and |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
63 |
less ("(_/ < _)" [51, 51] 50) |
21204 | 64 |
|
65 |
notation (xsymbols) |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
66 |
less_eq ("op \<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
67 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
15524 | 68 |
|
21204 | 69 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21383
diff
changeset
|
70 |
less_eq ("op \<le>") and |
21259
63ab016c99ca
modified less/less_eq syntax to avoid "x < y < z" etc.;
wenzelm
parents:
21248
diff
changeset
|
71 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
20714 | 72 |
|
19536 | 73 |
abbreviation (input) |
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
74 |
greater (infix ">" 50) where |
21620 | 75 |
"x > y \<equiv> y < x" |
76 |
||
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
77 |
abbreviation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
78 |
greater_eq (infix ">=" 50) where |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
79 |
"x >= y \<equiv> y <= x" |
21620 | 80 |
|
21656
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
81 |
notation (input) |
43d709faa9dc
restored notation for less/less_eq (observe proper order of mixfix annotations!);
wenzelm
parents:
21620
diff
changeset
|
82 |
greater_eq (infix "\<ge>" 50) |
15524 | 83 |
|
22916 | 84 |
hide const min max |
85 |
||
22738 | 86 |
definition |
87 |
min :: "'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
88 |
"min a b = (if a \<le> b then a else b)" |
|
89 |
||
90 |
definition |
|
91 |
max :: "'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> 'a" where |
|
92 |
"max a b = (if a \<le> b then b else a)" |
|
93 |
||
22916 | 94 |
lemma linorder_class_min: |
22738 | 95 |
"ord.min (op \<le> \<Colon> 'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> bool) = min" |
96 |
by rule+ (simp add: min_def ord_class.min_def) |
|
97 |
||
22916 | 98 |
lemma linorder_class_max: |
22738 | 99 |
"ord.max (op \<le> \<Colon> 'a\<Colon>ord \<Rightarrow> 'a \<Rightarrow> bool) = max" |
100 |
by rule+ (simp add: max_def ord_class.max_def) |
|
101 |
||
15524 | 102 |
|
22841 | 103 |
subsection {* Partial orders *} |
15524 | 104 |
|
22841 | 105 |
class order = ord + |
22316 | 106 |
assumes less_le: "x \<sqsubset> y \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<noteq> y" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
107 |
and order_refl [iff]: "x \<sqsubseteq> x" |
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
108 |
and order_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z" |
22841 | 109 |
assumes antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y" |
110 |
||
21248 | 111 |
begin |
112 |
||
15524 | 113 |
text {* Reflexivity. *} |
114 |
||
22841 | 115 |
lemma eq_refl: "x = y \<Longrightarrow> x \<^loc>\<le> y" |
15524 | 116 |
-- {* This form is useful with the classical reasoner. *} |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
117 |
by (erule ssubst) (rule order_refl) |
15524 | 118 |
|
22841 | 119 |
lemma less_irrefl [iff]: "\<not> x \<^loc>< x" |
21248 | 120 |
by (simp add: less_le) |
15524 | 121 |
|
22841 | 122 |
lemma le_less: "x \<^loc>\<le> y \<longleftrightarrow> x \<^loc>< y \<or> x = y" |
15524 | 123 |
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *} |
21248 | 124 |
by (simp add: less_le) blast |
15524 | 125 |
|
22841 | 126 |
lemma le_imp_less_or_eq: "x \<^loc>\<le> y \<Longrightarrow> x \<^loc>< y \<or> x = y" |
21248 | 127 |
unfolding less_le by blast |
15524 | 128 |
|
22841 | 129 |
lemma less_imp_le: "x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y" |
21248 | 130 |
unfolding less_le by blast |
131 |
||
22841 | 132 |
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" |
21329 | 133 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
134 |
||
135 |
||
136 |
text {* Useful for simplification, but too risky to include by default. *} |
|
137 |
||
22841 | 138 |
lemma less_imp_not_eq: "x \<^loc>< y \<Longrightarrow> (x = y) \<longleftrightarrow> False" |
21329 | 139 |
by auto |
140 |
||
22841 | 141 |
lemma less_imp_not_eq2: "x \<^loc>< y \<Longrightarrow> (y = x) \<longleftrightarrow> False" |
21329 | 142 |
by auto |
143 |
||
144 |
||
145 |
text {* Transitivity rules for calculational reasoning *} |
|
146 |
||
22841 | 147 |
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<^loc>\<le> b \<Longrightarrow> a \<^loc>< b" |
21329 | 148 |
by (simp add: less_le) |
149 |
||
22841 | 150 |
lemma le_neq_trans: "a \<^loc>\<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a \<^loc>< b" |
151 |
by (simp add: less_le) |
|
21329 | 152 |
|
15524 | 153 |
|
154 |
text {* Asymmetry. *} |
|
155 |
||
22841 | 156 |
lemma less_not_sym: "x \<^loc>< y \<Longrightarrow> \<not> (y \<^loc>< x)" |
21248 | 157 |
by (simp add: less_le antisym) |
15524 | 158 |
|
22841 | 159 |
lemma less_asym: "x \<^loc>< y \<Longrightarrow> (\<not> P \<Longrightarrow> y \<^loc>< x) \<Longrightarrow> P" |
21248 | 160 |
by (drule less_not_sym, erule contrapos_np) simp |
15524 | 161 |
|
22841 | 162 |
lemma eq_iff: "x = y \<longleftrightarrow> x \<^loc>\<le> y \<and> y \<^loc>\<le> x" |
21248 | 163 |
by (blast intro: antisym) |
15524 | 164 |
|
22841 | 165 |
lemma antisym_conv: "y \<^loc>\<le> x \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" |
21248 | 166 |
by (blast intro: antisym) |
15524 | 167 |
|
22841 | 168 |
lemma less_imp_neq: "x \<^loc>< y \<Longrightarrow> x \<noteq> y" |
21248 | 169 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
170 |
||
21083 | 171 |
|
15524 | 172 |
text {* Transitivity. *} |
173 |
||
22841 | 174 |
lemma less_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
175 |
by (simp add: less_le) (blast intro: order_trans antisym) |
15524 | 176 |
|
22841 | 177 |
lemma le_less_trans: "x \<^loc>\<le> y \<Longrightarrow> y \<^loc>< z \<Longrightarrow> x \<^loc>< z" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
178 |
by (simp add: less_le) (blast intro: order_trans antisym) |
15524 | 179 |
|
22841 | 180 |
lemma less_le_trans: "x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> z \<Longrightarrow> x \<^loc>< z" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
181 |
by (simp add: less_le) (blast intro: order_trans antisym) |
15524 | 182 |
|
183 |
||
184 |
text {* Useful for simplification, but too risky to include by default. *} |
|
185 |
||
22841 | 186 |
lemma less_imp_not_less: "x \<^loc>< y \<Longrightarrow> (\<not> y \<^loc>< x) \<longleftrightarrow> True" |
21248 | 187 |
by (blast elim: less_asym) |
15524 | 188 |
|
22841 | 189 |
lemma less_imp_triv: "x \<^loc>< y \<Longrightarrow> (y \<^loc>< x \<longrightarrow> P) \<longleftrightarrow> True" |
21248 | 190 |
by (blast elim: less_asym) |
15524 | 191 |
|
21248 | 192 |
|
21083 | 193 |
text {* Transitivity rules for calculational reasoning *} |
15524 | 194 |
|
22841 | 195 |
lemma less_asym': "a \<^loc>< b \<Longrightarrow> b \<^loc>< a \<Longrightarrow> P" |
21248 | 196 |
by (rule less_asym) |
197 |
||
22916 | 198 |
|
199 |
text {* Reverse order *} |
|
200 |
||
201 |
lemma order_reverse: |
|
23018
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
haftmann
parents:
22997
diff
changeset
|
202 |
"order (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)" |
22916 | 203 |
by unfold_locales |
204 |
(simp add: less_le, auto intro: antisym order_trans) |
|
205 |
||
21248 | 206 |
end |
15524 | 207 |
|
21329 | 208 |
|
209 |
subsection {* Linear (total) orders *} |
|
210 |
||
22316 | 211 |
class linorder = order + |
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
212 |
assumes linear: "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" |
21248 | 213 |
begin |
214 |
||
22841 | 215 |
lemma less_linear: "x \<^loc>< y \<or> x = y \<or> y \<^loc>< x" |
21248 | 216 |
unfolding less_le using less_le linear by blast |
217 |
||
22841 | 218 |
lemma le_less_linear: "x \<^loc>\<le> y \<or> y \<^loc>< x" |
21412 | 219 |
by (simp add: le_less less_linear) |
21248 | 220 |
|
221 |
lemma le_cases [case_names le ge]: |
|
22841 | 222 |
"(x \<^loc>\<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>\<le> x \<Longrightarrow> P) \<Longrightarrow> P" |
21248 | 223 |
using linear by blast |
224 |
||
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
225 |
lemma linorder_cases [case_names less equal greater]: |
22841 | 226 |
"(x \<^loc>< y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> P) \<Longrightarrow> P" |
21412 | 227 |
using less_linear by blast |
21248 | 228 |
|
22841 | 229 |
lemma not_less: "\<not> x \<^loc>< y \<longleftrightarrow> y \<^loc>\<le> x" |
21248 | 230 |
apply (simp add: less_le) |
231 |
using linear apply (blast intro: antisym) |
|
15524 | 232 |
done |
233 |
||
22841 | 234 |
lemma not_le: "\<not> x \<^loc>\<le> y \<longleftrightarrow> y \<^loc>< x" |
21248 | 235 |
apply (simp add: less_le) |
236 |
using linear apply (blast intro: antisym) |
|
15524 | 237 |
done |
238 |
||
22841 | 239 |
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x \<^loc>< y \<or> y \<^loc>< x" |
21412 | 240 |
by (cut_tac x = x and y = y in less_linear, auto) |
15524 | 241 |
|
22841 | 242 |
lemma neqE: "x \<noteq> y \<Longrightarrow> (x \<^loc>< y \<Longrightarrow> R) \<Longrightarrow> (y \<^loc>< x \<Longrightarrow> R) \<Longrightarrow> R" |
21248 | 243 |
by (simp add: neq_iff) blast |
15524 | 244 |
|
22841 | 245 |
lemma antisym_conv1: "\<not> x \<^loc>< y \<Longrightarrow> x \<^loc>\<le> y \<longleftrightarrow> x = y" |
21248 | 246 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 247 |
|
22841 | 248 |
lemma antisym_conv2: "x \<^loc>\<le> y \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" |
21248 | 249 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 250 |
|
22841 | 251 |
lemma antisym_conv3: "\<not> y \<^loc>< x \<Longrightarrow> \<not> x \<^loc>< y \<longleftrightarrow> x = y" |
21248 | 252 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 253 |
|
16796 | 254 |
text{*Replacing the old Nat.leI*} |
22841 | 255 |
lemma leI: "\<not> x \<^loc>< y \<Longrightarrow> y \<^loc>\<le> x" |
21248 | 256 |
unfolding not_less . |
16796 | 257 |
|
22841 | 258 |
lemma leD: "y \<^loc>\<le> x \<Longrightarrow> \<not> x \<^loc>< y" |
21248 | 259 |
unfolding not_less . |
16796 | 260 |
|
261 |
(*FIXME inappropriate name (or delete altogether)*) |
|
22841 | 262 |
lemma not_leE: "\<not> y \<^loc>\<le> x \<Longrightarrow> x \<^loc>< y" |
21248 | 263 |
unfolding not_le . |
264 |
||
22916 | 265 |
|
266 |
text {* Reverse order *} |
|
267 |
||
268 |
lemma linorder_reverse: |
|
23018
1d29bc31b0cb
no special treatment in naming of locale predicates stemming form classes
haftmann
parents:
22997
diff
changeset
|
269 |
"linorder (\<lambda>x y. y \<^loc>\<le> x) (\<lambda>x y. y \<^loc>< x)" |
22916 | 270 |
by unfold_locales |
271 |
(simp add: less_le, auto intro: antisym order_trans simp add: linear) |
|
272 |
||
273 |
||
22738 | 274 |
text {* min/max properties *} |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
275 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
276 |
lemma min_le_iff_disj: |
22841 | 277 |
"min x y \<^loc>\<le> z \<longleftrightarrow> x \<^loc>\<le> z \<or> y \<^loc>\<le> z" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
278 |
unfolding min_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
279 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
280 |
lemma le_max_iff_disj: |
22841 | 281 |
"z \<^loc>\<le> max x y \<longleftrightarrow> z \<^loc>\<le> x \<or> z \<^loc>\<le> y" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
282 |
unfolding max_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
283 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
284 |
lemma min_less_iff_disj: |
22841 | 285 |
"min x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<or> y \<^loc>< z" |
21412 | 286 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
287 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
288 |
lemma less_max_iff_disj: |
22841 | 289 |
"z \<^loc>< max x y \<longleftrightarrow> z \<^loc>< x \<or> z \<^loc>< y" |
21412 | 290 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
291 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
292 |
lemma min_less_iff_conj [simp]: |
22841 | 293 |
"z \<^loc>< min x y \<longleftrightarrow> z \<^loc>< x \<and> z \<^loc>< y" |
21412 | 294 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
295 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
296 |
lemma max_less_iff_conj [simp]: |
22841 | 297 |
"max x y \<^loc>< z \<longleftrightarrow> x \<^loc>< z \<and> y \<^loc>< z" |
21412 | 298 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
299 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
300 |
lemma split_min: |
22841 | 301 |
"P (min i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P i) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P j)" |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
302 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
303 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
304 |
lemma split_max: |
22841 | 305 |
"P (max i j) \<longleftrightarrow> (i \<^loc>\<le> j \<longrightarrow> P j) \<and> (\<not> i \<^loc>\<le> j \<longrightarrow> P i)" |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
306 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
307 |
|
21248 | 308 |
end |
309 |
||
22916 | 310 |
subsection {* Name duplicates -- including min/max interpretation *} |
21248 | 311 |
|
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
312 |
lemmas order_less_le = less_le |
22841 | 313 |
lemmas order_eq_refl = order_class.eq_refl |
314 |
lemmas order_less_irrefl = order_class.less_irrefl |
|
315 |
lemmas order_le_less = order_class.le_less |
|
316 |
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq |
|
317 |
lemmas order_less_imp_le = order_class.less_imp_le |
|
318 |
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq |
|
319 |
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 |
|
320 |
lemmas order_neq_le_trans = order_class.neq_le_trans |
|
321 |
lemmas order_le_neq_trans = order_class.le_neq_trans |
|
22316 | 322 |
|
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
323 |
lemmas order_antisym = antisym |
22316 | 324 |
lemmas order_less_not_sym = order_class.less_not_sym |
325 |
lemmas order_less_asym = order_class.less_asym |
|
326 |
lemmas order_eq_iff = order_class.eq_iff |
|
327 |
lemmas order_antisym_conv = order_class.antisym_conv |
|
328 |
lemmas less_imp_neq = order_class.less_imp_neq |
|
329 |
lemmas order_less_trans = order_class.less_trans |
|
330 |
lemmas order_le_less_trans = order_class.le_less_trans |
|
331 |
lemmas order_less_le_trans = order_class.less_le_trans |
|
332 |
lemmas order_less_imp_not_less = order_class.less_imp_not_less |
|
333 |
lemmas order_less_imp_triv = order_class.less_imp_triv |
|
334 |
lemmas order_less_asym' = order_class.less_asym' |
|
335 |
||
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
336 |
lemmas linorder_linear = linear |
22316 | 337 |
lemmas linorder_less_linear = linorder_class.less_linear |
338 |
lemmas linorder_le_less_linear = linorder_class.le_less_linear |
|
339 |
lemmas linorder_le_cases = linorder_class.le_cases |
|
340 |
lemmas linorder_not_less = linorder_class.not_less |
|
341 |
lemmas linorder_not_le = linorder_class.not_le |
|
342 |
lemmas linorder_neq_iff = linorder_class.neq_iff |
|
343 |
lemmas linorder_neqE = linorder_class.neqE |
|
344 |
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 |
|
345 |
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 |
|
346 |
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 |
|
347 |
lemmas leI = linorder_class.leI |
|
348 |
lemmas leD = linorder_class.leD |
|
349 |
lemmas not_leE = linorder_class.not_leE |
|
16796 | 350 |
|
22916 | 351 |
lemmas min_le_iff_disj = linorder_class.min_le_iff_disj [unfolded linorder_class_min] |
352 |
lemmas le_max_iff_disj = linorder_class.le_max_iff_disj [unfolded linorder_class_max] |
|
353 |
lemmas min_less_iff_disj = linorder_class.min_less_iff_disj [unfolded linorder_class_min] |
|
354 |
lemmas less_max_iff_disj = linorder_class.less_max_iff_disj [unfolded linorder_class_max] |
|
355 |
lemmas min_less_iff_conj [simp] = linorder_class.min_less_iff_conj [unfolded linorder_class_min] |
|
356 |
lemmas max_less_iff_conj [simp] = linorder_class.max_less_iff_conj [unfolded linorder_class_max] |
|
357 |
lemmas split_min = linorder_class.split_min [unfolded linorder_class_min] |
|
358 |
lemmas split_max = linorder_class.split_max [unfolded linorder_class_max] |
|
359 |
||
21083 | 360 |
|
361 |
subsection {* Reasoning tools setup *} |
|
362 |
||
21091 | 363 |
ML {* |
364 |
local |
|
365 |
||
366 |
fun decomp_gen sort thy (Trueprop $ t) = |
|
21248 | 367 |
let |
368 |
fun of_sort t = |
|
369 |
let |
|
370 |
val T = type_of t |
|
371 |
in |
|
21091 | 372 |
(* exclude numeric types: linear arithmetic subsumes transitivity *) |
21248 | 373 |
T <> HOLogic.natT andalso T <> HOLogic.intT |
374 |
andalso T <> HOLogic.realT andalso Sign.of_sort thy (T, sort) |
|
375 |
end; |
|
22916 | 376 |
fun dec (Const (@{const_name Not}, _) $ t) = (case dec t |
21248 | 377 |
of NONE => NONE |
378 |
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) |
|
22916 | 379 |
| dec (Const (@{const_name "op ="}, _) $ t1 $ t2) = |
21248 | 380 |
if of_sort t1 |
381 |
then SOME (t1, "=", t2) |
|
382 |
else NONE |
|
22997 | 383 |
| dec (Const (@{const_name Orderings.less_eq}, _) $ t1 $ t2) = |
21248 | 384 |
if of_sort t1 |
385 |
then SOME (t1, "<=", t2) |
|
386 |
else NONE |
|
22997 | 387 |
| dec (Const (@{const_name Orderings.less}, _) $ t1 $ t2) = |
21248 | 388 |
if of_sort t1 |
389 |
then SOME (t1, "<", t2) |
|
390 |
else NONE |
|
391 |
| dec _ = NONE; |
|
21091 | 392 |
in dec t end; |
393 |
||
394 |
in |
|
395 |
||
22841 | 396 |
(* sorry - there is no preorder class |
21248 | 397 |
structure Quasi_Tac = Quasi_Tac_Fun ( |
398 |
struct |
|
399 |
val le_trans = thm "order_trans"; |
|
400 |
val le_refl = thm "order_refl"; |
|
401 |
val eqD1 = thm "order_eq_refl"; |
|
402 |
val eqD2 = thm "sym" RS thm "order_eq_refl"; |
|
403 |
val less_reflE = thm "order_less_irrefl" RS thm "notE"; |
|
404 |
val less_imp_le = thm "order_less_imp_le"; |
|
405 |
val le_neq_trans = thm "order_le_neq_trans"; |
|
406 |
val neq_le_trans = thm "order_neq_le_trans"; |
|
407 |
val less_imp_neq = thm "less_imp_neq"; |
|
22738 | 408 |
val decomp_trans = decomp_gen ["Orderings.preorder"]; |
409 |
val decomp_quasi = decomp_gen ["Orderings.preorder"]; |
|
22841 | 410 |
end);*) |
21091 | 411 |
|
412 |
structure Order_Tac = Order_Tac_Fun ( |
|
21248 | 413 |
struct |
414 |
val less_reflE = thm "order_less_irrefl" RS thm "notE"; |
|
415 |
val le_refl = thm "order_refl"; |
|
416 |
val less_imp_le = thm "order_less_imp_le"; |
|
417 |
val not_lessI = thm "linorder_not_less" RS thm "iffD2"; |
|
418 |
val not_leI = thm "linorder_not_le" RS thm "iffD2"; |
|
419 |
val not_lessD = thm "linorder_not_less" RS thm "iffD1"; |
|
420 |
val not_leD = thm "linorder_not_le" RS thm "iffD1"; |
|
421 |
val eqI = thm "order_antisym"; |
|
422 |
val eqD1 = thm "order_eq_refl"; |
|
423 |
val eqD2 = thm "sym" RS thm "order_eq_refl"; |
|
424 |
val less_trans = thm "order_less_trans"; |
|
425 |
val less_le_trans = thm "order_less_le_trans"; |
|
426 |
val le_less_trans = thm "order_le_less_trans"; |
|
427 |
val le_trans = thm "order_trans"; |
|
428 |
val le_neq_trans = thm "order_le_neq_trans"; |
|
429 |
val neq_le_trans = thm "order_neq_le_trans"; |
|
430 |
val less_imp_neq = thm "less_imp_neq"; |
|
431 |
val eq_neq_eq_imp_neq = thm "eq_neq_eq_imp_neq"; |
|
432 |
val not_sym = thm "not_sym"; |
|
433 |
val decomp_part = decomp_gen ["Orderings.order"]; |
|
434 |
val decomp_lin = decomp_gen ["Orderings.linorder"]; |
|
435 |
end); |
|
21091 | 436 |
|
437 |
end; |
|
438 |
*} |
|
439 |
||
21083 | 440 |
setup {* |
441 |
let |
|
442 |
||
443 |
fun prp t thm = (#prop (rep_thm thm) = t); |
|
15524 | 444 |
|
21083 | 445 |
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = |
446 |
let val prems = prems_of_ss ss; |
|
22916 | 447 |
val less = Const (@{const_name less}, T); |
21083 | 448 |
val t = HOLogic.mk_Trueprop(le $ s $ r); |
449 |
in case find_first (prp t) prems of |
|
450 |
NONE => |
|
451 |
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) |
|
452 |
in case find_first (prp t) prems of |
|
453 |
NONE => NONE |
|
22738 | 454 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv1})) |
21083 | 455 |
end |
22738 | 456 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm order_antisym_conv})) |
21083 | 457 |
end |
458 |
handle THM _ => NONE; |
|
15524 | 459 |
|
21083 | 460 |
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = |
461 |
let val prems = prems_of_ss ss; |
|
22916 | 462 |
val le = Const (@{const_name less_eq}, T); |
21083 | 463 |
val t = HOLogic.mk_Trueprop(le $ r $ s); |
464 |
in case find_first (prp t) prems of |
|
465 |
NONE => |
|
466 |
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) |
|
467 |
in case find_first (prp t) prems of |
|
468 |
NONE => NONE |
|
22738 | 469 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv3})) |
21083 | 470 |
end |
22738 | 471 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_antisym_conv2})) |
21083 | 472 |
end |
473 |
handle THM _ => NONE; |
|
15524 | 474 |
|
21248 | 475 |
fun add_simprocs procs thy = |
476 |
(Simplifier.change_simpset_of thy (fn ss => ss |
|
477 |
addsimprocs (map (fn (name, raw_ts, proc) => |
|
478 |
Simplifier.simproc thy name raw_ts proc)) procs); thy); |
|
479 |
fun add_solver name tac thy = |
|
480 |
(Simplifier.change_simpset_of thy (fn ss => ss addSolver |
|
481 |
(mk_solver name (K tac))); thy); |
|
21083 | 482 |
|
483 |
in |
|
21248 | 484 |
add_simprocs [ |
485 |
("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), |
|
486 |
("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) |
|
487 |
] |
|
488 |
#> add_solver "Trans_linear" Order_Tac.linear_tac |
|
489 |
#> add_solver "Trans_partial" Order_Tac.partial_tac |
|
490 |
(* Adding the transitivity reasoners also as safe solvers showed a slight |
|
491 |
speed up, but the reasoning strength appears to be not higher (at least |
|
492 |
no breaking of additional proofs in the entire HOL distribution, as |
|
493 |
of 5 March 2004, was observed). *) |
|
21083 | 494 |
end |
495 |
*} |
|
15524 | 496 |
|
497 |
||
21083 | 498 |
subsection {* Bounded quantifiers *} |
499 |
||
500 |
syntax |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
501 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
502 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
503 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
504 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) |
21083 | 505 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
506 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
507 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
508 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
509 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) |
21083 | 510 |
|
511 |
syntax (xsymbols) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
512 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
513 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
514 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
515 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 516 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
517 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
518 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
519 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
520 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 521 |
|
522 |
syntax (HOL) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
523 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
524 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
525 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
526 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) |
21083 | 527 |
|
528 |
syntax (HTML output) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
529 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
530 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
531 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
532 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 533 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
534 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
535 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
536 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
537 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 538 |
|
539 |
translations |
|
540 |
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" |
|
541 |
"EX x<y. P" => "EX x. x < y \<and> P" |
|
542 |
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" |
|
543 |
"EX x<=y. P" => "EX x. x <= y \<and> P" |
|
544 |
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" |
|
545 |
"EX x>y. P" => "EX x. x > y \<and> P" |
|
546 |
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" |
|
547 |
"EX x>=y. P" => "EX x. x >= y \<and> P" |
|
548 |
||
549 |
print_translation {* |
|
550 |
let |
|
22916 | 551 |
val All_binder = Syntax.binder_name @{const_syntax All}; |
552 |
val Ex_binder = Syntax.binder_name @{const_syntax Ex}; |
|
22377 | 553 |
val impl = @{const_syntax "op -->"}; |
554 |
val conj = @{const_syntax "op &"}; |
|
22916 | 555 |
val less = @{const_syntax less}; |
556 |
val less_eq = @{const_syntax less_eq}; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
557 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
558 |
val trans = |
21524 | 559 |
[((All_binder, impl, less), ("_All_less", "_All_greater")), |
560 |
((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")), |
|
561 |
((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")), |
|
562 |
((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))]; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
563 |
|
22344
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
564 |
fun matches_bound v t = |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
565 |
case t of (Const ("_bound", _) $ Free (v', _)) => (v = v') |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
566 |
| _ => false |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
567 |
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
568 |
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
569 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
570 |
fun tr' q = (q, |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
571 |
fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] => |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
572 |
(case AList.lookup (op =) trans (q, c, d) of |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
573 |
NONE => raise Match |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
574 |
| SOME (l, g) => |
22344
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
575 |
if matches_bound v t andalso not (contains_var v u) then mk v l u P |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
576 |
else if matches_bound v u andalso not (contains_var v t) then mk v g t P |
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
krauss
parents:
22316
diff
changeset
|
577 |
else raise Match) |
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
578 |
| _ => raise Match); |
21524 | 579 |
in [tr' All_binder, tr' Ex_binder] end |
21083 | 580 |
*} |
581 |
||
582 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
583 |
subsection {* Transitivity reasoning *} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
584 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
585 |
lemma ord_le_eq_trans: "a <= b ==> b = c ==> a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
586 |
by (rule subst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
587 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
588 |
lemma ord_eq_le_trans: "a = b ==> b <= c ==> a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
589 |
by (rule ssubst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
590 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
591 |
lemma ord_less_eq_trans: "a < b ==> b = c ==> a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
592 |
by (rule subst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
593 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
594 |
lemma ord_eq_less_trans: "a = b ==> b < c ==> a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
595 |
by (rule ssubst) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
596 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
597 |
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
598 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
599 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
600 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
601 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
602 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
603 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
604 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
605 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
606 |
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
607 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
608 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
609 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
610 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
611 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
612 |
finally (order_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
613 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
614 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
615 |
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
616 |
(!!x y. x <= y ==> f x <= f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
617 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
618 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
619 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
620 |
also assume "f b < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
621 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
622 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
623 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
624 |
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
625 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
626 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
627 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
628 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
629 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
630 |
finally (order_le_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
631 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
632 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
633 |
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
634 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
635 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
636 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
637 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
638 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
639 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
640 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
641 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
642 |
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
643 |
(!!x y. x <= y ==> f x <= f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
644 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
645 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
646 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
647 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
648 |
finally (order_less_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
649 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
650 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
651 |
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
652 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
653 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
654 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
655 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
656 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
657 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
658 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
659 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
660 |
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
661 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
662 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
663 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
664 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
665 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
666 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
667 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
668 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
669 |
lemma ord_le_eq_subst: "a <= b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
670 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
671 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
672 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
673 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
674 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
675 |
finally (ord_le_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
676 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
677 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
678 |
lemma ord_eq_le_subst: "a = f b ==> b <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
679 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
680 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
681 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
682 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
683 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
684 |
finally (ord_eq_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
685 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
686 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
687 |
lemma ord_less_eq_subst: "a < b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
688 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
689 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
690 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
691 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
692 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
693 |
finally (ord_less_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
694 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
695 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
696 |
lemma ord_eq_less_subst: "a = f b ==> b < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
697 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
698 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
699 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
700 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
701 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
702 |
finally (ord_eq_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
703 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
704 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
705 |
text {* |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
706 |
Note that this list of rules is in reverse order of priorities. |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
707 |
*} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
708 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
709 |
lemmas order_trans_rules [trans] = |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
710 |
order_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
711 |
order_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
712 |
order_le_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
713 |
order_le_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
714 |
order_less_le_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
715 |
order_less_le_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
716 |
order_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
717 |
order_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
718 |
ord_le_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
719 |
ord_eq_le_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
720 |
ord_less_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
721 |
ord_eq_less_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
722 |
forw_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
723 |
back_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
724 |
rev_mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
725 |
mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
726 |
order_neq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
727 |
order_le_neq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
728 |
order_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
729 |
order_less_asym' |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
730 |
order_le_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
731 |
order_less_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
732 |
order_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
733 |
order_antisym |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
734 |
ord_le_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
735 |
ord_eq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
736 |
ord_less_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
737 |
ord_eq_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
738 |
trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
739 |
|
21083 | 740 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
741 |
(* FIXME cleanup *) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
742 |
|
21083 | 743 |
text {* These support proving chains of decreasing inequalities |
744 |
a >= b >= c ... in Isar proofs. *} |
|
745 |
||
746 |
lemma xt1: |
|
747 |
"a = b ==> b > c ==> a > c" |
|
748 |
"a > b ==> b = c ==> a > c" |
|
749 |
"a = b ==> b >= c ==> a >= c" |
|
750 |
"a >= b ==> b = c ==> a >= c" |
|
751 |
"(x::'a::order) >= y ==> y >= x ==> x = y" |
|
752 |
"(x::'a::order) >= y ==> y >= z ==> x >= z" |
|
753 |
"(x::'a::order) > y ==> y >= z ==> x > z" |
|
754 |
"(x::'a::order) >= y ==> y > z ==> x > z" |
|
755 |
"(a::'a::order) > b ==> b > a ==> ?P" |
|
756 |
"(x::'a::order) > y ==> y > z ==> x > z" |
|
757 |
"(a::'a::order) >= b ==> a ~= b ==> a > b" |
|
758 |
"(a::'a::order) ~= b ==> a >= b ==> a > b" |
|
759 |
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" |
|
760 |
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" |
|
761 |
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
762 |
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
763 |
by auto |
|
764 |
||
765 |
lemma xt2: |
|
766 |
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
767 |
by (subgoal_tac "f b >= f c", force, force) |
|
768 |
||
769 |
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> |
|
770 |
(!!x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
771 |
by (subgoal_tac "f a >= f b", force, force) |
|
772 |
||
773 |
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> |
|
774 |
(!!x y. x >= y ==> f x >= f y) ==> a > f c" |
|
775 |
by (subgoal_tac "f b >= f c", force, force) |
|
776 |
||
777 |
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> |
|
778 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
779 |
by (subgoal_tac "f a > f b", force, force) |
|
780 |
||
781 |
lemma xt6: "(a::'a::order) >= f b ==> b > c ==> |
|
782 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
783 |
by (subgoal_tac "f b > f c", force, force) |
|
784 |
||
785 |
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> |
|
786 |
(!!x y. x >= y ==> f x >= f y) ==> f a > c" |
|
787 |
by (subgoal_tac "f a >= f b", force, force) |
|
788 |
||
789 |
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> |
|
790 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
791 |
by (subgoal_tac "f b > f c", force, force) |
|
792 |
||
793 |
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> |
|
794 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
795 |
by (subgoal_tac "f a > f b", force, force) |
|
796 |
||
797 |
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 |
|
798 |
||
799 |
(* |
|
800 |
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands |
|
801 |
for the wrong thing in an Isar proof. |
|
802 |
||
803 |
The extra transitivity rules can be used as follows: |
|
804 |
||
805 |
lemma "(a::'a::order) > z" |
|
806 |
proof - |
|
807 |
have "a >= b" (is "_ >= ?rhs") |
|
808 |
sorry |
|
809 |
also have "?rhs >= c" (is "_ >= ?rhs") |
|
810 |
sorry |
|
811 |
also (xtrans) have "?rhs = d" (is "_ = ?rhs") |
|
812 |
sorry |
|
813 |
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") |
|
814 |
sorry |
|
815 |
also (xtrans) have "?rhs > f" (is "_ > ?rhs") |
|
816 |
sorry |
|
817 |
also (xtrans) have "?rhs > z" |
|
818 |
sorry |
|
819 |
finally (xtrans) show ?thesis . |
|
820 |
qed |
|
821 |
||
822 |
Alternatively, one can use "declare xtrans [trans]" and then |
|
823 |
leave out the "(xtrans)" above. |
|
824 |
*) |
|
825 |
||
21546 | 826 |
subsection {* Order on bool *} |
827 |
||
22886 | 828 |
instance bool :: order |
21546 | 829 |
le_bool_def: "P \<le> Q \<equiv> P \<longrightarrow> Q" |
830 |
less_bool_def: "P < Q \<equiv> P \<le> Q \<and> P \<noteq> Q" |
|
22916 | 831 |
by intro_classes (auto simp add: le_bool_def less_bool_def) |
21546 | 832 |
|
833 |
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" |
|
834 |
by (simp add: le_bool_def) |
|
835 |
||
836 |
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" |
|
837 |
by (simp add: le_bool_def) |
|
838 |
||
839 |
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
840 |
by (simp add: le_bool_def) |
|
841 |
||
842 |
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" |
|
843 |
by (simp add: le_bool_def) |
|
844 |
||
22348 | 845 |
lemma [code func]: |
846 |
"False \<le> b \<longleftrightarrow> True" |
|
847 |
"True \<le> b \<longleftrightarrow> b" |
|
848 |
"False < b \<longleftrightarrow> b" |
|
849 |
"True < b \<longleftrightarrow> False" |
|
850 |
unfolding le_bool_def less_bool_def by simp_all |
|
851 |
||
22424 | 852 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
853 |
subsection {* Monotonicity, syntactic least value operator and min/max *} |
21083 | 854 |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
855 |
locale mono = |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
856 |
fixes f |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
857 |
assumes mono: "A \<le> B \<Longrightarrow> f A \<le> f B" |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
858 |
|
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
859 |
lemmas monoI [intro?] = mono.intro |
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
860 |
and monoD [dest?] = mono.mono |
21083 | 861 |
|
862 |
constdefs |
|
863 |
Least :: "('a::ord => bool) => 'a" (binder "LEAST " 10) |
|
864 |
"Least P == THE x. P x & (ALL y. P y --> x <= y)" |
|
865 |
-- {* We can no longer use LeastM because the latter requires Hilbert-AC. *} |
|
866 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
867 |
lemma LeastI2_order: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
868 |
"[| P (x::'a::order); |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
869 |
!!y. P y ==> x <= y; |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
870 |
!!x. [| P x; ALL y. P y --> x \<le> y |] ==> Q x |] |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
871 |
==> Q (Least P)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
872 |
apply (unfold Least_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
873 |
apply (rule theI2) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
874 |
apply (blast intro: order_antisym)+ |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
875 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
876 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
877 |
lemma Least_equality: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
878 |
"[| P (k::'a::order); !!x. P x ==> k <= x |] ==> (LEAST x. P x) = k" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
879 |
apply (simp add: Least_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
880 |
apply (rule the_equality) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
881 |
apply (auto intro!: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
882 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
883 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
884 |
lemma min_leastL: "(!!x. least <= x) ==> min least x = least" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
885 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
886 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
887 |
lemma max_leastL: "(!!x. least <= x) ==> max least x = x" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
888 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
889 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
890 |
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
891 |
apply (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
892 |
apply (blast intro: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
893 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
894 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
895 |
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
896 |
apply (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
897 |
apply (blast intro: order_antisym) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
898 |
done |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
899 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
900 |
lemma min_of_mono: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
901 |
"(!!x y. (f x <= f y) = (x <= y)) ==> min (f m) (f n) = f (min m n)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
902 |
by (simp add: min_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
903 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
904 |
lemma max_of_mono: |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
905 |
"(!!x y. (f x <= f y) = (x <= y)) ==> max (f m) (f n) = f (max m n)" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
906 |
by (simp add: max_def) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
907 |
|
22548 | 908 |
|
909 |
subsection {* legacy ML bindings *} |
|
21673 | 910 |
|
911 |
ML {* |
|
22548 | 912 |
val monoI = @{thm monoI}; |
22886 | 913 |
*} |
21673 | 914 |
|
15524 | 915 |
end |