| author | wenzelm | 
| Wed, 14 Oct 2015 17:24:21 +0200 | |
| changeset 61441 | 20ff1d5c74e1 | 
| parent 60758 | d8d85a8172b5 | 
| child 61799 | 4cf66f21b764 | 
| permissions | -rw-r--r-- | 
| 55018 
2a526bd279ed
moved 'Zorn' into 'Main', since it's a BNF dependency
 blanchet parents: 
54552diff
changeset | 1 | (* Title: HOL/Zorn.thy | 
| 52181 | 2 | Author: Jacques D. Fleuriot | 
| 3 | Author: Tobias Nipkow, TUM | |
| 4 | Author: Christian Sternagel, JAIST | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 5 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 6 | Zorn's Lemma (ported from Larry Paulson's Zorn.thy in ZF). | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 7 | The well-ordering theorem. | 
| 14706 | 8 | *) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Zorn's Lemma\<close> | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 11 | |
| 15131 | 12 | theory Zorn | 
| 55018 
2a526bd279ed
moved 'Zorn' into 'Main', since it's a BNF dependency
 blanchet parents: 
54552diff
changeset | 13 | imports Order_Relation Hilbert_Choice | 
| 15131 | 14 | begin | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 15 | |
| 60758 | 16 | subsection \<open>Zorn's Lemma for the Subset Relation\<close> | 
| 52181 | 17 | |
| 60758 | 18 | subsubsection \<open>Results that do not require an order\<close> | 
| 52181 | 19 | |
| 60758 | 20 | text \<open>Let @{text P} be a binary predicate on the set @{text A}.\<close>
 | 
| 52181 | 21 | locale pred_on = | 
| 22 | fixes A :: "'a set" | |
| 23 | and P :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubset>" 50) | |
| 24 | begin | |
| 25 | ||
| 26 | abbreviation Peq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<sqsubseteq>" 50) where | |
| 27 | "x \<sqsubseteq> y \<equiv> P\<^sup>=\<^sup>= x y" | |
| 28 | ||
| 60758 | 29 | text \<open>A chain is a totally ordered subset of @{term A}.\<close>
 | 
| 52181 | 30 | definition chain :: "'a set \<Rightarrow> bool" where | 
| 31 | "chain C \<longleftrightarrow> C \<subseteq> A \<and> (\<forall>x\<in>C. \<forall>y\<in>C. x \<sqsubseteq> y \<or> y \<sqsubseteq> x)" | |
| 32 | ||
| 60758 | 33 | text \<open>We call a chain that is a proper superset of some set @{term X},
 | 
| 34 | but not necessarily a chain itself, a superchain of @{term X}.\<close>
 | |
| 52181 | 35 | abbreviation superchain :: "'a set \<Rightarrow> 'a set \<Rightarrow> bool" (infix "<c" 50) where | 
| 36 | "X <c C \<equiv> chain C \<and> X \<subset> C" | |
| 37 | ||
| 60758 | 38 | text \<open>A maximal chain is a chain that does not have a superchain.\<close> | 
| 52181 | 39 | definition maxchain :: "'a set \<Rightarrow> bool" where | 
| 40 | "maxchain C \<longleftrightarrow> chain C \<and> \<not> (\<exists>S. C <c S)" | |
| 41 | ||
| 60758 | 42 | text \<open>We define the successor of a set to be an arbitrary | 
| 43 | superchain, if such exists, or the set itself, otherwise.\<close> | |
| 52181 | 44 | definition suc :: "'a set \<Rightarrow> 'a set" where | 
| 45 | "suc C = (if \<not> chain C \<or> maxchain C then C else (SOME D. C <c D))" | |
| 46 | ||
| 47 | lemma chainI [Pure.intro?]: | |
| 48 | "\<lbrakk>C \<subseteq> A; \<And>x y. \<lbrakk>x \<in> C; y \<in> C\<rbrakk> \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x\<rbrakk> \<Longrightarrow> chain C" | |
| 49 | unfolding chain_def by blast | |
| 50 | ||
| 51 | lemma chain_total: | |
| 52 | "chain C \<Longrightarrow> x \<in> C \<Longrightarrow> y \<in> C \<Longrightarrow> x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | |
| 53 | by (simp add: chain_def) | |
| 54 | ||
| 55 | lemma not_chain_suc [simp]: "\<not> chain X \<Longrightarrow> suc X = X" | |
| 56 | by (simp add: suc_def) | |
| 57 | ||
| 58 | lemma maxchain_suc [simp]: "maxchain X \<Longrightarrow> suc X = X" | |
| 59 | by (simp add: suc_def) | |
| 60 | ||
| 61 | lemma suc_subset: "X \<subseteq> suc X" | |
| 62 | by (auto simp: suc_def maxchain_def intro: someI2) | |
| 63 | ||
| 64 | lemma chain_empty [simp]: "chain {}"
 | |
| 65 | by (auto simp: chain_def) | |
| 66 | ||
| 67 | lemma not_maxchain_Some: | |
| 68 | "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> C <c (SOME D. C <c D)" | |
| 69 | by (rule someI_ex) (auto simp: maxchain_def) | |
| 70 | ||
| 71 | lemma suc_not_equals: | |
| 72 | "chain C \<Longrightarrow> \<not> maxchain C \<Longrightarrow> suc C \<noteq> C" | |
| 55811 | 73 | using not_maxchain_Some by (auto simp: suc_def) | 
| 52181 | 74 | |
| 75 | lemma subset_suc: | |
| 76 | assumes "X \<subseteq> Y" shows "X \<subseteq> suc Y" | |
| 77 | using assms by (rule subset_trans) (rule suc_subset) | |
| 78 | ||
| 60758 | 79 | text \<open>We build a set @{term \<C>} that is closed under applications
 | 
| 80 | of @{term suc} and contains the union of all its subsets.\<close>
 | |
| 52181 | 81 | inductive_set suc_Union_closed ("\<C>") where
 | 
| 82 | suc: "X \<in> \<C> \<Longrightarrow> suc X \<in> \<C>" | | |
| 83 | Union [unfolded Pow_iff]: "X \<in> Pow \<C> \<Longrightarrow> \<Union>X \<in> \<C>" | |
| 84 | ||
| 60758 | 85 | text \<open>Since the empty set as well as the set itself is a subset of | 
| 52181 | 86 | every set, @{term \<C>} contains at least @{term "{} \<in> \<C>"} and
 | 
| 60758 | 87 | @{term "\<Union>\<C> \<in> \<C>"}.\<close>
 | 
| 52181 | 88 | lemma | 
| 89 |   suc_Union_closed_empty: "{} \<in> \<C>" and
 | |
| 90 | suc_Union_closed_Union: "\<Union>\<C> \<in> \<C>" | |
| 91 |   using Union [of "{}"] and Union [of "\<C>"] by simp+
 | |
| 60758 | 92 | text \<open>Thus closure under @{term suc} will hit a maximal chain
 | 
| 93 | eventually, as is shown below.\<close> | |
| 52181 | 94 | |
| 95 | lemma suc_Union_closed_induct [consumes 1, case_names suc Union, | |
| 96 | induct pred: suc_Union_closed]: | |
| 97 | assumes "X \<in> \<C>" | |
| 98 | and "\<And>X. \<lbrakk>X \<in> \<C>; Q X\<rbrakk> \<Longrightarrow> Q (suc X)" | |
| 99 | and "\<And>X. \<lbrakk>X \<subseteq> \<C>; \<forall>x\<in>X. Q x\<rbrakk> \<Longrightarrow> Q (\<Union>X)" | |
| 100 | shows "Q X" | |
| 101 | using assms by (induct) blast+ | |
| 26272 | 102 | |
| 52181 | 103 | lemma suc_Union_closed_cases [consumes 1, case_names suc Union, | 
| 104 | cases pred: suc_Union_closed]: | |
| 105 | assumes "X \<in> \<C>" | |
| 106 | and "\<And>Y. \<lbrakk>X = suc Y; Y \<in> \<C>\<rbrakk> \<Longrightarrow> Q" | |
| 107 | and "\<And>Y. \<lbrakk>X = \<Union>Y; Y \<subseteq> \<C>\<rbrakk> \<Longrightarrow> Q" | |
| 108 | shows "Q" | |
| 109 | using assms by (cases) simp+ | |
| 110 | ||
| 60758 | 111 | text \<open>On chains, @{term suc} yields a chain.\<close>
 | 
| 52181 | 112 | lemma chain_suc: | 
| 113 | assumes "chain X" shows "chain (suc X)" | |
| 114 | using assms | |
| 115 | by (cases "\<not> chain X \<or> maxchain X") | |
| 116 | (force simp: suc_def dest: not_maxchain_Some)+ | |
| 117 | ||
| 118 | lemma chain_sucD: | |
| 119 | assumes "chain X" shows "suc X \<subseteq> A \<and> chain (suc X)" | |
| 120 | proof - | |
| 60758 | 121 | from \<open>chain X\<close> have *: "chain (suc X)" by (rule chain_suc) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 122 | then have "suc X \<subseteq> A" unfolding chain_def by blast | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 123 | with * show ?thesis by blast | 
| 52181 | 124 | qed | 
| 125 | ||
| 126 | lemma suc_Union_closed_total': | |
| 127 | assumes "X \<in> \<C>" and "Y \<in> \<C>" | |
| 128 | and *: "\<And>Z. Z \<in> \<C> \<Longrightarrow> Z \<subseteq> Y \<Longrightarrow> Z = Y \<or> suc Z \<subseteq> Y" | |
| 129 | shows "X \<subseteq> Y \<or> suc Y \<subseteq> X" | |
| 60758 | 130 | using \<open>X \<in> \<C>\<close> | 
| 52181 | 131 | proof (induct) | 
| 132 | case (suc X) | |
| 133 | with * show ?case by (blast del: subsetI intro: subset_suc) | |
| 134 | qed blast | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 135 | |
| 52181 | 136 | lemma suc_Union_closed_subsetD: | 
| 137 | assumes "Y \<subseteq> X" and "X \<in> \<C>" and "Y \<in> \<C>" | |
| 138 | shows "X = Y \<or> suc Y \<subseteq> X" | |
| 139 | using assms(2-, 1) | |
| 140 | proof (induct arbitrary: Y) | |
| 141 | case (suc X) | |
| 60758 | 142 | note * = \<open>\<And>Y. \<lbrakk>Y \<in> \<C>; Y \<subseteq> X\<rbrakk> \<Longrightarrow> X = Y \<or> suc Y \<subseteq> X\<close> | 
| 143 | with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>X \<in> \<C>\<close>] | |
| 52181 | 144 | have "Y \<subseteq> X \<or> suc X \<subseteq> Y" by blast | 
| 145 | then show ?case | |
| 146 | proof | |
| 147 | assume "Y \<subseteq> X" | |
| 60758 | 148 | with * and \<open>Y \<in> \<C>\<close> have "X = Y \<or> suc Y \<subseteq> X" by blast | 
| 52181 | 149 | then show ?thesis | 
| 150 | proof | |
| 151 | assume "X = Y" then show ?thesis by simp | |
| 152 | next | |
| 153 | assume "suc Y \<subseteq> X" | |
| 154 | then have "suc Y \<subseteq> suc X" by (rule subset_suc) | |
| 155 | then show ?thesis by simp | |
| 156 | qed | |
| 157 | next | |
| 158 | assume "suc X \<subseteq> Y" | |
| 60758 | 159 | with \<open>Y \<subseteq> suc X\<close> show ?thesis by blast | 
| 52181 | 160 | qed | 
| 161 | next | |
| 162 | case (Union X) | |
| 163 | show ?case | |
| 164 | proof (rule ccontr) | |
| 165 | assume "\<not> ?thesis" | |
| 60758 | 166 | with \<open>Y \<subseteq> \<Union>X\<close> obtain x y z | 
| 52181 | 167 | where "\<not> suc Y \<subseteq> \<Union>X" | 
| 168 | and "x \<in> X" and "y \<in> x" and "y \<notin> Y" | |
| 169 | and "z \<in> suc Y" and "\<forall>x\<in>X. z \<notin> x" by blast | |
| 60758 | 170 | with \<open>X \<subseteq> \<C>\<close> have "x \<in> \<C>" by blast | 
| 171 | from Union and \<open>x \<in> X\<close> | |
| 52181 | 172 | have *: "\<And>y. \<lbrakk>y \<in> \<C>; y \<subseteq> x\<rbrakk> \<Longrightarrow> x = y \<or> suc y \<subseteq> x" by blast | 
| 60758 | 173 | with suc_Union_closed_total' [OF \<open>Y \<in> \<C>\<close> \<open>x \<in> \<C>\<close>] | 
| 52181 | 174 | have "Y \<subseteq> x \<or> suc x \<subseteq> Y" by blast | 
| 175 | then show False | |
| 176 | proof | |
| 177 | assume "Y \<subseteq> x" | |
| 60758 | 178 | with * [OF \<open>Y \<in> \<C>\<close>] have "x = Y \<or> suc Y \<subseteq> x" by blast | 
| 52181 | 179 | then show False | 
| 180 | proof | |
| 60758 | 181 | assume "x = Y" with \<open>y \<in> x\<close> and \<open>y \<notin> Y\<close> show False by blast | 
| 52181 | 182 | next | 
| 183 | assume "suc Y \<subseteq> x" | |
| 60758 | 184 | with \<open>x \<in> X\<close> have "suc Y \<subseteq> \<Union>X" by blast | 
| 185 | with \<open>\<not> suc Y \<subseteq> \<Union>X\<close> show False by contradiction | |
| 52181 | 186 | qed | 
| 187 | next | |
| 188 | assume "suc x \<subseteq> Y" | |
| 60758 | 189 | moreover from suc_subset and \<open>y \<in> x\<close> have "y \<in> suc x" by blast | 
| 190 | ultimately show False using \<open>y \<notin> Y\<close> by blast | |
| 52181 | 191 | qed | 
| 192 | qed | |
| 193 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 194 | |
| 60758 | 195 | text \<open>The elements of @{term \<C>} are totally ordered by the subset relation.\<close>
 | 
| 52181 | 196 | lemma suc_Union_closed_total: | 
| 197 | assumes "X \<in> \<C>" and "Y \<in> \<C>" | |
| 198 | shows "X \<subseteq> Y \<or> Y \<subseteq> X" | |
| 199 | proof (cases "\<forall>Z\<in>\<C>. Z \<subseteq> Y \<longrightarrow> Z = Y \<or> suc Z \<subseteq> Y") | |
| 200 | case True | |
| 201 | with suc_Union_closed_total' [OF assms] | |
| 202 | have "X \<subseteq> Y \<or> suc Y \<subseteq> X" by blast | |
| 203 | then show ?thesis using suc_subset [of Y] by blast | |
| 204 | next | |
| 205 | case False | |
| 206 | then obtain Z | |
| 207 | where "Z \<in> \<C>" and "Z \<subseteq> Y" and "Z \<noteq> Y" and "\<not> suc Z \<subseteq> Y" by blast | |
| 60758 | 208 | with suc_Union_closed_subsetD and \<open>Y \<in> \<C>\<close> show ?thesis by blast | 
| 52181 | 209 | qed | 
| 210 | ||
| 60758 | 211 | text \<open>Once we hit a fixed point w.r.t. @{term suc}, all other elements
 | 
| 212 | of @{term \<C>} are subsets of this fixed point.\<close>
 | |
| 52181 | 213 | lemma suc_Union_closed_suc: | 
| 214 | assumes "X \<in> \<C>" and "Y \<in> \<C>" and "suc Y = Y" | |
| 215 | shows "X \<subseteq> Y" | |
| 60758 | 216 | using \<open>X \<in> \<C>\<close> | 
| 52181 | 217 | proof (induct) | 
| 218 | case (suc X) | |
| 60758 | 219 | with \<open>Y \<in> \<C>\<close> and suc_Union_closed_subsetD | 
| 52181 | 220 | have "X = Y \<or> suc X \<subseteq> Y" by blast | 
| 60758 | 221 | then show ?case by (auto simp: \<open>suc Y = Y\<close>) | 
| 52181 | 222 | qed blast | 
| 223 | ||
| 224 | lemma eq_suc_Union: | |
| 225 | assumes "X \<in> \<C>" | |
| 226 | shows "suc X = X \<longleftrightarrow> X = \<Union>\<C>" | |
| 227 | proof | |
| 228 | assume "suc X = X" | |
| 60758 | 229 | with suc_Union_closed_suc [OF suc_Union_closed_Union \<open>X \<in> \<C>\<close>] | 
| 52181 | 230 | have "\<Union>\<C> \<subseteq> X" . | 
| 60758 | 231 | with \<open>X \<in> \<C>\<close> show "X = \<Union>\<C>" by blast | 
| 52181 | 232 | next | 
| 60758 | 233 | from \<open>X \<in> \<C>\<close> have "suc X \<in> \<C>" by (rule suc) | 
| 52181 | 234 | then have "suc X \<subseteq> \<Union>\<C>" by blast | 
| 235 | moreover assume "X = \<Union>\<C>" | |
| 236 | ultimately have "suc X \<subseteq> X" by simp | |
| 237 | moreover have "X \<subseteq> suc X" by (rule suc_subset) | |
| 238 | ultimately show "suc X = X" .. | |
| 239 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 240 | |
| 52181 | 241 | lemma suc_in_carrier: | 
| 242 | assumes "X \<subseteq> A" | |
| 243 | shows "suc X \<subseteq> A" | |
| 244 | using assms | |
| 245 | by (cases "\<not> chain X \<or> maxchain X") | |
| 246 | (auto dest: chain_sucD) | |
| 247 | ||
| 248 | lemma suc_Union_closed_in_carrier: | |
| 249 | assumes "X \<in> \<C>" | |
| 250 | shows "X \<subseteq> A" | |
| 251 | using assms | |
| 252 | by (induct) (auto dest: suc_in_carrier) | |
| 253 | ||
| 60758 | 254 | text \<open>All elements of @{term \<C>} are chains.\<close>
 | 
| 52181 | 255 | lemma suc_Union_closed_chain: | 
| 256 | assumes "X \<in> \<C>" | |
| 257 | shows "chain X" | |
| 258 | using assms | |
| 259 | proof (induct) | |
| 55811 | 260 | case (suc X) then show ?case using not_maxchain_Some by (simp add: suc_def) | 
| 52181 | 261 | next | 
| 262 | case (Union X) | |
| 263 | then have "\<Union>X \<subseteq> A" by (auto dest: suc_Union_closed_in_carrier) | |
| 264 | moreover have "\<forall>x\<in>\<Union>X. \<forall>y\<in>\<Union>X. x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | |
| 265 | proof (intro ballI) | |
| 266 | fix x y | |
| 267 | assume "x \<in> \<Union>X" and "y \<in> \<Union>X" | |
| 268 | then obtain u v where "x \<in> u" and "u \<in> X" and "y \<in> v" and "v \<in> X" by blast | |
| 269 | with Union have "u \<in> \<C>" and "v \<in> \<C>" and "chain u" and "chain v" by blast+ | |
| 270 | with suc_Union_closed_total have "u \<subseteq> v \<or> v \<subseteq> u" by blast | |
| 271 | then show "x \<sqsubseteq> y \<or> y \<sqsubseteq> x" | |
| 272 | proof | |
| 273 | assume "u \<subseteq> v" | |
| 60758 | 274 | from \<open>chain v\<close> show ?thesis | 
| 52181 | 275 | proof (rule chain_total) | 
| 276 | show "y \<in> v" by fact | |
| 60758 | 277 | show "x \<in> v" using \<open>u \<subseteq> v\<close> and \<open>x \<in> u\<close> by blast | 
| 52181 | 278 | qed | 
| 279 | next | |
| 280 | assume "v \<subseteq> u" | |
| 60758 | 281 | from \<open>chain u\<close> show ?thesis | 
| 52181 | 282 | proof (rule chain_total) | 
| 283 | show "x \<in> u" by fact | |
| 60758 | 284 | show "y \<in> u" using \<open>v \<subseteq> u\<close> and \<open>y \<in> v\<close> by blast | 
| 52181 | 285 | qed | 
| 286 | qed | |
| 287 | qed | |
| 288 | ultimately show ?case unfolding chain_def .. | |
| 289 | qed | |
| 290 | ||
| 60758 | 291 | subsubsection \<open>Hausdorff's Maximum Principle\<close> | 
| 52181 | 292 | |
| 60758 | 293 | text \<open>There exists a maximal totally ordered subset of @{term A}. (Note that we do not
 | 
| 294 | require @{term A} to be partially ordered.)\<close>
 | |
| 46980 | 295 | |
| 52181 | 296 | theorem Hausdorff: "\<exists>C. maxchain C" | 
| 297 | proof - | |
| 298 | let ?M = "\<Union>\<C>" | |
| 299 | have "maxchain ?M" | |
| 300 | proof (rule ccontr) | |
| 301 | assume "\<not> maxchain ?M" | |
| 302 | then have "suc ?M \<noteq> ?M" | |
| 303 | using suc_not_equals and | |
| 304 | suc_Union_closed_chain [OF suc_Union_closed_Union] by simp | |
| 305 | moreover have "suc ?M = ?M" | |
| 306 | using eq_suc_Union [OF suc_Union_closed_Union] by simp | |
| 307 | ultimately show False by contradiction | |
| 308 | qed | |
| 309 | then show ?thesis by blast | |
| 310 | qed | |
| 311 | ||
| 60758 | 312 | text \<open>Make notation @{term \<C>} available again.\<close>
 | 
| 52181 | 313 | no_notation suc_Union_closed ("\<C>")
 | 
| 314 | ||
| 315 | lemma chain_extend: | |
| 316 |   "chain C \<Longrightarrow> z \<in> A \<Longrightarrow> \<forall>x\<in>C. x \<sqsubseteq> z \<Longrightarrow> chain ({z} \<union> C)"
 | |
| 317 | unfolding chain_def by blast | |
| 318 | ||
| 319 | lemma maxchain_imp_chain: | |
| 320 | "maxchain C \<Longrightarrow> chain C" | |
| 321 | by (simp add: maxchain_def) | |
| 322 | ||
| 323 | end | |
| 324 | ||
| 60758 | 325 | text \<open>Hide constant @{const pred_on.suc_Union_closed}, which was just needed
 | 
| 326 | for the proof of Hausforff's maximum principle.\<close> | |
| 52181 | 327 | hide_const pred_on.suc_Union_closed | 
| 328 | ||
| 329 | lemma chain_mono: | |
| 330 | assumes "\<And>x y. \<lbrakk>x \<in> A; y \<in> A; P x y\<rbrakk> \<Longrightarrow> Q x y" | |
| 331 | and "pred_on.chain A P C" | |
| 332 | shows "pred_on.chain A Q C" | |
| 333 | using assms unfolding pred_on.chain_def by blast | |
| 334 | ||
| 60758 | 335 | subsubsection \<open>Results for the proper subset relation\<close> | 
| 52181 | 336 | |
| 337 | interpretation subset: pred_on "A" "op \<subset>" for A . | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 338 | |
| 52181 | 339 | lemma subset_maxchain_max: | 
| 340 | assumes "subset.maxchain A C" and "X \<in> A" and "\<Union>C \<subseteq> X" | |
| 341 | shows "\<Union>C = X" | |
| 342 | proof (rule ccontr) | |
| 343 |   let ?C = "{X} \<union> C"
 | |
| 60758 | 344 | from \<open>subset.maxchain A C\<close> have "subset.chain A C" | 
| 52181 | 345 | and *: "\<And>S. subset.chain A S \<Longrightarrow> \<not> C \<subset> S" | 
| 346 | by (auto simp: subset.maxchain_def) | |
| 60758 | 347 | moreover have "\<forall>x\<in>C. x \<subseteq> X" using \<open>\<Union>C \<subseteq> X\<close> by auto | 
| 52181 | 348 | ultimately have "subset.chain A ?C" | 
| 60758 | 349 | using subset.chain_extend [of A C X] and \<open>X \<in> A\<close> by auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 350 | moreover assume **: "\<Union>C \<noteq> X" | 
| 60758 | 351 | moreover from ** have "C \<subset> ?C" using \<open>\<Union>C \<subseteq> X\<close> by auto | 
| 52181 | 352 | ultimately show False using * by blast | 
| 353 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 354 | |
| 60758 | 355 | subsubsection \<open>Zorn's lemma\<close> | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 356 | |
| 60758 | 357 | text \<open>If every chain has an upper bound, then there is a maximal set.\<close> | 
| 52181 | 358 | lemma subset_Zorn: | 
| 359 | assumes "\<And>C. subset.chain A C \<Longrightarrow> \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U" | |
| 360 | shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 361 | proof - | |
| 362 | from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. | |
| 363 | then have "subset.chain A M" by (rule subset.maxchain_imp_chain) | |
| 364 | with assms obtain Y where "Y \<in> A" and "\<forall>X\<in>M. X \<subseteq> Y" by blast | |
| 365 | moreover have "\<forall>X\<in>A. Y \<subseteq> X \<longrightarrow> Y = X" | |
| 366 | proof (intro ballI impI) | |
| 367 | fix X | |
| 368 | assume "X \<in> A" and "Y \<subseteq> X" | |
| 369 | show "Y = X" | |
| 370 | proof (rule ccontr) | |
| 371 | assume "Y \<noteq> X" | |
| 60758 | 372 | with \<open>Y \<subseteq> X\<close> have "\<not> X \<subseteq> Y" by blast | 
| 373 | from subset.chain_extend [OF \<open>subset.chain A M\<close> \<open>X \<in> A\<close>] and \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> | |
| 374 |         have "subset.chain A ({X} \<union> M)" using \<open>Y \<subseteq> X\<close> by auto
 | |
| 375 |       moreover have "M \<subset> {X} \<union> M" using \<open>\<forall>X\<in>M. X \<subseteq> Y\<close> and \<open>\<not> X \<subseteq> Y\<close> by auto
 | |
| 52181 | 376 | ultimately show False | 
| 60758 | 377 | using \<open>subset.maxchain A M\<close> by (auto simp: subset.maxchain_def) | 
| 52181 | 378 | qed | 
| 379 | qed | |
| 55811 | 380 | ultimately show ?thesis by blast | 
| 52181 | 381 | qed | 
| 382 | ||
| 60758 | 383 | text\<open>Alternative version of Zorn's lemma for the subset relation.\<close> | 
| 52181 | 384 | lemma subset_Zorn': | 
| 385 | assumes "\<And>C. subset.chain A C \<Longrightarrow> \<Union>C \<in> A" | |
| 386 | shows "\<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 387 | proof - | |
| 388 | from subset.Hausdorff [of A] obtain M where "subset.maxchain A M" .. | |
| 389 | then have "subset.chain A M" by (rule subset.maxchain_imp_chain) | |
| 390 | with assms have "\<Union>M \<in> A" . | |
| 391 | moreover have "\<forall>Z\<in>A. \<Union>M \<subseteq> Z \<longrightarrow> \<Union>M = Z" | |
| 392 | proof (intro ballI impI) | |
| 393 | fix Z | |
| 394 | assume "Z \<in> A" and "\<Union>M \<subseteq> Z" | |
| 60758 | 395 | with subset_maxchain_max [OF \<open>subset.maxchain A M\<close>] | 
| 52181 | 396 | show "\<Union>M = Z" . | 
| 397 | qed | |
| 398 | ultimately show ?thesis by blast | |
| 399 | qed | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 400 | |
| 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 401 | |
| 60758 | 402 | subsection \<open>Zorn's Lemma for Partial Orders\<close> | 
| 52181 | 403 | |
| 60758 | 404 | text \<open>Relate old to new definitions.\<close> | 
| 17200 | 405 | |
| 52181 | 406 | (* Define globally? In Set.thy? *) | 
| 407 | definition chain_subset :: "'a set set \<Rightarrow> bool" ("chain\<^sub>\<subseteq>") where
 | |
| 408 | "chain\<^sub>\<subseteq> C \<longleftrightarrow> (\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A)" | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 409 | |
| 52181 | 410 | definition chains :: "'a set set \<Rightarrow> 'a set set set" where | 
| 411 |   "chains A = {C. C \<subseteq> A \<and> chain\<^sub>\<subseteq> C}"
 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 412 | |
| 52181 | 413 | (* Define globally? In Relation.thy? *) | 
| 414 | definition Chains :: "('a \<times> 'a) set \<Rightarrow> 'a set set" where
 | |
| 415 |   "Chains r = {C. \<forall>a\<in>C. \<forall>b\<in>C. (a, b) \<in> r \<or> (b, a) \<in> r}"
 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 416 | |
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 417 | lemma chains_extend: | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 418 |   "[| c \<in> chains S; z \<in> S; \<forall>x \<in> c. x \<subseteq> (z:: 'a set) |] ==> {z} Un c \<in> chains S"
 | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 419 | by (unfold chains_def chain_subset_def) blast | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 420 | |
| 52181 | 421 | lemma mono_Chains: "r \<subseteq> s \<Longrightarrow> Chains r \<subseteq> Chains s" | 
| 422 | unfolding Chains_def by blast | |
| 423 | ||
| 424 | lemma chain_subset_alt_def: "chain\<^sub>\<subseteq> C = subset.chain UNIV C" | |
| 54482 | 425 | unfolding chain_subset_def subset.chain_def by fast | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 426 | |
| 52181 | 427 | lemma chains_alt_def: "chains A = {C. subset.chain A C}"
 | 
| 428 | by (simp add: chains_def chain_subset_alt_def subset.chain_def) | |
| 429 | ||
| 430 | lemma Chains_subset: | |
| 431 |   "Chains r \<subseteq> {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | |
| 432 | by (force simp add: Chains_def pred_on.chain_def) | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 433 | |
| 52181 | 434 | lemma Chains_subset': | 
| 435 | assumes "refl r" | |
| 436 |   shows "{C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C} \<subseteq> Chains r"
 | |
| 437 | using assms | |
| 438 | by (auto simp add: Chains_def pred_on.chain_def refl_on_def) | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 439 | |
| 52181 | 440 | lemma Chains_alt_def: | 
| 441 | assumes "refl r" | |
| 442 |   shows "Chains r = {C. pred_on.chain UNIV (\<lambda>x y. (x, y) \<in> r) C}"
 | |
| 55811 | 443 | using assms Chains_subset Chains_subset' by blast | 
| 52181 | 444 | |
| 445 | lemma Zorn_Lemma: | |
| 446 | "\<forall>C\<in>chains A. \<Union>C \<in> A \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 447 | using subset_Zorn' [of A] by (force simp: chains_alt_def) | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 448 | |
| 52181 | 449 | lemma Zorn_Lemma2: | 
| 450 | "\<forall>C\<in>chains A. \<exists>U\<in>A. \<forall>X\<in>C. X \<subseteq> U \<Longrightarrow> \<exists>M\<in>A. \<forall>X\<in>A. M \<subseteq> X \<longrightarrow> X = M" | |
| 451 | using subset_Zorn [of A] by (auto simp: chains_alt_def) | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 452 | |
| 60758 | 453 | text\<open>Various other lemmas\<close> | 
| 52183 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 454 | |
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 455 | lemma chainsD: "[| c \<in> chains S; x \<in> c; y \<in> c |] ==> x \<subseteq> y | y \<subseteq> x" | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 456 | by (unfold chains_def chain_subset_def) blast | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 457 | |
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 458 | lemma chainsD2: "!!(c :: 'a set set). c \<in> chains S ==> c \<subseteq> S" | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 459 | by (unfold chains_def) blast | 
| 
667961fa6a60
fixed files broken due to Zorn changes (cf. 59e5dd7b8f9a)
 popescua parents: 
52181diff
changeset | 460 | |
| 52181 | 461 | lemma Zorns_po_lemma: | 
| 462 | assumes po: "Partial_order r" | |
| 463 | and u: "\<forall>C\<in>Chains r. \<exists>u\<in>Field r. \<forall>a\<in>C. (a, u) \<in> r" | |
| 464 | shows "\<exists>m\<in>Field r. \<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" | |
| 465 | proof - | |
| 466 | have "Preorder r" using po by (simp add: partial_order_on_def) | |
| 60758 | 467 | --\<open>Mirror r in the set of subsets below (wrt r) elements of A\<close> | 
| 52181 | 468 |   let ?B = "%x. r\<inverse> `` {x}" let ?S = "?B ` Field r"
 | 
| 469 |   {
 | |
| 470 | fix C assume 1: "C \<subseteq> ?S" and 2: "\<forall>A\<in>C. \<forall>B\<in>C. A \<subseteq> B \<or> B \<subseteq> A" | |
| 471 |     let ?A = "{x\<in>Field r. \<exists>M\<in>C. M = ?B x}"
 | |
| 472 | have "C = ?B ` ?A" using 1 by (auto simp: image_def) | |
| 473 | have "?A \<in> Chains r" | |
| 474 | proof (simp add: Chains_def, intro allI impI, elim conjE) | |
| 475 | fix a b | |
| 476 | assume "a \<in> Field r" and "?B a \<in> C" and "b \<in> Field r" and "?B b \<in> C" | |
| 477 | hence "?B a \<subseteq> ?B b \<or> ?B b \<subseteq> ?B a" using 2 by auto | |
| 478 | thus "(a, b) \<in> r \<or> (b, a) \<in> r" | |
| 60758 | 479 | using \<open>Preorder r\<close> and \<open>a \<in> Field r\<close> and \<open>b \<in> Field r\<close> | 
| 52181 | 480 | by (simp add:subset_Image1_Image1_iff) | 
| 481 | qed | |
| 482 | then obtain u where uA: "u \<in> Field r" "\<forall>a\<in>?A. (a, u) \<in> r" using u by auto | |
| 483 |     have "\<forall>A\<in>C. A \<subseteq> r\<inverse> `` {u}" (is "?P u")
 | |
| 484 | proof auto | |
| 485 | fix a B assume aB: "B \<in> C" "a \<in> B" | |
| 486 |       with 1 obtain x where "x \<in> Field r" and "B = r\<inverse> `` {x}" by auto
 | |
| 60758 | 487 | thus "(a, u) \<in> r" using uA and aB and \<open>Preorder r\<close> | 
| 54482 | 488 | unfolding preorder_on_def refl_on_def by simp (fast dest: transD) | 
| 52181 | 489 | qed | 
| 60758 | 490 | then have "\<exists>u\<in>Field r. ?P u" using \<open>u \<in> Field r\<close> by blast | 
| 52181 | 491 | } | 
| 492 | then have "\<forall>C\<in>chains ?S. \<exists>U\<in>?S. \<forall>A\<in>C. A \<subseteq> U" | |
| 493 | by (auto simp: chains_def chain_subset_def) | |
| 494 | from Zorn_Lemma2 [OF this] | |
| 495 |   obtain m B where "m \<in> Field r" and "B = r\<inverse> `` {m}"
 | |
| 496 |     and "\<forall>x\<in>Field r. B \<subseteq> r\<inverse> `` {x} \<longrightarrow> r\<inverse> `` {x} = B"
 | |
| 497 | by auto | |
| 498 | hence "\<forall>a\<in>Field r. (m, a) \<in> r \<longrightarrow> a = m" | |
| 60758 | 499 | using po and \<open>Preorder r\<close> and \<open>m \<in> Field r\<close> | 
| 52181 | 500 | by (auto simp: subset_Image1_Image1_iff Partial_order_eq_Image1_Image1_iff) | 
| 60758 | 501 | thus ?thesis using \<open>m \<in> Field r\<close> by blast | 
| 52181 | 502 | qed | 
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 503 | |
| 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 504 | |
| 60758 | 505 | subsection \<open>The Well Ordering Theorem\<close> | 
| 26191 | 506 | |
| 507 | (* The initial segment of a relation appears generally useful. | |
| 508 | Move to Relation.thy? | |
| 509 | Definition correct/most general? | |
| 510 | Naming? | |
| 511 | *) | |
| 52181 | 512 | definition init_seg_of :: "(('a \<times> 'a) set \<times> ('a \<times> 'a) set) set" where
 | 
| 513 |   "init_seg_of = {(r, s). r \<subseteq> s \<and> (\<forall>a b c. (a, b) \<in> s \<and> (b, c) \<in> r \<longrightarrow> (a, b) \<in> r)}"
 | |
| 26191 | 514 | |
| 52181 | 515 | abbreviation | 
| 516 |   initialSegmentOf :: "('a \<times> 'a) set \<Rightarrow> ('a \<times> 'a) set \<Rightarrow> bool" (infix "initial'_segment'_of" 55)
 | |
| 517 | where | |
| 518 | "r initial_segment_of s \<equiv> (r, s) \<in> init_seg_of" | |
| 26191 | 519 | |
| 52181 | 520 | lemma refl_on_init_seg_of [simp]: "r initial_segment_of r" | 
| 521 | by (simp add: init_seg_of_def) | |
| 26191 | 522 | |
| 523 | lemma trans_init_seg_of: | |
| 524 | "r initial_segment_of s \<Longrightarrow> s initial_segment_of t \<Longrightarrow> r initial_segment_of t" | |
| 54482 | 525 | by (simp (no_asm_use) add: init_seg_of_def) blast | 
| 26191 | 526 | |
| 527 | lemma antisym_init_seg_of: | |
| 52181 | 528 | "r initial_segment_of s \<Longrightarrow> s initial_segment_of r \<Longrightarrow> r = s" | 
| 529 | unfolding init_seg_of_def by safe | |
| 26191 | 530 | |
| 52181 | 531 | lemma Chains_init_seg_of_Union: | 
| 532 | "R \<in> Chains init_seg_of \<Longrightarrow> r\<in>R \<Longrightarrow> r initial_segment_of \<Union>R" | |
| 533 | by (auto simp: init_seg_of_def Ball_def Chains_def) blast | |
| 26191 | 534 | |
| 26272 | 535 | lemma chain_subset_trans_Union: | 
| 55811 | 536 | assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. trans r" | 
| 537 | shows "trans (\<Union>R)" | |
| 538 | proof (intro transI, elim UnionE) | |
| 539 | fix S1 S2 :: "'a rel" and x y z :: 'a | |
| 540 | assume "S1 \<in> R" "S2 \<in> R" | |
| 541 | with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast | |
| 542 | moreover assume "(x, y) \<in> S1" "(y, z) \<in> S2" | |
| 543 | ultimately have "((x, y) \<in> S1 \<and> (y, z) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, z) \<in> S2)" by blast | |
| 60758 | 544 | with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "(x, z) \<in> \<Union>R" by (auto elim: transE) | 
| 55811 | 545 | qed | 
| 26191 | 546 | |
| 26272 | 547 | lemma chain_subset_antisym_Union: | 
| 55811 | 548 | assumes "chain\<^sub>\<subseteq> R" "\<forall>r\<in>R. antisym r" | 
| 549 | shows "antisym (\<Union>R)" | |
| 550 | proof (intro antisymI, elim UnionE) | |
| 551 | fix S1 S2 :: "'a rel" and x y :: 'a | |
| 552 | assume "S1 \<in> R" "S2 \<in> R" | |
| 553 | with assms(1) have "S1 \<subseteq> S2 \<or> S2 \<subseteq> S1" unfolding chain_subset_def by blast | |
| 554 | moreover assume "(x, y) \<in> S1" "(y, x) \<in> S2" | |
| 555 | ultimately have "((x, y) \<in> S1 \<and> (y, x) \<in> S1) \<or> ((x, y) \<in> S2 \<and> (y, x) \<in> S2)" by blast | |
| 60758 | 556 | with \<open>S1 \<in> R\<close> \<open>S2 \<in> R\<close> assms(2) show "x = y" unfolding antisym_def by auto | 
| 55811 | 557 | qed | 
| 26191 | 558 | |
| 26272 | 559 | lemma chain_subset_Total_Union: | 
| 52181 | 560 | assumes "chain\<^sub>\<subseteq> R" and "\<forall>r\<in>R. Total r" | 
| 561 | shows "Total (\<Union>R)" | |
| 562 | proof (simp add: total_on_def Ball_def, auto del: disjCI) | |
| 563 | fix r s a b assume A: "r \<in> R" "s \<in> R" "a \<in> Field r" "b \<in> Field s" "a \<noteq> b" | |
| 60758 | 564 | from \<open>chain\<^sub>\<subseteq> R\<close> and \<open>r \<in> R\<close> and \<open>s \<in> R\<close> have "r \<subseteq> s \<or> s \<subseteq> r" | 
| 52181 | 565 | by (auto simp add: chain_subset_def) | 
| 566 | thus "(\<exists>r\<in>R. (a, b) \<in> r) \<or> (\<exists>r\<in>R. (b, a) \<in> r)" | |
| 26191 | 567 | proof | 
| 55811 | 568 | assume "r \<subseteq> s" hence "(a, b) \<in> s \<or> (b, a) \<in> s" using assms(2) A mono_Field[of r s] | 
| 569 | by (auto simp add: total_on_def) | |
| 60758 | 570 | thus ?thesis using \<open>s \<in> R\<close> by blast | 
| 26191 | 571 | next | 
| 55811 | 572 | assume "s \<subseteq> r" hence "(a, b) \<in> r \<or> (b, a) \<in> r" using assms(2) A mono_Field[of s r] | 
| 573 | by (fastforce simp add: total_on_def) | |
| 60758 | 574 | thus ?thesis using \<open>r \<in> R\<close> by blast | 
| 26191 | 575 | qed | 
| 576 | qed | |
| 577 | ||
| 578 | lemma wf_Union_wf_init_segs: | |
| 52181 | 579 | assumes "R \<in> Chains init_seg_of" and "\<forall>r\<in>R. wf r" | 
| 580 | shows "wf (\<Union>R)" | |
| 581 | proof(simp add: wf_iff_no_infinite_down_chain, rule ccontr, auto) | |
| 582 | fix f assume 1: "\<forall>i. \<exists>r\<in>R. (f (Suc i), f i) \<in> r" | |
| 583 | then obtain r where "r \<in> R" and "(f (Suc 0), f 0) \<in> r" by auto | |
| 584 |   { fix i have "(f (Suc i), f i) \<in> r"
 | |
| 585 | proof (induct i) | |
| 26191 | 586 | case 0 show ?case by fact | 
| 587 | next | |
| 588 | case (Suc i) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 589 | then obtain s where s: "s \<in> R" "(f (Suc (Suc i)), f(Suc i)) \<in> s" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30663diff
changeset | 590 | using 1 by auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 591 | then have "s initial_segment_of r \<or> r initial_segment_of s" | 
| 60758 | 592 | using assms(1) \<open>r \<in> R\<close> by (simp add: Chains_def) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52821diff
changeset | 593 | with Suc s show ?case by (simp add: init_seg_of_def) blast | 
| 26191 | 594 | qed | 
| 595 | } | |
| 60758 | 596 | thus False using assms(2) and \<open>r \<in> R\<close> | 
| 52181 | 597 | by (simp add: wf_iff_no_infinite_down_chain) blast | 
| 26191 | 598 | qed | 
| 599 | ||
| 27476 | 600 | lemma initial_segment_of_Diff: | 
| 601 | "p initial_segment_of q \<Longrightarrow> p - s initial_segment_of q - s" | |
| 52181 | 602 | unfolding init_seg_of_def by blast | 
| 27476 | 603 | |
| 52181 | 604 | lemma Chains_inits_DiffI: | 
| 605 |   "R \<in> Chains init_seg_of \<Longrightarrow> {r - s |r. r \<in> R} \<in> Chains init_seg_of"
 | |
| 606 | unfolding Chains_def by (blast intro: initial_segment_of_Diff) | |
| 26191 | 607 | |
| 52181 | 608 | theorem well_ordering: "\<exists>r::'a rel. Well_order r \<and> Field r = UNIV" | 
| 609 | proof - | |
| 60758 | 610 | -- \<open>The initial segment relation on well-orders:\<close> | 
| 52181 | 611 |   let ?WO = "{r::'a rel. Well_order r}"
 | 
| 26191 | 612 | def I \<equiv> "init_seg_of \<inter> ?WO \<times> ?WO" | 
| 52181 | 613 | have I_init: "I \<subseteq> init_seg_of" by (auto simp: I_def) | 
| 614 | hence subch: "\<And>R. R \<in> Chains I \<Longrightarrow> chain\<^sub>\<subseteq> R" | |
| 54482 | 615 | unfolding init_seg_of_def chain_subset_def Chains_def by blast | 
| 52181 | 616 | have Chains_wo: "\<And>R r. R \<in> Chains I \<Longrightarrow> r \<in> R \<Longrightarrow> Well_order r" | 
| 617 | by (simp add: Chains_def I_def) blast | |
| 618 | have FI: "Field I = ?WO" by (auto simp add: I_def init_seg_of_def Field_def) | |
| 26191 | 619 | hence 0: "Partial_order I" | 
| 52181 | 620 | by (auto simp: partial_order_on_def preorder_on_def antisym_def antisym_init_seg_of refl_on_def | 
| 621 | trans_def I_def elim!: trans_init_seg_of) | |
| 60758 | 622 | -- \<open>I-chains have upper bounds in ?WO wrt I: their Union\<close> | 
| 52181 | 623 |   { fix R assume "R \<in> Chains I"
 | 
| 624 | hence Ris: "R \<in> Chains init_seg_of" using mono_Chains [OF I_init] by blast | |
| 60758 | 625 | have subch: "chain\<^sub>\<subseteq> R" using \<open>R : Chains I\<close> I_init | 
| 52181 | 626 | by (auto simp: init_seg_of_def chain_subset_def Chains_def) | 
| 627 | have "\<forall>r\<in>R. Refl r" and "\<forall>r\<in>R. trans r" and "\<forall>r\<in>R. antisym r" | |
| 628 | and "\<forall>r\<in>R. Total r" and "\<forall>r\<in>R. wf (r - Id)" | |
| 60758 | 629 | using Chains_wo [OF \<open>R \<in> Chains I\<close>] by (simp_all add: order_on_defs) | 
| 630 | have "Refl (\<Union>R)" using \<open>\<forall>r\<in>R. Refl r\<close> unfolding refl_on_def by fastforce | |
| 26191 | 631 | moreover have "trans (\<Union>R)" | 
| 60758 | 632 | by (rule chain_subset_trans_Union [OF subch \<open>\<forall>r\<in>R. trans r\<close>]) | 
| 52181 | 633 | moreover have "antisym (\<Union>R)" | 
| 60758 | 634 | by (rule chain_subset_antisym_Union [OF subch \<open>\<forall>r\<in>R. antisym r\<close>]) | 
| 26191 | 635 | moreover have "Total (\<Union>R)" | 
| 60758 | 636 | by (rule chain_subset_Total_Union [OF subch \<open>\<forall>r\<in>R. Total r\<close>]) | 
| 52181 | 637 | moreover have "wf ((\<Union>R) - Id)" | 
| 638 | proof - | |
| 639 |       have "(\<Union>R) - Id = \<Union>{r - Id | r. r \<in> R}" by blast
 | |
| 60758 | 640 | with \<open>\<forall>r\<in>R. wf (r - Id)\<close> and wf_Union_wf_init_segs [OF Chains_inits_DiffI [OF Ris]] | 
| 54482 | 641 | show ?thesis by fastforce | 
| 26191 | 642 | qed | 
| 26295 | 643 | ultimately have "Well_order (\<Union>R)" by(simp add:order_on_defs) | 
| 26191 | 644 | moreover have "\<forall>r \<in> R. r initial_segment_of \<Union>R" using Ris | 
| 52181 | 645 | by(simp add: Chains_init_seg_of_Union) | 
| 646 | ultimately have "\<Union>R \<in> ?WO \<and> (\<forall>r\<in>R. (r, \<Union>R) \<in> I)" | |
| 60758 | 647 | using mono_Chains [OF I_init] Chains_wo[of R] and \<open>R \<in> Chains I\<close> | 
| 55811 | 648 | unfolding I_def by blast | 
| 26191 | 649 | } | 
| 52181 | 650 | hence 1: "\<forall>R \<in> Chains I. \<exists>u\<in>Field I. \<forall>r\<in>R. (r, u) \<in> I" by (subst FI) blast | 
| 60758 | 651 | --\<open>Zorn's Lemma yields a maximal well-order m:\<close> | 
| 52181 | 652 | then obtain m::"'a rel" where "Well_order m" and | 
| 653 | max: "\<forall>r. Well_order r \<and> (m, r) \<in> I \<longrightarrow> r = m" | |
| 54482 | 654 | using Zorns_po_lemma[OF 0 1] unfolding FI by fastforce | 
| 60758 | 655 | --\<open>Now show by contradiction that m covers the whole type:\<close> | 
| 26191 | 656 |   { fix x::'a assume "x \<notin> Field m"
 | 
| 60758 | 657 | --\<open>We assume that x is not covered and extend m at the top with x\<close> | 
| 26191 | 658 |     have "m \<noteq> {}"
 | 
| 659 | proof | |
| 52181 | 660 |       assume "m = {}"
 | 
| 661 |       moreover have "Well_order {(x, x)}"
 | |
| 662 | by (simp add: order_on_defs refl_on_def trans_def antisym_def total_on_def Field_def) | |
| 26191 | 663 | ultimately show False using max | 
| 52181 | 664 | by (auto simp: I_def init_seg_of_def simp del: Field_insert) | 
| 26191 | 665 | qed | 
| 666 |     hence "Field m \<noteq> {}" by(auto simp:Field_def)
 | |
| 60758 | 667 | moreover have "wf (m - Id)" using \<open>Well_order m\<close> | 
| 52181 | 668 | by (simp add: well_order_on_def) | 
| 60758 | 669 | --\<open>The extension of m by x:\<close> | 
| 52181 | 670 |     let ?s = "{(a, x) | a. a \<in> Field m}"
 | 
| 671 | let ?m = "insert (x, x) m \<union> ?s" | |
| 26191 | 672 | have Fm: "Field ?m = insert x (Field m)" | 
| 52181 | 673 | by (auto simp: Field_def) | 
| 674 | have "Refl m" and "trans m" and "antisym m" and "Total m" and "wf (m - Id)" | |
| 60758 | 675 | using \<open>Well_order m\<close> by (simp_all add: order_on_defs) | 
| 676 | --\<open>We show that the extension is a well-order\<close> | |
| 677 | have "Refl ?m" using \<open>Refl m\<close> Fm unfolding refl_on_def by blast | |
| 678 | moreover have "trans ?m" using \<open>trans m\<close> and \<open>x \<notin> Field m\<close> | |
| 52181 | 679 | unfolding trans_def Field_def by blast | 
| 60758 | 680 | moreover have "antisym ?m" using \<open>antisym m\<close> and \<open>x \<notin> Field m\<close> | 
| 52181 | 681 | unfolding antisym_def Field_def by blast | 
| 60758 | 682 | moreover have "Total ?m" using \<open>Total m\<close> and Fm by (auto simp: total_on_def) | 
| 52181 | 683 | moreover have "wf (?m - Id)" | 
| 684 | proof - | |
| 60758 | 685 | have "wf ?s" using \<open>x \<notin> Field m\<close> unfolding wf_eq_minimal Field_def | 
| 55811 | 686 | by (auto simp: Bex_def) | 
| 60758 | 687 | thus ?thesis using \<open>wf (m - Id)\<close> and \<open>x \<notin> Field m\<close> | 
| 688 | wf_subset [OF \<open>wf ?s\<close> Diff_subset] | |
| 54482 | 689 | unfolding Un_Diff Field_def by (auto intro: wf_Un) | 
| 26191 | 690 | qed | 
| 52181 | 691 | ultimately have "Well_order ?m" by (simp add: order_on_defs) | 
| 60758 | 692 | --\<open>We show that the extension is above m\<close> | 
| 693 | moreover have "(m, ?m) \<in> I" using \<open>Well_order ?m\<close> and \<open>Well_order m\<close> and \<open>x \<notin> Field m\<close> | |
| 52181 | 694 | by (fastforce simp: I_def init_seg_of_def Field_def) | 
| 26191 | 695 | ultimately | 
| 60758 | 696 | --\<open>This contradicts maximality of m:\<close> | 
| 697 | have False using max and \<open>x \<notin> Field m\<close> unfolding Field_def by blast | |
| 26191 | 698 | } | 
| 699 | hence "Field m = UNIV" by auto | |
| 60758 | 700 | with \<open>Well_order m\<close> show ?thesis by blast | 
| 26272 | 701 | qed | 
| 702 | ||
| 52181 | 703 | corollary well_order_on: "\<exists>r::'a rel. well_order_on A r" | 
| 26272 | 704 | proof - | 
| 52181 | 705 | obtain r::"'a rel" where wo: "Well_order r" and univ: "Field r = UNIV" | 
| 706 | using well_ordering [where 'a = "'a"] by blast | |
| 707 |   let ?r = "{(x, y). x \<in> A \<and> y \<in> A \<and> (x, y) \<in> r}"
 | |
| 26272 | 708 | have 1: "Field ?r = A" using wo univ | 
| 52181 | 709 | by (fastforce simp: Field_def order_on_defs refl_on_def) | 
| 710 | have "Refl r" and "trans r" and "antisym r" and "Total r" and "wf (r - Id)" | |
| 60758 | 711 | using \<open>Well_order r\<close> by (simp_all add: order_on_defs) | 
| 712 | have "Refl ?r" using \<open>Refl r\<close> by (auto simp: refl_on_def 1 univ) | |
| 713 | moreover have "trans ?r" using \<open>trans r\<close> | |
| 26272 | 714 | unfolding trans_def by blast | 
| 60758 | 715 | moreover have "antisym ?r" using \<open>antisym r\<close> | 
| 26272 | 716 | unfolding antisym_def by blast | 
| 60758 | 717 | moreover have "Total ?r" using \<open>Total r\<close> by (simp add:total_on_def 1 univ) | 
| 718 | moreover have "wf (?r - Id)" by (rule wf_subset [OF \<open>wf (r - Id)\<close>]) blast | |
| 52181 | 719 | ultimately have "Well_order ?r" by (simp add: order_on_defs) | 
| 54482 | 720 | with 1 show ?thesis by auto | 
| 26191 | 721 | qed | 
| 722 | ||
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 723 | (* Move this to Hilbert Choice and wfrec to Wellfounded*) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 724 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 725 | lemma wfrec_def_adm: "f \<equiv> wfrec R F \<Longrightarrow> wf R \<Longrightarrow> adm_wf R F \<Longrightarrow> f = F f" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 726 | using wfrec_fixpoint by simp | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 727 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 728 | lemma dependent_wf_choice: | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 729 |   fixes P :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> bool"
 | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 730 | assumes "wf R" and adm: "\<And>f g x r. (\<And>z. (z, x) \<in> R \<Longrightarrow> f z = g z) \<Longrightarrow> P f x r = P g x r" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 731 | assumes P: "\<And>x f. (\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 732 | shows "\<exists>f. \<forall>x. P f x (f x)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 733 | proof (intro exI allI) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 734 | fix x | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 735 | def f \<equiv> "wfrec R (\<lambda>f x. SOME r. P f x r)" | 
| 60758 | 736 | from \<open>wf R\<close> show "P f x (f x)" | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 737 | proof (induct x) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 738 | fix x assume "\<And>y. (y, x) \<in> R \<Longrightarrow> P f y (f y)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 739 | show "P f x (f x)" | 
| 60758 | 740 | proof (subst (2) wfrec_def_adm[OF f_def \<open>wf R\<close>]) | 
| 58184 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 741 | show "adm_wf R (\<lambda>f x. SOME r. P f x r)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 742 | by (auto simp add: adm_wf_def intro!: arg_cong[where f=Eps] ext adm) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 743 | show "P f x (Eps (P f x))" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 744 | using P by (rule someI_ex) fact | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 745 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 746 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 747 | qed | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 748 | |
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 749 | lemma (in wellorder) dependent_wellorder_choice: | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 750 | assumes "\<And>r f g x. (\<And>y. y < x \<Longrightarrow> f y = g y) \<Longrightarrow> P f x r = P g x r" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 751 | assumes P: "\<And>x f. (\<And>y. y < x \<Longrightarrow> P f y (f y)) \<Longrightarrow> \<exists>r. P f x r" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 752 | shows "\<exists>f. \<forall>x. P f x (f x)" | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 753 | using wf by (rule dependent_wf_choice) (auto intro!: assms) | 
| 
db1381d811ab
cleanup Wfrec; introduce dependent_wf/wellorder_choice
 hoelzl parents: 
55811diff
changeset | 754 | |
| 13551 
b7f64ee8da84
converted Hyperreal/Zorn to Isar format and moved to Library
 paulson parents: diff
changeset | 755 | end |