author | traytel |
Tue, 05 Mar 2013 17:10:49 +0100 | |
changeset 51352 | fdecc2cd5649 |
parent 51141 | cc7423ce6774 |
child 51353 | ae707530c359 |
permissions | -rw-r--r-- |
50518 | 1 |
(* Title: HOL/BNF/Examples/Stream.thy |
2 |
Author: Dmitriy Traytel, TU Muenchen |
|
3 |
Author: Andrei Popescu, TU Muenchen |
|
4 |
Copyright 2012 |
|
5 |
||
6 |
Infinite streams. |
|
7 |
*) |
|
8 |
||
9 |
header {* Infinite Streams *} |
|
10 |
||
11 |
theory Stream |
|
12 |
imports "../BNF" |
|
13 |
begin |
|
14 |
||
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
15 |
codata 'a stream = Stream (shd: 'a) (stl: "'a stream") (infixr "##" 65) |
50518 | 16 |
|
17 |
(* TODO: Provide by the package*) |
|
18 |
theorem stream_set_induct: |
|
51141 | 19 |
"\<lbrakk>\<And>s. P (shd s) s; \<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s\<rbrakk> \<Longrightarrow> |
20 |
\<forall>y \<in> stream_set s. P y s" |
|
21 |
by (rule stream.dtor_set_induct) |
|
22 |
(auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) |
|
23 |
||
24 |
lemma stream_map_simps[simp]: |
|
25 |
"shd (stream_map f s) = f (shd s)" "stl (stream_map f s) = stream_map f (stl s)" |
|
26 |
unfolding shd_def stl_def stream_case_def stream_map_def stream.dtor_unfold |
|
27 |
by (case_tac [!] s) (auto simp: Stream_def stream.dtor_ctor) |
|
28 |
||
29 |
lemma stream_map_Stream[simp]: "stream_map f (x ## s) = f x ## stream_map f s" |
|
30 |
by (metis stream.exhaust stream.sels stream_map_simps) |
|
50518 | 31 |
|
32 |
theorem shd_stream_set: "shd s \<in> stream_set s" |
|
51141 | 33 |
by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) |
34 |
(metis UnCI fsts_def insertI1 stream.dtor_set) |
|
50518 | 35 |
|
36 |
theorem stl_stream_set: "y \<in> stream_set (stl s) \<Longrightarrow> y \<in> stream_set s" |
|
51141 | 37 |
by (auto simp add: shd_def stl_def stream_case_def fsts_def snds_def split_beta) |
38 |
(metis insertI1 set_mp snds_def stream.dtor_set_set_incl) |
|
50518 | 39 |
|
40 |
(* only for the non-mutual case: *) |
|
41 |
theorem stream_set_induct1[consumes 1, case_names shd stl, induct set: "stream_set"]: |
|
42 |
assumes "y \<in> stream_set s" and "\<And>s. P (shd s) s" |
|
43 |
and "\<And>s y. \<lbrakk>y \<in> stream_set (stl s); P y (stl s)\<rbrakk> \<Longrightarrow> P y s" |
|
44 |
shows "P y s" |
|
51141 | 45 |
using assms stream_set_induct by blast |
50518 | 46 |
(* end TODO *) |
47 |
||
48 |
||
49 |
subsection {* prepend list to stream *} |
|
50 |
||
51 |
primrec shift :: "'a list \<Rightarrow> 'a stream \<Rightarrow> 'a stream" (infixr "@-" 65) where |
|
52 |
"shift [] s = s" |
|
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
53 |
| "shift (x # xs) s = x ## shift xs s" |
50518 | 54 |
|
55 |
lemma shift_append[simp]: "(xs @ ys) @- s = xs @- ys @- s" |
|
51141 | 56 |
by (induct xs) auto |
50518 | 57 |
|
58 |
lemma shift_simps[simp]: |
|
59 |
"shd (xs @- s) = (if xs = [] then shd s else hd xs)" |
|
60 |
"stl (xs @- s) = (if xs = [] then stl s else tl xs @- s)" |
|
51141 | 61 |
by (induct xs) auto |
50518 | 62 |
|
51141 | 63 |
lemma stream_set_shift[simp]: "stream_set (xs @- s) = set xs \<union> stream_set s" |
64 |
by (induct xs) auto |
|
50518 | 65 |
|
51352 | 66 |
lemma shift_left_inj[simp]: "xs @- s1 = xs @- s2 \<longleftrightarrow> s1 = s2" |
67 |
by (induct xs) auto |
|
68 |
||
50518 | 69 |
|
51141 | 70 |
subsection {* set of streams with elements in some fixes set *} |
50518 | 71 |
|
72 |
coinductive_set |
|
73 |
streams :: "'a set => 'a stream set" |
|
74 |
for A :: "'a set" |
|
75 |
where |
|
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
76 |
Stream[intro!, simp, no_atp]: "\<lbrakk>a \<in> A; s \<in> streams A\<rbrakk> \<Longrightarrow> a ## s \<in> streams A" |
50518 | 77 |
|
78 |
lemma shift_streams: "\<lbrakk>w \<in> lists A; s \<in> streams A\<rbrakk> \<Longrightarrow> w @- s \<in> streams A" |
|
51141 | 79 |
by (induct w) auto |
50518 | 80 |
|
81 |
lemma stream_set_streams: |
|
82 |
assumes "stream_set s \<subseteq> A" |
|
83 |
shows "s \<in> streams A" |
|
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
84 |
proof (coinduct rule: streams.coinduct[of "\<lambda>s'. \<exists>a s. s' = a ## s \<and> a \<in> A \<and> stream_set s \<subseteq> A"]) |
50518 | 85 |
case streams from assms show ?case by (cases s) auto |
86 |
next |
|
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
87 |
fix s' assume "\<exists>a s. s' = a ## s \<and> a \<in> A \<and> stream_set s \<subseteq> A" |
50518 | 88 |
then guess a s by (elim exE) |
51023
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
89 |
with assms show "\<exists>a l. s' = a ## l \<and> |
550f265864e3
infix syntax for streams (reflecting the one for lists)
traytel
parents:
50518
diff
changeset
|
90 |
a \<in> A \<and> ((\<exists>a s. l = a ## s \<and> a \<in> A \<and> stream_set s \<subseteq> A) \<or> l \<in> streams A)" |
50518 | 91 |
by (cases s) auto |
92 |
qed |
|
93 |
||
94 |
||
51141 | 95 |
subsection {* nth, take, drop for streams *} |
96 |
||
97 |
primrec snth :: "'a stream \<Rightarrow> nat \<Rightarrow> 'a" (infixl "!!" 100) where |
|
98 |
"s !! 0 = shd s" |
|
99 |
| "s !! Suc n = stl s !! n" |
|
100 |
||
101 |
lemma snth_stream_map[simp]: "stream_map f s !! n = f (s !! n)" |
|
102 |
by (induct n arbitrary: s) auto |
|
103 |
||
104 |
lemma shift_snth_less[simp]: "p < length xs \<Longrightarrow> (xs @- s) !! p = xs ! p" |
|
105 |
by (induct p arbitrary: xs) (auto simp: hd_conv_nth nth_tl) |
|
106 |
||
107 |
lemma shift_snth_ge[simp]: "p \<ge> length xs \<Longrightarrow> (xs @- s) !! p = s !! (p - length xs)" |
|
108 |
by (induct p arbitrary: xs) (auto simp: Suc_diff_eq_diff_pred) |
|
109 |
||
110 |
lemma snth_stream_set[simp]: "s !! n \<in> stream_set s" |
|
111 |
by (induct n arbitrary: s) (auto intro: shd_stream_set stl_stream_set) |
|
112 |
||
113 |
lemma stream_set_range: "stream_set s = range (snth s)" |
|
114 |
proof (intro equalityI subsetI) |
|
115 |
fix x assume "x \<in> stream_set s" |
|
116 |
thus "x \<in> range (snth s)" |
|
117 |
proof (induct s) |
|
118 |
case (stl s x) |
|
119 |
then obtain n where "x = stl s !! n" by auto |
|
120 |
thus ?case by (auto intro: range_eqI[of _ _ "Suc n"]) |
|
121 |
qed (auto intro: range_eqI[of _ _ 0]) |
|
122 |
qed auto |
|
50518 | 123 |
|
124 |
primrec stake :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a list" where |
|
125 |
"stake 0 s = []" |
|
126 |
| "stake (Suc n) s = shd s # stake n (stl s)" |
|
127 |
||
51141 | 128 |
lemma length_stake[simp]: "length (stake n s) = n" |
129 |
by (induct n arbitrary: s) auto |
|
130 |
||
131 |
lemma stake_stream_map[simp]: "stake n (stream_map f s) = map f (stake n s)" |
|
132 |
by (induct n arbitrary: s) auto |
|
133 |
||
50518 | 134 |
primrec sdrop :: "nat \<Rightarrow> 'a stream \<Rightarrow> 'a stream" where |
135 |
"sdrop 0 s = s" |
|
136 |
| "sdrop (Suc n) s = sdrop n (stl s)" |
|
137 |
||
51141 | 138 |
lemma sdrop_simps[simp]: |
139 |
"shd (sdrop n s) = s !! n" "stl (sdrop n s) = sdrop (Suc n) s" |
|
140 |
by (induct n arbitrary: s) auto |
|
141 |
||
142 |
lemma sdrop_stream_map[simp]: "sdrop n (stream_map f s) = stream_map f (sdrop n s)" |
|
143 |
by (induct n arbitrary: s) auto |
|
50518 | 144 |
|
51352 | 145 |
lemma sdrop_stl: "sdrop n (stl s) = stl (sdrop n s)" |
146 |
by (induct n) auto |
|
147 |
||
50518 | 148 |
lemma stake_sdrop: "stake n s @- sdrop n s = s" |
51141 | 149 |
by (induct n arbitrary: s) auto |
150 |
||
151 |
lemma id_stake_snth_sdrop: |
|
152 |
"s = stake i s @- s !! i ## sdrop (Suc i) s" |
|
153 |
by (subst stake_sdrop[symmetric, of _ i]) (metis sdrop_simps stream.collapse) |
|
50518 | 154 |
|
51141 | 155 |
lemma stream_map_alt: "stream_map f s = s' \<longleftrightarrow> (\<forall>n. f (s !! n) = s' !! n)" (is "?L = ?R") |
156 |
proof |
|
157 |
assume ?R |
|
158 |
thus ?L |
|
159 |
by (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>n. s1 = stream_map f (sdrop n s) \<and> s2 = sdrop n s'"]) |
|
160 |
(auto intro: exI[of _ 0] simp del: sdrop.simps(2)) |
|
161 |
qed auto |
|
162 |
||
163 |
lemma stake_invert_Nil[iff]: "stake n s = [] \<longleftrightarrow> n = 0" |
|
164 |
by (induct n) auto |
|
50518 | 165 |
|
166 |
lemma sdrop_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> sdrop n s = s'" |
|
51141 | 167 |
by (induct n arbitrary: w s) auto |
50518 | 168 |
|
169 |
lemma stake_shift: "\<lbrakk>s = w @- s'; length w = n\<rbrakk> \<Longrightarrow> stake n s = w" |
|
51141 | 170 |
by (induct n arbitrary: w s) auto |
50518 | 171 |
|
172 |
lemma stake_add[simp]: "stake m s @ stake n (sdrop m s) = stake (m + n) s" |
|
51141 | 173 |
by (induct m arbitrary: s) auto |
50518 | 174 |
|
175 |
lemma sdrop_add[simp]: "sdrop n (sdrop m s) = sdrop (m + n) s" |
|
51141 | 176 |
by (induct m arbitrary: s) auto |
177 |
||
178 |
||
179 |
subsection {* unary predicates lifted to streams *} |
|
180 |
||
181 |
definition "stream_all P s = (\<forall>p. P (s !! p))" |
|
182 |
||
183 |
lemma stream_all_iff[iff]: "stream_all P s \<longleftrightarrow> Ball (stream_set s) P" |
|
184 |
unfolding stream_all_def stream_set_range by auto |
|
185 |
||
186 |
lemma stream_all_shift[simp]: "stream_all P (xs @- s) = (list_all P xs \<and> stream_all P s)" |
|
187 |
unfolding stream_all_iff list_all_iff by auto |
|
188 |
||
189 |
||
51352 | 190 |
subsection {* flatten a stream of lists *} |
191 |
||
192 |
definition flat where |
|
193 |
"flat \<equiv> stream_unfold (hd o shd) (\<lambda>s. if tl (shd s) = [] then stl s else tl (shd s) ## stl s)" |
|
194 |
||
195 |
lemma flat_simps[simp]: |
|
196 |
"shd (flat ws) = hd (shd ws)" |
|
197 |
"stl (flat ws) = flat (if tl (shd ws) = [] then stl ws else tl (shd ws) ## stl ws)" |
|
198 |
unfolding flat_def by auto |
|
199 |
||
200 |
lemma flat_Cons[simp]: "flat ((x # xs) ## ws) = x ## flat (if xs = [] then ws else xs ## ws)" |
|
201 |
unfolding flat_def using stream.unfold[of "hd o shd" _ "(x # xs) ## ws"] by auto |
|
202 |
||
203 |
lemma flat_Stream[simp]: "xs \<noteq> [] \<Longrightarrow> flat (xs ## ws) = xs @- flat ws" |
|
204 |
by (induct xs) auto |
|
205 |
||
206 |
lemma flat_unfold: "shd ws \<noteq> [] \<Longrightarrow> flat ws = shd ws @- flat (stl ws)" |
|
207 |
by (cases ws) auto |
|
208 |
||
209 |
lemma flat_snth: "\<forall>xs \<in> stream_set s. xs \<noteq> [] \<Longrightarrow> flat s !! n = (if n < length (shd s) then |
|
210 |
shd s ! n else flat (stl s) !! (n - length (shd s)))" |
|
211 |
by (metis flat_unfold not_less shd_stream_set shift_snth_ge shift_snth_less) |
|
212 |
||
213 |
lemma stream_set_flat[simp]: "\<forall>xs \<in> stream_set s. xs \<noteq> [] \<Longrightarrow> |
|
214 |
stream_set (flat s) = (\<Union>xs \<in> stream_set s. set xs)" (is "?P \<Longrightarrow> ?L = ?R") |
|
215 |
proof safe |
|
216 |
fix x assume ?P "x : ?L" |
|
217 |
then obtain m where "x = flat s !! m" by (metis image_iff stream_set_range) |
|
218 |
with `?P` obtain n m' where "x = s !! n ! m'" "m' < length (s !! n)" |
|
219 |
proof (atomize_elim, induct m arbitrary: s rule: less_induct) |
|
220 |
case (less y) |
|
221 |
thus ?case |
|
222 |
proof (cases "y < length (shd s)") |
|
223 |
case True thus ?thesis by (metis flat_snth less(2,3) snth.simps(1)) |
|
224 |
next |
|
225 |
case False |
|
226 |
hence "x = flat (stl s) !! (y - length (shd s))" by (metis less(2,3) flat_snth) |
|
227 |
moreover |
|
228 |
{ from less(2) have "length (shd s) > 0" by (cases s) simp_all |
|
229 |
moreover with False have "y > 0" by (cases y) simp_all |
|
230 |
ultimately have "y - length (shd s) < y" by simp |
|
231 |
} |
|
232 |
moreover have "\<forall>xs \<in> stream_set (stl s). xs \<noteq> []" using less(2) by (cases s) auto |
|
233 |
ultimately have "\<exists>n m'. x = stl s !! n ! m' \<and> m' < length (stl s !! n)" by (intro less(1)) auto |
|
234 |
thus ?thesis by (metis snth.simps(2)) |
|
235 |
qed |
|
236 |
qed |
|
237 |
thus "x \<in> ?R" by (auto simp: stream_set_range dest!: nth_mem) |
|
238 |
next |
|
239 |
fix x xs assume "xs \<in> stream_set s" ?P "x \<in> set xs" thus "x \<in> ?L" |
|
240 |
by (induct rule: stream_set_induct1) |
|
241 |
(metis UnI1 flat_unfold shift.simps(1) stream_set_shift, |
|
242 |
metis UnI2 flat_unfold shd_stream_set stl_stream_set stream_set_shift) |
|
243 |
qed |
|
244 |
||
245 |
||
51141 | 246 |
subsection {* recurring stream out of a list *} |
247 |
||
248 |
definition cycle :: "'a list \<Rightarrow> 'a stream" where |
|
249 |
"cycle = stream_unfold hd (\<lambda>xs. tl xs @ [hd xs])" |
|
250 |
||
251 |
lemma cycle_simps[simp]: |
|
252 |
"shd (cycle u) = hd u" |
|
253 |
"stl (cycle u) = cycle (tl u @ [hd u])" |
|
254 |
by (auto simp: cycle_def) |
|
255 |
||
256 |
lemma cycle_decomp: "u \<noteq> [] \<Longrightarrow> cycle u = u @- cycle u" |
|
257 |
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>u. s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []"]) |
|
258 |
case (2 s1 s2) |
|
259 |
then obtain u where "s1 = cycle u \<and> s2 = u @- cycle u \<and> u \<noteq> []" by blast |
|
260 |
thus ?case using stream.unfold[of hd "\<lambda>xs. tl xs @ [hd xs]" u] by (auto simp: cycle_def) |
|
261 |
qed auto |
|
262 |
||
263 |
lemma cycle_Cons: "cycle (x # xs) = x ## cycle (xs @ [x])" |
|
264 |
proof (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. \<exists>x xs. s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])"]) |
|
265 |
case (2 s1 s2) |
|
266 |
then obtain x xs where "s1 = cycle (x # xs) \<and> s2 = x ## cycle (xs @ [x])" by blast |
|
267 |
thus ?case |
|
268 |
by (auto simp: cycle_def intro!: exI[of _ "hd (xs @ [x])"] exI[of _ "tl (xs @ [x])"] stream.unfold) |
|
269 |
qed auto |
|
50518 | 270 |
|
271 |
lemma cycle_rotated: "\<lbrakk>v \<noteq> []; cycle u = v @- s\<rbrakk> \<Longrightarrow> cycle (tl u @ [hd u]) = tl v @- s" |
|
51141 | 272 |
by (auto dest: arg_cong[of _ _ stl]) |
50518 | 273 |
|
274 |
lemma stake_append: "stake n (u @- s) = take (min (length u) n) u @ stake (n - length u) s" |
|
275 |
proof (induct n arbitrary: u) |
|
276 |
case (Suc n) thus ?case by (cases u) auto |
|
277 |
qed auto |
|
278 |
||
279 |
lemma stake_cycle_le[simp]: |
|
280 |
assumes "u \<noteq> []" "n < length u" |
|
281 |
shows "stake n (cycle u) = take n u" |
|
282 |
using min_absorb2[OF less_imp_le_nat[OF assms(2)]] |
|
51141 | 283 |
by (subst cycle_decomp[OF assms(1)], subst stake_append) auto |
50518 | 284 |
|
285 |
lemma stake_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> stake (length u) (cycle u) = u" |
|
51141 | 286 |
by (metis cycle_decomp stake_shift) |
50518 | 287 |
|
288 |
lemma sdrop_cycle_eq[simp]: "u \<noteq> [] \<Longrightarrow> sdrop (length u) (cycle u) = cycle u" |
|
51141 | 289 |
by (metis cycle_decomp sdrop_shift) |
50518 | 290 |
|
291 |
lemma stake_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> |
|
292 |
stake n (cycle u) = concat (replicate (n div length u) u)" |
|
51141 | 293 |
by (induct "n div length u" arbitrary: n u) (auto simp: stake_add[symmetric]) |
50518 | 294 |
|
295 |
lemma sdrop_cycle_eq_mod_0[simp]: "\<lbrakk>u \<noteq> []; n mod length u = 0\<rbrakk> \<Longrightarrow> |
|
296 |
sdrop n (cycle u) = cycle u" |
|
51141 | 297 |
by (induct "n div length u" arbitrary: n u) (auto simp: sdrop_add[symmetric]) |
50518 | 298 |
|
299 |
lemma stake_cycle: "u \<noteq> [] \<Longrightarrow> |
|
300 |
stake n (cycle u) = concat (replicate (n div length u) u) @ take (n mod length u) u" |
|
51141 | 301 |
by (subst mod_div_equality[of n "length u", symmetric], unfold stake_add[symmetric]) auto |
50518 | 302 |
|
303 |
lemma sdrop_cycle: "u \<noteq> [] \<Longrightarrow> sdrop n (cycle u) = cycle (rotate (n mod length u) u)" |
|
51141 | 304 |
by (induct n arbitrary: u) (auto simp: rotate1_rotate_swap rotate1_hd_tl rotate_conv_mod[symmetric]) |
305 |
||
306 |
||
307 |
subsection {* stream repeating a single element *} |
|
308 |
||
309 |
definition "same x = stream_unfold (\<lambda>_. x) id ()" |
|
310 |
||
311 |
lemma same_simps[simp]: "shd (same x) = x" "stl (same x) = same x" |
|
312 |
unfolding same_def by auto |
|
313 |
||
314 |
lemma same_unfold: "same x = Stream x (same x)" |
|
315 |
by (metis same_simps stream.collapse) |
|
316 |
||
317 |
lemma snth_same[simp]: "same x !! n = x" |
|
318 |
unfolding same_def by (induct n) auto |
|
319 |
||
320 |
lemma stake_same[simp]: "stake n (same x) = replicate n x" |
|
321 |
unfolding same_def by (induct n) (auto simp: upt_rec) |
|
322 |
||
323 |
lemma sdrop_same[simp]: "sdrop n (same x) = same x" |
|
324 |
unfolding same_def by (induct n) auto |
|
325 |
||
326 |
lemma shift_replicate_same[simp]: "replicate n x @- same x = same x" |
|
327 |
by (metis sdrop_same stake_same stake_sdrop) |
|
328 |
||
329 |
lemma stream_all_same[simp]: "stream_all P (same x) \<longleftrightarrow> P x" |
|
330 |
unfolding stream_all_def by auto |
|
331 |
||
332 |
lemma same_cycle: "same x = cycle [x]" |
|
333 |
by (coinduct rule: stream.coinduct[of "\<lambda>s1 s2. s1 = same x \<and> s2 = cycle [x]"]) auto |
|
334 |
||
335 |
||
336 |
subsection {* stream of natural numbers *} |
|
337 |
||
338 |
definition "fromN n = stream_unfold id Suc n" |
|
339 |
||
340 |
lemma fromN_simps[simp]: "shd (fromN n) = n" "stl (fromN n) = fromN (Suc n)" |
|
341 |
unfolding fromN_def by auto |
|
342 |
||
343 |
lemma snth_fromN[simp]: "fromN n !! m = n + m" |
|
344 |
unfolding fromN_def by (induct m arbitrary: n) auto |
|
345 |
||
346 |
lemma stake_fromN[simp]: "stake m (fromN n) = [n ..< m + n]" |
|
347 |
unfolding fromN_def by (induct m arbitrary: n) (auto simp: upt_rec) |
|
348 |
||
349 |
lemma sdrop_fromN[simp]: "sdrop m (fromN n) = fromN (n + m)" |
|
350 |
unfolding fromN_def by (induct m arbitrary: n) auto |
|
351 |
||
51352 | 352 |
lemma stream_set_fromN[simp]: "stream_set (fromN n) = {n ..}" (is "?L = ?R") |
353 |
proof safe |
|
354 |
fix m assume "m : ?L" |
|
355 |
moreover |
|
356 |
{ fix s assume "m \<in> stream_set s" "\<exists>n'\<ge>n. s = fromN n'" |
|
357 |
hence "n \<le> m" by (induct arbitrary: n rule: stream_set_induct1) fastforce+ |
|
358 |
} |
|
359 |
ultimately show "n \<le> m" by blast |
|
360 |
next |
|
361 |
fix m assume "n \<le> m" thus "m \<in> ?L" by (metis le_iff_add snth_fromN snth_stream_set) |
|
362 |
qed |
|
363 |
||
51141 | 364 |
abbreviation "nats \<equiv> fromN 0" |
365 |
||
366 |
||
367 |
subsection {* zip *} |
|
368 |
||
369 |
definition "szip s1 s2 = |
|
370 |
stream_unfold (map_pair shd shd) (map_pair stl stl) (s1, s2)" |
|
371 |
||
372 |
lemma szip_simps[simp]: |
|
373 |
"shd (szip s1 s2) = (shd s1, shd s2)" "stl (szip s1 s2) = szip (stl s1) (stl s2)" |
|
374 |
unfolding szip_def by auto |
|
375 |
||
376 |
lemma snth_szip[simp]: "szip s1 s2 !! n = (s1 !! n, s2 !! n)" |
|
377 |
by (induct n arbitrary: s1 s2) auto |
|
378 |
||
379 |
||
380 |
subsection {* zip via function *} |
|
381 |
||
382 |
definition "stream_map2 f s1 s2 = |
|
383 |
stream_unfold (\<lambda>(s1,s2). f (shd s1) (shd s2)) (map_pair stl stl) (s1, s2)" |
|
384 |
||
385 |
lemma stream_map2_simps[simp]: |
|
386 |
"shd (stream_map2 f s1 s2) = f (shd s1) (shd s2)" |
|
387 |
"stl (stream_map2 f s1 s2) = stream_map2 f (stl s1) (stl s2)" |
|
388 |
unfolding stream_map2_def by auto |
|
389 |
||
390 |
lemma stream_map2_szip: |
|
391 |
"stream_map2 f s1 s2 = stream_map (split f) (szip s1 s2)" |
|
392 |
by (coinduct rule: stream.coinduct[of |
|
393 |
"\<lambda>s1 s2. \<exists>s1' s2'. s1 = stream_map2 f s1' s2' \<and> s2 = stream_map (split f) (szip s1' s2')"]) |
|
394 |
fastforce+ |
|
50518 | 395 |
|
396 |
end |