author | wenzelm |
Tue, 11 Jul 2006 12:17:08 +0200 | |
changeset 20083 | 717b1eb434f1 |
parent 19736 | d8d0f8f51d69 |
child 20362 | bbff23c3e2ca |
permissions | -rw-r--r-- |
13586 | 1 |
(* Title: HOL/Library/FuncSet.thy |
2 |
ID: $Id$ |
|
3 |
Author: Florian Kammueller and Lawrence C Paulson |
|
4 |
*) |
|
5 |
||
14706 | 6 |
header {* Pi and Function Sets *} |
13586 | 7 |
|
15131 | 8 |
theory FuncSet |
15140 | 9 |
imports Main |
15131 | 10 |
begin |
13586 | 11 |
|
19736 | 12 |
definition |
14706 | 13 |
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set" |
19736 | 14 |
"Pi A B = {f. \<forall>x. x \<in> A --> f x \<in> B x}" |
13586 | 15 |
|
16 |
extensional :: "'a set => ('a => 'b) set" |
|
19736 | 17 |
"extensional A = {f. \<forall>x. x~:A --> f x = arbitrary}" |
13586 | 18 |
|
14706 | 19 |
"restrict" :: "['a => 'b, 'a set] => ('a => 'b)" |
19736 | 20 |
"restrict f A = (%x. if x \<in> A then f x else arbitrary)" |
13586 | 21 |
|
19536 | 22 |
abbreviation |
23 |
funcset :: "['a set, 'b set] => ('a => 'b) set" (infixr "->" 60) |
|
24 |
"A -> B == Pi A (%_. B)" |
|
25 |
||
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
26 |
const_syntax (xsymbols) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19536
diff
changeset
|
27 |
funcset (infixr "\<rightarrow>" 60) |
19536 | 28 |
|
13586 | 29 |
syntax |
19736 | 30 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10) |
31 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3) |
|
13586 | 32 |
|
33 |
syntax (xsymbols) |
|
19736 | 34 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
35 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
13586 | 36 |
|
14565 | 37 |
syntax (HTML output) |
19736 | 38 |
"_Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10) |
39 |
"_lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3) |
|
14565 | 40 |
|
13586 | 41 |
translations |
19536 | 42 |
"PI x:A. B" == "Pi A (%x. B)" |
14706 | 43 |
"%x:A. f" == "restrict (%x. f) A" |
13586 | 44 |
|
19736 | 45 |
definition |
14706 | 46 |
"compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)" |
19736 | 47 |
"compose A g f = (\<lambda>x\<in>A. g (f x))" |
13586 | 48 |
|
49 |
||
50 |
subsection{*Basic Properties of @{term Pi}*} |
|
51 |
||
52 |
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B" |
|
14706 | 53 |
by (simp add: Pi_def) |
13586 | 54 |
|
55 |
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A -> B" |
|
14706 | 56 |
by (simp add: Pi_def) |
13586 | 57 |
|
58 |
lemma Pi_mem: "[|f: Pi A B; x \<in> A|] ==> f x \<in> B x" |
|
14706 | 59 |
by (simp add: Pi_def) |
13586 | 60 |
|
61 |
lemma funcset_mem: "[|f \<in> A -> B; x \<in> A|] ==> f x \<in> B" |
|
14706 | 62 |
by (simp add: Pi_def) |
13586 | 63 |
|
14762 | 64 |
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B" |
19736 | 65 |
by (auto simp add: Pi_def) |
14762 | 66 |
|
13586 | 67 |
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})" |
13593 | 68 |
apply (simp add: Pi_def, auto) |
13586 | 69 |
txt{*Converse direction requires Axiom of Choice to exhibit a function |
70 |
picking an element from each non-empty @{term "B x"}*} |
|
13593 | 71 |
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto) |
14706 | 72 |
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto) |
13586 | 73 |
done |
74 |
||
13593 | 75 |
lemma Pi_empty [simp]: "Pi {} B = UNIV" |
14706 | 76 |
by (simp add: Pi_def) |
13593 | 77 |
|
78 |
lemma Pi_UNIV [simp]: "A -> UNIV = UNIV" |
|
14706 | 79 |
by (simp add: Pi_def) |
13586 | 80 |
|
81 |
text{*Covariance of Pi-sets in their second argument*} |
|
82 |
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C" |
|
14706 | 83 |
by (simp add: Pi_def, blast) |
13586 | 84 |
|
85 |
text{*Contravariance of Pi-sets in their first argument*} |
|
86 |
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B" |
|
14706 | 87 |
by (simp add: Pi_def, blast) |
13586 | 88 |
|
89 |
||
90 |
subsection{*Composition With a Restricted Domain: @{term compose}*} |
|
91 |
||
14706 | 92 |
lemma funcset_compose: |
93 |
"[| f \<in> A -> B; g \<in> B -> C |]==> compose A g f \<in> A -> C" |
|
94 |
by (simp add: Pi_def compose_def restrict_def) |
|
13586 | 95 |
|
96 |
lemma compose_assoc: |
|
14706 | 97 |
"[| f \<in> A -> B; g \<in> B -> C; h \<in> C -> D |] |
13586 | 98 |
==> compose A h (compose A g f) = compose A (compose B h g) f" |
14706 | 99 |
by (simp add: expand_fun_eq Pi_def compose_def restrict_def) |
13586 | 100 |
|
101 |
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))" |
|
14706 | 102 |
by (simp add: compose_def restrict_def) |
13586 | 103 |
|
104 |
lemma surj_compose: "[| f ` A = B; g ` B = C |] ==> compose A g f ` A = C" |
|
14706 | 105 |
by (auto simp add: image_def compose_eq) |
13586 | 106 |
|
107 |
||
108 |
subsection{*Bounded Abstraction: @{term restrict}*} |
|
109 |
||
110 |
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A -> B" |
|
14706 | 111 |
by (simp add: Pi_def restrict_def) |
13586 | 112 |
|
113 |
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B" |
|
14706 | 114 |
by (simp add: Pi_def restrict_def) |
13586 | 115 |
|
116 |
lemma restrict_apply [simp]: |
|
14706 | 117 |
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)" |
118 |
by (simp add: restrict_def) |
|
13586 | 119 |
|
14706 | 120 |
lemma restrict_ext: |
13586 | 121 |
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)" |
14706 | 122 |
by (simp add: expand_fun_eq Pi_def Pi_def restrict_def) |
13586 | 123 |
|
14853 | 124 |
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A" |
14706 | 125 |
by (simp add: inj_on_def restrict_def) |
13586 | 126 |
|
127 |
lemma Id_compose: |
|
14706 | 128 |
"[|f \<in> A -> B; f \<in> extensional A|] ==> compose A (\<lambda>y\<in>B. y) f = f" |
129 |
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) |
|
13586 | 130 |
|
131 |
lemma compose_Id: |
|
14706 | 132 |
"[|g \<in> A -> B; g \<in> extensional A|] ==> compose A g (\<lambda>x\<in>A. x) = g" |
133 |
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def) |
|
13586 | 134 |
|
14853 | 135 |
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A" |
19736 | 136 |
by (auto simp add: restrict_def) |
13586 | 137 |
|
14745 | 138 |
|
14762 | 139 |
subsection{*Bijections Between Sets*} |
140 |
||
141 |
text{*The basic definition could be moved to @{text "Fun.thy"}, but most of |
|
142 |
the theorems belong here, or need at least @{term Hilbert_Choice}.*} |
|
143 |
||
19736 | 144 |
definition |
145 |
bij_betw :: "['a => 'b, 'a set, 'b set] => bool" -- {* bijective *} |
|
146 |
"bij_betw f A B = (inj_on f A & f ` A = B)" |
|
14762 | 147 |
|
148 |
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" |
|
19736 | 149 |
by (simp add: bij_betw_def) |
14762 | 150 |
|
151 |
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B" |
|
19736 | 152 |
by (auto simp add: bij_betw_def inj_on_Inv Pi_def) |
14762 | 153 |
|
154 |
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A" |
|
19736 | 155 |
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem) |
156 |
apply (simp add: image_compose [symmetric] o_def) |
|
157 |
apply (simp add: image_def Inv_f_f) |
|
158 |
done |
|
14762 | 159 |
|
14853 | 160 |
lemma inj_on_compose: |
161 |
"[| bij_betw f A B; inj_on g B |] ==> inj_on (compose A g f) A" |
|
162 |
by (auto simp add: bij_betw_def inj_on_def compose_eq) |
|
163 |
||
14762 | 164 |
lemma bij_betw_compose: |
165 |
"[| bij_betw f A B; bij_betw g B C |] ==> bij_betw (compose A g f) A C" |
|
19736 | 166 |
apply (simp add: bij_betw_def compose_eq inj_on_compose) |
167 |
apply (auto simp add: compose_def image_def) |
|
168 |
done |
|
14762 | 169 |
|
14853 | 170 |
lemma bij_betw_restrict_eq [simp]: |
171 |
"bij_betw (restrict f A) A B = bij_betw f A B" |
|
172 |
by (simp add: bij_betw_def) |
|
173 |
||
174 |
||
175 |
subsection{*Extensionality*} |
|
176 |
||
177 |
lemma extensional_arb: "[|f \<in> extensional A; x\<notin> A|] ==> f x = arbitrary" |
|
178 |
by (simp add: extensional_def) |
|
179 |
||
180 |
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A" |
|
181 |
by (simp add: restrict_def extensional_def) |
|
182 |
||
183 |
lemma compose_extensional [simp]: "compose A f g \<in> extensional A" |
|
184 |
by (simp add: compose_def) |
|
185 |
||
186 |
lemma extensionalityI: |
|
187 |
"[| f \<in> extensional A; g \<in> extensional A; |
|
188 |
!!x. x\<in>A ==> f x = g x |] ==> f = g" |
|
189 |
by (force simp add: expand_fun_eq extensional_def) |
|
190 |
||
191 |
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B -> A" |
|
192 |
by (unfold Inv_def) (fast intro: restrict_in_funcset someI2) |
|
193 |
||
194 |
lemma compose_Inv_id: |
|
195 |
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)" |
|
196 |
apply (simp add: bij_betw_def compose_def) |
|
197 |
apply (rule restrict_ext, auto) |
|
198 |
apply (erule subst) |
|
199 |
apply (simp add: Inv_f_f) |
|
200 |
done |
|
201 |
||
202 |
lemma compose_id_Inv: |
|
203 |
"f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)" |
|
204 |
apply (simp add: compose_def) |
|
205 |
apply (rule restrict_ext) |
|
206 |
apply (simp add: f_Inv_f) |
|
207 |
done |
|
208 |
||
14762 | 209 |
|
14745 | 210 |
subsection{*Cardinality*} |
211 |
||
212 |
lemma card_inj: "[|f \<in> A\<rightarrow>B; inj_on f A; finite B|] ==> card(A) \<le> card(B)" |
|
19736 | 213 |
apply (rule card_inj_on_le) |
214 |
apply (auto simp add: Pi_def) |
|
215 |
done |
|
14745 | 216 |
|
217 |
lemma card_bij: |
|
218 |
"[|f \<in> A\<rightarrow>B; inj_on f A; |
|
219 |
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B|] ==> card(A) = card(B)" |
|
19736 | 220 |
by (blast intro: card_inj order_antisym) |
14745 | 221 |
|
13586 | 222 |
end |