| author | wenzelm | 
| Wed, 07 May 2014 13:25:54 +0200 | |
| changeset 56896 | 1e3c3df3a77c | 
| parent 55873 | aa50d903e0a7 | 
| child 57175 | ca3475504557 | 
| permissions | -rw-r--r-- | 
| 55075 | 1 | (* Title: HOL/BNF_Examples/Stream.thy | 
| 50518 | 2 | Author: Dmitriy Traytel, TU Muenchen | 
| 3 | Author: Andrei Popescu, TU Muenchen | |
| 51778 | 4 | Copyright 2012, 2013 | 
| 50518 | 5 | |
| 6 | Infinite streams. | |
| 7 | *) | |
| 8 | ||
| 9 | header {* Infinite Streams *}
 | |
| 10 | ||
| 11 | theory Stream | |
| 55076 | 12 | imports "~~/src/HOL/Library/Nat_Bijection" | 
| 50518 | 13 | begin | 
| 14 | ||
| 51804 
be6e703908f4
renamed BNF "(co)data" commands to names that are closer to their final names
 blanchet parents: 
51788diff
changeset | 15 | codatatype (sset: 'a) stream (map: smap rel: stream_all2) = | 
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 16 | SCons (shd: 'a) (stl: "'a stream") (infixr "##" 65) | 
| 51409 | 17 | |
| 51462 | 18 | (*for code generation only*) | 
| 19 | definition smember :: "'a \<Rightarrow> 'a stream \<Rightarrow> bool" where | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 20 | [code_abbrev]: "smember x s \<longleftrightarrow> x \<in> sset s" | 
| 51462 | 21 | |
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 22 | lemma smember_code[code, simp]: "smember x (y ## s) = (if x = y then True else smember x s)" | 
| 51462 | 23 | unfolding smember_def by auto | 
| 24 | ||
| 25 | hide_const (open) smember | |
| 26 | ||
| 50518 | 27 | (* TODO: Provide by the package*) | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 28 | theorem sset_induct: | 
| 55804 | 29 | assumes Base: "\<And>s. P (shd s) s" and Step: "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s" | 
| 30 | shows "\<forall>y \<in> sset s. P y s" | |
| 31 | proof (rule stream.dtor_set_induct) | |
| 32 | fix a :: 'a and s :: "'a stream" | |
| 33 | assume "a \<in> set1_pre_stream (dtor_stream s)" | |
| 34 | then have "a = shd s" | |
| 35 | by (cases "dtor_stream s") | |
| 55873 | 36 | (auto simp: BNF_Comp.id_bnf_comp_def shd_def fsts_def set1_pre_stream_def stream.dtor_ctor SCons_def | 
| 37 | split: stream.splits) | |
| 55804 | 38 | with Base show "P a s" by simp | 
| 39 | next | |
| 40 | fix a :: 'a and s' :: "'a stream" and s :: "'a stream" | |
| 41 | assume "s' \<in> set2_pre_stream (dtor_stream s)" and prems: "a \<in> sset s'" "P a s'" | |
| 42 | then have "s' = stl s" | |
| 43 | by (cases "dtor_stream s") | |
| 55873 | 44 | (auto simp: BNF_Comp.id_bnf_comp_def stl_def snds_def set2_pre_stream_def stream.dtor_ctor SCons_def | 
| 45 | split: stream.splits) | |
| 55804 | 46 | with Step prems show "P a s" by simp | 
| 47 | qed | |
| 51141 | 48 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 49 | lemma smap_simps[simp]: | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 50 | "shd (smap f s) = f (shd s)" "stl (smap f s) = smap f (stl s)" | 
| 52991 | 51 | by (case_tac [!] s) auto | 
| 51141 | 52 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 53 | theorem shd_sset: "shd s \<in> sset s" | 
| 52991 | 54 | by (case_tac s) auto | 
| 50518 | 55 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 56 | theorem stl_sset: "y \<in> sset (stl s) \<Longrightarrow> y \<in> sset s" | 
| 52991 | 57 | by (case_tac s) auto | 
| 50518 | 58 | |
| 59 | (* only for the non-mutual case: *) | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 60 | theorem sset_induct1[consumes 1, case_names shd stl, induct set: "sset"]: | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 61 | assumes "y \<in> sset s" and "\<And>s. P (shd s) s" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 62 | and "\<And>s y. \<lbrakk>y \<in> sset (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s" | 
| 50518 | 63 | shows "P y s" | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 64 | using assms sset_induct by blast | 
| 50518 | 65 | (* end TODO *) | 
| 66 | ||
| 67 | ||
| 68 | subsection {* prepend list to stream *}
 | |
| 69 | ||
| 70 | primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where | |
| 71 | "shift [] s = s" | |
| 51023 
550f265864e3
infix syntax for streams (reflecting the one for lists)
 traytel parents: 
50518diff
changeset | 72 | | "shift (x # xs) s = x ## shift xs s" | 
| 50518 | 73 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 74 | lemma smap_shift[simp]: "smap f (xs @- s) = map f xs @- smap f s" | 
| 51353 | 75 | by (induct xs) auto | 
| 76 | ||
| 50518 | 77 | lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" | 
| 51141 | 78 | by (induct xs) auto | 
| 50518 | 79 | |
| 80 | lemma shift_simps[simp]: | |
| 81 | "shd (xs @- s) = (if xs = [] then shd s else hd xs)" | |
| 82 | "stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" | |
| 51141 | 83 | by (induct xs) auto | 
| 50518 | 84 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 85 | lemma sset_shift[simp]: "sset (xs @- s) = set xs \<union> sset s" | 
| 51141 | 86 | by (induct xs) auto | 
| 50518 | 87 | |
| 51352 | 88 | lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2" | 
| 89 | by (induct xs) auto | |
| 90 | ||
| 50518 | 91 | |
| 54469 | 92 | subsection {* set of streams with elements in some fixed set *}
 | 
| 50518 | 93 | |
| 94 | coinductive_set | |
| 54469 | 95 | streams :: "'a set \<Rightarrow> 'a stream set" | 
| 50518 | 96 | for A :: "'a set" | 
| 97 | where | |
| 51023 
550f265864e3
infix syntax for streams (reflecting the one for lists)
 traytel parents: 
50518diff
changeset | 98 | Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A" | 
| 50518 | 99 | |
| 100 | lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A" | |
| 51141 | 101 | by (induct w) auto | 
| 50518 | 102 | |
| 54469 | 103 | lemma streams_Stream: "x ## s \<in> streams A \<longleftrightarrow> x \<in> A \<and> s \<in> streams A" | 
| 104 | by (auto elim: streams.cases) | |
| 105 | ||
| 106 | lemma streams_stl: "s \<in> streams A \<Longrightarrow> stl s \<in> streams A" | |
| 107 | by (cases s) (auto simp: streams_Stream) | |
| 108 | ||
| 109 | lemma streams_shd: "s \<in> streams A \<Longrightarrow> shd s \<in> A" | |
| 110 | by (cases s) (auto simp: streams_Stream) | |
| 111 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 112 | lemma sset_streams: | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 113 | assumes "sset s \<subseteq> A" | 
| 50518 | 114 | shows "s \<in> streams A" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 115 | using assms proof (coinduction arbitrary: s) | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 116 | case streams then show ?case by (cases s) simp | 
| 50518 | 117 | qed | 
| 118 | ||
| 54469 | 119 | lemma streams_sset: | 
| 120 | assumes "s \<in> streams A" | |
| 121 | shows "sset s \<subseteq> A" | |
| 122 | proof | |
| 123 | fix x assume "x \<in> sset s" from this `s \<in> streams A` show "x \<in> A" | |
| 124 | by (induct s) (auto intro: streams_shd streams_stl) | |
| 125 | qed | |
| 126 | ||
| 127 | lemma streams_iff_sset: "s \<in> streams A \<longleftrightarrow> sset s \<subseteq> A" | |
| 128 | by (metis sset_streams streams_sset) | |
| 129 | ||
| 130 | lemma streams_mono: "s \<in> streams A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> s \<in> streams B" | |
| 131 | unfolding streams_iff_sset by auto | |
| 132 | ||
| 133 | lemma smap_streams: "s \<in> streams A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> f x \<in> B) \<Longrightarrow> smap f s \<in> streams B" | |
| 134 | unfolding streams_iff_sset stream.set_map by auto | |
| 135 | ||
| 136 | lemma streams_empty: "streams {} = {}"
 | |
| 137 | by (auto elim: streams.cases) | |
| 138 | ||
| 139 | lemma streams_UNIV[simp]: "streams UNIV = UNIV" | |
| 140 | by (auto simp: streams_iff_sset) | |
| 50518 | 141 | |
| 51141 | 142 | subsection {* nth, take, drop for streams *}
 | 
| 143 | ||
| 144 | primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where | |
| 145 | "s !! 0 = shd s" | |
| 146 | | "s !! Suc n = stl s !! n" | |
| 147 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 148 | lemma snth_smap[simp]: "smap f s !! n = f (s !! n)" | 
| 51141 | 149 | by (induct n arbitrary: s) auto | 
| 150 | ||
| 151 | lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p" | |
| 152 | by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl) | |
| 153 | ||
| 154 | lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)" | |
| 155 | by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred) | |
| 156 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 157 | lemma snth_sset[simp]: "s !! n \<in> sset s" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 158 | by (induct n arbitrary: s) (auto intro: shd_sset stl_sset) | 
| 51141 | 159 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 160 | lemma sset_range: "sset s = range (snth s)" | 
| 51141 | 161 | proof (intro equalityI subsetI) | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 162 | fix x assume "x \<in> sset s" | 
| 51141 | 163 | thus "x \<in> range (snth s)" | 
| 164 | proof (induct s) | |
| 165 | case (stl s x) | |
| 166 | then obtain n where "x = stl s !! n" by auto | |
| 167 | thus ?case by (auto intro: range_eqI[of _ _ "Suc n"]) | |
| 168 | qed (auto intro: range_eqI[of _ _ 0]) | |
| 169 | qed auto | |
| 50518 | 170 | |
| 171 | primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where | |
| 172 | "stake 0 s = []" | |
| 173 | | "stake (Suc n) s = shd s # stake n (stl s)" | |
| 174 | ||
| 51141 | 175 | lemma length_stake[simp]: "length (stake n s) = n" | 
| 176 | by (induct n arbitrary: s) auto | |
| 177 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 178 | lemma stake_smap[simp]: "stake n (smap f s) = map f (stake n s)" | 
| 51141 | 179 | by (induct n arbitrary: s) auto | 
| 180 | ||
| 50518 | 181 | primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where | 
| 182 | "sdrop 0 s = s" | |
| 183 | | "sdrop (Suc n) s = sdrop n (stl s)" | |
| 184 | ||
| 51141 | 185 | lemma sdrop_simps[simp]: | 
| 186 | "shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s" | |
| 187 | by (induct n arbitrary: s) auto | |
| 188 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 189 | lemma sdrop_smap[simp]: "sdrop n (smap f s) = smap f (sdrop n s)" | 
| 51141 | 190 | by (induct n arbitrary: s) auto | 
| 50518 | 191 | |
| 51352 | 192 | lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)" | 
| 193 | by (induct n) auto | |
| 194 | ||
| 50518 | 195 | lemma stake_sdrop: "stake n s @- sdrop n s = s" | 
| 51141 | 196 | by (induct n arbitrary: s) auto | 
| 197 | ||
| 198 | lemma id_stake_snth_sdrop: | |
| 199 | "s = stake i s @- s !! i ## sdrop (Suc i) s" | |
| 200 | by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse) | |
| 50518 | 201 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 202 | lemma smap_alt: "smap f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R") | 
| 51141 | 203 | proof | 
| 204 | assume ?R | |
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 205 | then have "\<And>n. smap f (sdrop n s) = sdrop n s'" | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 206 | by coinduction (auto intro: exI[of _ 0] simp del: sdrop.simps(2)) | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 207 | then show ?L using sdrop.simps(1) by metis | 
| 51141 | 208 | qed auto | 
| 209 | ||
| 210 | lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0" | |
| 211 | by (induct n) auto | |
| 50518 | 212 | |
| 213 | lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'" | |
| 51141 | 214 | by (induct n arbitrary: w s) auto | 
| 50518 | 215 | |
| 216 | lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w" | |
| 51141 | 217 | by (induct n arbitrary: w s) auto | 
| 50518 | 218 | |
| 219 | lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" | |
| 51141 | 220 | by (induct m arbitrary: s) auto | 
| 50518 | 221 | |
| 222 | lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" | |
| 51141 | 223 | by (induct m arbitrary: s) auto | 
| 224 | ||
| 51430 | 225 | partial_function (tailrec) sdrop_while :: "('a \<Rightarrow> bool) \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where 
 | 
| 226 | "sdrop_while P s = (if P (shd s) then sdrop_while P (stl s) else s)" | |
| 227 | ||
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 228 | lemma sdrop_while_SCons[code]: | 
| 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 229 | "sdrop_while P (a ## s) = (if P a then sdrop_while P s else a ## s)" | 
| 51430 | 230 | by (subst sdrop_while.simps) simp | 
| 231 | ||
| 232 | lemma sdrop_while_sdrop_LEAST: | |
| 233 | assumes "\<exists>n. P (s !! n)" | |
| 234 | shows "sdrop_while (Not o P) s = sdrop (LEAST n. P (s !! n)) s" | |
| 235 | proof - | |
| 236 | from assms obtain m where "P (s !! m)" "\<And>n. P (s !! n) \<Longrightarrow> m \<le> n" | |
| 237 | and *: "(LEAST n. P (s !! n)) = m" by atomize_elim (auto intro: LeastI Least_le) | |
| 238 | thus ?thesis unfolding * | |
| 239 | proof (induct m arbitrary: s) | |
| 240 | case (Suc m) | |
| 241 | hence "sdrop_while (Not \<circ> P) (stl s) = sdrop m (stl s)" | |
| 242 | by (metis (full_types) not_less_eq_eq snth.simps(2)) | |
| 243 | moreover from Suc(3) have "\<not> (P (s !! 0))" by blast | |
| 244 | ultimately show ?case by (subst sdrop_while.simps) simp | |
| 245 | qed (metis comp_apply sdrop.simps(1) sdrop_while.simps snth.simps(1)) | |
| 246 | qed | |
| 247 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 248 | primcorec sfilter where | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 249 | "shd (sfilter P s) = shd (sdrop_while (Not o P) s)" | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 250 | | "stl (sfilter P s) = sfilter P (stl (sdrop_while (Not o P) s))" | 
| 52905 | 251 | |
| 252 | lemma sfilter_Stream: "sfilter P (x ## s) = (if P x then x ## sfilter P s else sfilter P s)" | |
| 253 | proof (cases "P x") | |
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 254 | case True thus ?thesis by (subst sfilter.ctr) (simp add: sdrop_while_SCons) | 
| 52905 | 255 | next | 
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 256 | case False thus ?thesis by (subst (1 2) sfilter.ctr) (simp add: sdrop_while_SCons) | 
| 52905 | 257 | qed | 
| 258 | ||
| 51141 | 259 | |
| 260 | subsection {* unary predicates lifted to streams *}
 | |
| 261 | ||
| 262 | definition "stream_all P s = (\<forall>p. P (s !! p))" | |
| 263 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 264 | lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (sset s) P" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 265 | unfolding stream_all_def sset_range by auto | 
| 51141 | 266 | |
| 267 | lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)" | |
| 268 | unfolding stream_all_iff list_all_iff by auto | |
| 269 | ||
| 54469 | 270 | lemma stream_all_Stream: "stream_all P (x ## X) \<longleftrightarrow> P x \<and> stream_all P X" | 
| 271 | by simp | |
| 272 | ||
| 51141 | 273 | |
| 274 | subsection {* recurring stream out of a list *}
 | |
| 275 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 276 | primcorec cycle :: "'a list \<Rightarrow> 'a stream" where | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 277 | "shd (cycle xs) = hd xs" | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 278 | | "stl (cycle xs) = cycle (tl xs @ [hd xs])" | 
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 279 | |
| 51141 | 280 | lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 281 | proof (coinduction arbitrary: u) | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 282 | case Eq_stream then show ?case using stream.collapse[of "cycle u"] | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 283 | by (auto intro!: exI[of _ "tl u @ [hd u]"]) | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 284 | qed | 
| 51141 | 285 | |
| 51409 | 286 | lemma cycle_Cons[code]: "cycle (x # xs) = x ## cycle (xs @ [x])" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 287 | by (subst cycle.ctr) simp | 
| 50518 | 288 | |
| 289 | lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s" | |
| 51141 | 290 | by (auto dest: arg_cong[of _ _ stl]) | 
| 50518 | 291 | |
| 292 | lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" | |
| 293 | proof (induct n arbitrary: u) | |
| 294 | case (Suc n) thus ?case by (cases u) auto | |
| 295 | qed auto | |
| 296 | ||
| 297 | lemma stake_cycle_le[simp]: | |
| 298 | assumes "u \<noteq> []" "n < length u" | |
| 299 | shows "stake n (cycle u) = take n u" | |
| 300 | using min_absorb2[OF less_imp_le_nat[OF assms(2)]] | |
| 51141 | 301 | by (subst cycle_decomp[OF assms(1)], subst stake_append) auto | 
| 50518 | 302 | |
| 303 | lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u" | |
| 51141 | 304 | by (metis cycle_decomp stake_shift) | 
| 50518 | 305 | |
| 306 | lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u" | |
| 51141 | 307 | by (metis cycle_decomp sdrop_shift) | 
| 50518 | 308 | |
| 309 | lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> | |
| 310 | stake n (cycle u) = concat (replicate (n div length u) u)" | |
| 51141 | 311 | by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric]) | 
| 50518 | 312 | |
| 313 | lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> | |
| 314 | sdrop n (cycle u) = cycle u" | |
| 51141 | 315 | by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric]) | 
| 50518 | 316 | |
| 317 | lemma stake_cycle: "u \<noteq> [] \<Longrightarrow> | |
| 318 | stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" | |
| 51141 | 319 | by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto | 
| 50518 | 320 | |
| 321 | lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)" | |
| 51141 | 322 | by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) | 
| 323 | ||
| 324 | ||
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 325 | subsection {* iterated application of a function *}
 | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 326 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 327 | primcorec siterate where | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 328 | "shd (siterate f x) = x" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 329 | | "stl (siterate f x) = siterate f (f x)" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 330 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 331 | lemma stake_Suc: "stake (Suc n) s = stake n s @ [s !! n]" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 332 | by (induct n arbitrary: s) auto | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 333 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 334 | lemma snth_siterate[simp]: "siterate f x !! n = (f^^n) x" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 335 | by (induct n arbitrary: x) (auto simp: funpow_swap1) | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 336 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 337 | lemma sdrop_siterate[simp]: "sdrop n (siterate f x) = siterate f ((f^^n) x)" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 338 | by (induct n arbitrary: x) (auto simp: funpow_swap1) | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 339 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 340 | lemma stake_siterate[simp]: "stake n (siterate f x) = map (\<lambda>n. (f^^n) x) [0 ..< n]" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 341 | by (induct n arbitrary: x) (auto simp del: stake.simps(2) simp: stake_Suc) | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 342 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 343 | lemma sset_siterate: "sset (siterate f x) = {(f^^n) x | n. True}"
 | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 344 | by (auto simp: sset_range) | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 345 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 346 | lemma smap_siterate: "smap f (siterate f x) = siterate f (f x)" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 347 | by (coinduction arbitrary: x) auto | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 348 | |
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 349 | |
| 51141 | 350 | subsection {* stream repeating a single element *}
 | 
| 351 | ||
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 352 | abbreviation "sconst \<equiv> siterate id" | 
| 51141 | 353 | |
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 354 | lemma shift_replicate_sconst[simp]: "replicate n x @- sconst x = sconst x" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 355 | by (subst (3) stake_sdrop[symmetric]) (simp add: map_replicate_trivial) | 
| 51141 | 356 | |
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 357 | lemma stream_all_same[simp]: "sset (sconst x) = {x}"
 | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 358 | by (simp add: sset_siterate) | 
| 51141 | 359 | |
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 360 | lemma same_cycle: "sconst x = cycle [x]" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 361 | by coinduction auto | 
| 51141 | 362 | |
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 363 | lemma smap_sconst: "smap f (sconst x) = sconst (f x)" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 364 | by coinduction auto | 
| 51141 | 365 | |
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 366 | lemma sconst_streams: "x \<in> A \<Longrightarrow> sconst x \<in> streams A" | 
| 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 367 | by (simp add: streams_iff_sset) | 
| 51141 | 368 | |
| 369 | ||
| 370 | subsection {* stream of natural numbers *}
 | |
| 371 | ||
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 372 | abbreviation "fromN \<equiv> siterate Suc" | 
| 54469 | 373 | |
| 51141 | 374 | abbreviation "nats \<equiv> fromN 0" | 
| 375 | ||
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 376 | lemma sset_fromN[simp]: "sset (fromN n) = {n ..}"
 | 
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 377 | by (auto simp add: sset_siterate le_iff_add) | 
| 54497 
c76dec4df4d7
BNF/Examples/Stream: rename same to sconst; define same, fromN in terms of siterate
 hoelzl parents: 
54469diff
changeset | 378 | |
| 51141 | 379 | |
| 51462 | 380 | subsection {* flatten a stream of lists *}
 | 
| 381 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 382 | primcorec flat where | 
| 51462 | 383 | "shd (flat ws) = hd (shd ws)" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 384 | | "stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)" | 
| 51462 | 385 | |
| 386 | lemma flat_Cons[simp, code]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)" | |
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 387 | by (subst flat.ctr) simp | 
| 51462 | 388 | |
| 389 | lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws" | |
| 390 | by (induct xs) auto | |
| 391 | ||
| 392 | lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)" | |
| 393 | by (cases ws) auto | |
| 394 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 395 | lemma flat_snth: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then | 
| 51462 | 396 | shd s ! n else flat (stl s) !! (n - length (shd s)))" | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 397 | by (metis flat_unfold not_less shd_sset shift_snth_ge shift_snth_less) | 
| 51462 | 398 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 399 | lemma sset_flat[simp]: "\<forall>xs \<in> sset s. xs \<noteq> [] \<Longrightarrow> | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 400 | sset (flat s) = (\<Union>xs \<in> sset s. set xs)" (is "?P \<Longrightarrow> ?L = ?R") | 
| 51462 | 401 | proof safe | 
| 402 | fix x assume ?P "x : ?L" | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 403 | then obtain m where "x = flat s !! m" by (metis image_iff sset_range) | 
| 51462 | 404 | with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)" | 
| 405 | proof (atomize_elim, induct m arbitrary: s rule: less_induct) | |
| 406 | case (less y) | |
| 407 | thus ?case | |
| 408 | proof (cases "y < length (shd s)") | |
| 409 | case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1)) | |
| 410 | next | |
| 411 | case False | |
| 412 | hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth) | |
| 413 | moreover | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53290diff
changeset | 414 |       { from less(2) have *: "length (shd s) > 0" by (cases s) simp_all
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53290diff
changeset | 415 | with False have "y > 0" by (cases y) simp_all | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53290diff
changeset | 416 | with * have "y - length (shd s) < y" by simp | 
| 51462 | 417 | } | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 418 | moreover have "\<forall>xs \<in> sset (stl s). xs \<noteq> []" using less(2) by (cases s) auto | 
| 51462 | 419 | ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto | 
| 420 | thus ?thesis by (metis snth.simps(2)) | |
| 421 | qed | |
| 422 | qed | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 423 | thus "x \<in> ?R" by (auto simp: sset_range dest!: nth_mem) | 
| 51462 | 424 | next | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 425 | fix x xs assume "xs \<in> sset s" ?P "x \<in> set xs" thus "x \<in> ?L" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 426 | by (induct rule: sset_induct1) | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 427 | (metis UnI1 flat_unfold shift.simps(1) sset_shift, | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 428 | metis UnI2 flat_unfold shd_sset stl_sset sset_shift) | 
| 51462 | 429 | qed | 
| 430 | ||
| 431 | ||
| 432 | subsection {* merge a stream of streams *}
 | |
| 433 | ||
| 434 | definition smerge :: "'a stream stream \<Rightarrow> 'a stream" where | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 435 | "smerge ss = flat (smap (\<lambda>n. map (\<lambda>s. s !! n) (stake (Suc n) ss) @ stake n (ss !! n)) nats)" | 
| 51462 | 436 | |
| 437 | lemma stake_nth[simp]: "m < n \<Longrightarrow> stake n s ! m = s !! m" | |
| 438 | by (induct n arbitrary: s m) (auto simp: nth_Cons', metis Suc_pred snth.simps(2)) | |
| 439 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 440 | lemma snth_sset_smerge: "ss !! n !! m \<in> sset (smerge ss)" | 
| 51462 | 441 | proof (cases "n \<le> m") | 
| 442 | case False thus ?thesis unfolding smerge_def | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 443 | by (subst sset_flat) | 
| 53290 | 444 | (auto simp: stream.set_map in_set_conv_nth simp del: stake.simps | 
| 51462 | 445 | intro!: exI[of _ n, OF disjI2] exI[of _ m, OF mp]) | 
| 446 | next | |
| 447 | case True thus ?thesis unfolding smerge_def | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 448 | by (subst sset_flat) | 
| 53290 | 449 | (auto simp: stream.set_map in_set_conv_nth image_iff simp del: stake.simps snth.simps | 
| 51462 | 450 | intro!: exI[of _ m, OF disjI1] bexI[of _ "ss !! n"] exI[of _ n, OF mp]) | 
| 451 | qed | |
| 452 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 453 | lemma sset_smerge: "sset (smerge ss) = UNION (sset ss) sset" | 
| 51462 | 454 | proof safe | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 455 | fix x assume "x \<in> sset (smerge ss)" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 456 | thus "x \<in> UNION (sset ss) sset" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 457 | unfolding smerge_def by (subst (asm) sset_flat) | 
| 53290 | 458 | (auto simp: stream.set_map in_set_conv_nth sset_range simp del: stake.simps, fast+) | 
| 51462 | 459 | next | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 460 | fix s x assume "s \<in> sset ss" "x \<in> sset s" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 461 | thus "x \<in> sset (smerge ss)" using snth_sset_smerge by (auto simp: sset_range) | 
| 51462 | 462 | qed | 
| 463 | ||
| 464 | ||
| 465 | subsection {* product of two streams *}
 | |
| 466 | ||
| 467 | definition sproduct :: "'a stream \<Rightarrow> 'b stream \<Rightarrow> ('a \<times> 'b) stream" where
 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 468 | "sproduct s1 s2 = smerge (smap (\<lambda>x. smap (Pair x) s2) s1)" | 
| 51462 | 469 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 470 | lemma sset_sproduct: "sset (sproduct s1 s2) = sset s1 \<times> sset s2" | 
| 53290 | 471 | unfolding sproduct_def sset_smerge by (auto simp: stream.set_map) | 
| 51462 | 472 | |
| 473 | ||
| 474 | subsection {* interleave two streams *}
 | |
| 475 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 476 | primcorec sinterleave where | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 477 | "shd (sinterleave s1 s2) = shd s1" | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 478 | | "stl (sinterleave s1 s2) = sinterleave s2 (stl s1)" | 
| 51462 | 479 | |
| 480 | lemma sinterleave_code[code]: | |
| 481 | "sinterleave (x ## s1) s2 = x ## sinterleave s2 s1" | |
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 482 | by (subst sinterleave.ctr) simp | 
| 51462 | 483 | |
| 484 | lemma sinterleave_snth[simp]: | |
| 485 | "even n \<Longrightarrow> sinterleave s1 s2 !! n = s1 !! (n div 2)" | |
| 486 | "odd n \<Longrightarrow> sinterleave s1 s2 !! n = s2 !! (n div 2)" | |
| 487 | by (induct n arbitrary: s1 s2) | |
| 488 | (auto dest: even_nat_Suc_div_2 odd_nat_plus_one_div_two[folded nat_2]) | |
| 489 | ||
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 490 | lemma sset_sinterleave: "sset (sinterleave s1 s2) = sset s1 \<union> sset s2" | 
| 51462 | 491 | proof (intro equalityI subsetI) | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 492 | fix x assume "x \<in> sset (sinterleave s1 s2)" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 493 | then obtain n where "x = sinterleave s1 s2 !! n" unfolding sset_range by blast | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 494 | thus "x \<in> sset s1 \<union> sset s2" by (cases "even n") auto | 
| 51462 | 495 | next | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 496 | fix x assume "x \<in> sset s1 \<union> sset s2" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 497 | thus "x \<in> sset (sinterleave s1 s2)" | 
| 51462 | 498 | proof | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 499 | assume "x \<in> sset s1" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 500 | then obtain n where "x = s1 !! n" unfolding sset_range by blast | 
| 51462 | 501 | hence "sinterleave s1 s2 !! (2 * n) = x" by simp | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 502 | thus ?thesis unfolding sset_range by blast | 
| 51462 | 503 | next | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 504 | assume "x \<in> sset s2" | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 505 | then obtain n where "x = s2 !! n" unfolding sset_range by blast | 
| 51462 | 506 | hence "sinterleave s1 s2 !! (2 * n + 1) = x" by simp | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 507 | thus ?thesis unfolding sset_range by blast | 
| 51462 | 508 | qed | 
| 509 | qed | |
| 510 | ||
| 511 | ||
| 51141 | 512 | subsection {* zip *}
 | 
| 513 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 514 | primcorec szip where | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 515 | "shd (szip s1 s2) = (shd s1, shd s2)" | 
| 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 516 | | "stl (szip s1 s2) = szip (stl s1) (stl s2)" | 
| 51141 | 517 | |
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 518 | lemma szip_unfold[code]: "szip (a ## s1) (b ## s2) = (a, b) ## (szip s1 s2)" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 519 | by (subst szip.ctr) simp | 
| 51409 | 520 | |
| 51141 | 521 | lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)" | 
| 522 | by (induct n arbitrary: s1 s2) auto | |
| 523 | ||
| 524 | ||
| 525 | subsection {* zip via function *}
 | |
| 526 | ||
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 527 | primcorec smap2 where | 
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 528 | "shd (smap2 f s1 s2) = f (shd s1) (shd s2)" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 529 | | "stl (smap2 f s1 s2) = smap2 f (stl s1) (stl s2)" | 
| 51141 | 530 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 531 | lemma smap2_unfold[code]: | 
| 54720 
0a9920e46b3a
removed obsolete codegen setup; Stream -> SCons; tuned
 traytel parents: 
54498diff
changeset | 532 | "smap2 f (a ## s1) (b ## s2) = f a b ## (smap2 f s1 s2)" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 533 | by (subst smap2.ctr) simp | 
| 51409 | 534 | |
| 51772 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 535 | lemma smap2_szip: | 
| 
d2b265ebc1fa
specify nicer names for map, set and rel in the stream library
 traytel parents: 
51766diff
changeset | 536 | "smap2 f s1 s2 = smap (split f) (szip s1 s2)" | 
| 54027 
e5853a648b59
use new coinduction method and primcorec in examples
 traytel parents: 
53808diff
changeset | 537 | by (coinduction arbitrary: s1 s2) auto | 
| 50518 | 538 | |
| 539 | end |