| author | desharna | 
| Tue, 05 Mar 2024 16:55:21 +0100 | |
| changeset 79774 | 1f94d92b0dc2 | 
| parent 62020 | 5d208fd2507d | 
| permissions | -rw-r--r-- | 
| 17456 | 1 | (* Title: CCL/Hered.thy | 
| 1474 | 2 | Author: Martin Coen | 
| 0 | 3 | Copyright 1993 University of Cambridge | 
| 4 | *) | |
| 5 | ||
| 60770 | 6 | section \<open>Hereditary Termination -- cf. Martin Lo\"f\<close> | 
| 17456 | 7 | |
| 8 | theory Hered | |
| 9 | imports Type | |
| 10 | begin | |
| 11 | ||
| 60770 | 12 | text \<open> | 
| 62020 | 13 | Note that this is based on an untyped equality and so \<open>lam | 
| 14 | x. b(x)\<close> is only hereditarily terminating if \<open>ALL x. b(x)\<close> | |
| 17456 | 15 | is. Not so useful for functions! | 
| 60770 | 16 | \<close> | 
| 0 | 17 | |
| 58977 | 18 | definition HTTgen :: "i set \<Rightarrow> i set" where | 
| 42156 | 19 | "HTTgen(R) == | 
| 58977 | 20 |     {t. t=true | t=false | (EX a b. t= <a, b> \<and> a : R \<and> b : R) |
 | 
| 21 | (EX f. t = lam x. f(x) \<and> (ALL x. f(x) : R))}" | |
| 0 | 22 | |
| 42156 | 23 | definition HTT :: "i set" | 
| 24 | where "HTT == gfp(HTTgen)" | |
| 17456 | 25 | |
| 20140 | 26 | |
| 60770 | 27 | subsection \<open>Hereditary Termination\<close> | 
| 20140 | 28 | |
| 58977 | 29 | lemma HTTgen_mono: "mono(\<lambda>X. HTTgen(X))" | 
| 20140 | 30 | apply (unfold HTTgen_def) | 
| 31 | apply (rule monoI) | |
| 32 | apply blast | |
| 33 | done | |
| 34 | ||
| 35 | lemma HTTgenXH: | |
| 58977 | 36 | "t : HTTgen(A) \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : A \<and> b : A) | | 
| 37 | (EX f. t=lam x. f(x) \<and> (ALL x. f(x) : A))" | |
| 20140 | 38 | apply (unfold HTTgen_def) | 
| 39 | apply blast | |
| 40 | done | |
| 41 | ||
| 42 | lemma HTTXH: | |
| 58977 | 43 | "t : HTT \<longleftrightarrow> t=true | t=false | (EX a b. t=<a,b> \<and> a : HTT \<and> b : HTT) | | 
| 44 | (EX f. t=lam x. f(x) \<and> (ALL x. f(x) : HTT))" | |
| 20140 | 45 | apply (rule HTTgen_mono [THEN HTT_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded HTTgen_def]) | 
| 46 | apply blast | |
| 47 | done | |
| 48 | ||
| 49 | ||
| 60770 | 50 | subsection \<open>Introduction Rules for HTT\<close> | 
| 20140 | 51 | |
| 58977 | 52 | lemma HTT_bot: "\<not> bot : HTT" | 
| 20140 | 53 | by (blast dest: HTTXH [THEN iffD1]) | 
| 54 | ||
| 55 | lemma HTT_true: "true : HTT" | |
| 56 | by (blast intro: HTTXH [THEN iffD2]) | |
| 57 | ||
| 58 | lemma HTT_false: "false : HTT" | |
| 59 | by (blast intro: HTTXH [THEN iffD2]) | |
| 60 | ||
| 58977 | 61 | lemma HTT_pair: "<a,b> : HTT \<longleftrightarrow> a : HTT \<and> b : HTT" | 
| 20140 | 62 | apply (rule HTTXH [THEN iff_trans]) | 
| 63 | apply blast | |
| 64 | done | |
| 65 | ||
| 58977 | 66 | lemma HTT_lam: "lam x. f(x) : HTT \<longleftrightarrow> (ALL x. f(x) : HTT)" | 
| 20140 | 67 | apply (rule HTTXH [THEN iff_trans]) | 
| 68 | apply auto | |
| 69 | done | |
| 70 | ||
| 71 | lemmas HTT_rews1 = HTT_bot HTT_true HTT_false HTT_pair HTT_lam | |
| 72 | ||
| 73 | lemma HTT_rews2: | |
| 74 | "one : HTT" | |
| 58977 | 75 | "inl(a) : HTT \<longleftrightarrow> a : HTT" | 
| 76 | "inr(b) : HTT \<longleftrightarrow> b : HTT" | |
| 20140 | 77 | "zero : HTT" | 
| 58977 | 78 | "succ(n) : HTT \<longleftrightarrow> n : HTT" | 
| 20140 | 79 | "[] : HTT" | 
| 58977 | 80 | "x$xs : HTT \<longleftrightarrow> x : HTT \<and> xs : HTT" | 
| 20140 | 81 | by (simp_all add: data_defs HTT_rews1) | 
| 82 | ||
| 83 | lemmas HTT_rews = HTT_rews1 HTT_rews2 | |
| 84 | ||
| 85 | ||
| 60770 | 86 | subsection \<open>Coinduction for HTT\<close> | 
| 20140 | 87 | |
| 58977 | 88 | lemma HTT_coinduct: "\<lbrakk>t : R; R <= HTTgen(R)\<rbrakk> \<Longrightarrow> t : HTT" | 
| 20140 | 89 | apply (erule HTT_def [THEN def_coinduct]) | 
| 90 | apply assumption | |
| 91 | done | |
| 92 | ||
| 58977 | 93 | lemma HTT_coinduct3: "\<lbrakk>t : R; R <= HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))\<rbrakk> \<Longrightarrow> t : HTT" | 
| 20140 | 94 | apply (erule HTTgen_mono [THEN [3] HTT_def [THEN def_coinduct3]]) | 
| 95 | apply assumption | |
| 96 | done | |
| 97 | ||
| 32153 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 wenzelm parents: 
32010diff
changeset | 98 | lemma HTTgenIs: | 
| 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 wenzelm parents: 
32010diff
changeset | 99 | "true : HTTgen(R)" | 
| 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 wenzelm parents: 
32010diff
changeset | 100 | "false : HTTgen(R)" | 
| 58977 | 101 | "\<lbrakk>a : R; b : R\<rbrakk> \<Longrightarrow> <a,b> : HTTgen(R)" | 
| 102 | "\<And>b. (\<And>x. b(x) : R) \<Longrightarrow> lam x. b(x) : HTTgen(R)" | |
| 32153 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 wenzelm parents: 
32010diff
changeset | 103 | "one : HTTgen(R)" | 
| 58977 | 104 | "a : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inl(a) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | 
| 105 | "b : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> inr(b) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | |
| 106 | "zero : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | |
| 107 | "n : lfp(\<lambda>x. HTTgen(x) Un R Un HTT) \<Longrightarrow> succ(n) : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | |
| 108 | "[] : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | |
| 109 | "\<lbrakk>h : lfp(\<lambda>x. HTTgen(x) Un R Un HTT); t : lfp(\<lambda>x. HTTgen(x) Un R Un HTT)\<rbrakk> \<Longrightarrow> | |
| 110 | h$t : HTTgen(lfp(\<lambda>x. HTTgen(x) Un R Un HTT))" | |
| 32153 
a0e57fb1b930
misc modernization: proper method setup instead of adhoc ML proofs;
 wenzelm parents: 
32010diff
changeset | 111 | unfolding data_defs by (genIs HTTgenXH HTTgen_mono)+ | 
| 20140 | 112 | |
| 113 | ||
| 60770 | 114 | subsection \<open>Formation Rules for Types\<close> | 
| 20140 | 115 | |
| 116 | lemma UnitF: "Unit <= HTT" | |
| 117 | by (simp add: subsetXH UnitXH HTT_rews) | |
| 118 | ||
| 119 | lemma BoolF: "Bool <= HTT" | |
| 47966 | 120 | by (fastforce simp: subsetXH BoolXH iff: HTT_rews) | 
| 20140 | 121 | |
| 58977 | 122 | lemma PlusF: "\<lbrakk>A <= HTT; B <= HTT\<rbrakk> \<Longrightarrow> A + B <= HTT" | 
| 47966 | 123 | by (fastforce simp: subsetXH PlusXH iff: HTT_rews) | 
| 20140 | 124 | |
| 58977 | 125 | lemma SigmaF: "\<lbrakk>A <= HTT; \<And>x. x:A \<Longrightarrow> B(x) <= HTT\<rbrakk> \<Longrightarrow> SUM x:A. B(x) <= HTT" | 
| 47966 | 126 | by (fastforce simp: subsetXH SgXH HTT_rews) | 
| 20140 | 127 | |
| 128 | ||
| 129 | (*** Formation Rules for Recursive types - using coinduction these only need ***) | |
| 130 | (*** exhaution rule for type-former ***) | |
| 131 | ||
| 132 | (*Proof by induction - needs induction rule for type*) | |
| 133 | lemma "Nat <= HTT" | |
| 134 | apply (simp add: subsetXH) | |
| 135 | apply clarify | |
| 136 | apply (erule Nat_ind) | |
| 47966 | 137 | apply (fastforce iff: HTT_rews)+ | 
| 20140 | 138 | done | 
| 139 | ||
| 140 | lemma NatF: "Nat <= HTT" | |
| 141 | apply clarify | |
| 142 | apply (erule HTT_coinduct3) | |
| 143 | apply (fast intro: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] dest: NatXH [THEN iffD1]) | |
| 144 | done | |
| 145 | ||
| 58977 | 146 | lemma ListF: "A <= HTT \<Longrightarrow> List(A) <= HTT" | 
| 20140 | 147 | apply clarify | 
| 148 | apply (erule HTT_coinduct3) | |
| 149 | apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] | |
| 150 | subsetD [THEN HTTgen_mono [THEN ci3_AI]] | |
| 151 | dest: ListXH [THEN iffD1]) | |
| 152 | done | |
| 153 | ||
| 58977 | 154 | lemma ListsF: "A <= HTT \<Longrightarrow> Lists(A) <= HTT" | 
| 20140 | 155 | apply clarify | 
| 156 | apply (erule HTT_coinduct3) | |
| 157 | apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] | |
| 158 | subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: ListsXH [THEN iffD1]) | |
| 159 | done | |
| 160 | ||
| 58977 | 161 | lemma IListsF: "A <= HTT \<Longrightarrow> ILists(A) <= HTT" | 
| 20140 | 162 | apply clarify | 
| 163 | apply (erule HTT_coinduct3) | |
| 164 | apply (fast intro!: HTTgenIs elim!: HTTgen_mono [THEN ci3_RI] | |
| 165 | subsetD [THEN HTTgen_mono [THEN ci3_AI]] dest: IListsXH [THEN iffD1]) | |
| 166 | done | |
| 167 | ||
| 168 | end |