13586

1 
(* Title: HOL/Library/FuncSet.thy


2 
ID: $Id$


3 
Author: Florian Kammueller and Lawrence C Paulson


4 
*)


5 

14706

6 
header {* Pi and Function Sets *}

13586

7 

15131

8 
theory FuncSet

15140

9 
imports Main

15131

10 
begin

13586

11 


12 
constdefs

14706

13 
Pi :: "['a set, 'a => 'b set] => ('a => 'b) set"


14 
"Pi A B == {f. \<forall>x. x \<in> A > f x \<in> B x}"

13586

15 


16 
extensional :: "'a set => ('a => 'b) set"

14706

17 
"extensional A == {f. \<forall>x. x~:A > f x = arbitrary}"

13586

18 

14706

19 
"restrict" :: "['a => 'b, 'a set] => ('a => 'b)"


20 
"restrict f A == (%x. if x \<in> A then f x else arbitrary)"

13586

21 


22 
syntax


23 
"@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3PI _:_./ _)" 10)


24 
funcset :: "['a set, 'b set] => ('a => 'b) set" (infixr ">" 60)


25 
"@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3%_:_./ _)" [0,0,3] 3)


26 


27 
syntax (xsymbols)


28 
"@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10)

14706

29 
funcset :: "['a set, 'b set] => ('a => 'b) set" (infixr "\<rightarrow>" 60)

13586

30 
"@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)


31 

14565

32 
syntax (HTML output)


33 
"@Pi" :: "[pttrn, 'a set, 'b set] => ('a => 'b) set" ("(3\<Pi> _\<in>_./ _)" 10)


34 
"@lam" :: "[pttrn, 'a set, 'a => 'b] => ('a=>'b)" ("(3\<lambda>_\<in>_./ _)" [0,0,3] 3)


35 

13586

36 
translations


37 
"PI x:A. B" => "Pi A (%x. B)"

14706

38 
"A > B" => "Pi A (_K B)"


39 
"%x:A. f" == "restrict (%x. f) A"

13586

40 


41 
constdefs

14706

42 
"compose" :: "['a set, 'b => 'c, 'a => 'b] => ('a => 'c)"

13586

43 
"compose A g f == \<lambda>x\<in>A. g (f x)"


44 

13595

45 
print_translation {* [("Pi", dependent_tr' ("@Pi", "funcset"))] *}

13586

46 


47 


48 
subsection{*Basic Properties of @{term Pi}*}


49 


50 
lemma Pi_I: "(!!x. x \<in> A ==> f x \<in> B x) ==> f \<in> Pi A B"

14706

51 
by (simp add: Pi_def)

13586

52 


53 
lemma funcsetI: "(!!x. x \<in> A ==> f x \<in> B) ==> f \<in> A > B"

14706

54 
by (simp add: Pi_def)

13586

55 


56 
lemma Pi_mem: "[f: Pi A B; x \<in> A] ==> f x \<in> B x"

14706

57 
by (simp add: Pi_def)

13586

58 


59 
lemma funcset_mem: "[f \<in> A > B; x \<in> A] ==> f x \<in> B"

14706

60 
by (simp add: Pi_def)

13586

61 

14762

62 
lemma funcset_image: "f \<in> A\<rightarrow>B ==> f ` A \<subseteq> B"


63 
by (auto simp add: Pi_def)


64 

13586

65 
lemma Pi_eq_empty: "((PI x: A. B x) = {}) = (\<exists>x\<in>A. B(x) = {})"

13593

66 
apply (simp add: Pi_def, auto)

13586

67 
txt{*Converse direction requires Axiom of Choice to exhibit a function


68 
picking an element from each nonempty @{term "B x"}*}

13593

69 
apply (drule_tac x = "%u. SOME y. y \<in> B u" in spec, auto)

14706

70 
apply (cut_tac P= "%y. y \<in> B x" in some_eq_ex, auto)

13586

71 
done


72 

13593

73 
lemma Pi_empty [simp]: "Pi {} B = UNIV"

14706

74 
by (simp add: Pi_def)

13593

75 


76 
lemma Pi_UNIV [simp]: "A > UNIV = UNIV"

14706

77 
by (simp add: Pi_def)

13586

78 


79 
text{*Covariance of Pisets in their second argument*}


80 
lemma Pi_mono: "(!!x. x \<in> A ==> B x <= C x) ==> Pi A B <= Pi A C"

14706

81 
by (simp add: Pi_def, blast)

13586

82 


83 
text{*Contravariance of Pisets in their first argument*}


84 
lemma Pi_anti_mono: "A' <= A ==> Pi A B <= Pi A' B"

14706

85 
by (simp add: Pi_def, blast)

13586

86 


87 


88 
subsection{*Composition With a Restricted Domain: @{term compose}*}


89 

14706

90 
lemma funcset_compose:


91 
"[ f \<in> A > B; g \<in> B > C ]==> compose A g f \<in> A > C"


92 
by (simp add: Pi_def compose_def restrict_def)

13586

93 


94 
lemma compose_assoc:

14706

95 
"[ f \<in> A > B; g \<in> B > C; h \<in> C > D ]

13586

96 
==> compose A h (compose A g f) = compose A (compose B h g) f"

14706

97 
by (simp add: expand_fun_eq Pi_def compose_def restrict_def)

13586

98 


99 
lemma compose_eq: "x \<in> A ==> compose A g f x = g(f(x))"

14706

100 
by (simp add: compose_def restrict_def)

13586

101 


102 
lemma surj_compose: "[ f ` A = B; g ` B = C ] ==> compose A g f ` A = C"

14706

103 
by (auto simp add: image_def compose_eq)

13586

104 


105 


106 
subsection{*Bounded Abstraction: @{term restrict}*}


107 


108 
lemma restrict_in_funcset: "(!!x. x \<in> A ==> f x \<in> B) ==> (\<lambda>x\<in>A. f x) \<in> A > B"

14706

109 
by (simp add: Pi_def restrict_def)

13586

110 


111 
lemma restrictI: "(!!x. x \<in> A ==> f x \<in> B x) ==> (\<lambda>x\<in>A. f x) \<in> Pi A B"

14706

112 
by (simp add: Pi_def restrict_def)

13586

113 


114 
lemma restrict_apply [simp]:

14706

115 
"(\<lambda>y\<in>A. f y) x = (if x \<in> A then f x else arbitrary)"


116 
by (simp add: restrict_def)

13586

117 

14706

118 
lemma restrict_ext:

13586

119 
"(!!x. x \<in> A ==> f x = g x) ==> (\<lambda>x\<in>A. f x) = (\<lambda>x\<in>A. g x)"

14706

120 
by (simp add: expand_fun_eq Pi_def Pi_def restrict_def)

13586

121 

14853

122 
lemma inj_on_restrict_eq [simp]: "inj_on (restrict f A) A = inj_on f A"

14706

123 
by (simp add: inj_on_def restrict_def)

13586

124 


125 
lemma Id_compose:

14706

126 
"[f \<in> A > B; f \<in> extensional A] ==> compose A (\<lambda>y\<in>B. y) f = f"


127 
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)

13586

128 


129 
lemma compose_Id:

14706

130 
"[g \<in> A > B; g \<in> extensional A] ==> compose A g (\<lambda>x\<in>A. x) = g"


131 
by (auto simp add: expand_fun_eq compose_def extensional_def Pi_def)

13586

132 

14853

133 
lemma image_restrict_eq [simp]: "(restrict f A) ` A = f ` A"


134 
by (auto simp add: restrict_def)

13586

135 

14745

136 

14762

137 
subsection{*Bijections Between Sets*}


138 


139 
text{*The basic definition could be moved to @{text "Fun.thy"}, but most of


140 
the theorems belong here, or need at least @{term Hilbert_Choice}.*}


141 


142 
constdefs


143 
bij_betw :: "['a => 'b, 'a set, 'b set] => bool" (*bijective*)


144 
"bij_betw f A B == inj_on f A & f ` A = B"


145 


146 
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"


147 
by (simp add: bij_betw_def)


148 


149 
lemma bij_betw_imp_funcset: "bij_betw f A B \<Longrightarrow> f \<in> A \<rightarrow> B"


150 
by (auto simp add: bij_betw_def inj_on_Inv Pi_def)


151 


152 
lemma bij_betw_Inv: "bij_betw f A B \<Longrightarrow> bij_betw (Inv A f) B A"


153 
apply (auto simp add: bij_betw_def inj_on_Inv Inv_mem)


154 
apply (simp add: image_compose [symmetric] o_def)


155 
apply (simp add: image_def Inv_f_f)


156 
done


157 

14853

158 
lemma inj_on_compose:


159 
"[ bij_betw f A B; inj_on g B ] ==> inj_on (compose A g f) A"


160 
by (auto simp add: bij_betw_def inj_on_def compose_eq)


161 

14762

162 
lemma bij_betw_compose:


163 
"[ bij_betw f A B; bij_betw g B C ] ==> bij_betw (compose A g f) A C"


164 
apply (simp add: bij_betw_def compose_eq inj_on_compose)


165 
apply (auto simp add: compose_def image_def)


166 
done


167 

14853

168 
lemma bij_betw_restrict_eq [simp]:


169 
"bij_betw (restrict f A) A B = bij_betw f A B"


170 
by (simp add: bij_betw_def)


171 


172 


173 
subsection{*Extensionality*}


174 


175 
lemma extensional_arb: "[f \<in> extensional A; x\<notin> A] ==> f x = arbitrary"


176 
by (simp add: extensional_def)


177 


178 
lemma restrict_extensional [simp]: "restrict f A \<in> extensional A"


179 
by (simp add: restrict_def extensional_def)


180 


181 
lemma compose_extensional [simp]: "compose A f g \<in> extensional A"


182 
by (simp add: compose_def)


183 


184 
lemma extensionalityI:


185 
"[ f \<in> extensional A; g \<in> extensional A;


186 
!!x. x\<in>A ==> f x = g x ] ==> f = g"


187 
by (force simp add: expand_fun_eq extensional_def)


188 


189 
lemma Inv_funcset: "f ` A = B ==> (\<lambda>x\<in>B. Inv A f x) : B > A"


190 
by (unfold Inv_def) (fast intro: restrict_in_funcset someI2)


191 


192 
lemma compose_Inv_id:


193 
"bij_betw f A B ==> compose A (\<lambda>y\<in>B. Inv A f y) f = (\<lambda>x\<in>A. x)"


194 
apply (simp add: bij_betw_def compose_def)


195 
apply (rule restrict_ext, auto)


196 
apply (erule subst)


197 
apply (simp add: Inv_f_f)


198 
done


199 


200 
lemma compose_id_Inv:


201 
"f ` A = B ==> compose B f (\<lambda>y\<in>B. Inv A f y) = (\<lambda>x\<in>B. x)"


202 
apply (simp add: compose_def)


203 
apply (rule restrict_ext)


204 
apply (simp add: f_Inv_f)


205 
done


206 

14762

207 

14745

208 
subsection{*Cardinality*}


209 


210 
lemma card_inj: "[f \<in> A\<rightarrow>B; inj_on f A; finite B] ==> card(A) \<le> card(B)"


211 
apply (rule card_inj_on_le)


212 
apply (auto simp add: Pi_def)


213 
done


214 


215 
lemma card_bij:


216 
"[f \<in> A\<rightarrow>B; inj_on f A;


217 
g \<in> B\<rightarrow>A; inj_on g B; finite A; finite B] ==> card(A) = card(B)"


218 
by (blast intro: card_inj order_antisym)


219 

13586

220 
end
