src/HOL/List.thy
author wenzelm
Mon, 13 May 2002 11:05:27 +0200
changeset 13142 1ebd8ed5a1a0
parent 13124 6e1decd8a7a9
child 13145 59bc43b51aa2
permissions -rw-r--r--
tuned document;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     1
(*  Title:      HOL/List.thy
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     2
    ID:         $Id$
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     3
    Author:     Tobias Nipkow
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     4
    Copyright   1994 TU Muenchen
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     5
*)
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
     6
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
     7
header {* The datatype of finite lists *}
13122
wenzelm
parents: 13114
diff changeset
     8
wenzelm
parents: 13114
diff changeset
     9
theory List = PreList:
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    10
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    11
datatype 'a list =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    12
    Nil    ("[]")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    13
  | Cons 'a  "'a list"    (infixr "#" 65)
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    14
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    15
consts
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    16
  "@"         :: "'a list => 'a list => 'a list"            (infixr 65)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    17
  filter      :: "('a => bool) => 'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    18
  concat      :: "'a list list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    19
  foldl       :: "('b => 'a => 'b) => 'b => 'a list => 'b"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    20
  foldr       :: "('a => 'b => 'b) => 'a list => 'b => 'b"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    21
  hd          :: "'a list => 'a"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    22
  tl          :: "'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    23
  last        :: "'a list => 'a"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    24
  butlast     :: "'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    25
  set         :: "'a list => 'a set"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    26
  list_all    :: "('a => bool) => ('a list => bool)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    27
  list_all2   :: "('a => 'b => bool) => 'a list => 'b list => bool"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    28
  map         :: "('a=>'b) => ('a list => 'b list)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    29
  mem         :: "'a => 'a list => bool"                    (infixl 55)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    30
  nth         :: "'a list => nat => 'a"                   (infixl "!" 100)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    31
  list_update :: "'a list => nat => 'a => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    32
  take        :: "nat => 'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    33
  drop        :: "nat => 'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    34
  takeWhile   :: "('a => bool) => 'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    35
  dropWhile   :: "('a => bool) => 'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    36
  rev         :: "'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    37
  zip         :: "'a list => 'b list => ('a * 'b) list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    38
  upt         :: "nat => nat => nat list"                   ("(1[_../_'(])")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    39
  remdups     :: "'a list => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    40
  null        :: "'a list => bool"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    41
  "distinct"  :: "'a list => bool"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    42
  replicate   :: "nat => 'a => 'a list"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    43
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    44
nonterminals
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    45
  lupdbinds  lupdbind
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    46
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    47
syntax
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    48
  -- {* list Enumeration *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    49
  "@list"     :: "args => 'a list"                          ("[(_)]")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    50
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    51
  -- {* Special syntax for filter *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    52
  "@filter"   :: "[pttrn, 'a list, bool] => 'a list"        ("(1[_:_./ _])")
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    53
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    54
  -- {* list update *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    55
  "_lupdbind"      :: "['a, 'a] => lupdbind"            ("(2_ :=/ _)")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    56
  ""               :: "lupdbind => lupdbinds"           ("_")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    57
  "_lupdbinds"     :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    58
  "_LUpdate"       :: "['a, lupdbinds] => 'a"           ("_/[(_)]" [900,0] 900)
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    59
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    60
  upto        :: "nat => nat => nat list"                   ("(1[_../_])")
5427
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
    61
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    62
translations
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    63
  "[x, xs]"     == "x#[xs]"
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    64
  "[x]"         == "x#[]"
3842
b55686a7b22c fixed dots;
wenzelm
parents: 3589
diff changeset
    65
  "[x:xs . P]"  == "filter (%x. P) xs"
923
ff1574a81019 new version of HOL with curried function application
clasohm
parents:
diff changeset
    66
5077
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    67
  "_LUpdate xs (_lupdbinds b bs)"  == "_LUpdate (_LUpdate xs b) bs"
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    68
  "xs[i:=x]"                       == "list_update xs i x"
71043526295f * HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents: 4643
diff changeset
    69
5427
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
    70
  "[i..j]" == "[i..(Suc j)(]"
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
    71
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
    72
12114
a8e860c86252 eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents: 10832
diff changeset
    73
syntax (xsymbols)
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    74
  "@filter"   :: "[pttrn, 'a list, bool] => 'a list"        ("(1[_\<in>_ ./ _])")
3342
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
    75
ec3b55fcb165 New operator "lists" for formalizing sets of lists
paulson
parents: 3320
diff changeset
    76
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    77
text {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    78
  Function @{text size} is overloaded for all datatypes.  Users may
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    79
  refer to the list version as @{text length}. *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    80
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    81
syntax length :: "'a list => nat"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    82
translations "length" => "size :: _ list => nat"
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
    83
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    84
typed_print_translation {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    85
  let
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    86
    fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    87
          Syntax.const "length" $ t
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    88
      | size_tr' _ _ _ = raise Match;
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
    89
  in [("size", size_tr')] end
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
    90
*}
3437
bea2faf1641d Replacing the primrec definition of "length" by a translation to the built-in
paulson
parents: 3401
diff changeset
    91
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    92
primrec
1898
260a9711f507 Simplified primrec definitions.
berghofe
parents: 1824
diff changeset
    93
  "hd(x#xs) = x"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    94
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
    95
  "tl([])   = []"
1898
260a9711f507 Simplified primrec definitions.
berghofe
parents: 1824
diff changeset
    96
  "tl(x#xs) = xs"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
    97
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
    98
  "null([])   = True"
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
    99
  "null(x#xs) = False"
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   100
primrec
3896
ee8ebb74ec00 Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents: 3842
diff changeset
   101
  "last(x#xs) = (if xs=[] then x else last xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   102
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   103
  "butlast []    = []"
3896
ee8ebb74ec00 Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents: 3842
diff changeset
   104
  "butlast(x#xs) = (if xs=[] then [] else x#butlast xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   105
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   106
  "x mem []     = False"
5518
654ead0ba4f7 re-added mem and list_all
oheimb
parents: 5443
diff changeset
   107
  "x mem (y#ys) = (if y=x then True else x mem ys)"
654ead0ba4f7 re-added mem and list_all
oheimb
parents: 5443
diff changeset
   108
primrec
3465
e85c24717cad set_of_list -> set
nipkow
parents: 3437
diff changeset
   109
  "set [] = {}"
e85c24717cad set_of_list -> set
nipkow
parents: 3437
diff changeset
   110
  "set (x#xs) = insert x (set xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   111
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   112
  list_all_Nil:  "list_all P [] = True"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   113
  list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)"
5518
654ead0ba4f7 re-added mem and list_all
oheimb
parents: 5443
diff changeset
   114
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   115
  "map f []     = []"
1898
260a9711f507 Simplified primrec definitions.
berghofe
parents: 1824
diff changeset
   116
  "map f (x#xs) = f(x)#map f xs"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   117
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   118
  append_Nil:  "[]    @ys = ys"
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   119
  append_Cons: "(x#xs)@ys = x#(xs@ys)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   120
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   121
  "rev([])   = []"
1898
260a9711f507 Simplified primrec definitions.
berghofe
parents: 1824
diff changeset
   122
  "rev(x#xs) = rev(xs) @ [x]"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   123
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   124
  "filter P []     = []"
1898
260a9711f507 Simplified primrec definitions.
berghofe
parents: 1824
diff changeset
   125
  "filter P (x#xs) = (if P x then x#filter P xs else filter P xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   126
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   127
  foldl_Nil:  "foldl f a [] = a"
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   128
  foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   129
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   130
  "foldr f [] a     = a"
8000
acafa0f15131 added foldr
paulson
parents: 7224
diff changeset
   131
  "foldr f (x#xs) a = f x (foldr f xs a)"
acafa0f15131 added foldr
paulson
parents: 7224
diff changeset
   132
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   133
  "concat([])   = []"
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   134
  "concat(x#xs) = x @ concat(xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   135
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   136
  drop_Nil:  "drop n [] = []"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   137
  drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   138
    -- {* Warning: simpset does not contain this definition *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   139
    -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   140
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   141
  take_Nil:  "take n [] = []"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   142
  take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   143
    -- {* Warning: simpset does not contain this definition *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   144
    -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   145
primrec
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   146
  nth_Cons:  "(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   147
    -- {* Warning: simpset does not contain this definition *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   148
    -- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   149
primrec
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   150
  "[][i:=v] = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   151
  "(x#xs)[i:=v] =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   152
    (case i of 0 => v # xs
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   153
    | Suc j => x # xs[j:=v])"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   154
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   155
  "takeWhile P []     = []"
2608
450c9b682a92 New class "order" and accompanying changes.
nipkow
parents: 2512
diff changeset
   156
  "takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   157
primrec
8972
b734bdb6042d better indentation; declared function "null"
paulson
parents: 8873
diff changeset
   158
  "dropWhile P []     = []"
3584
8f9ee0f79d9a Corected bug in def of dropWhile (also present in Haskell lib!)
nipkow
parents: 3507
diff changeset
   159
  "dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   160
primrec
4132
daff3c9987cc added zip and nodup
oheimb
parents: 3896
diff changeset
   161
  "zip xs []     = []"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   162
  zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   163
    -- {* Warning: simpset does not contain this definition *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   164
    -- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
5427
26c9a7c0b36b Arith: less_diff_conv
nipkow
parents: 5425
diff changeset
   165
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   166
  upt_0:   "[i..0(] = []"
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   167
  upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   168
primrec
12887
d25b43743e10 nodups -> distinct
nipkow
parents: 12114
diff changeset
   169
  "distinct []     = True"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   170
  "distinct (x#xs) = (x ~: set xs \<and> distinct xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   171
primrec
4605
579e0ef2df6b Added `remdups'
nipkow
parents: 4502
diff changeset
   172
  "remdups [] = []"
579e0ef2df6b Added `remdups'
nipkow
parents: 4502
diff changeset
   173
  "remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
5183
89f162de39cf Adapted to new datatype package.
berghofe
parents: 5162
diff changeset
   174
primrec
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   175
  replicate_0:   "replicate  0      x = []"
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   176
  replicate_Suc: "replicate (Suc n) x = x # replicate n x"
8115
c802042066e8 Forgot to "call" MicroJava in makefile.
nipkow
parents: 8000
diff changeset
   177
defs
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   178
 list_all2_def:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   179
 "list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)"
8115
c802042066e8 Forgot to "call" MicroJava in makefile.
nipkow
parents: 8000
diff changeset
   180
3196
c522bc46aea7 Added pred_list for TFL
paulson
parents: 2738
diff changeset
   181
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   182
subsection {* Lexicographic orderings on lists *}
5281
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   183
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   184
consts
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   185
  lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
5281
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   186
primrec
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   187
  "lexn r 0 = {}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   188
  "lexn r (Suc n) =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   189
    (prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   190
      {(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
5281
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   191
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   192
constdefs
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   193
  lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   194
  "lex r == \<Union>n. lexn r n"
5281
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   195
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   196
  lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   197
  "lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))"
9336
9ae89b9ce206 moved sublist from UNITY/AllocBase to List
paulson
parents: 8983
diff changeset
   198
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   199
  sublist :: "'a list => nat set => 'a list"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   200
  "sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))"
5281
f4d16517b360 List now contains some lexicographic orderings.
nipkow
parents: 5183
diff changeset
   201
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   202
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   203
lemma not_Cons_self [simp]: "xs \<noteq> x # xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   204
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   205
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   206
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   207
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   208
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   209
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   210
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   211
lemma length_induct:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   212
    "(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   213
  by (rule measure_induct [of length]) rules
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   214
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   215
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   216
subsection {* @{text lists}: the list-forming operator over sets *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   217
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   218
consts lists :: "'a set => 'a list set"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   219
inductive "lists A"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   220
  intros
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   221
    Nil [intro!]: "[]: lists A"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   222
    Cons [intro!]: "[| a: A;  l: lists A  |] ==> a#l : lists A"
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   223
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   224
inductive_cases listsE [elim!]: "x#l : lists A"
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   225
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   226
lemma lists_mono: "A \<subseteq> B ==> lists A \<subseteq> lists B"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   227
  by (unfold lists.defs) (blast intro!: lfp_mono)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   228
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   229
lemma lists_IntI [rule_format]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   230
    "l: lists A ==> l: lists B --> l: lists (A Int B)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   231
  apply (erule lists.induct)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   232
  apply blast+
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   233
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   234
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   235
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   236
  apply (rule mono_Int [THEN equalityI])
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   237
  apply (simp add: mono_def lists_mono)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   238
  apply (blast intro!: lists_IntI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   239
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   240
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   241
lemma append_in_lists_conv [iff]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   242
    "(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   243
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   244
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   245
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   246
subsection {* @{text length} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   247
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   248
text {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   249
  Needs to come before @{text "@"} because of theorem @{text
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   250
  append_eq_append_conv}.
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   251
*}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   252
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   253
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   254
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   255
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   256
lemma length_map [simp]: "length (map f xs) = length xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   257
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   258
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   259
lemma length_rev [simp]: "length (rev xs) = length xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   260
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   261
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   262
lemma length_tl [simp]: "length (tl xs) = length xs - 1"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   263
  by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   264
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   265
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   266
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   267
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   268
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   269
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   270
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   271
lemma length_Suc_conv:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   272
    "(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   273
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   274
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   275
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   276
subsection {* @{text "@"} -- append *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   277
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   278
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   279
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   280
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   281
lemma append_Nil2 [simp]: "xs @ [] = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   282
  by (induct xs) auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   283
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   284
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   285
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   286
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   287
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   288
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   289
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   290
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   291
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   292
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   293
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   294
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   295
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   296
lemma append_eq_append_conv [rule_format, simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   297
 "\<forall>ys. length xs = length ys \<or> length us = length vs
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   298
       --> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   299
  apply (induct_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   300
   apply(rule allI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   301
   apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   302
    apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   303
   apply force
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   304
  apply (rule allI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   305
  apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   306
   apply force
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   307
  apply simp
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   308
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   309
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   310
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   311
  by simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   312
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   313
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   314
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   315
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   316
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   317
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   318
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   319
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   320
  using append_same_eq [of _ _ "[]"] by auto
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   321
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   322
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   323
  using append_same_eq [of "[]"] by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   324
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   325
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   326
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   327
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   328
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   329
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   330
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   331
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   332
  by (simp add: hd_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   333
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   334
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   335
  by (simp split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   336
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   337
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   338
  by (simp add: tl_append split: list.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   339
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   340
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   341
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   342
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   343
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   344
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   345
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   346
lemma Cons_eq_appendI:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   347
    "[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   348
  by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   349
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   350
lemma append_eq_appendI:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   351
    "[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   352
  by (drule sym) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   353
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   354
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   355
text {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   356
  Simplification procedure for all list equalities.
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   357
  Currently only tries to rearrange @{text "@"} to see if
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   358
  - both lists end in a singleton list,
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   359
  - or both lists end in the same list.
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   360
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   361
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   362
ML_setup {*
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   363
local
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   364
13122
wenzelm
parents: 13114
diff changeset
   365
val append_assoc = thm "append_assoc";
wenzelm
parents: 13114
diff changeset
   366
val append_Nil = thm "append_Nil";
wenzelm
parents: 13114
diff changeset
   367
val append_Cons = thm "append_Cons";
wenzelm
parents: 13114
diff changeset
   368
val append1_eq_conv = thm "append1_eq_conv";
wenzelm
parents: 13114
diff changeset
   369
val append_same_eq = thm "append_same_eq";
wenzelm
parents: 13114
diff changeset
   370
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   371
val list_eq_pattern =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   372
  Thm.read_cterm (Theory.sign_of (the_context ())) ("(xs::'a list) = ys",HOLogic.boolT)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   373
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   374
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   375
      (case xs of Const("List.list.Nil",_) => cons | _ => last xs)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   376
  | last (Const("List.op @",_) $ _ $ ys) = last ys
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   377
  | last t = t
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   378
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   379
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   380
  | list1 _ = false
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   381
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   382
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   383
      (case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   384
  | butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   385
  | butlast xs = Const("List.list.Nil",fastype_of xs)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   386
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   387
val rearr_tac =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   388
  simp_tac (HOL_basic_ss addsimps [append_assoc,append_Nil,append_Cons])
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   389
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   390
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   391
  let
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   392
    val lastl = last lhs and lastr = last rhs
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   393
    fun rearr conv =
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   394
      let val lhs1 = butlast lhs and rhs1 = butlast rhs
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   395
          val Type(_,listT::_) = eqT
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   396
          val appT = [listT,listT] ---> listT
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   397
          val app = Const("List.op @",appT)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   398
          val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   399
          val ct = cterm_of sg (HOLogic.mk_Trueprop(HOLogic.mk_eq(F,F2)))
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   400
          val thm = prove_goalw_cterm [] ct (K [rearr_tac 1])
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   401
            handle ERROR =>
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   402
            error("The error(s) above occurred while trying to prove " ^
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   403
                  string_of_cterm ct)
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   404
      in Some((conv RS (thm RS trans)) RS eq_reflection) end
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   405
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   406
  in if list1 lastl andalso list1 lastr
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   407
     then rearr append1_eq_conv
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   408
     else
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   409
     if lastl aconv lastr
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   410
     then rearr append_same_eq
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   411
     else None
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   412
  end
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   413
in
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   414
val list_eq_simproc = mk_simproc "list_eq" [list_eq_pattern] list_eq
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   415
end;
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   416
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   417
Addsimprocs [list_eq_simproc];
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   418
*}
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   419
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   420
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   421
subsection {* @{text map} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   422
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   423
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   424
  by (induct xs) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   425
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   426
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   427
  by (rule ext, induct_tac xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   428
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   429
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   430
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   431
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   432
lemma map_compose: "map (f o g) xs = map f (map g xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   433
  by (induct xs) (auto simp add: o_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   434
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   435
lemma rev_map: "rev (map f xs) = map f (rev xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   436
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   437
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   438
lemma map_cong:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   439
  "xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   440
  -- {* a congruence rule for @{text map} *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   441
  by (clarify, induct ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   442
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   443
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   444
  by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   445
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   446
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   447
  by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   448
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   449
lemma map_eq_Cons:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   450
  "(map f xs = y # ys) = (\<exists>x xs'. xs = x # xs' \<and> f x = y \<and> map f xs' = ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   451
  by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   452
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   453
lemma map_injective:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   454
    "!!xs. map f xs = map f ys ==> (\<forall>x y. f x = f y --> x = y) ==> xs = ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   455
  by (induct ys) (auto simp add: map_eq_Cons)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   456
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   457
lemma inj_mapI: "inj f ==> inj (map f)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   458
  by (rules dest: map_injective injD intro: injI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   459
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   460
lemma inj_mapD: "inj (map f) ==> inj f"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   461
  apply (unfold inj_on_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   462
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   463
  apply (erule_tac x = "[x]" in ballE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   464
   apply (erule_tac x = "[y]" in ballE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   465
    apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   466
   apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   467
  apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   468
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   469
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   470
lemma inj_map: "inj (map f) = inj f"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   471
  by (blast dest: inj_mapD intro: inj_mapI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   472
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   473
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   474
subsection {* @{text rev} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   475
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   476
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   477
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   478
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   479
lemma rev_rev_ident [simp]: "rev (rev xs) = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   480
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   481
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   482
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   483
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   484
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   485
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   486
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   487
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   488
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   489
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   490
   apply force
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   491
  apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   492
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   493
  apply force
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   494
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   495
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   496
lemma rev_induct: "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   497
  apply(subst rev_rev_ident[symmetric])
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   498
  apply(rule_tac list = "rev xs" in list.induct, simp_all)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   499
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   500
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   501
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}  -- "compatibility"
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   502
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   503
lemma rev_exhaust: "(xs = [] ==> P) ==>  (!!ys y. xs = ys @ [y] ==> P) ==> P"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   504
  by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   505
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   506
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   507
subsection {* @{text set} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   508
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   509
lemma finite_set [iff]: "finite (set xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   510
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   511
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   512
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   513
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   514
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   515
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   516
  by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   517
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   518
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   519
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   520
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   521
lemma set_rev [simp]: "set (rev xs) = set xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   522
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   523
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   524
lemma set_map [simp]: "set (map f xs) = f`(set xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   525
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   526
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   527
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   528
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   529
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   530
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   531
  apply (induct j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   532
   apply simp_all
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   533
  apply(erule ssubst)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   534
  apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   535
  apply arith
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   536
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   537
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   538
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   539
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   540
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   541
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   542
  apply (rule iffI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   543
   apply (blast intro: eq_Nil_appendI Cons_eq_appendI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   544
  apply (erule exE)+
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   545
  apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   546
  apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   547
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   548
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   549
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   550
  -- {* eliminate @{text lists} in favour of @{text set} *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   551
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   552
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   553
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   554
  by (rule in_lists_conv_set [THEN iffD1])
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   555
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   556
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   557
  by (rule in_lists_conv_set [THEN iffD2])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   558
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   559
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   560
subsection {* @{text mem} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   561
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   562
lemma set_mem_eq: "(x mem xs) = (x : set xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   563
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   564
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   565
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   566
subsection {* @{text list_all} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   567
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   568
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   569
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   570
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   571
lemma list_all_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   572
    "list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   573
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   574
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   575
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   576
subsection {* @{text filter} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   577
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   578
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   579
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   580
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   581
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   582
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   583
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   584
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   585
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   586
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   587
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   588
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   589
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   590
lemma length_filter [simp]: "length (filter P xs) \<le> length xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   591
  by (induct xs) (auto simp add: le_SucI)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   592
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   593
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   594
  by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   595
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   596
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   597
subsection {* @{text concat} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   598
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   599
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   600
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   601
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   602
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   603
  by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   604
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   605
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   606
  by (induct xss) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   607
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   608
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   609
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   610
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   611
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   612
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   613
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   614
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   615
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   616
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   617
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   618
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   619
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   620
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   621
subsection {* @{text nth} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   622
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   623
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   624
  by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   625
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   626
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   627
  by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   628
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   629
declare nth.simps [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   630
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   631
lemma nth_append:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   632
    "!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   633
  apply(induct "xs")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   634
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   635
  apply (case_tac n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   636
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   637
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   638
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   639
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   640
  apply(induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   641
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   642
  apply (case_tac n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   643
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   644
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   645
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   646
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   647
  apply (induct_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   648
   apply simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   649
  apply simp
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   650
  apply safe
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   651
    apply (rule_tac x = 0 in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   652
    apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   653
   apply (rule_tac x = "Suc i" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   654
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   655
  apply (case_tac i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   656
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   657
  apply (rename_tac j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   658
  apply (rule_tac x = j in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   659
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   660
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   661
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   662
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x  |] ==> P(xs!n)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   663
  by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   664
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   665
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   666
  by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   667
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   668
lemma all_nth_imp_all_set:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   669
    "[| !i < length xs. P(xs!i); x : set xs  |] ==> P x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   670
  by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   671
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   672
lemma all_set_conv_all_nth:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   673
    "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   674
  by (auto simp add: set_conv_nth)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   675
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   676
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   677
subsection {* @{text list_update} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   678
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   679
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   680
  by (induct xs) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   681
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   682
lemma nth_list_update:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   683
    "!!i j. i < length xs  ==> (xs[i:=x])!j = (if i = j then x else xs!j)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   684
  by (induct xs) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   685
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   686
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   687
  by (simp add: nth_list_update)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   688
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   689
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   690
  by (induct xs) (auto simp add: nth_Cons split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   691
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   692
lemma list_update_overwrite [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   693
    "!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   694
  by (induct xs) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   695
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   696
lemma list_update_same_conv:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   697
    "!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   698
  by (induct xs) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   699
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   700
lemma update_zip:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   701
  "!!i xy xs. length xs = length ys ==>
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   702
    (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   703
  by (induct ys) (auto, case_tac xs, auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   704
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   705
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   706
  by (induct xs) (auto split: nat.split)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   707
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   708
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   709
  by (blast dest!: set_update_subset_insert [THEN subsetD])
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   710
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   711
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   712
subsection {* @{text last} and @{text butlast} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   713
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   714
lemma last_snoc [simp]: "last (xs @ [x]) = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   715
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   716
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   717
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   718
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   719
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   720
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   721
  by (induct xs rule: rev_induct) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   722
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   723
lemma butlast_append:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   724
    "!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   725
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   726
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   727
lemma append_butlast_last_id [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   728
    "xs \<noteq> [] ==> butlast xs @ [last xs] = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   729
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   730
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   731
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   732
  by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   733
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   734
lemma in_set_butlast_appendI:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   735
    "x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   736
  by (auto dest: in_set_butlastD simp add: butlast_append)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   737
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   738
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   739
subsection {* @{text take} and @{text drop} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   740
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   741
lemma take_0 [simp]: "take 0 xs = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   742
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   743
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   744
lemma drop_0 [simp]: "drop 0 xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   745
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   746
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   747
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   748
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   749
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   750
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   751
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   752
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   753
declare take_Cons [simp del] and drop_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   754
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   755
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   756
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   757
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   758
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   759
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   760
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   761
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   762
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   763
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   764
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   765
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   766
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   767
lemma take_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   768
    "!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   769
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   770
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   771
lemma drop_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   772
    "!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   773
  by (induct n) (auto, case_tac xs, auto)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   774
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   775
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   776
  apply (induct m)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   777
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   778
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   779
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   780
  apply (case_tac na)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   781
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   782
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   783
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   784
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   785
  apply (induct m)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   786
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   787
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   788
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   789
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   790
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   791
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   792
  apply (induct m)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   793
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   794
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   795
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   796
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   797
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   798
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   799
  apply (induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   800
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   801
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   802
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   803
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   804
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   805
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   806
  apply (induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   807
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   808
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   809
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   810
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   811
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   812
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   813
  apply (induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   814
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   815
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   816
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   817
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   818
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   819
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   820
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   821
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   822
  apply (case_tac i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   823
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   824
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   825
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   826
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   827
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   828
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   829
  apply (case_tac i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   830
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   831
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   832
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   833
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   834
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   835
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   836
  apply (case_tac n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   837
   apply(blast )
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   838
  apply (case_tac i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   839
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   840
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   841
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   842
lemma nth_drop [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   843
    "!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   844
  apply (induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   845
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   846
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   847
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   848
  done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
   849
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   850
lemma append_eq_conv_conj:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   851
    "!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   852
  apply(induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   853
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   854
  apply clarsimp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   855
  apply (case_tac zs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   856
  apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   857
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   858
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   859
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   860
subsection {* @{text takeWhile} and @{text dropWhile} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   861
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   862
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   863
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   864
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   865
lemma takeWhile_append1 [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   866
    "[| x:set xs; ~P(x)  |] ==> takeWhile P (xs @ ys) = takeWhile P xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   867
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   868
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   869
lemma takeWhile_append2 [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   870
    "(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   871
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   872
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   873
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   874
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   875
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   876
lemma dropWhile_append1 [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   877
    "[| x : set xs; ~P(x)  |] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   878
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   879
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   880
lemma dropWhile_append2 [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   881
    "(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   882
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   883
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   884
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   885
  by (induct xs) (auto split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   886
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   887
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   888
subsection {* @{text zip} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   889
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   890
lemma zip_Nil [simp]: "zip [] ys = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   891
  by (induct ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   892
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   893
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   894
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   895
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   896
declare zip_Cons [simp del]
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   897
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   898
lemma length_zip [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   899
    "!!xs. length (zip xs ys) = min (length xs) (length ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   900
  apply(induct ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   901
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   902
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   903
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   904
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   905
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   906
lemma zip_append1:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   907
  "!!xs. zip (xs @ ys) zs =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   908
      zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   909
  apply (induct zs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   910
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   911
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   912
   apply simp_all
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   913
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   914
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   915
lemma zip_append2:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   916
  "!!ys. zip xs (ys @ zs) =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   917
      zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   918
  apply (induct xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   919
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   920
  apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   921
   apply simp_all
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   922
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   923
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   924
lemma zip_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   925
 "[| length xs = length us; length ys = length vs |] ==>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   926
    zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   927
  by (simp add: zip_append1)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   928
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   929
lemma zip_rev:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   930
    "!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   931
  apply(induct ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   932
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   933
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   934
   apply simp_all
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   935
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   936
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   937
lemma nth_zip [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   938
  "!!i xs. [| i < length xs; i < length ys  |] ==> (zip xs ys)!i = (xs!i, ys!i)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   939
  apply (induct ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   940
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   941
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   942
   apply (simp_all add: nth.simps split: nat.split)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   943
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   944
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   945
lemma set_zip:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   946
    "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   947
  by (simp add: set_conv_nth cong: rev_conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   948
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   949
lemma zip_update:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   950
    "length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   951
  by (rule sym, simp add: update_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   952
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   953
lemma zip_replicate [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   954
    "!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   955
  apply (induct i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   956
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   957
  apply (case_tac j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   958
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   959
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   960
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   961
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   962
subsection {* @{text list_all2} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   963
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   964
lemma list_all2_lengthD: "list_all2 P xs ys ==> length xs = length ys"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   965
  by (simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   966
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   967
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   968
  by (simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   969
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   970
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   971
  by (simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   972
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   973
lemma list_all2_Cons [iff]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   974
    "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   975
  by (auto simp add: list_all2_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   976
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   977
lemma list_all2_Cons1:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   978
    "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   979
  by (cases ys) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   980
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   981
lemma list_all2_Cons2:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   982
    "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   983
  by (cases xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   984
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   985
lemma list_all2_rev [iff]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   986
    "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   987
  by (simp add: list_all2_def zip_rev cong: conj_cong)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   988
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
   989
lemma list_all2_append1:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   990
  "list_all2 P (xs @ ys) zs =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   991
    (EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   992
      list_all2 P xs us \<and> list_all2 P ys vs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   993
  apply (simp add: list_all2_def zip_append1)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   994
  apply (rule iffI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   995
   apply (rule_tac x = "take (length xs) zs" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   996
   apply (rule_tac x = "drop (length xs) zs" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   997
   apply (force split: nat_diff_split simp add: min_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   998
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
   999
  apply (simp add: ball_Un)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1000
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1001
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1002
lemma list_all2_append2:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1003
  "list_all2 P xs (ys @ zs) =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1004
    (EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1005
      list_all2 P us ys \<and> list_all2 P vs zs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1006
  apply (simp add: list_all2_def zip_append2)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1007
  apply (rule iffI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1008
   apply (rule_tac x = "take (length ys) xs" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1009
   apply (rule_tac x = "drop (length ys) xs" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1010
   apply (force split: nat_diff_split simp add: min_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1011
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1012
  apply (simp add: ball_Un)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1013
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1014
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1015
lemma list_all2_conv_all_nth:
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1016
  "list_all2 P xs ys =
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1017
    (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1018
  by (force simp add: list_all2_def set_zip)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1019
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1020
lemma list_all2_trans[rule_format]:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1021
  "\<forall>a b c. P1 a b --> P2 b c --> P3 a c ==>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1022
    \<forall>bs cs. list_all2 P1 as bs --> list_all2 P2 bs cs --> list_all2 P3 as cs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1023
  apply(induct_tac as)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1024
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1025
  apply(rule allI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1026
  apply(induct_tac bs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1027
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1028
  apply(rule allI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1029
  apply(induct_tac cs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1030
   apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1031
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1032
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1033
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1034
subsection {* @{text foldl} *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1035
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1036
lemma foldl_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1037
  "!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1038
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1039
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1040
text {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1041
  Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1042
  difficult to use because it requires an additional transitivity step.
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1043
*}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1044
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1045
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1046
  by (induct ns) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1047
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1048
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1049
  by (force intro: start_le_sum simp add: in_set_conv_decomp)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1050
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1051
lemma sum_eq_0_conv [iff]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1052
    "!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1053
  by (induct ns) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1054
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1055
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1056
subsection {* @{text upto} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1057
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1058
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1059
  -- {* Does not terminate! *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1060
  by (induct j) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1061
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1062
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1063
  by (subst upt_rec) simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1064
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1065
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1066
  -- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1067
  by simp
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1068
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1069
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1070
  apply(rule trans)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1071
  apply(subst upt_rec)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1072
   prefer 2 apply(rule refl)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1073
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1074
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1075
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1076
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1077
  -- {* LOOPS as a simprule, since @{text "j <= j"}. *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1078
  by (induct k) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1079
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1080
lemma length_upt [simp]: "length [i..j(] = j - i"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1081
  by (induct j) (auto simp add: Suc_diff_le)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1082
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1083
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1084
  apply (induct j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1085
  apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1086
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1087
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1088
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1089
  apply (induct m)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1090
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1091
  apply (subst upt_rec)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1092
  apply (rule sym)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1093
  apply (subst upt_rec)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1094
  apply (simp del: upt.simps)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1095
  done
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  1096
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1097
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1098
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1099
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1100
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1101
  apply (induct n m rule: diff_induct)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1102
    prefer 3 apply (subst map_Suc_upt[symmetric])
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1103
    apply (auto simp add: less_diff_conv nth_upt)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1104
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1105
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1106
lemma nth_take_lemma [rule_format]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1107
  "ALL xs ys. k <= length xs --> k <= length ys
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1108
    --> (ALL i. i < k --> xs!i = ys!i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1109
    --> take k xs = take k ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1110
  apply (induct k)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1111
  apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1112
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1113
  txt {* Both lists must be non-empty *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1114
  apply (case_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1115
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1116
  apply (case_tac ys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1117
   apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1118
   apply (simp (no_asm_use))
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1119
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1120
  txt {* prenexing's needed, not miniscoping *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1121
  apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1122
  apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1123
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1124
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1125
lemma nth_equalityI:
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1126
 "[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys"
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1127
  apply (frule nth_take_lemma [OF le_refl eq_imp_le])
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1128
  apply (simp_all add: take_all)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1129
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1130
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1131
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1132
  -- {* The famous take-lemma. *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1133
  apply (drule_tac x = "max (length xs) (length ys)" in spec)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1134
  apply (simp add: le_max_iff_disj take_all)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1135
  done
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1136
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1137
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1138
subsection {* @{text "distinct"} and @{text remdups} *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1139
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1140
lemma distinct_append [simp]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1141
    "distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1142
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1143
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1144
lemma set_remdups [simp]: "set (remdups xs) = set xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1145
  by (induct xs) (auto simp add: insert_absorb)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1146
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1147
lemma distinct_remdups [iff]: "distinct (remdups xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1148
  by (induct xs) auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1149
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1150
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1151
  by (induct xs) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1152
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1153
text {*
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1154
  It is best to avoid this indexed version of distinct, but sometimes
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1155
  it is useful. *}
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1156
lemma distinct_conv_nth:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1157
    "distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1158
  apply (induct_tac xs)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1159
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1160
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1161
  apply (rule iffI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1162
   apply clarsimp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1163
   apply (case_tac i)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1164
    apply (case_tac j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1165
     apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1166
    apply (simp add: set_conv_nth)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1167
   apply (case_tac j)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1168
    apply (clarsimp simp add: set_conv_nth)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1169
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1170
  apply (rule conjI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1171
   apply (clarsimp simp add: set_conv_nth)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1172
   apply (erule_tac x = 0 in allE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1173
   apply (erule_tac x = "Suc i" in allE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1174
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1175
  apply clarsimp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1176
  apply (erule_tac x = "Suc i" in allE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1177
  apply (erule_tac x = "Suc j" in allE)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1178
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1179
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1180
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1181
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1182
subsection {* @{text replicate} *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1183
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1184
lemma length_replicate [simp]: "length (replicate n x) = n"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1185
  by (induct n) auto
13124
6e1decd8a7a9 new thm distinct_conv_nth
nipkow
parents: 13122
diff changeset
  1186
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1187
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1188
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1189
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1190
lemma replicate_app_Cons_same:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1191
    "(replicate n x) @ (x # xs) = x # replicate n x @ xs"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1192
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1193
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1194
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1195
  apply(induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1196
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1197
  apply (simp add: replicate_app_Cons_same)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1198
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1199
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1200
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1201
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1202
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1203
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1204
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1205
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1206
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1207
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1208
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1209
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1210
  by (atomize (full), induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1211
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1212
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1213
  apply(induct n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1214
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1215
  apply (simp add: nth_Cons split: nat.split)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1216
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1217
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1218
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1219
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1220
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1221
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1222
  by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1223
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1224
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1225
  by auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1226
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1227
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1228
  by (simp add: set_replicate_conv_if split: split_if_asm)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1229
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1230
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1231
subsection {* Lexcicographic orderings on lists *}
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  1232
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1233
lemma wf_lexn: "wf r ==> wf (lexn r n)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1234
  apply (induct_tac n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1235
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1236
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1237
  apply(rule wf_subset)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1238
   prefer 2 apply (rule Int_lower1)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1239
  apply(rule wf_prod_fun_image)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1240
   prefer 2 apply (rule injI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1241
  apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1242
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1243
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1244
lemma lexn_length:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1245
    "!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1246
  by (induct n) auto
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1247
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1248
lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1249
  apply (unfold lex_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1250
  apply (rule wf_UN)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1251
  apply (blast intro: wf_lexn)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1252
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1253
  apply (rename_tac m n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1254
  apply (subgoal_tac "m \<noteq> n")
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1255
   prefer 2 apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1256
  apply (blast dest: lexn_length not_sym)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1257
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1258
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1259
lemma lexn_conv:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1260
  "lexn r n =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1261
    {(xs,ys). length xs = n \<and> length ys = n \<and>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1262
      (\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1263
  apply (induct_tac n)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1264
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1265
   apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1266
  apply (simp add: image_Collect lex_prod_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1267
  apply auto
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1268
    apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1269
   apply (rename_tac a xys x xs' y ys')
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1270
   apply (rule_tac x = "a # xys" in exI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1271
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1272
  apply (case_tac xys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1273
   apply simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1274
  apply blast
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1275
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1276
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1277
lemma lex_conv:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1278
  "lex r =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1279
    {(xs,ys). length xs = length ys \<and>
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1280
      (\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1281
  by (force simp add: lex_def lexn_conv)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1282
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1283
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1284
  by (unfold lexico_def) blast
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1285
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1286
lemma lexico_conv:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1287
  "lexico r = {(xs,ys). length xs < length ys |
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1288
      length xs = length ys \<and> (xs, ys) : lex r}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1289
  by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1290
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1291
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1292
  by (simp add: lex_conv)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1293
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1294
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1295
  by (simp add:lex_conv)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1296
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1297
lemma Cons_in_lex [iff]:
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1298
  "((x # xs, y # ys) : lex r) =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1299
    ((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1300
  apply (simp add: lex_conv)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1301
  apply (rule iffI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1302
   prefer 2 apply (blast intro: Cons_eq_appendI)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1303
  apply clarify
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1304
  apply (case_tac xys)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1305
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1306
  apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1307
  apply blast
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1308
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1309
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1310
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1311
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1312
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1313
lemma sublist_empty [simp]: "sublist xs {} = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1314
  by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1315
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1316
lemma sublist_nil [simp]: "sublist [] A = []"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1317
  by (auto simp add: sublist_def)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1318
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1319
lemma sublist_shift_lemma:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1320
  "map fst [p:zip xs [i..i + length xs(] . snd p : A] =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1321
    map fst [p:zip xs [0..length xs(] . snd p + i : A]"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1322
  by (induct xs rule: rev_induct) (simp_all add: add_commute)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1323
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1324
lemma sublist_append:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1325
    "sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1326
  apply (unfold sublist_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1327
  apply (induct l' rule: rev_induct)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1328
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1329
  apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1330
  apply (simp add: add_commute)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1331
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1332
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1333
lemma sublist_Cons:
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1334
    "sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1335
  apply (induct l rule: rev_induct)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1336
   apply (simp add: sublist_def)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1337
  apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1338
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1339
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1340
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1341
  by (simp add: sublist_Cons)
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1342
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1343
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1344
  apply (induct l rule: rev_induct)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1345
   apply simp
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1346
  apply (simp split: nat_diff_split add: sublist_append)
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1347
  done
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1348
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1349
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1350
lemma take_Cons':
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1351
    "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1352
  by (cases n) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1353
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1354
lemma drop_Cons':
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1355
    "drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1356
  by (cases n) simp_all
13114
f2b00262bdfc converted;
wenzelm
parents: 12887
diff changeset
  1357
13142
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1358
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))"
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1359
  by (cases n) simp_all
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1360
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1361
lemmas [of "number_of v", standard, simp] =
1ebd8ed5a1a0 tuned document;
wenzelm
parents: 13124
diff changeset
  1362
  take_Cons' drop_Cons' nth_Cons'
3507
157be29ad5ba Improved length = size translation.
nipkow
parents: 3465
diff changeset
  1363
13122
wenzelm
parents: 13114
diff changeset
  1364
end