author | blanchet |
Thu, 10 Feb 2011 17:18:52 +0100 | |
changeset 41749 | 1e3a8807ebd4 |
parent 32154 | 9721e8e4d48c |
child 42156 | df219e736a5d |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Hered.thy |
1474 | 2 |
Author: Martin Coen |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
17456 | 6 |
header {* Hereditary Termination -- cf. Martin Lo\"f *} |
7 |
||
8 |
theory Hered |
|
9 |
imports Type |
|
10 |
begin |
|
11 |
||
12 |
text {* |
|
13 |
Note that this is based on an untyped equality and so @{text "lam |
|
14 |
x. b(x)"} is only hereditarily terminating if @{text "ALL x. b(x)"} |
|
15 |
is. Not so useful for functions! |
|
16 |
*} |
|
0 | 17 |
|
18 |
consts |
|
19 |
(*** Predicates ***) |
|
20 |
HTTgen :: "i set => i set" |
|
21 |
HTT :: "i set" |
|
22 |
||
17456 | 23 |
axioms |
0 | 24 |
(*** Definitions of Hereditary Termination ***) |
25 |
||
17456 | 26 |
HTTgen_def: |
27 |
"HTTgen(R) == {t. t=true | t=false | (EX a b. t=<a,b> & a : R & b : R) | |
|
3837 | 28 |
(EX f. t=lam x. f(x) & (ALL x. f(x) : R))}" |
17456 | 29 |
HTT_def: "HTT == gfp(HTTgen)" |
30 |
||
20140 | 31 |
|
32 |
subsection {* Hereditary Termination *} |
|
33 |
||
34 |
lemma HTTgen_mono: "mono(%X. HTTgen(X))" |
|
35 |
apply (unfold HTTgen_def) |
|
36 |
apply (rule monoI) |
|
37 |
apply blast |
|
38 |
done |
|
39 |
||
40 |
lemma HTTgenXH: |
|
41 |
"t : HTTgen(A) <-> t=true | t=false | (EX a b. t=<a,b> & a : A & b : A) | |
|
42 |
(EX f. t=lam x. f(x) & (ALL x. f(x) : A))" |
|
43 |
apply (unfold HTTgen_def) |
|
44 |
apply blast |
|
45 |
done |
|
46 |
||
47 |
lemma HTTXH: |
|
48 |
"t : HTT <-> t=true | t=false | (EX a b. t=<a,b> & a : HTT & b : HTT) | |
|
49 |
(EX f. t=lam x. f(x) & (ALL x. f(x) : HTT))" |
|
50 |
apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def]) |
|
51 |
apply blast |
|
52 |
done |
|
53 |
||
54 |
||
55 |
subsection {* Introduction Rules for HTT *} |
|
56 |
||
57 |
lemma HTT_bot: "~ bot : HTT" |
|
58 |
by (blast dest: HTTXH [THEN iffD1]) |
|
59 |
||
60 |
lemma HTT_true: "true : HTT" |
|
61 |
by (blast intro: HTTXH [THEN iffD2]) |
|
62 |
||
63 |
lemma HTT_false: "false : HTT" |
|
64 |
by (blast intro: HTTXH [THEN iffD2]) |
|
65 |
||
66 |
lemma HTT_pair: "<a,b> : HTT <-> a : HTT & b : HTT" |
|
67 |
apply (rule HTTXH [THEN iff_trans]) |
|
68 |
apply blast |
|
69 |
done |
|
70 |
||
71 |
lemma HTT_lam: "lam x. f(x) : HTT <-> (ALL x. f(x) : HTT)" |
|
72 |
apply (rule HTTXH [THEN iff_trans]) |
|
73 |
apply auto |
|
74 |
done |
|
75 |
||
76 |
lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam |
|
77 |
||
78 |
lemma HTT_rews2: |
|
79 |
"one : HTT" |
|
80 |
"inl(a) : HTT <-> a : HTT" |
|
81 |
"inr(b) : HTT <-> b : HTT" |
|
82 |
"zero : HTT" |
|
83 |
"succ(n) : HTT <-> n : HTT" |
|
84 |
"[] : HTT" |
|
85 |
"x$xs : HTT <-> x : HTT & xs : HTT" |
|
86 |
by (simp_all add: data_defs HTT_rews1) |
|
87 |
||
88 |
lemmas HTT_rews = HTT_rews1 HTT_rews2 |
|
89 |
||
90 |
||
91 |
subsection {* Coinduction for HTT *} |
|
92 |
||
93 |
lemma HTT_coinduct: "[| t : R; R <= HTTgen(R) |] ==> t : HTT" |
|
94 |
apply (erule HTT_def [THEN def_coinduct]) |
|
95 |
apply assumption |
|
96 |
done |
|
97 |
||
98 |
lemma HTT_coinduct3: |
|
99 |
"[| t : R; R <= HTTgen(lfp(%x. HTTgen(x) Un R Un HTT)) |] ==> t : HTT" |
|
100 |
apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]]) |
|
101 |
apply assumption |
|
102 |
done |
|
103 |
||
32153
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
104 |
lemma HTTgenIs: |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
105 |
"true : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
106 |
"false : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
107 |
"[| a : R; b : R |] ==> <a,b> : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
108 |
"!!b. [| !!x. b(x) : R |] ==> lam x. b(x) : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
109 |
"one : HTTgen(R)" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
110 |
"a : lfp(%x. HTTgen(x) Un R Un HTT) ==> inl(a) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
111 |
"b : lfp(%x. HTTgen(x) Un R Un HTT) ==> inr(b) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
112 |
"zero : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
113 |
"n : lfp(%x. HTTgen(x) Un R Un HTT) ==> succ(n) : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
114 |
"[] : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
115 |
"[| h : lfp(%x. HTTgen(x) Un R Un HTT); t : lfp(%x. HTTgen(x) Un R Un HTT) |] ==> |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
116 |
h$t : HTTgen(lfp(%x. HTTgen(x) Un R Un HTT))" |
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
wenzelm
parents:
32010
diff
changeset
|
117 |
unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+ |
20140 | 118 |
|
119 |
||
120 |
subsection {* Formation Rules for Types *} |
|
121 |
||
122 |
lemma UnitF: "Unit <= HTT" |
|
123 |
by (simp add: subsetXH UnitXH HTT_rews) |
|
124 |
||
125 |
lemma BoolF: "Bool <= HTT" |
|
126 |
by (fastsimp simp: subsetXH BoolXH iff: HTT_rews) |
|
127 |
||
128 |
lemma PlusF: "[| A <= HTT; B <= HTT |] ==> A + B <= HTT" |
|
129 |
by (fastsimp simp: subsetXH PlusXH iff: HTT_rews) |
|
130 |
||
131 |
lemma SigmaF: "[| A <= HTT; !!x. x:A ==> B(x) <= HTT |] ==> SUM x:A. B(x) <= HTT" |
|
132 |
by (fastsimp simp: subsetXH SgXH HTT_rews) |
|
133 |
||
134 |
||
135 |
(*** Formation Rules for Recursive types - using coinduction these only need ***) |
|
136 |
(*** exhaution rule for type-former ***) |
|
137 |
||
138 |
(*Proof by induction - needs induction rule for type*) |
|
139 |
lemma "Nat <= HTT" |
|
140 |
apply (simp add: subsetXH) |
|
141 |
apply clarify |
|
142 |
apply (erule Nat_ind) |
|
143 |
apply (fastsimp iff: HTT_rews)+ |
|
144 |
done |
|
145 |
||
146 |
lemma NatF: "Nat <= HTT" |
|
147 |
apply clarify |
|
148 |
apply (erule HTT_coinduct3) |
|
149 |
apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1]) |
|
150 |
done |
|
151 |
||
152 |
lemma ListF: "A <= HTT ==> List(A) <= HTT" |
|
153 |
apply clarify |
|
154 |
apply (erule HTT_coinduct3) |
|
155 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
156 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] |
|
157 |
dest: ListXH [THEN iffD1]) |
|
158 |
done |
|
159 |
||
160 |
lemma ListsF: "A <= HTT ==> Lists(A) <= HTT" |
|
161 |
apply clarify |
|
162 |
apply (erule HTT_coinduct3) |
|
163 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
164 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1]) |
|
165 |
done |
|
166 |
||
167 |
lemma IListsF: "A <= HTT ==> ILists(A) <= HTT" |
|
168 |
apply clarify |
|
169 |
apply (erule HTT_coinduct3) |
|
170 |
apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] |
|
171 |
subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1]) |
|
172 |
done |
|
173 |
||
174 |
end |